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A theory of nonassociative measurement structures is developed which produces a 
natural generalization of associative measurement (i.e., extensive structures), and represen- 
tation and uniqueness theorems are established for these generalized structures, and it is 
shown that in many cases these representations are ratio scales. The methods of proof 
strongly relate the structure of the automorphism group of the nonassociative structure to 
its underlying concatenation operation. 

1. INTRODUCTION 

Measurement theory is concerned with the nature of numerical representations of 
empirical structures. It strives to give clear descriptions of the forms of numerical 
representations in terms of axiomatizations of the empirical structures and to give 
criteria for the drawing of proper inferences from the numerical representations. It is also 
concerned with the theory of error. Although the empirical structures ordinarily encoun- 

tered in psychology, physics, and other sciences may be complex, the construction of 
representations for these structures can usually be resolved in terms of certain basic 
“fundamental” structures. This is the approach of Krantz, Lute, Suppes, & Tversky 
[1971], and the mechanisms for resolving complex measurement structures in terms of 
“fundamental” ones is explicitly laid out in Narens and Lute [1976]. 

In the Krantz et al. approach, complex structures are resolved into what they call 
extensive structures, which are structures of the form SY = (X, >, 0) which, for the 
purposes of this introduction, we may take X to be a nonempty set of empirical objects, 
> to be a total ordering on X, and 0 to be an operation on X (which is sometimes called 
a concatenation operation). A (numerical) representation for 2” is then an isomorphic 
imbedding of 5Y into the positive reals, where > is mapped into > and 0 is mapped into 
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some binary associative operation 0 on the positive reals. If q~ is the isomorphic imbedding 
described above, then we say that v is a O-representation for X. Note that the isomorphism 
q and the associativity of 0 forces 0 to be associative. The definition of O-representation 
for structures with nonassociative 0 is identical to the associative case except 0 is not 
assumed to be associative. 

Krantz et al. give axioms for 3 that are very weak but nevertheless yield the existence 
of additive representations (i.e., +-representations for %) that are “unique” in the sense 
that if v and I/ are two additive representations for D then for some positive real Y, 

rp, = 4. The associativity of 0 is the crucial empirical axiom that makes the additivity of 
representations possible. In the traditional approach employed by Krantz et al., heavy use 
of associativity is made for showing both the existence of a O-representation and the 
uniqueness of such representations. Narens and Lute (1976) introduced a generalization 
of extensive structures called positive concatenation structures that satisfies all the Krantz 
et ~2. (1971) axioms for extensive structures except possibly associativity. It turns out that 
these structures have O-representations for some 0 (where of course in this case 0 may 
not be associative), and these representations are “unique” in the sense that if CP and # are 
two O-representations for X such that for some X, p)(x) = ICI(x), then q~ = #. (See 
Theorem 2.3 for an exact statement of this result.) 

Extensive structures naturally appear in theoretical physics, where all the basic units 
of measurement form extensive structures. In psychology, direct applications of extensive 
structures to empirical phenomena is far more rare: Psychological concatenations of 
stimuli are not common, and when they do occur, are usually nonassociative. However, 
psychologists have successfully utilized “indirect concatenations” through the techniques 
of conjoint measurement. It was probably Lute and Tukey’s 1964 paper on additive 
conjoint measurement which stimulated research on the idea that interactions between 
variables can be viewed as a positive concatenation structure. We will now briefly outline 
this procedure. 

Let >, be a weak ordering (i.e., a transitive and connected) relation on the nonempty set 
Y x P. Assume ab is the smallest element in Y x P, i.e., yp 2 ub for all yp in Y x P. 
By assuming a condition called independence (if xb >, yb then for all p in P, xp 2 yp; 

and if uq >, UY, then for all z in Y, ZQ 2 ZY), 2 naturally induces weak orderings &r and 
kP on Y and P, respectively. To conform to our previous notation, we will assume the 
two latter orderings are total orderings and write them as >r and +p . By assuming 
a condition called local solvubility (for each xp in Y x P, there exist y and q such that 

Yb N xp and xb N uq), a function f from Y onto P and an operation Or on Y can be 
defined such that for all x, y in Y, 

(x Or YY - xf bb (1.1) 

so that in the sense of Eq. (l.l), th e concatenation operation Or captures the interaction 
between the Y and P dimensions of the structure (Y x P, 2). With a few very plausible 
assumptions about the ordering 2, V = (Y, > r , Or> becomes a positive concatenation 
structure. (The interested reader should consult Narens & Lute [1976] for a correct and 
precise statement of this result.) Now for ??J to be an extensive structure, Or must be 



RATIO SCALABILITY 195 

associative, and this can only happen if additional conditions are imposed on the ordering 
2. One frequently used condition that is equivalent to the associativity of Or is called 
double cancellation and is extensively discussed in Krantz et aE. (1971). However, in most 
interesting psychological situations such conditions seem to fail. 

Extensive structures have two important properties in measurement: They have additive 
representations and have @representations (e.g., 0 = +) that are ratio scalable. 
Positive concatenation structures with nonassociative operations cannot have additive 
representations; however, as will be shown in this paper, they can have O-representations 
that are ratio scalable. Since ratio scalability rather than additivity is the essential ingre- 
dient in many measurement situations (e.g., dimensional analysis in physics), these types 
of positive concatenation structures provide the basis for a natural generalization of much 
of current measurement theory. 

