
JOURNAL OF MATHEMATICAL PSYCHOLOGY 13, 296-322 (1976) 

Utility-uncertainty Trade-Off Structures* 

LOUIS NARENS 

School of Social Sciences, University of California, Irvine, California 92717 

A qualitative axiomatization of a generalization of expected utility theory is given in 

which the expected value of simple gambles is not necessarily the product of subjective 
probability and utility. Representation and uniqueness theorems for these generalized 

structures are derived for both Archimedean and nonarchimedean cases. It is also 
shown that a simple condition called distributivity is necessary and sufficient in the case 

of simple gambles for one of these generalized expected utility structures to have 
simultaneously an additive subjective probability function and a multiplicative com- 

bining rule for expected values. 

1. INTRODUCTION 

Pascal in his Pens&s makes the following remarkable observation: 

Our soul is tossed into the body where it finds number, time, dimensions. It argues 
about them, calls them nature or necessity, and cannot believe in anything else. . . . 

Let us consider the point and say: ‘Either God exists, or he does not exist.’ But which 
of the alternatives shall we choose ? Reason can determine nothing: there is an infinite 

chaos which divides us. A coin is being spun at the extreme point of this infinite distance 
which will turn up heads or tails. What is your bet ? If you rely on reason you cannot 

settle for either, or defend either position. 
Do not therefore accuse those who have made their choice of falseness because you 

know nothing about it. 

‘No, I do not blame them for their choice, but for making a choice at all because he 
who calls heads and he who calls tails are guilty of the same mistake, they are both 
wrong: the right course is not to wager.’ ‘Yes, but we have to wager. You are not a free 

agent; you are committed. Which will you have then ? Come on. Since you are obliged 
to choose, let us see which interests you least. You may lose two things: the true and the 
good; and there are two things that you stake: your reason and your will, your knowledge 

and your beatitude; and your nature has two things from which to escape: error and 
unhappiness. Your reason is not more deeply wounded by choosing one rather than the 
other because it is bound to choose. That disposes of one point. But what about your 
beatitude ? Let us measure the gain and the loss by saying: “Heads God exists.” Let us 

compare the two cases; if you win, you win everything; if you lose, you lose nothing. 
Don’t hesitate then. Take a bet that he exists.’ 

* The author would like to thank R. Duncan Lute for the many discussions that gave rise to 
this paper. 
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‘That’s fine. Yes, I must take a bet; but perhaps I am staking too much.’ 

‘Come. Since there is an equal chance of gain and loss, if you were only to win two 

lives for one, you could still wager; but if there were three to be won, you would have 
to gamble (since you are bound to gamble), and it would be imprudent, when you are 

obliged to gamble, not to risk your life in order to win three lives at a game in which 
there is such a chance of loss and gain. But there is an eternity of life and happiness at 
stake. And since it is so, if there were an infinite number of chances of which only one 

was for you, you would still be right to risk one to win two; and you would be taking 
the wrong road if, being forced to gamble, you refuse to stake one life against three 

in a game in which, out of an infinite number of chances, one is for you, if the prize 
were in infinity of life which was infinitely happy. But in this game you can win eternal 

life which is eternally happy; you have one chance of winning against a finite number 
of chances of losing, and what you are staking is finite. That settles it: wherever there 

is infinity, and where there is not an infinity of chances of losing against the chance of 

winning, there is no room for hesitation: you must stake everything. And so, since 
you are forced to gamble, you must abandon reason in order to save your life, rather 

than risk it for the infinite gain which is just as likely to turn up as the loss of nothing.’ 

Pascal [1670], pp. 200-203. 

In modern terms, Pascal is presenting a version of qualitative expected utility. 
Basically, he is saying that a rational man M has a preference ordering 2 for certain 
types of gambles. These gambles are of the form a A b where A is some chance event 
(e.g., heads occurring when a coin is flipped) and Q, b are objects whose value to M 
are independent of the occurrence or nonoccurrence of A, and “a A b” means that M 
gets a if A occurs and b if A does not occur. Furthermore, it is implicit in the above 
passage that M has a probability function P on chance events and an utility function v 
on objects of value such that 

a A b 2 c B d iff v(u)P(A) + @)(I - P(A)) > v(c)P(B) + ~(d)(l - P(B)). 

In the above passage Pascal allows some of the objects to have infinite utility and some 
of the chance events infinitesimal probability. In 17th Century mathematics (Pascal 
died in 1662), the use of infinities and infinitesimals in proofs of mathematical or 
physical propositions were common. 

In Pascal’s time (as well as today) measurement was not well understood and there 
was constant confusion between quantitative and qualitative concepts. For example, 
Pascal implicitly assumes that an infinity of happiness should (to a rational man) have 
infinite utility. This would be reasonable if the “additivity” of happiness corresponded 
to the additivity of the utility of happiness. If one were only considering happiness, 
then it is consistent to assume that such a correspondence always exists provided that 
the operation of “additivity” of happiness satisfies certain natural conditions. However, 
Pascal compares chances of happinesses. Probability is the measure of chance and chance 
has its own form of “additivity”: if A and B are disjoint events then A u B can be 
considered as the “sum” of A and B. Once again, if one were only considering chance 
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by itself, then it is consistent to assume that the “additivity” of chance corresponds to 
the additivity of probabilities. However, if one has to simultaneously measure chance 
and happiness to measure the values of chances of happinesses, then only in special 
cases can this be done in a way such that the “additivity” of chance corresponds to the 
additivity of probabilities and the “additivity” of happiness corresponds to the 
additivity of the utility of happiness. 

It turns out that a similar situation occurs in physics where there are natural ways 
of qualitatively defining an ordering relation >, and an “addition” operation o on the 
set of speeds S so that (S, 2, o) is a closed extensive structure (see Definition 3.6) and 
thus has an additive numerical representation: i.e., there is a real valued function s 
defined on S such that for all x, y in S, 

and 
x 2 y ifi 44 > s(y), 

s(x o Y) = s(x) + s(y). 

Similarly, natural qualitative ordering relations k’, 2” and qualitative “addition” 
operations o’, 0” can be defined on the set of lengths L and the set of times T so that 
(L, k’, 0’) and (T, k”, 0”) are closed extensive structures and also have additive 
numerical representations. In relativistic physics there is a bit of a problem with the 
speed of light 2. Ifs is an additive numerical representation for speed and x is a speed 
such that 1> x, then in special relativity E> x 0 x. Thus s(Z) > s(x) + s(x) = 2s(x). 
Applying this reasoning to x 0 x, it follows that s(Z) > 4s(x). In general, for each 
positive integer n, s(Z) > 2?(x). Thus in relativity ifs is an additive numerical represen- 
tation for speed, then s(Z) = co. Interestingly enough, if 1 > x and x is qualitatively 
“added” to L then the result is qualitatively equivalent to I, i.e., x 0 Z N 1. Pascal in the 
above mediation gives his “infinities” a similar property: 

Unity joined to infinity does not add anything to it, any more than a foot to a 

measure which is infinite. The finite is annihilated in the presence of the infinite, and 
becomes pure nothingness. 

Although the speed of light cannot be exceeded in relativistic physics, it is 
theoretically surpassable in classical physics. In classical physics there are additive 
numerical representations, d, t, s, for distance, time, and speed respectively such that 
the representation of the speed of a particle in uniform motion is the ratio of the 
representation of the length travelled to the representation of the time elapsed, i.e., 
s = d/t. In special relativity, one cannot simultaneously have additive numerical 
representations d, t, s for length, time and speed (even when s is only defined for speeds 
less than 1) such that s = d/t. Therefore, in relativistic physics some nonadditive 
numerical representation must be given or law s = d/t must be changed. Historically, 
physicists have chosen to preserve the law s = d/t and give additive representations 
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to length and time and a nonadditive representation to speed so that for all speeds X, y, 

44 + S(Y) 
s(x a y, = 1 + S(X) s(y) 

where units are chosen so that s(l) = 1. If we let @ be the binary operation defined on 
the positive real numbers by 

then in relativistic physics for all speeds X, y, 

and 
X&Y iff 44 3 s(y), 

s(x 0 y) = s(x) @ s(y). 

In this case s is a numerical representation for (S, 2, o) and the qualitative “addition” 
operation on speeds is interpreted quantitively as the numerical operation 0. (For 
qualitative treatments of relativistic velocities, see Lute and Narens [1975] and 
Narens and Lute [ 19751). 

In order to create an analogous situation for Pascal’s example, let d be an algebra of 
chance events, %? be a set of objects of value, and for each a E @ and A E d let (a, A) 
mean that a rational man M will receive u if A occurs and receive nothing if A does not 
occur. Let 2 be M’s preference ordering on g x 8. Call B = (0, 0, y, P) a 
representation for 4X = @, 8, 2) if and only if for all a, b E V, all A, B E &‘, and all 
positive r, the following five conditions hold: 

(1) 0 and @ are binary operations on the nonnegative reals such that 1 0 Y  = r; 

(2) y is a function from V into the positive reals and for some u, y(u) = 1; 

(3) P is a function from 8 into [0, I ] such that P( @) = 0 and P(X) = 1 where 
0 is the null event in d and X is the sure event in b; 

(4) (a, A) k (4 B) iff v(a) 0 f’(A) 3 pl(4 0 P(B); 

(5) if A n B = 0 then v(a) 0 P(A u B) = y(a) 0 (P(A) @P(B)). 

Intuitively, ‘p is M’s utility function for %?, P is M’s subjective measure of the 
likelihood of the occurrence of members of 8, @ is the quantitative interpretation of 
the qualitative “addition” operation for chance, and () is the quantitative interpreta- 
tion of M’s expectation function. Note that if @ is + then from (1), (3), and (5) it 
follows that P is an (additive) probability function on 6. Thus if % has a representation 
where @ is + then the chance events in E have the qualitative structure of a probability 
space. If (3 is multiplication, ., then v(u) . P(A) looks like the usual expectation for 

(a, 4. 
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Let 9 be a representation for @. If @ is + then W is said to be additive; if (3; is . 
then W is said to be multiplicative; if g is both additive and multiplicative, then W is 

said to be distributive. Pascal as well as von Neuman and Morgenstern [I9531 and 
others assume that @ has a distributive representation. In Section 2, axioms are given 
that guarantee that @ has a unique (up to a choice of units) distributive representation. 
There are, however, reasonable axioms for % that yield no distributive representations. 
In analogy with relativistic physics, in these axiomatizations either chance must be 

given a nonadditive representation or the usual law for computing expectations must be 
abandoned. 

In our analogy, the speed of light corresponds to Pascal’s infinity of happiness. In 
relativity, the speed of light, 1, is assigned a finite numerical value. It is natural to ask 
what qualitative condition forces 1 to be assigned a$nite value. The answer is that in 
relativity distance (length) is given an additive representation and because of the law 
s = d/t, speed can be measured in terms of the distance travelled in unit time. This 

allows the following qualitative boundedness principle for relativistic speed to be 
formulated: 

There is a speed x such that for all speeds y, twice the distance that a particle 
with speed x travels in one second is greater than the distance a particle with 
speed y  travels in one second. 

Naturally, the numerical value that is assigned to a speed z is the numerical value of the 
distance that a particle with speed a covers in one second. Note that the speed of light 
plays no essential role in the boundedness of speed since if one were to restrict relativity 

to speeds less than I then the above principle would still force the set of numerical 
values assigned to speeds to be a bounded set. I f  we consider chance acting like 
distance and utility like speed, then the following would be an analogous definition of 
boundedness for @: 

There is an x in g such that for all y  in %7, (x, X) > (y, A) where X is the 
sure event, and A is some event such that (y, A) N (y, X - A). 

In Section 2, axioms are given that for bounded @ yield an unique (up to a choice of 
units) additive representation. However, such a representation is not multiplicative 
unless a certain qualitative condition called distributivity is satisfied. 

Another way of dealing with infinite quantities is to measure them in structures 
that are generalizations of the real number system. This is done in Section 2 where 
value and chance are measured in a generalization of the reals that look like a lexi- 
cographic ordering. 

The proofs of the theorems in Section 2 are given in Section 3. 
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2. UTILITY-UNCERTAINTY TRADE-OFF STRUCTURES 

DEFINITION 2.1. (X, 8, W, 2) is said to be a utility-uncertainty trade-ofl structure 
if and only if o 6 8’ and 8 u ( a} is an algebra of subsets of some nonempty set X, V 
is a nonempty set, and 2 is a binary relation on V x d such that the following four 
axioms hold: 

Ax.1. weak order: 2 is a weak order; 

Ax.2. independence: (i) for all A, B in 8, if for some x E V, (x, A) 2 (x, B), then 

for ally E g, (y, 4 Z (Y, B); and (ii) for all u, v in V, if for some E E d (u, E) 2 (v, E) 
then for all F E 8 (u, F) 2 (v, F); 

Ax.3. trade-ofJ: (i) for all x,y E %?, if (x, X) 2 (y, X) then for some E E 6, 
(x, E) .w (y, X); and (ii) for all A in d and for all u in V there is a z in V such that 

(u, A) - (z, -0 
Ax.4. uncertainty: for some x E %? the following three conditions hold for all A, 

B, C, D in 8: 

(i) if A n B = A n C = B then: (x, B) 2 (x, C) iff (x, A u B) 2 (x, A u C); 
(ii) if A n B = ia, (x, A) > (x, C), and (x, B) 2 (x, D), then there are 

E,C’,D’indsuchthatC’nD’= m,E>C’uD’,(x,E)-(x,AuB),(x,C)- 

(2, (3, and (x, D) - (x, 0’); 
(iii) if (x, A) > (x, B) then for some E, F in 8, (x, E) N (x, A), (x, F) - 

(x, B), and E > F. 

In Definition 2.1, the null event, a, is excluded from consideration for convenience. 
As before, (x, A) should be interpreted as receiving object x if event A occurs and 
receiving nothing if A does not occur. Ax.2 says that the values of objects are not 
influenced by the occurence of events and that the occurence of events are not 
influenced by the values of objects. Ax.4 are some of Lute’s axioms for qualitative 
probability (Lute, 1967). Although Ax.3 and Ax.4 can be greatly weakened, I have 
decided to use them since they are easy to state and allow elementary proofs of most of 
the theorems that follow. 

DEFINITION 2.2. Let (X, 8, %, 2) be a utility-uncertainty trade-off structure. 
A sequence A, ,..., A, ,... of members of d is called a standard sequence relative to A 
ifandonlyiffori = 1, 2,... there are Bi , Ci in & such that the following five conditions 
hold for some x in Z’: 

(1) A, = B, and (x, B,) -(x, A); 
(2) Bi n Ci = a; 
(3) Bi - Ai; 
(4) Ci-A; 
(5) .4,+1 = Bi u Ci . 
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The following axiom prohibits the existence of events that have an infinitesimal 
chance of occuring. 

DEFINITION 2.3. Let @ = (X, Q, %:, >,) be a utility-uncertainty trade-off 
structure. % is said to be Archimedean if and only if the following axiom is satisfied: 

AS. Archimedeun: For each A in 8 there is no infinite standard sequence relative 

to A. 

DEFINITION 2.4. Let % = (X, &, V, 2) be a utility-uncertainty trade-off 
structure. S? is said to be bounded if and only if the following two conditions hold: 

(1) for each A, B in &, if for some x in %‘, (x, A) > (x, B), then there exists? in %? 

such that for all z in %‘, (y, A) > (z, B); 

(2) for each u in V there exists C in d such that for all v  in %‘, (u, X) 2 (ZJ, C). 

Definition 2.4 could probably be simplified greatly. Its present form, however, 
greatly simplifies certain proofs. 

DEFINITION 2.5. Let (X, 8, %?, 2) be a utility-uncertainty trade-off structure. 

x is said to be a maximal elemat of V if and only if x is in 97 and for ally in %‘, 

(x, X) z (Y, 4. If  x, IS an infinite sequence of members of %“, we say that xi + GO . 
if and only if for all positive integers i, (x~,.~ , X) > (xi , X) and for each z E % there 
is a positive integer n such that (3c, , X) > (z, X). 

It is easy to show that if (7l = (X, 8, %“, >,) is an Archimedean utility-uncertainty 

trade-off structure such that %? does not have a maximal element then there is a sequence 
of members of %‘, xi , such that xi -+ co. 