To summarize to this point, extensive structures have wide use in physical measurement 
but little in psychology. In fact, empirical structures of the form (X, >, (I> are not very 
important in psychology since natural psychological concatenations of stimuli are dificult 
to find. In psychology, conjoint structures are much more natural and prevalent, and in 
a natural way, important psychological conjoint structures can be interpreted as structures 
of the form CK = (X, 2, O), but where 9 is a positive concatenation structure rather 
than an extensive structure. Although positive concatenation structures do not have 
additive representations unless they are extensive structures, they do have representations 
with strong uniqueness results and may have O-representations that form ratio scales. 
All of this suggests that a closer look be given to positive concatenation structures, and 
this is what we do in this paper. 

In Section 2, positive concatenation structures are studied in terms of their automor- 
phism groups, and it is shown that the total ordering relation > of a positive concatenation 
structure 3 naturally induces a total ordering >’ on the automorphism group of Y by 
the definition 

a >’ /3 iff for some x, a(x) > p(x). 

What is probably the most surprising result of this section is that the resulting ordered 
group of automorphisms is Archimedean and thus any two automorphisms must 
commute. 

In Section 3, fundamental unit structures are investigated. These are positive con- 
catenation structures LF = (X, >, 0) such that (X, +> is Dedekind complete and 3 
is homogeneous in the sense that for each x, y in X there is an automorphism (y. of J% such 
that O(X) = y. The principal results of this section are that (1) such structures have 
O-representations that are ratio scalable for some 0, and (2) if ‘p and 4 are 0 and O’- 
representations for L??, respectively, that are ratio scalable, then for some positive reals r 
and s, v = ~I,F. Alternative characterizations of fundamental unit structures are also 
considered in this section. 

Section 4 is concerned with numerical fundamental unit structures. The principal 
result of this section is that explicit methods can be given for transforming such structures 
into representations that are ratio scalable provided that certain weak differentiability 
conditions hold. 
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Section 5 gives necessary and sufficient conditions for the imbeddability of positive 
concatenation structures into fundamental unit structures. 

2. POSITIW CONCATENATION STRUCTURES 

Throughout this paper, Re will denote the real numbers, Ref the positive reals, I the 
integers, and I+ the positive integers. A function 0 : Y x 2’ -+ X is said to be a partial 

(binary) operation on X if Y and Z are subsets of X, and a closed (binary) operation (or 
just operation) if Y = 2 = X. If 0 is a partial operation, then x 0 y is said to be dejned 
if (x, y) is in the domain of 0, and otherwise x 0 y is said to be undefined. As usual, 
lx = x, and if (nx) 0 x is defined for some n in I+, then (n + 1)x = (nx) 0 x. 

DEFINITION 2.1. Let X be a nonempty set, > a binary relation on X, and 0 a 
partial binary operation on X. The structure X = (X, 3, O> is a tota& ordered, 
positive concatenation structure if and only if the following seven axioms hold for all w, 
x, y, x in X: 

Axiom 1. Total ordering: + is a total ordering. 

Axiom 2. Nontriviality: There exist u, a in X such that u > V. 

Axiom 3. Local dejkability: If x 0 y is defined, x 2 w, and y > x, then w 0 z is 
defined. 

Axiom 4. Monotomkity: (i) if x 0 z and y 0 z are defined, then, 

X>Y iff xO.z>yOz, 

and (ii) if z 0 x and z 0 y are defined, then 

X>Y iff xOx>xOy. 

Axiom 5. Restricted solvability: If x > y, then there exists u such that x > y 0 u. 

Axiom 6. Positivity: If x 0 y is defined, then x 0 y > x and x 0 y > y. 

Axiom 7. Archimedean: There exists n E I+ such that either nx is not defined or 
nx > y. 

CONVENTION. Throughout the rest of this paper let 37 = (X, >, 0) be a totally 
ordered, positive concatenation structure. 

DEFINITION 2.2. xi is said to be a net in I if and only if xi is a sequence of elements 
of X such that for each x in X there exists n in I+ such that for all i > n, x > xi . 
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LEMMA 2.1. The following three propositions are true: 

(i) For each x in X there exists y in X such that x > y 0 y. 

(ii) There exists a net in 3. 

(iii) For each net xi iti 3, (nxi / n, i E I+} is a dense subset of (X, >). 

Proof. Lemmas 2.1 and the proof of Lemma 2.2 of Narens and Lute (1976). 

DEFINITION 2.3. 01 is said to be an automorphism of x iff CC X --+ X is onto X and 
for each x, y in X, x + y iff a(x) 3 a(y), and a(~ 0 y) = a(x) 0 a(y). 

CONVENTION. Throughout the rest of this paper let L denote the identity automor- 
phism of 3’. 

THEOREM 2.1. Let a be an automorphism of 9. Then the following three propositions 
are true: 

(i) If a(x) = x for some x, then 01 = L. 

(ii) If a(x) > x for some x, then a(y) > y for ally in X. 

(iii) If a(x) < x for some x, then a(y) < y for ally in X. 

Proof. Case 1. Y = (x 1 CC(~) = } x contains a net. Then R(X) = x for some x. 
Suppose u is such that a(u) # u. We need to only show a contradiction. If u > a(u), 
then by Lemma 2.1, part (iii), lety in Y and n in I+ be such that 

Then by Definition 2.3, 

7.4 > ny > 44. (2.1) 

44 > 44 = m(y) = ny, 

which contradicts Eq. (2.1). Similarly a(u) > u leads to a contradiction. Thus a(u) = u 
foralluinX,i.e.,a = L. 

Case 2. B = (x 1 a(x) > x} contains a net. Then a(x) > x for some x. We will show 
a(y) > y for all y in X by contradiction. First suppose u is such that u > a(u). Then by 
Lemma 2.1, part (iii), let n in I+ and y in B be such that 

u > ny > 44. (2.2) 

Then by Eq. 2.2, 

44 > 4nr) = n4r) > ny, 

which contradicts Eq. (2.2). Next suppose that ZJ is such that CC(V) = D. Since B contains 
a net, let w in B be such that w < U. Then since w is in B, a(w) > w. By restricted 
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solvability, let z be such that a(~) > w 0 a. Let t in B be such that a > t, Then a(r) > t 
and by monotonicity, 

a(w) > w 0 t. 