DEFINITION 2.6. Let @ = (X, 6, V, 2) b e an Archimedean utility-uncertainty 
trade-off structure and let z be a maximal element of V. An additiwe representation for 
B is an ordered 3-tuple (0, v, P> such that 0 is a binary operation on (0, I], 
v: V -+ (0, I], P: G --+ (0, 11, and the following four conditions hold for all x, y  in % 
and all A, B in 6: 

(1) P(X) = 1 and QJ(Z) = 1; 

(2) v(x) 0 P(X) = d-4 and ~(4 0 P(A) = P(A); 

(3) (x9 4 2 (Y, B) iff P)(X) 0 P(A) > V(Y) 0 P(B); 

(4) if A n B = o then (r&z) 0 P(A)) + (v(x) 0 P(B)) = v(x) 0 P(A u B). 

DEFINITION 2.7. Let % = (X, 6, %‘, 2) b e a bounded, Archimedean utility- 
uncertainty trade-off structure and xi be a sequence of elements of % such that xi -+ co. 
An additive representation for @ is an ordered 3-tuple (0, v, P> such that 0 is a binary 
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operation on (0, I], y: V---f (0, I], P: 8 + (0, 11, and the following four conditions 
hold for all x, y in V and all A, B in 6: 

(1) P(X) = 1 and lim,+m q(q) = 1; 

(2) y(x) 0 P(X) = v(x) and limi+,[v(xi) 0 P(A)] = P(A); 

(3) (x, A) 2 (Y, B) ifid 0 P(A) 2 v(y) 0 P(B); 

(4) if A n B = o then lim&v(xJ 0 P(A)] + lim,.+,[p)(xi) 0 P(B)] = 

lim,,,[d4 0 P(A LJ @I. 

DEFINITION 2.8. Let CV = (X, 8, %‘, 2) be an Archimedean utility-uncertainty 
trade-off structure. Then 4 is said to have an unique additive representation if and only 
if % has an additive representation and for all additive representations (0, p, P), 
(o’, tp‘, P’) for @, q7 = q~‘, P = P’ and for all XE@ and AE&‘, v(x) 0 P(A) = 
p’(x) 0’ P’(A). 

THEOREM 2.1. Let % = (X, E, V, 2) be an Archimedean utility-uncertainty 
trade-off structure. Then the following two propositions are true: 

(1) if Of? has a maximal element then S has an unique additive representation; 

(2) if & is bounded and there exist A, ,..., A, ,... in d such that Ai 3 Ai+l , then 
% has an unique additive representation. 

DEFINITION 2.9. Let 67~ = (X, 8, ?Z, 2) b e an utility-uncertainty trade-off 
structure. % is said to be distributive if and only if the following axiom is satisfied: 

Ax.6. distributivity: for all x, y in V and all A, B, C, D in 8, if A n B = 
CnD= U, (x,A)w(y,C), and (x,B) - (y, D), then (x, A u B) N (y, C u D). 

DEFINITION 2.10. Let 4 = (X, 8, V, 2) be an Archimedean, distributive 
utility-uncertainty trade-off structure. A distributive representation for % is an ordered 
3-tuple (v, P, u) such that q~ is a function from 9 into the positive reals, P: 8 -+ (0, 11, 
u is an element of V, and the following three conditions hold for all x, y in V and all 
A, B in 8: 

(I) P(X) = 9)(u) = 1; 

(2) (x, A) 2 (Y, B) iff P)(X) * f’(A) 2 V(Y) . P(B); 

(3) if A n B = o then P(A u B) = P(A) + P(B). 

THEOREM 2.2. Let 3’ = (X, 8, %, &) b e an Archimedean, distributive utility- 
uncertainty trade-off structure. Then for each u in V there is a distributive representation 
(v, P, u> for @. Furthermore, zf (0, 4, Q, v > is such that 0 is a binary operation on the 
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positive reals, # is a function from ‘c; into the positive reals, Q: 6 -F (0, I], v  is an element 
of VT?, and for all x, y  in E and all A, B in C : 

(1) Q(X) =9w = 1, 

(2) tNx> 0 Q(X) = 4(x), #(v) 0 Q(A) = Q(A), 

(3) (x7 4 2 (Y, B) i f f  QW 3 Q(A) > #(Y) 0 Q(B), 

(4) if A n B = a then #@9 0 (Q(A u B)) = M4 0 !&4)) + W(x) 0 Q(B)), 
then Q = P, +b = I&D(~), andfor all x in V and a21 C in 6, 4(z) 0 Q(C) = #(z) . Q(C). 

Let @ = (X, 8, %, 2> b e a distributive utility-uncertainty trade-off structure that 
is not necessarily Archimedean. Intuitively, a representation for S is based upon a 
generalization of the idea of a lexicographic ordering. Basically, the elements of $7 

are divided into dimensions or commeasurability classes. Two elements in the same 
commeasurability ciass can be measured with respect to one another, i.e., if some 
element e of a cornmeasurability class S? is chosen as a unit, then there is essentially 
only one way of assigning real numbers to members of x so that e is assigned the 

number 1. Commeasurability classes are ordered as follows: x1 is greater than Z, if 
and only if for some x in %, and some y  in ~5, , (x, X) > (y, X). As in lexicographic 
orderings, elements of different cornmeasurability classes are ordered only in terms 
of the cornmeasurability classes to which they belong and not by their position 
in their cornmeasurability class. The elements of G are divided into two sets: (i) those 
that can be measured with respect to X (the noninfkitesimal elements) and (ii) those 
that are too small to be measured with respect to X (the infinitesimal elements). 

DEFINITION 2.11. Let % = (X, 8, V, 2) be a distributive utility-uncertainty 
trade-off structure. 

1. For all x, y  in %‘, x is said to be cornmeasurable with y  (in symbols, x = y) if 
and only if (1) for some A in 8, (x, X) N (y, A) and there is no infinite fundamental 
sequence with respect to A, or (2) f  or some B in 6, (y, X) N (x, B) and there is no 
infinite fundamental sequence with respect to B. It is easy to show that = is an 
equivalence relation on %7. Call each equivalence class determined by = a 
commeasurability class. 

2. Let A be an arbitrary element of 8. A is said to be injinitesimal if and only if 
there is an infinite fundamental sequence with respect to A. A is said to be non- 
in$nitesimal if and only if A is not infinitesimal. 

It is easy to show that (i) X is noninfinitesimal, (ii) if A, B are infinitesimal then 
A u B is infinitesimal, and (iii) if C is noninfinitesimal and D is an arbitrary member of 
d then C u D is noninfinitesimal. 

DEFINITION 2.12. Let %‘J = (X, 8, %‘, 2) be a distributive utility-uncertainty 
trade-off structure and let 9 be the set of noninfinitesimal members of 8. A representa- 
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tion for @ is an ordered 3-tuple (v, P, F) such that pl is a function from %Y into the 
positive reals, P is a function from 8 into (0, I], 9 C %‘, and for each x, y in V and 
each A, B in 9 the following eight conditions hold: 

(1) for some 24 in F, u = x; 

(2) ifx,yareinFandx+ythenx+y; 

(3) if x is in F then v(x) = 1; 

(4) P(X) = 1; 

(5) if A n B = o then P(A u B) = P(A) + P(B); 

(6) if x = y and (x, A) 2 (y, B) then p(x) . P(A) > v(y) P(B); 

(7) if x = y and v(x) . P(A) > r&y) . P(B) then (x, A) > (y, B); 

(8) if x = y and v(x) . P(A) = v(y) . P(B) then either (x, A) N (y, B) or there 
exists an infinitesimal C in 8 such that either (x, A - C) N (y, B) or (x, A) N 

(Y, B - 0 

THEOREM 2.3. Let @ be a distributive utility-uncertainty trade-off structure. Let 
5 be a set qf elements of %? such that 9 has exactly one member from each cornmeasurability 
class of %7. Then there is a representation (q~, P, 9) for (8. Futhermore, ;f  (#, Q, %‘> 
is another representation for S, then P = Q and for each x in 9 and each y  in 9 if 

x = Y then P)(X) = V(Y) VW, 

Notation. Let A be a nonempty set and x be an individual. Then, by definition, 
fAx is the function from A into {x}. By convention, g, , h, , etc., will denote functions 
with domain A. 

In what follows fAz will denote the simple gamble of receiving x if the event A occurs 
and receiving nothing if A does not occur. That is, the notation fAe will replace the 
previous notation (x, A). Consequently, previous definitions (e.g., fundamental 
sequence) and axioms (e.g., Archimedean, independence) equally well apply in this new 
notation. 

DEFINITION 2.13. Let V and X be nonempty sets, G be a set such that @ $ d and 
& u { ia} is an algebra of subsets of X, 9 be a set of functions from members of d into 
V such that each g in 9 takes on only finitely many values in ‘+?, x1 ,..., x, , and for 
i = I,..., n, g-l(xJ is in 8, and let 2’ be a binary relation on 9. Then (X, 8, @?, 9, 
2’) is said to be a gambling structure if and only if the following six axioms hold: 

Ax.1’. weak order’: 2’ is a weak order; 

Ax.2. independence: (see Definition 2.1); 

Ax.3’. trade-or: (i) for all x, y in V, if fxx 2’ fxy then for some E in &, 

fE” -‘fx g; and (ii) for all g in 9 there exists x in %? such that g w’ fxx; 

4W13/3-5 
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Ax.4’. uncertainty’: (i) there exists s in 9? such that for all A, B, C in C, if 
A n B = A n C == m then: fBz >,’ fcx i f f  f& 2’ f$,c; and (ii) for each y  in % and 
each D, E in 6‘, if fD” 2’ f$ then there exists F in & such that D > F and f,? -‘ fEv; 

Ax.5. Archimedeun: (see Definition 2.3); 

Ax.6’. linearity (distributivity’): for each A, B, C, D in 6, each x in ‘Z, and each 
g,,h,in9,ifAnB=Cr\D== u,fAxN’gC,fsgN’hDthenf,“,,N’gCVhD. 

It is easy to show that trade-ofJ’ implies trade-o& uncertainty’ implies uncertainty, and 
linearity implies distributivity. Thus if we define 2 on G$ x & by 

(~3 4 k (Y, 4 i f f  fAz 2’ fBIJ 

then (X, 8, ‘6, 2) is an Archimedean, distributive utility-uncertainty trade-off 

structure. 

DEFINITION 2.14. Let d be a set such that is # 6 and &’ u (D} is an algebra of 
subsets of some nonempty set X. Let P be an additive probability function on 8, i.e., 

P be a function from & into (0, l] such that P(X) = I and for all A, B in 6, if 
A n B = o then P(A u B) = P(A) + P(B). Let C be in 8 and let h be a function 
from C into the positive reals that has as values rl ,..., Y, . For i = i,..., n, let 
A, = (x 1 h(x) = rj}. Assume Ai is in 6’. Then the expectation of h with respect to 
P, Ep(h), is defined as follows: 

E,(h) = f  P(A,) . yi . 
i=l 

THEOREM 2.4. Let (X, 8, %, 3, 2’; be a gambling structure and u, v  be arbitrary 

elements of g. Then there is an additive probability function P on & and a function 9 
from +? into the positive reals such that v(u) = 1 andfor all f ,  g in 9, 

fk’g ifi W&f 1) 2 JGMgN~ 

Furthermore, if Q is another additive probability function on 8 and # is another function 
from $7 into the positive reals such that #(v) = I and for all f ,  g in 93, 

then P = Q and 9 = v(v)+. 

The above axiom systems can be modified in a very natural way to include the case of 
utilities having nonpositive values. 
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3. PROOFS 

Convention. Throughout this section let 9G = (X, 6, W, 2) be a fixed utility- 
uncertainty trade-off structure. 

DEFINITION 3.1. Let >r be the binary relation on V: defined by: for all x, y in V, 

X&Y iff (x, X) 2 (Y, X). 

Let k2 be the binary relation on & defined by: for all A, B in 8, A 2s B iff for some z 
in C, (z, A) 2 (z, B). 

LEMMA 3.1. 2, is a weak order on %? and & is a weak order on 8. 

Proof. Follows immediately from weak order and independence. 1 

LEMMA 3.2. The following six propositions are true for all A, B, C, D in 8: 

(i) Suppose A n B = C n D = m. Then: if A & C and B &D then 
A~B&C~D,andifA>,CandB&DthenA~B>,CuD. 

(ii) IfAnB=CnD= 0,AN2C,andBN2D,thenAuBN2CvD. 

(iii) If A 2 B then A & B. 

(iv) X 2s A. 

(v) If A 2 B then: A >z B iff A - B is in E. 

(vi) IfA#XandB#XandA>:,BthenX-B&X-A. 

Proof. Left to reader. 1 

DEFINITION 3.2. For each x in W: 

(I) let~,={~~~lxX~yl; 

(2) let 2, be the restriction of k1 to %7=; 

(3) let 0, be the partial relation on 55X defined by: for all II, y, z in Vz, 
u (T&y mz z iff for some A, B in 8, A n B = a, (x, A) - (u, X), (x, B) N (y, X), 
and (x, A u B) N (z, X). 

LEMMA 3.3. For each x in V, 0, is a binary partial operation on %?*, i.e., for all 
u,v,y,.zin%‘z,ifu &v~zzandu ~,v~zythenz~zy. 

Proof. Suppose that u 0, v wz z and u 0, v wzy. Let A, B, C, D be elements of 
dsuchthatAnB=CnD= ~,(x,A)N(u,X),(X,B)N(V,X),(X,AUB)- 

(z, X), (x, C) - (u, X), (x, D) - (v, X>, and (x, C v D) N (y, X). By independence 
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and Lemma 3.1 it follows that A -a C and B -a D. Thus by Lemma 3.2(ii), 
A u B ,-I C u D. By independence and Definition 3.1, (x, A u B) - (x, C u D). 

Thus (z, X) - (y, X). By independence, x ws u”. 1 

(Propertly speaking, one might call 0, a “multivalued operation.” For convenience, 
we will consider u 0, v  to be an element of gz although it is really an equivalence 
class of members of Vi’, determined by the equivalence relation mZ .) 

LEMMA 3.4. For each x in %, & is a weak order on %Tz . 

Proof. Left to reader. 1 

LEMMA 3.5. For each x in V and each u, v, y  in Vz , if (u a, v) 0, y  is de$ned then 

u 0, (v 0,~) is defined and (u 0, v) 0, y  -z u 0, (v 0, y). 

Proof. Suppose that (U 0, v) ~,y is defined. Let A, B, C be elements of & such 
that A n B = o , (x, C) - (y, X), (A u B) n C = @, (x, A) - (u, X), (x, B) - (v, X), 
(x, A u B) N (U 0, v, X), and (x, A u B u C) N ((u 0, v) 0, y, X). Since 
BnC =.GY,(~,BuC)-(VQ,~,X).S~~~~A~(BUC)= O, 

(x, A u B u C) - (u n, (v 0, y), X) - (u 0, (v 0, y), X). 1 

LEMMA 3.6. For each x in % and each u, v, y  in V:‘, , ; f  u 0, v  is defined and u 2,. 
then v  0, y  is defined and u 0, v  & v  2, y. 

Proof. Suppose that u 0, v  is defined and u 2, y. Let A, B, C be elements of G 

such that A n B = o , (x, A) - (u, X), (x, B) - (v, X), and (x, C) - (y, X). Since 
u 2, y, (x, A) - (u, X) 2 (y, X) - (x, C). Thus by independence, A & C. Since 
A n B = n, A & C and B & B, by independence and uncertainty ir follows that 
there are D,E,F in d such that D--,AuB, EnF= @‘, D>EvF, Cm2E, 
and B m2 F. By independence, (u, X) - (x, A) 2 (x, C) - (x, E) - (y, X) and 
(v,X)-(x,B)-(x,F).SinceAnB=EnF= m,(x,AuB)-(uagv,X)and 
(x, E u F) - (y 0, v, X). Since .4 u B w2 D 1 E u F, from Lemma 3.2(iii) and 
independence it follows that (x, A u B) 2 (x, E u F); that is, (U a), v, X) k 

(y m, v, X). Thus, u 0, v  &y 0, v. 1 

LEMMA 3.7. For all x in % and all u, v  in 9X , if u >, v  then for some y  in gz, 

u&v 0,y. 