Thus 

and 

a”(w) > 44 0 4) > (w 0 t) 0 t > 2t, 

,qw> > a”(w) 0 a2(t) > (2t) 0 a2(t) > (2t) 0 t = 3t, 

and by induction, 

““(W) > nt, 

for each n in I+. Thus by Archimedean, let m in I+ be such that 

Since v > w and a(v) = v, 

and thus by induction, 

a”(w) > v. 

a(v) = v > a(w), 
2(v) = a(v) = v > ayw>, 

(2.3) 

which contradicts Eq. (2.3). Thus, in summary, we have shown a(y) > y for each y in X. 

Case 3. C = (x j a(x) < xl contains a net. Then C = (x [ M-~(X) > x] contains a 
net, and thus by Case 2, a-l(y) > y for ally in X, i.e., y > a(y) for ally in X. 

Since by Lemma 2.1, X contains a net, it follows that Case 1,2, or 3 must hold, and the 
theorem immediately follows. f 

DEFINITION 2.4. v is said to be a O-representation for 3 if and only if q: X --t Re+ 
such that the following three conditions hold for all x, y in X: 

6) <d-W, 2, 0) is a positive concatenation structure; 

(ii) x + y iff y(x) 2 v(y); 

(iii> 94% 0 Y) = 944 0 9W- 

THEOREM 2.2. There exist 0 and q~ such that q~ is a @representation fm 3. 

Proof. Theorem 2.1 of Narens and Lute (1976). a 
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LEMMA 2.2. The following two propositions are equivalent: 

(i) For all o- re p resentations v  and $ of 55 such that v(X) = #(X), ;ffor some x, 

v(x) = 4(x), then v  = #. 

(ii) For all automorphisms 01 of I, if for some x, a(x) = x, then 01 = L. 

Proof. Assume (i). Let 01 be an automorphism of .% and x be such that U(X) = x. 
By Theorem 2.2, let CJI and 0 be such that q~ is a O-representation for 3. Then q~oc is a 
O-representation for d and cp(X) = q~cu(X). Th us, by assumption, q101 = 91. Since 01 is a 
one-to-one function, it follows that 01 is the identity, I. 

Assume (ii). Let q~, I/ be O-representation for CZ and let x be such that q(x) = 4(x). 
Then I+/ is an automorphism and x = @#(x). Thus, by assumption, p-l+ = L, and 
therefore q~ = 4. fl 

THEOREM 2.3. Suppose QJ, # are O-representations for LE”‘, y(X) = #(X), and x E X 
is such that p)(x) = 4(x). Then 9) = +. 

Proof. Let a: = ql#. Then a: is an automorphism of % and a(x) = x. Thus by 
Theorem 2.1, 01 = L, and thus, since q~ and $ are one-to-one functions, 4p = #. 1 

Narens and Lute (1976, p. 201) prove Theorem 2.3 with different assumptions, namely, 
that the assumption q(X) = #(X) is replaced by: For each x in X there exists y such that 
x=yoy. 

DEFINITION 2.5. Define the binary relation >’ on the set of automorphisms of ;“t, 
A, as follows: For each CL, /3 in A, 01>’ /3 iff for some x in X, a(x) > /z?(x). 

CONVENTION. Throughout the rest of this paper we shall confuse notation a little 
and often write > for >’ (as defined in Definition 2.5). We shall also let A denote the set 
of automorphisms of X, and often we shall denote composition of members of A by an 
asterisk. (Thus @I(x)] = (a * /J)(x).) F ur th ermore, 9 will denote the structure (A, >, *) 
and will be called the (totaZZy) ordered group of automorphzsms of ZZ. We will often follow 
the practice in mathematics of confusing A and 9, i.e., 01 E 3 will mean that oc is an 
automorphism of %. We will also often write integral multiples of elements of A in 
exponential notation, oc = cG, and ~r”+l = CP * 0~. 

THEOREM 2.4. 9 is an Archimedean, totally orderedgroup. 

Proof. It is well known that (A, *) is a group. 
Let oi, 8, y be arbitrary elements of A. Note that by Theorem 2.1, 

a: > P iff 44 > B(x) for some x 

if-l- 4Y) > B(Y) for all y in X. 

We will first show that (A, +) is totally ordered. 

(2.4) 
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(Transitivity) Suppose 01> /3 and fi > y. Then by Eq. (2.4), a(y) 2 /I(y) and 
/3(y) > y(y) and thus a(y) > y(y) for ally in X. Therefore a! > y. 

(Connectivity) By Eq. (2.4), either for each y  in X, a(y) > /3(y), or for each y  in X, 
/3(y) > c-u(y), and thus either 01> /3 or j? > 01. Now suppose 01> jI and j3 > 01. Then 
for eachy in X, a(y) > /3(y) and /3(y) > CC(~), i.e., ax(y) = p(y), and thus 01 = fl. Thus 

> is a total ordering on A. 
We next show that 9 is an ordered group: Let y  be an arbitrary element of X. Then 

by Eq. (2.4), 

a> B iff 4~4 > NY) 

iff Yb(Y)l > APB(Y)1 
iffy*ol>y*fl, 

and 

Finally, we will show that 59 is Archimedean. Suppose a: > L. We need only show that 
o? > fl for some n in I+. Suppose not; i.e., suppose that p > CP for all n in I+. A contra- 
diction will be shown. Let x E X. Since 01> L, it follows from Eq. (2.4) that 

a(x) > L(X) = x. 