Proof. Suppose that u >, v. By trade-off let A, B be such that (x, A) - (u, X) 
and (x, B) - (v, X). Since (u, X) > (v, X), (x, A) > (x, B). By independence it follows 
that A sz B. By uncertainty, let E, F be such that A -a E, B -a F and E I F. By 
Lemma 3.2(v), E -F is in 6. By trade-o& let y  be such that (x, E -F) - (y, X). 
Then y  is in V:, . Thus (u, X) N (x, A) N (x, E) - (x, F u (E - F)). Since v, X) - 
(x, F) and (y, X) N (x, E - F), (v 0, y, X) - (x, E). Thus u -y v  0, y. a 
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LEMMA 3.8. For each x in V and each u, v  in %Tz, ifu 0, v  is defined then u 0, v  >, u. 

Proof. Suppose that u 0, v is defined. Let A, B be such that A n B = D’, 
(x, A) N (u, X), (x, B) N (v, X), and (x, A u B) N (u 0, v, X). Since B = 
(A U B) - A is in c?, it follows from Lemma 3.2(v) that A u B >a A. By inde- 
pendence, (x, A U B) > (x, A), i.e., u 0, v > u. 1 

LEMMA 3.9. If S? is Archimedean then for each x in V there is no in..nite sequence of 

membm of g15 , y1 , yz ,..., such that for each positive integer i, yi+l w2 yi 0, y1 . 

Proof. Suppose that y1 , yz ,... is an infinite sequence of members of V, and for 
each positive integer i, yi+I w2 yi 0, yr . A contradiction will be shown. Let BI , B, ,... 
be a sequence of members of d such that for all positive integers i # j, Bi n Bi = @ 
and (x, BJ N (y, X). Let A, = B, and for each positive integer i, Aj+l = A, u Bi+I . 
This contradicts Archimedean (Ax. 5). [ 

Lemmas 3.3 to 3.9 establish that for each x in V, (V z, & , 0,) is an (Archimedean) 
extensive structure as defined in Krantz, et al [1971], page 84. Thus by Theorem 3 
on page 85 of Krantz, et al [1971], the following Lemma is true: 

LEMMA 3.10. For each x in %? there is an unique function pm from gz into (0, l] 
such that for all u, v  in Vz the following three conditions hold: 

(1) d.4 = 1; 

(2) u 22 v  ;sf 9+2!(u) 3 %(v); 

(3) pl& O,v) = %(4 + %W- 

DEFINITION 3.3. vr in Lemma 3.10 is said to be the unique extensive representation 

for (Vz, 2,, 0,). 

DEFINITION 3.4. P is said to be a probability representation for (X, b, 2,) if and 
only if P is a function from d into (0, I] such that the following three conditions are 
satisfied for all A, B in &: 

(1) P(X) = 1; 

(2) A &B iff P(A) 3 P(B); 

(3) if A n B = m then P(A u B) = P(A) + P(B). 

Convention. For each x in V and each A in 6 let rr(x, A) be an element y in % such 
that (x, A) N (y, X). (By trade-o#rr exists.) 

LEMMA 3.11. If % is Archimedean then there is an unique probability representation 

for <x7 G’, x2>. 
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Proof. Let x be a fixed element of %. By Lemma 3.10, let 93 be the unique extensive 
representation for (‘Z”, , 2% &>. Define P on d as follows: for each A in &, P(A) = 
~(v(x, A)). Then it is easy to verify that P is a probability representation for (X, 8, 2,). 

Suppose that P, Q are two probability representations for (X, 8, kg.. Define $, 6 
on %7X as follows: for each y in %=, $(y) = P(A), f(y) = Q(A) where A is such that 
(y, X) - (x, A). It follows that I,+(X) = f(x) = 1. Suppose that u 2, ZI. Let C, D be 
such that (x, C) -(u, X) and (x, D) ~(0, X). Then (x, C) >, (x, D) and by inde- 
pendence C >,s D. Thus 

and 
$(u) = P(C) 3 P(D) = #(WI 

&4 = Q(C) 3 Q(D) = 5(v). 

Suppose that w 0, z is defined, (w, X) - (x, E), (z, X) - (x,F), and E nF = 0. 
Then (w 0, Z, X) - (x, E u F). Thus 

#(w 0, x) = P(E u F) = f’(E) + P(F) = #(WI + $(4, 

and similarly 

Thus by Lemma 3.10, # = t. 1 

LEMMA 3.12. If 9 is Archimedean and x is a maximal element of V, then 42 has an 
unique additive representation. 

Proof. Existence. By Lemma 3.10 let y be the unique extensive representation for 
(%?:, , &=, 0,) and P be the unique probability representation for (X, 8, >a>. 
Define the binary operation 0 on (0, l] x (0, l] as o f 11 ows: if for some y in V and some 
A in 8 r = v(y) and s = P(A) then r 0 s = v(r(y, A)), otherwise Y 0 s is some 
arbitrary member of (0, 11. T o s h ow that (0, cp, P) is an additive representation for % 
it is only necessary to verify conditions 1 to 4 of Definition 2.6. Let u, v be arbitrary 
members of V and B, C be arbitrary members of &. Then: 

1. P(X) = 1 since P is a probability representation for (X, 8, 2,). If z is a 
maximal element of %, then z -* x and thus v(z) = v(x) = 1. 

2. Since n(u, X) -$ u, 

9)(+4 X)) = y(u) 0 P(X) = @). 

If z is a maximal element of %F then x -a x and thus 

PWG B)) = d+, 4) = P(B). 
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3. Since 

(u, q z (% C) iff x(u, B) 2 7r(w, C), 

(4 4 x @A C) iff ~(w(u, B)) 3 y(m(o, C)) iff v(U) 0 P(B) 3 q(u) 0 P(C). 

4. If B n C = o then 

Since 
~(u, B) 0, T(U, C) wz w(u, B u C). 

d+T 4 a 44 C)> = P,(4U, 0 + d4u, C)), 

it follows that 

Uniqueness. Suppose that (0, q+ P) and (a’, 9, Q) are two additive representa- 
tions for 99. Since x is a maximal element of ‘27, v(x) 0 P(A) = P(A) for each A in 8. 
Since for each A, 23 in d if A n B = ‘d then 

(d4 0 P(A)) + w 0 W)) = 9-w 0 w u a 

it follows that P(A) + P(B) = P(A u I?). Suppose that C, D are arbitrary members 
of d and C & D. By independence, (x, C) 2 (x, D) and thus 

P(C) = p)(x) 0 f’(C) >, P)(X) 0 P(D) = P(D). 

Therefore, P is a probability representation for (X, b, 2s). Similarly, Q is also a 
probability representation for (X, 8, 2,). Since by Lemma 3.11 (X, 8, 2,) has only 
one probability representation, P = Q. 

Let u be an arbitrary element of V. By trade-of, let E be such that (x, E) N (u, X). 
Then F(U) = y(u) 0 P(X) = F(X) 0 P(E) = P(E). Similarly, #(u) = Q(E). Since 
P = Q, p = #. 

Let z, be an arbitrary member of V and F be an arbitrary member of 8. By trade-of 
let G be such that (v, F) N (x, G). Then 

Similarly 
p)(u) 0 P(F) = &) 0 P(G) = P(G). 

Q@J) 0’ Q(F) = Q(G). 

Since P(G) = Q(G), v(o) 0 P(F) = 4(u) o’Q(F). 1 

LEMMA 3.13. Suppose that P is a probability representation for (X, 8, 2,) and 
A ,,...,Ai,...isasequenceofmembersofdsuchthatforeuchi,A,~AAi+,.Th~foreach 
A in 6, P(A) = supAtzB P(B). 
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Proof. We will first show that lirni-- P(Ai -- AiT1) == 0. Assume that for some 
positive real Y there are infinitely many i such that P(A, - Aj+l) > Y. Since 

P(A,) > P(A, - A,) = P((A, - A,) u (A, - A3) u ... u (An-1 - 14n)) 

= P(A, - A,) + P(A, - AJ + ..’ + P(A,-, - A,), 

it is easy to show that P(A,) > mr for each positive integer m. This contradicts that 
P(A,) < 1. Let A be an arbitrary element of 8. Since lim,+-, P(A, - A,+J = 0, we 
may suppose without loss of generality that for each i, A >z Ai - Ai+l . By uncertainty, 
for each i let Ei , Fi be such that Ei ~a A, Fi ~a Ai - Ai+l , and Ei 1 Fi . Then 

Thus 

P(EJ = P((E, - FJ u F,) 

= P(Ei - F<) + P(Fi). 

P(A) = iii~ P(Ei) 

= lim P(E, - Fi) + 1,& P(Fi) 
i+co 

= !iir P(E, - FJ. 

Since for each i 

LEMMA 3.14. Suppose that % is bounded and Archimedean, xi is a sequence of 
members of %’ such that xi -+ 00, and Ai is a sequence of members of & such that Ai 3 Ai+l . 
Then there is an unique additive representation for %. 

Proof. Existence. By Lemma 3.11, let P be the unique probability representation for 
(X, 8, &). By Lemma 3.12, for each positive integer i, let ( oi , CJJ$ , Pi) be the unique 
representation for (X, 8, ezi, ki) where ki is the restriction of 2 to %Yz. >: 8. 
Since for each i ksi = & , it follows that Pi = P. Let x be an arbitrary membe; of 55. 
Since xi + co, xi >r x for all but finitely many positive integers i. Without loss of 
generality, suppose that for all i, xi >1 X. We will first show that limi+m pi(x) exists and 
is positive. By boundedness, let A in d be such that for ally in V, (x, X) 2 (y, A). By 
trade-of, let Ai be such that (xi , AJ N (x, X). S ince xi -+ cc and xi >1 x, by trade-08 
and independence, Ai >a Ai+, >a A. Therefore the sequence P(A,) is monotonically 
decreasing and bounded from below by P(A). Thus limiem P(A,) exists and is positive. 
But since vi(x) = ~&rr(x~ , AJ) = P,(A,) = P(A,), it follows that lim,,, vi(x) = 
lirnCqm P(A,) > 0. Thus for each x in V let v(x) = lim,,, vi(x). 
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1. Since P is a probability representation for (X, 8, &), P(X) = 1. Suppose 
that yi -+ co. Then for each positive integer i, there are ji , k, such that xj, > 1 yki > 1 Xi. 
Thus lim,+, q(xJ = lim,,, q(yi). Since &xj) < I for all i > j, 

v(xj) = i$$ Vi(xj) < 1. 

Since the sequence ~JI(x~) is increasing and bounded by 1, limj,, q(xi) exists and is < 1. 
We will show that Km,,, v(xJ = 1. Let B be an arbitrary member of d such that 
X >2 B. By boundedness, let n be a positive integer such that for all y in ‘$7 

(x, , W Z (~9 B). Th us f or each positive integer j > n, &x,) > vj(r(xj , B)) = P(B). 
Thus, 

Therefore, 

Since B is an arbitrary member of d such that X >2 B, by Lemma 3.13, 

;i~: cp(xj) 3 sup P(B) = P(X) = 1. 
x >2R 

Therefore, 

2. Let 0 be a binary operation on (0, l] defined by: for each x in %? and each 
A in 8, if Y = p)(x) and s = P(A) then Y 0 s = v(n(x, A)), otherwise let Y 0 s be an 
arbitrary member of (0, 11. Then for each x in ‘?Z, q(x) 0 P(X) = ~(T(x, X)) = q(x). 
Suppose that yi is a sequence of members of V such that yi -+ co. Let C be an arbitrary 
element of 8. Then lim,,,[v(yJ 0 P(C)] = lim,,,[q(xi) 0 P(C)] = Emi,,,, pl(rr(x,, C)). 
Therefore we need only to show that limi+m v (rr(xi , C)) = P(C). Let D be an arbitrary 
element of d such that C >z D. By boundedness, let z be such that for all y in V, 
(z, C) 2 (y, D). Let m be such that x, k1 z. Then for all j 3 m, (x,, , C) 2 (xi, D). 
Therefore, for j > m, 

f’(C) > fi& vj(+, , ‘7) = d+, 9 Cl) 3 P(D). 

Letting m + co we get 

P(C) 3 kz dm(xi 7 C)) > P(D)* 
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Since D is an arbitrary element of d such that C >z D, by Lemma 3.13, 

P(C) 3 fin d+i > Cl) 2 c”“,pD P(D) = P(C). 
2 

3. Let 0 be as defined in part 2 of this proof. For each x, y  in % and each A, B 

in 8, (x, A) Z ( y, B) ifi 4x, A) kl +, B) iff d+, A)) b F(+, B)) 8 v(x) 0 P(A)> 

T(Y) 0 P(B). 
4. Let 0 be as defined in part 2 of this proof. Let E, F be arbitrary members 

of 8 such that En F = % and let yi be an arbitrary sequence of members of & such 
that yi + ~0. Then by part 2 of this proof, lim&~(yJ 0 P(E)] = P(E), 

!+(ri) 0 WY = W), and ~,in-@(yi) 0 P(E w F)] = P(E u F). _ 

Since P is a probability representation for (X, 8, &, P(E) + P(F) = P(E u F). 
Thus 

Uniqueness. Let (0, v, Pi and (O’, #, Qj b e additive representations for %Y. 
Then for each A in &, limj+Jv(xJ 0 P(A)] = P(A). Also, for each A, B in 6, if 
A A B = or then 

h$[dxi> 0 f’(A)1 + f:i&[P(xi) 0 P(B)1 = k&[dxi) 0 f’(A U B)l, 

i.e., if A n B = @ then 

P(A) + P(B) = P(A u B). 

Also for each A, B in 8, if A & B then for each positive integer i, (xi , A) 2 (xi , B) 
and thus p(xi) 0 P(A) 3 ~JJ(x~) 0 P(B) from which follows 

P(A) = f~i&W 0 P(A)1 3 j:$~b(xi) 0 P(B)1 = P(B). 

Thus P is a probability representation for (X, 6, aa>. Similarly, Q is a probability 
representation for (X, 8, &. By Lemma 3.11, P = Q. 

Let z be an arbitrary member of %?. Without loss of generality, assume that xi >1 z 
for each i. For each positive integer i, let Ai be such that (z, X) - (xi , AJ. Then for 
each j > i, (xj , Ai) 2 (xi, Ai) - (z, X). Thus for each i, 

P(Ai) = i$Jdxj) 0 f’(Ai)I 3 T(Z) 0 P(X) = V(Z). 

Let Y = lim,+,a P(A,). Note that for each i, P(A,) > Y. Then Y > p(z). We will show 
that for all B in 8, if Y > P(B) then for all y  in V, (a, X) 2 (y, B). Suppose that B 
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in & and y in ?Z are such that Y > P(B) and (y, B) > (z, X). A contradiction will be 
shown. Let k be such that xk >1 y. Then (y, B) > (xb , Ak) N (z, X). This implies 
that B >z A, . Since P is a probability representation for (X, 8, &), P(B) > P(A,). 
This is a contradiction. Thus for all B in 8, if Y > P(B) then for all y in V, (z, X) 2 
(y, B). We will now show that Y = p)(z). Suppose that Y > v(z). A contradiction will be 
shown. By the proof of Lemma 3.13, let D be an element of d such that r - p)(z) > 
P(D). Let n be a positive integer such that P(D) > P(A,) - T. Thus 

Y > P(A,) - P(D) > Y - P(D) > y(z). 

Since P is a probability representation for (X, b, 2,) and P(A,) 3 T > P(D), 
A, >z D. By zcnc~tainty part (iii) we may assume that A, 1 D. By Lemma 3.2(v), 
A, - D is in 8. Since P is a probability representation, P(A,) - P(D) = P(A, -D). 
Thus T > P(A, - D) > F(Z). Thus 

lim[p(xJ 0 P(A, - D)] = P(A, - D) > p(z) = p(z) 0 P(X). 
i-m 

Therefore let m be such that 

cp(xm) 0 P(A, - D) > P)(Z) 0 P(X). 

It follows that (xm , A,, - D) > (z, X). This contradicts the previously established 
result that for all B in 6, if Y  > P(B) then for all y in ‘GY, (z, X) 2 (y, B). Thus we 
have shown that lim,+a P(A,) = T = q(z). Similarly, lim+, Q(Ai) = 1,4(z). Since 
P = Q, p(z) = I+(Z). Since z is an arbitrary element of V, 9, = 4. 