By restricted solwability (Axiom 5, Definition 2.1), let ?I be such that 

“(4 > x 0 u. 
I” > 4x 0 4 = a(x) 0 “(U) > (x 0 u) 0 u > 2% 

qx) > a”(x) 0 a”(u) > (2u) 0 u = 3u, 

and by induction, for each n in I+, 

an(x) > nu. 

However, since B > ollz for each n inl+, 

for each n in I+, and this contradicts that 37 is Archimedean. fl 

(2.5) 

DEFINITION 2.6. a: in A is said to be positive i f f  01 > L. 9 is said to be t&&d i f f  A = (c). 
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9 is said to be discrete if and only if 3 has a smallest positive automorphism. 3 is said 
to be dense if and only if 3 is nontrivial and nondiscrete. 

THEOREM 2.5. If 9 is nontrivial then 0 is closed. 

Proof. Suppose ~3 is nontrivial. Let 01 be a positive automorphism of 3 and x, y be 
elements of X. By Lemma 2.1 and restricted solvability, let U, v in X and m in I+ be 
such that 

“(U) > u 0 v > u, (2.6) 

4~) > mv > Y, (2.7) 

and a(x) > x 0 u > x. (2.8) 

It then follows from the proof that 9 is Archimedean (Eq. (2.5) in Theorem 2.4), 

am(u) > mv. (2.9) 

Thus by Eqs. (2.6)-(2.9) and local definability, 

am+‘(X) > am(X 0 U) = am(X) 0 a”(U) > x 0 01”(u) > x 0 mv > x 0 y, 

i.e., x 0 y is defined. 1 

THEOREM 2.6. Suppose 0 is not closed and v, I+G are @representation for 3 such that 
q(X) = I/(X). Then q~ = 4. 

Proof. By Theorem 2.5, the identity, L, is the only automorphism of %. Since v-l+ is 
an automorphism of 3?‘, v-r+ = I, and thus T = 4 since r+~ and 4 are one-to-one functions. 

I 

EXAMPLE 2.1. (Examples of positive concatenation structures with dense groups of 
automorphisms.) For each r, s in Re f, let OIL = r . s. Let Or, Oa , 0s be defined on 
Re+ as follows: For each x, y in Re+, 

XO,Y =x+y, 

x o3 y  = x + y  + xl’2 * y1J2, 

x o3 y  = x + y  + x1’4y3’4. 

Then it is easy to verify that Or is associative, 0, is commutative and nonassociative, 
O3 is nonassociative and noncommutative, and .!Zt̂ , = (Re+, >, Or), %s = (Re+, 2, 
O,), s3 = (Re+, 2, 0,) are positive concatenation structures, and for each r in Ref, 
01, is an automorphism for ZI , %s , 3Y3 . 

Examples of positive concatenation structures with discrete and trivial groups of 
automorphisms will be given later. 

The following lemmas are used in the subsequent development. 
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LEMMA 2.3. Suppose OL is a positive automorphism of %, J is an infnite subset of I+, 
andy E X. Then {or-“(y) 1 n E J} is a net. 

Proof. Suppose not. Let v in X be such that a-%(y) > v for each n in J. Then it 
follows that there exists x such that OCR > x f or each n in J since X contains a net. 
Thus y > a”(x) f or each n in J. By restricted solvability, let u be such that a(x) > x 0 
u > x. Then by the proof that 9 is Archimedean (Eq. (2.5) in Theorem 2.4), it follows 
that for each n in J, 

which contradicts that ?Z is Archimedean. t 

LEMMA 2.4. Suppose 9 is dense and x, y  are elements of 3Y such that x > y. Then 

there exist 01, p in A such that 

x > 44, B(Y) > Y* 

Proof. We will first show that there exists a positive fl in A such that x > /3(y) > y. 
Suppose not, i.e., suppose for all positive /3 in A, p(y) > x. A contradiction will be 
shown. Let z be such that x > y 0 z. Then for each positive y in A, 

Y(Y) $ x > Y 0 x > z> 

P(Y) > Y(Y 0 4 = Y(Y) 0 Yc4 > Y(Y) 0 x > 3 0 x = 22, 

Y3(Y) > Y2(Y 0 4 = Y2(Y) 0 Y2(4 > Y2(Y) 0 z > (22) 0 z = 3% 

and by induction, for each n in I+, 

Y”(Y) > nz* (2.10) 

Let 4 be a positive element of A. Since 9’ is Archimedean, let m in I+ be such that 

mz > t(y). (2.11) 

Since 9 is an Archimedean ordered group and is dense, let 7 be a positive element of A 

such that 

E > P* (2.12) 

Then it follows from Eqs. (2.12), (2.10), and (2.11) that 

E(Y) > TTY) > m.2 > 5(Y)? 

which is a contradiction. Thus for some positive /3 in A, x > p(y) > y. 
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By the above, let /3 be such that x > /3(y) > y. Then 

2 > 8-W > /w%Y)l = Y* I 

LEMMA 2.5. $9 is commutative. 

Proof. By Theorem 2.4, 9 is an Archimedean, totally ordered group, and it is well 
known that all Archimedean, totally ordered groups are commutative. 1 

LEMMA 2.6. Suppose 9 is dense and z is an arbitrary element of X. Then {O(z) 1 13 E A} 
is a dense subset of (X, >). 

Proof. Let x, y be arbitrary elements of X such that x > y. There are three cases 
to consider. 

Case 1. x 3 x > y. Then by Lemma 2.4, for some 8 in A, x > 6(z) > y. 

Case 2. z > x. By Lemma 2.4, let OL in A be such that x > W.(X) > y. Then L > 0~. 
Thus by Lemma 2.3, {o?(z) 1 n Al+} is a net. Thus let n be the largest positive integer 
such that cP(.z) > x. Then 

x > ~“fl(4 > 4-4 > y. 

Case 3. y > z. By Lemma 2.4, let /3 in A be such that x > p(y) > y. Then /3 > C. 
Thus by the proof of Theorem 2.4, particularly Eq. (2.5), let w in X be such that for all 
n in I+, p(z) > nw. Since 3 is Archimedean and p+l(z) > p(x), it then follows that 
there exists a maximal m in I+ such that y 2 /P(z). Then 

3. FUNDAMENTAL UNIT STRUCTURES 

DEFINITION 3.1. % is said to be homogeneous if and only if for each x, y in X, there 
exist (Y in 9 such that a(x) = y. 

DEFINITION 3.2. For each OL, /3 in 9, let 01 0’ /3 be the function from X into X defined 
as follows: For each x in X, 

(a 0’ kw = 44 0 lw- 

LEMMA 3.1. Suppose % is homogeneous and OL, ,6 are elements of 9. Then 01 0’ j3 is in 9’. 

Proof. Let a be a fixed element of X. Since % is homogeneous, let y in 5 be such that 
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We will show that y  = 01 0’ /3 and thus show 01 0’ p is in 9. Let x be an arbitrary 
element of X. Since % is homogeneous, let 0 be an element of 9 such that e(u) = x. 

Then, by the commutativity of 9, 

LEMMA 3.2. Suppose % is homogeneous. Then nx is an automorphism of 3 for all n in I+. 

Proof. lx is the identity automorphism, L, in Q. Suppose m E I+ and mx is in 9. Then 

by Lemma 3.1, (m + 1)x = (mx) 0 x is in 9. Thus by induction, nx is in 9 for all n 
in I+. 1 

LEMMA 3.3. Suppose for each n in I+, nx is in 9. Then 9 is dense. 

Proof. B is nontrivial. Suppose 9 is discrete. Let 01 be the smallest positive automor- 
phism of 3. For each n in I +, let A(n) be the positive integer such that c@) = nx. Since 
(n + 1)x > twc and 01 is the smallest positive automorphism in 9, it follows that for each n 
in I+, 

&un+1) = (n + 1)x > a * &?a = ,&n)+l* 

Let x be an arbitrary element of X. Then since C@)(Z) = nz, C?“)(Z) becomes arbitrarily 
large for large n, and thus c+(“)(z) b ecomes arbitrarily small for large n. Thus by restricted 
solvability, let m in I+ be such that 

Then 

cP)fl(z) = d”‘[a(z)] > aA 0 z 

= mz 0 z = (m + 1)x = ~4~(~+l)(Z), 

i.e., aA(“)+l > &m+r). But this contradicts that olhtrn+l) > ~l~(~)+l. a 

LEMMA 3.4. Suppose B is dense and 3 is Dedekind complete. Then 99 is Dedekind 
complete. 

Proof, Let B be a nonempty subset of automorphisms of 95 that is bounded above by 
the automorphism (Y. 
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Then for each x in X, @I(x) I/3 E B} is a nonempty subset of X bounded by a(x). Thus 
by Dedekind completeness in (X, >), for each x in X, let 

B(x) = l.u.b.{p(x) I/3 E B}. 

We will show that 0 is an automorphism of 3’. Let x, y be arbitrary elements of X. 

1. We will show 0(x 0 y) = O(x) 0 8(y). Suppose f3(x 0 y) > e(x) 0 B(y). By 
Lemma 2.6, let y in B be such that 

4x 0 Y) > Y(X 0 Y) > 44 0 w. (3.1) 

Since for each /3 in B O(x) > /3(x) and e(y) > /3(y), 

44 0 439 > ~(4 0 NY) = B(x 0 Y) 

for each /I in B. Thus for each p in B, y(x 0 y) > S(x 0 y) and thus y > /3. Therefore, 

Y(X o Y> > 1.u.b.W 0 Y) I B E B) = 4x 0 Y>, 

and thus contradicts Eq. (3.1). 
Suppose e(x) 0 B(y) > 0(x 0 y). Let y in C9 be such that 

e(x) 0 w  > Y(X 0 Y) > e(x 0 Y). 

For all /I in B, 

y(x 0 y) > e(x 0 Y) 2= B(x 0 Y>, 

and thus y > /?. Therefore, for each /3 in B, 

Y(X) > B(x) and Y(Y) > B(Y), 

from which it follows 

~(4 0 Y(Y) 2= e(x) 0 4~)~ 

and since y(x) 0 y(y) = y(x 0 y), it follows that 

Y(X 0 Y) > 44 0 w, 

(3.2) 

and this contradicts Eq. (3.2). 
Since not 0(x 0 y) > O(x) 0 B(y) and not O(x) 0 B(y) > 0(x 0 y), it follows from 

the fact that 3 is a total ordering that 0(x 0 y) = B(x) 0 B(y). 
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2. We will now show that x + y iff e(x) 2 B(y). It is sufficient to show that if 
x > y then e(x) > 6(y). Th us suppose x > y. By Lemma 2.1, let z in X and m in I+ be 
such that 

x> (m+ l)z> mz>y. (3.3) 

From Eq. (3.3) and the definition of 8, 

w 2= e[(m + lb1 + %4 3 e(y). (3.4) 

However, by part 1 above, 

O[(m + l)z] = (m + 1) O(s) and e(m) = me(z). 

Thus since (m + 1) O(s) > me(z), by Eq. (3.4), O(x) > 8(y). 

3. We will now show that 6’ is onto X. Let u be an arbitrary element of X. Let 

Y = {/3”(u) 1 p E B}. 