Let u be an arbitrary element of %? and E be an arbitrary element of 8. By trade-ofl 
let v be such that (u, E) N (v, X). Then q(u) 0 P(E) = dv) 0 P(X) = p)(v). 
Similarly, (cr(u) 0’ Q(E) = #(u). Since P = Q and 9 = 4, 

d4 0 P(E) = ~44 0’ Q(E). I 

THEOREM 2.1. If % is Archimedean then the following two propositions are ture: 

(1) if 43 has a maximal element then S?! has an unique additive representation; 

(2) if% is bounded and there exist A, ,..., A, ,... in & such that Ai 3 Ai+l , then fJCY 
has an unique additive representation. 

Proof. Lemmas 3.12 and 3.14. 1 

DEFINITION 3.5. Let 9’/ be distributive. Then define the binary operation 0 on V 
as follows: 

x@y~ziffx,y,zarein%andforsomeA,BindsuchthatAr\B= 0 
and for some II in V, (u, A) N (x, X), (u, B) N (y, X), and (u, A u B) N (z, X). 
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(Properly speaking, one might call IJ a “multivalued operation.” As before, for 

convenience we will consider x my to be an element of V although it is really an 
equivalence class of members of g determined by the equivalence relation -.) 

LEMMA 3.15. Suppose % is distributive. Then for ail x, y, z, w in V:, if x 0 y  -1 z 
andx 0~y~~wthenz~~w. 

PYOO~. Left to reader. 1 

LEMMA 3.16. Suppose that 9 is distributive and x, y, z, v, w are arbitrary members 

of V. Then the following two propositions hold: 

(i) x 0 y  -1 x i f f  for some u in %?, x a,, y  w1 z; 

(ii) if v  2, w and x 0,~ w1 z, then x 0,~ is defined and x 0,~ w1 z. 

Proof. (i) follows immediately from Definitions 3.5 and 3.2. To show (ii) assume 
that v  k1 w and x 0,~ -r Z. Let A, B be elements of 8 such that A r\ B = 0, 

(w, A) -(x, X), (w, B) -(y, X), and (w, A u B) N (z, X). Since v  kl w, by 

trade-08 let C, D. be such that (v, C) - (x, X) and (v, D) N (y, X). Since v  & w, 
A >,s C and B & D. By uncertainty, let E, F be such that C -s E, D -s F, and 
E n F = a. Then (w, A) - (v, E) and (w, B) N (v, F). By distributivity (w, A u B) N 

(v, EuF). Thus zwlX &,y-rx 0,~. 1 

By using Lemma 3.16 and Lemmas 3.3 to 3.9, it is easy to establish that (%?, 2t , 0) 
is an (Archimedean) extensive structure as defined in Krantz, et al [1971] page 84. 
Thus by Theorem 3 on page 85 of Krantz, et aE [1971], the following Lemma is true: 

LEMMA 3.17. Suppose that @ is distributive and Archimedean and that u, v  are 
elements of %. Then there is a function y  from 97 into the positive reals such that the 
following three conditions hold: 

(1) y(u) = I; 

(2) for all x, y  in V, x Zlr #v(x) 3 V(Y); 

(3) for all x, Y in 9, ~)(x 0 y) = q(x) + 90). 

Furthermore, if 4 is another function from ‘%’ into the positive reals such that #(v) = 1 and 
#I satisfes (2) and (3) above, then # = ~/v(v). 

THEOREM 2.2. Let @ be Archimedean and distributive. Then for each u in % there is 
a distributive representation (rp, P, u} for @. Furthermore, if (0, #, Q, v) is such that 0 
is a binary operation on the positive reals, Ref, #: %7 + Ref, Q: d -+ (0, 11, v  E V, and 
forallx,yingandalEA, Bin&: 
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(1) Q(X) = $44 = 13 
(2) VW 0 Q,(X) = PwF $&4 0 QW = QW, 
(3) (4 4 z (YT 4 ifs VW 0 QW 2 4(Y) 0 Q(B)? 

(4) ;f A n B = m then tY-4 0 (QV u B)) = (VW 0 Q(4) + (~44 0 Q(B)), 
then Q = P, #J = y/y(v), andfor all z in V and all C in 6, I&Z) 0 P(C) = y%(z) 0 Q(C). 

Existence. Let u be an arbitrary element of ‘6. By Lemma 3.17, let q~ be a function 
from V into Re+ such that (i) v(u) = 1, (ii) for all x, y  in %?, x x1-v i f f  v(x) 3 p(y), 
and (iii) for all x, y  in %“, ~(x 0 y) = p)(x) + p(y). Define the function P from d into 
(0, l] as follows: for each A in &, P(A) = y(rr(u, A)). Then it is easy to verify that P is 
a probability representation for (X, &, I&). For each x in V, let ~~ be the restriction 

of v/v(x) to $9, . Then v, is the unique extensive representation for (9?= , &, a,}. 
Let y  be an arbitrary element of V. Then by the construction in the proof of Lemma 
3.12, there is an unique additive representation for 9Jy = (X, 8, gg , &,) of the form 
(0, , ply , P,). Since P, is a probability representation for (X, 8, &), by Lemma 3.11, 
P = P, , Note that the proof of Lemma 3.12 also establishes that for each s in Q? and 

each A in 6, T~(z-(s, A)) = v,(s) Q, P(A). Suppose that y  &p &r 4. Then yr(q) = 

dP) ~947) since 

bkMY)I = MPMY)l ’ Md/dP)l* 

Thus for each A in 8, 

%(P) 0, pw = %MP> A)) 0, P(X) 

= 9J,(dPl AN 

= 9-+/(P) . dn(P, AN 

= Y*(P) . h(P) 0, P(4) 

= v,(P) . pw 

Therefore, for each t, w in V and each A, B in 8, there exists y  in %? such that y  & t, 

Y k1 w, and 

k 4 2~ (w, B) iff dt> 0, P(A) 3 ~)&4 0, f’(B) 

ifi 44 . PW 2 vG4 . f’(B) 

ifi hwdY)l . V) 2- h+MY)l . P(B) 

i f f  q(t) . P(A) > p)(w) ’ P(B). 

Thus for each u in %?, (p,, P, u) is a distributive representation for 49. 
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Uniqueness. Suppose that u is an arbitrary element of % and (q~, P, u) is as in the 
existence part of this proof and (0, I+!J, Q ) z1 is as in the statement of Theorem 2.2. 
Let lclV be the restriction of + to KG and qua be the restriction of C&(V) to et’, . Then 
(0, I,&~ , Q) and (., qua , P) are additive representations for (X, d’“, %ie , 2,;. Thus by 
Lemma 3.12, (i) P = Q, (ii) for all .a in ?YG , 

and (iii) for all z in V, and all D in 8, 

VW 0 Q(D) = VW . Q(D). 

Suppose that w >1 V. Let lw = U, and for each positive integer m, if (mn) 0 ZI is 
defined, let (m + 1)~ = (mv) 0 ZI. Since % is Archimedean, let n be the largest integer 
such that nv is defined and w & KZW. Let B, ,..,, B, be such that for all i, j < n, (i) if 
i # j then B, n Bj = 0, and (ii) (w, &) - (0, X). Let B = UE, B, . Then either 
X - B = @ or Bl >z X - B. (If X - B were ka B, , then by uncertainty we could 

find G1 such that B,+l N2 < X - B and B,+l m2 B, and thus show that (n + 1)~ 
is defined and that w >r (n + l)v, which contradicts the defining properties of n). 
For convenience we will assume that X - B # 0. The case where X - B = Q 
will follow by a similar argument. Thus 

= VW 0 Q((X - B) u B) 

= (4(w) 0 Q(X - B)) + VW 0 Q(B)) 

= ($(w) 0 Q(X - B)) + 'f 1cl(w) 0 QW 
i=l 

Since B, >s X - B, let z E VU be such that (w, X - B) -(z, X). Then #(w) 0 
Q(X - B) = I@) 0 Q(X) = 1,4(z). For each i < 11, #J(W) 0 Q(BJ = y%(o) 0 Q(X) = 
I/(V). Thus #(w) = g(z) + n+(w) = $(z) + n. Similarly, 

Since z is in V, , we have already shown that 9(z) = &z)/~(w). Thus #(w) = q~(w)/q(a). 
Therefore we have shown that $ = v/~(o). 
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Let s be an arbitrary element of G? and D be an arbitrary element of 8. Let t in $? be 
such that (s, D) - (t, X). Then since P = Q and # = &p(v), 

#(4 0 Q(D) = W 0 P(X) 

= w> 

THEOREM 2.3. Suppose that % is distributive and 9 is a subset of V such that 9 has 
exactly one member from each cornmeasurability class of %7. Then there is a representation 
for % of the form (T, P, 9). Furthermore, if (4, Q, S> is another representa& for 4, 

then P = Q and for each x in 9 and each y  in 9 if x = y  then v(x) = v(y) #(x). 