Then Y is bounded below by a-l(u). S ince (X, 2) is Dedekind complete, let w be the 
greatest lower bound of Y. For each #I in B, since /3-l(~) > o, it follows that u > /3(w), 
and thus u > O(o). Suppose that u > O(w). A contradiction will be shown. For each /I in B, 

Let y in 9 be such that 

Then, for each /3 in B, 

u > Y * e(w) > Y * iv), 

and thus since * is commutative, 

which yields 

This contradicts w being the g.1.b. of Y. Thus u = O(w), and since u is an arbitrary 
element of X, it follows that e is onto X. 

Parts 1, 2, and 3 above establish that 0 is an automorphism of S. 0 is an upper bound 
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of B. Suppose the automorphism y is another upper bound of B. Then for each fi in B 
and each ru in X, r(w) > /3(w) and thus y(w) > e(w), i.e., y > 8. Thus 19 is the 1.u.b. 
of Y. 1 

DEFINITION 3.3. I is said to be a fundamental unit structure if and only if % is Dedekmd 
complete and homogeneous. 

LEMMA 3.5. Suppose 95 is Dedekind complete and B is dense. Then 3 is a fundamental 
unit structure. 

Proof. Let x, y be arbitrary elements of X. Let 

B = {p j/3 is in A and p(x) < y} 

and 

C = {/I 1 j3 is in A and /3(x) > y}. 

Then B and C are nonempty subsets of A and (B, C) is a Dedekind cut of (A, >). Let 6 
be the cut element of (B, C). Suppose e(x) # y. A contradiction will be shown, 

Case 1. t9(x) < y. Let y in A be such that 

Then y * 0 is in B and 0 < y t 8 which contradicts that t9 is the cut element of (B, C) 

Case 2. y < e(x). Let y in A be such that 

Then y * 0 is in C and y * 0 < 0 which contradicts that 0 is the cut element of (B, C). a 

THEOREM 3.1. Let S be Dedekind complete. Then the following three propositions are 
equivalent: 

(i) 9 is dense; 

(ii) 95 is a fundamental unit structure; 

(iii) nx is in Q for each n in I+. 

Proof. (i) implies (ii) by Lemma 3.5; (ii) implies (iii) by Lemma 3.2; and (iii) implies 
(i) by Lemma 3.3. 1 

EXAMPLE 3.1. (An example of a Dedekind complete, commutative positive concatena- 

480/20/3-2 
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tion structure with a discrete group of automorphisms.) Let % = (Re+, 2, O), where 0 
is defined as follows: For each x, y > 0, 

x 0 y = x + y + (v)““(2 + SW& log(xy)l). 

Then 9? is a positive concatenation structure, and OL, defined by 

cd,(z) = ze2nn 

is an automorphism of S for each nonnegative integer n. Thus 9 has a nontrivial group 
of automorphisms. Now, if Z had a dense group of automorphisms, then by Theorem 3.1, 
&(x) = nx is an automorphism of .9? for each n in I+. However, in general 

/32(x 0 Y> & B2c4 0 P2B,(Yh 

as one can easily verify by taking x = 1 and y = 2. Thus 9 must have a discrete group 
of automorphisms. 

LEMMA 3.6. Suppose % is a fundamental unit structure, a E X, and F is a function 
from A into X which is defined by: For each OL in A, 

F(U) = a(a). 

Then F is an isomorphism from (A, >‘, 0’) onto (X, 2, 0). 

Proof. It immediately follows that for each OT, fl in A, 

a>B iff F(a) > F(p). (3.5) 

Let 1y, /3, y be arbitrary elements of A and suppose a 0’ /3 = y. Then by Lemma 3.1, 

44 0 B(a) = r(a). 

In other words, 

F(y) = F(a 0’ B) = F(4 0 F(B). (34 

F is also onto X, since if y is an arbitrary element of X, and 77 in A is such that q(a) = y, 
then F(T) = y. Thus by Eqs. (3.5) and (3.6), F is an isomorphism. 1 

LEMMA 3.1. Suppose I is a fundamental unit structure. Then for each ~1, ,6, y in A, 

01 * (B 0’ r) = (a * B> 0’ (a * I+ 
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Proof. Let OL, /I, y be arbitrary elements of A. Let x in X be such that (/I 0’ y)(x) = 

P(x) 0 y(x). Then 

Thus 

b * (P 0’ rN4 = 4(P 0’ YK41 
= 4w 0 r(41 
= 4Bc41 0 4A41 
= b * PC41 0 b * r(x>l 
= [(a * PI 0’ (a * Y)lW 

DEFINITION 3.4. (QJ, f) is said to be a unit representation for .!E if and only if y is a 
function from X onto Re+ and f  is a function from Re+ into Re+ and the following two 
conditions hold for all x, y in X: 

(9 x > y ifi 944 3 Y(Y); 
(ii> dx 0 39 = f  M~hWl . VW 

THEOREM 3.2. Suppose S is a fundamental unit structure. Then there exists a unit 
representation for I. 

Proof. Since (A, >, *) is a Dedekind complete, Archimedean ordered group, and 
since it is well known that all Dedekind complete, Archimedean ordered groups are 
isomorphic, let q~ be an isomorphism of (A, >, *) onto the multiplicative group of the 
positive reals, (Re+, 3, .). Then for each 01, /3 in A, 

a>B if f  944 > v(B). 

Let H: Re+ x Re+ + Re+ be defined as follows: for each a, /J in A, 

Wd4, P)(B)1 = da 0’ B)* 

(3.7) 

(3.8) 

Let r, s, t be arbitrary elements of Re+. Since v is onto Re+, let a, 8, y in A be such that 
p)(a) = r, +I) = s, and v(y) = t. Then 

Wrs, 4 = WA4 . v(B), ~(4 . PWI 
= ffh+ * P)Y da * 741 
= db * I3 0’ (a * dl 
= VP * (B 0’ r>l 
= 944 * d8 0’ Y) 
= d4 * mw, dY)l 
= r * H(s, t). 
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Thus for each r, s, t in Ret, 

H(YS, rt) = YH(S, t). 