Outline of proof. Define the relation N on V as follows: x N y iff x, y E V and 
either (x, X) - (y, X) or for some infinitesimal A in 8, either (x, X - A) - (y, X) 
or (x, X) - (y, X - A). Th en it is easy to show that II is an equivalence relation on %?. 

Let 5? be the set of noninfinitesimal elements of &. Define the relation z on Y as 
follows: A g B iff A, I3 E 9 and either A -2 B or for some infinitesimal C in b, 
either A -- C -2 B or A -2 B - C. Then it is easy to show that z is an equivalence 
relation on 9. 

Let 9 be the set of equivalence classes of 64 determined by the E equivalence 
relation. Let W be the set of N equivalence classes of %Y. 

Let M be an arbitrary cornmeasurability class of 55’. Let M’ = (a E V 1 a n M # a}. 
Define >,,, on M’ x 2” as follows: 

(a, R) khl (b, S) iff a, b EM’ and R, SE 3’ and for some x in a, y  in 6, A 
in R, B in S, (x, A) >, (y, B). 

Let X’ be the element R of 9’ such that X E R. Define the (partial) operations 

n, u, -9 on Y’ as follows: For each R, S, T in B’, 

(1) RuS= T~~~~~~~~~~AER,BES,CET,AUB-C; 

(2) RnS= TiffforsomeAER,BES,CET,AnB-C; 

(3) R” = S iff for some A E R, B E S, A” -B. 

Define the relation R n S = iz~ by: R n S = o iff R, S E 9’ and for some A E R, 
B E S, A n B = ,U . Then in a natural way, 9’ with the operations V, n, N looks 
formally like an algebra of subsets of X’ minus the empty set. 

Under the above interpretations one can verify that for each commeasurability class 
M of V, (X’, 9, M’, &) is an Archimedean, distributive utility-uncertainty trade-off 
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structure. Since 9 contains exactly one member from each cornmeasurability class M 
of %‘, let Us be the single member of M n .F. Then by Theorem 2.2, for each commea- 
surability class M of ‘G, let (vM, Prvr, u & be a distributive representation for 
(X’, P’, M’, krvr). Then as in the proof of Lemma 3.11, it is easy to show that if 
M, N are cornmeasurability classes of V, then PM = PN . Thus let P = PM for some 
cornmeasurability class M of 97. Define CJI on %? as follows: if x is in the commeasurability 

class M of F then v(x) = ~~(a) w h ere a is the N equivalence class such that x E a. 
Then it can be shown that (v, P, F j is a representation for @. If (4, Q, 9) is another 
representation for @, then by using Theorem 2.2 it can be shown that P = Q and 
for all x in F and all y  in 9, if x G y  then y(x) = v(y) . $J(x). 1 

THEOREM 2.4. Let (X, CC?“,%?‘, 9, 2’) be a gum&g structure and u, v  be arbitrary 
elements of %?. Then there is an additive probability function P on d and a function v  

from V into the positive reals such that q~(u) = 1 and for all f ,  g in 9, 

f2’g i f f  Wy(f )) 3 &k(g)). 

Furthermore, if Q is another additive probability function on t” and z,b is another function 
from V into the positive reals such that $(v) = 1 and for all f ,  g in 9, 

fk’g i f f  W$(f )) 3 W!(g)), 

then P = Q and q~ = v(v)+. 

Proof. Define 2 on W x 8 as follows: for each x, y  E CG and each A, B E 8, 

65 4 22 (Y, B) i f f  fAz 2’ fBY. 

Then it is easy to show that %Y = (X, 6, V, 2) IS an Archimedean, distributive 
utility-uncertainty trade-off structure. By Theorem 2.2 let (c+J, P, u) be a distributive 
representation for 4Y. Then for each x, y  in V and each A, B in &, 

fAX ZfI3” i f f  (x, A) k (Y, B) 

ifi T(X) . P(A) 3 T(Y) P(B) 

ifl &(v(fAZ)) >, EpMfBU)). 

Thus we have shown that for all x, y  E G? and all A, B E 8, 

(1) fAz 2’ fBy i f f  Ep(g)(fAX)) > EpMfBY)). 

Let g be an arbitrary element of 9 and x1 ,..., x, , A, ,..., A, be such that 

and for i, j < n, if i f  j then xi i xj and Ai n Aj = ,ES . Let x be the maximal element 
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of b% ,..., xn} with respect to the 2’ ordering, i.e., x = xi for some j < n and 
fXx 2 f? for all i < n. By trade-of, let Bl ,..., B, be such that f$ -If:; . Then for 
i = I,..., 71, jZi z f& * By uncertainty’, we may assume that A, 2 Bi . Then for 
i, j < n, if i # j then Bi n Bj = O. Let B = (JFCl Bi . By linearity, fBx -‘g. 

JMdfBZN = 44 * V) 

= +> - (W,) + *a- + W,)) 

= v(x) . P(4) + ... + &4 - W,) 

= Wdf :,I) + ... + JUdf “,)I 

= JGMf ?J) + . . + JGdf :,N (by (1)) 

= 44 . f’(4) + ... + dxn) .P&) 

= Wdd)~ 

Thus we have shown that 

(2) for eachg E $9 there are x and B such thatg -‘fez and E,(v(g)) = EP(q(fsz)). 

Let d, h be arbitrary members of 99 such that d 2 h. By (2) let x, y, C, D be such 
that d -‘f?, h -‘fDZI, JMW = WdfC% and Gh@N = EpMfD% Then by 
(11, &Mfc”N 3 WdftayN- Thus Wd4) 3 WP@N~ 

Suppose that Q is another additive probability function on d and 9 is another 
function from % into the positive reals such that I/(V) = 1 and for all f ‘, g’ in 9, 

f’ Zg’ ifi EohY f 7) Z %.Mg’N- 

Then (#. Q, V) is a distributive representation for 91. Thus by Theorem 2.2, 

9J = dvM* I 

DEFINITION 3.6. Let Y be a nonempty set, k* a binary operation on Y and 0 be 
a closed operation on Y, i.e., for all x, y in Y, x 0 y is in Y. Then (Y, 2 *, 0) is said to be 
a closed extensive structure if and only if the following five conditions hold for all 
x, y, z, w in Y 

(1) 2* is a weak order; 

(2) xo(yoz)-*(XOy)oZ; 

(3) x~**iffxoxN>*yOXiffZOX~**oOY; 

(4) if x > * y then there exists a positive integer n such that nx 0 z 2 * ny 0 w 
where mx is define inductively as: Ix = x, (m + 1)x = (m) 0 x; 

(5) xoy>*x. 

4W3/3-6 
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4. HISTORICAL NOTE 

An axiomatization of expected utility with numerical probabilities occuring in the 
axioms is given in von Neumann and Morgenstern [I 9531. A purely qualitative 
treatment is given in Savage [1954]. These axiomatizations yield representations 
similar to those for gambling structures (Theorem 2.4). 

Structures similar to utility-uncertainty trade-off structures have been experi- 
mentally studied in Tversky [ 19671. 

Lexicographic orderings and cornmeasurability classes have been used in Narens 
[1974a] to give representations for non-Archimedean extensive structures. A represen- 
tation theorem for qualitative probability without an Archimedean axiom is given in 
Narens [1974b]. 

The concept of distributivity presented here seems to play a very important role in 
measurement theory. This will be more deeply investigated in Narens and Lute [ 19751. 
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