Letf(s/t) = H(s/t, 1). Then by Eq. (3.9), for each s, t in Re+, 

H(s, t) = H (+ ,t.l)=rI+,l) =j(+. (3.10) 

Thus by Eqs. (3.8) and (3.10) letfbe such that for each (Y, /3 in A, 

(3.9) 

(3.11) 

Since (X, +, 0) and (A, >, 0’) are isomorphic, it follows from Eqs. (3.7) and (3.11) 
that I has a unit representation. fl 

THEOREM 3.3. Suppose 3 is a fundamental unit structure and (v, f) is a unit representa- 
tion for 3. Then the following six statements are true for each Y, s in Ref : 

(9 f(r)> 1; 
(ii) Y 3 1 i f f  f(m) < rf(s); 

(iii) f(r) > Y; 

(iv) Y 3 s i f f  f(r) > f(s) 

(v) lim,,, f (4/u = s; 
(vi) limnem f t”](l) = cc, 

where f [“l(r) is definedfor n in I+ as follows: 

f V) = f(y) and f rn+ll(r) = f [ f [“l(r)]. 

Proof. Let I, s be arbitrary elements of Ref. 

(i) Since p is onto Ref, let u, v  in X be such that Y = q(u)/v(o). Then, since 

UOV>% 

and thus f (r) > 1. 

(ii) Let a, b, c in X and t in Ref be such that 

da) = yt, v,(b) = t, cp(c) = rst. 
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Then 

r 3 1 iff rt > 

iff da) 3 944 

iff a>b 

iff cOa>cOb 

ifi p)(c 0 a) 2 dc 0 b) 

iff f [-$$-I -p?(a) >f [-$$I *v(b) 

iff f(+)rt>f(+)t 

iff f(s)r 2 f(m). 

(iii) Let a, b in X be such that p(a) = U, y(b) = s. Then since a 0 6 > a, 

da 0 4 > da), 

and thus 

and therefore 

f(3 - s > IS, 

i.e., f(r) > r. 
(iv) Let u, v, t in Ref be such that r = U/D and s = t/v. Let x, y, z in X be such 

that v(x) = u, v(y) = t, and v(a) = ZI. Then 

r>s iff $4 
v v 

iff u>t 

iff x>y 

iff xOz>yOz 

iff P)(X 0 4 > V(Y 0 4 

ifi f [+$-I dx> 3 f [$$-I 544 

iff f(i)v>f(+)v 

iff f(r) 3 f (4 
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(v) Let E > 0. Let y and z in X be such that v(y) = s and v(z) = ~(1 + l ). 
Then .z > y. Let u be an arbitrarily large element of Ref such that (by restricted solva- 
bility) 

x > y 0 y-l (3 > ?‘. 

Then 

d4 > ?J [Y 0 6 ($1 > dYh 

i.e., 

and thus 

s(1 + l ) > f(m) . ; > s. (3.12) 

Since Eq. (3.12) is true for arbitrarily large u for each E > 0, it follows that 

(vi) Let x in X be such that p)(x) = T. Since % is Archimedean and 0 is a closed 
operation (Theorem 2.5), nx becomes arbitrarily large for arbitrarily large 72 in I+, and 
thus, since p is onto Re+, I becomes arbitrarily large for arbitrarily large n in I+. 
Now, 

942x) = qJ(x 0 x) = f  (1) * p)(x) = f  [I’ * r, 

91(3x) = 97(2x 0 4 = f  [J$&] * P(X) 

= f  ($L) . r = fPl(1) *r, 

and by induction, 

p)(m) = f[““l(l) * r. 

Since I -+ cc as 12 --t cc, lim,,, f  [“l(l) = Co. 1 

THEOREM 3.4, Suppose f :  Re+ -+ Ref is such that statements (i)-(vi) of Theorem 3.3 
hold for all r, x in Ref. Let 0 be the binary operation on Ref such that for all r, s in Ref, 

rOs=f f  .s. 
( > 

Then (Ref, 2, 0) is a fundamental unit structure. 
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Proof. We will first show that (Re+, 2, 0) is a positive concatenation structure. 
Let r, s, t be arbitrary elements of Re+. 

Total ordering, nontriviality, and local definability immediately follow. 

Monotonicity. 

sOr>tQr iff f($)*r>f(+)*r 6) 

(ii) 

but by statement (ii) of Theorem 3.3, 

iff -+l 

iff s > t. 

Restricted solvability. Suppose Y > s. Since f(u) > u for all u in Re+ and 
limu+m f (us)/24 = , 1 t s e v in Re+ be such that r > f (vs)/v > s. Then since s 0 l/v = 
f (vs) * l/v, it follows that r > s 0 I/v > s. 

Positivity. Since f (r/s) > 1, 

rOs=f ?I- 
( 1 

’ s > s. 
S 

Since f (r/s) > r/s, 

rOs=f 5 ( 1 .S>Y. 
S 

Archimedean. Let [l]r = r, and for each n in I+, [n + l]r = ([n]r) 0 Y. Then 
[2r] = r 0 r = f”](l) - r. Suppose for n > 2, [n]r = f [+-l](l) - r. Then 

[n + l]r = [nr] Q r = f [+] - r = f [ f’“-‘:(1) * ’ ] - r 

= f [“l(l) * r. 
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Thus since limn+mf[nl(l) = 00, [no] becomes arbitrarily large for arbitrarily large n 
in I+, and therefore Archimedean is satisfied. 

We will now show that (Re+, 2, 0) is homogeneous. Let p, r, s be arbitrary elements 
of Re+. Define 01~: Re+ -+ Re+ as follows: For each t in Ref, as(t) = p * t. We will show 
that (Y$ is an automorphism of (Re +, 2, 0). It is immediate that Mu is crder preserving. 
Furthermore, 

a& 0 s) =p(Y 0 s) =pf($) s =f(C) *ps 

= (pr> 0 (PS) = %(T) 0 44. 

Thus a9 is an automorphism. Since Q.(Y) = s, (Re+, 2, 0) is homogeneous. 1 

THEOREM 3.5. Suppose (q, f) and ($,g) are unit representations for %. Then there 
exist s, t in Re+ such that fm each r in Re+, 

qJ = sp;l/t and f(r) = g(rt)llt. 

Proof. We will first consider the case where x is an element of X such that C&Z) = 
g(z) = 1. Define 0 and 0’ on Re+ by u 0 v = f (u/v)v and u 0’ v = g(u/v)v. Let 
L = I,+-“. Then it is easy to show that L is an isomorphism from 9, = (Re+, 2, 0) 
onto 9a = (Re+, 3, 0’). It is easy to show that multiplications by reals are auto- 
morphisms of 9, and W, and that (Re +, 2, .) is the group of automorphisms for both 
9Z1 and W, . For each r in Re+, let h(r) = L-%L, where h(r) is to be interpreted as the 
automorphism p of .B?i (interpreted as multiplication by p) such that for each u in Re+, 
pu = L-l[rL(u)]. Th en it is easy to verify that h is an automorphism of (Ref, 2, a). 
Since it follows from Holder’s theorem that all automorphisms of (Re+, *, 2) are 
positive real powers, let t’ in Re+ be such that for all r in Re+, h(r) = rt’. Then for each 
xinX, 

i.e., 

L-lrLv(x) = Ccp(x), 

+J(x) = L[~t’v(x)l, 

which by substituting +p-i for L yields 

+?+dx) = hYd41~ 
464 = +PV’d41~ (3.13) 

Now taking x = z in Eq. (3.13) and remembering that we assume v(z) = #(z) = 1, it 
then follows that 

Y  = @p-y’), 
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i.e., that 

p’(Y) = p-l(F). (3.14) 

Since Eq. (3.14) is true for all r in Re f, it follows that for each x in X, #(x)“’ = v(x). 
Letting t = I/t’, we then get 

r$3 = *1/t. (3.15) 

Now since we assume C&Z) = $(z) = 1, it follows from Eq. (3.15) that for each e, in X, 

= (f [# dq 

= f w91”* 

However, it is also the case that for each v in X, 

(3.16) 

(3.17) 

Thus by Eqs. (3.15)-(3.17), for each v in X, 

f MVP = deJ)l = kfdfY1~ (3.18) 

Since v is onto Re +, Eq. (3.18) yields for each r in Re+, 

f(Y) = g(ty. (3.19) 

We will now consider the case where it is not necessarily true that p)(z) = I,@) = 1 
for some z in X. Let z be an arbitrary element of X. Let v’ = q/v(z) and I/’ = #/HZ). 
Then it is easy to verify that (y’, f) and (I/, g) are unit representation for .% and v’(z) = 
I&) = 1. Thus by Eq. (3.19), 

f(r) = g(ry. 

Furthermore, by Eq. (3.15), v’ = z,Nt, i.e., 

-& = [-$J = ,$Jt p/t. 

Thus letting s = p)(z)/~&x)r/~, we get 
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Unit representations for fundamental unit structures have multiplications by certain 
reals which are automorphisms of a positive concatenation structure, as Example 3.2 
clearly demonstrates. However, having automorphisms as multiplications by reals 
severely restricts the forms of the positive concatenation structure, especially if smooth 
differentiability conditions also hold. This is clearly shown in the next example and is 
worked out in detail in the next section. 

EXAMPLE 3.2. Suppose (v, 0) is a O-representation for 9?“, v(X) = Re+, and 0 
has an extension to a function H that has a power series expansion around the origin for 
nonnegative reals, i.e., for each x, y > 0, 

H(x, y) = C a&yj, 
i.j 

where i, j range over nonnegative integers and for each x, y > 0, H(x, y) = x 0 y. 
Also suppose H(0, 0) = 0 and (Re+, >, 0) has a nontrivial automorphism that acts as 
multiplication, i.e., suppose r in Re+ is such that r # 1 and for all x, y in Re+, 

Y(X 0 y) = f-x 0 yy. 

Then from H(0, 0) = 0, it follows that u ,,s = 0, and from Y(X 0 y) = YX 0 ry that 

rH(x, y) - H(rx, ry) = 0 

for all x, y > 0. In terms of the power series representation, this yields 

Y  z UjjXiXj - ; (rx>“(ry>j = c UjjXi_y'(Y - r'tj) = 0, 
i.j 

which can only happen if for all i, j 

We have already shown aso = 0. If either i > 1 or j > 1, then Y - yiyj # 0, and thus 
uij = 0. Therefore the only possible nonzero terms are when i = 0, j = 1, and i = 1, 
j = 0. Therefore, for all x, y > 0, 

H(x, y) = x 0 y = aolx + a,,~. (3.20) 

Since, by calculation,O satisfies the bisymmetric law, (x Q y) 0 (ZL 0 w) = (x 0 u) 0 
(y 0 z)), by isomorphism 0 must also satisfy this law, and thus I is a bisymmetric 
structure, i.e., for all p, p, w, z in X, (P 0 q) 0 (w 0 4 = (P 0 w) 0 (q 0 4. 
However, there is an asymmetry in the axioms for a positive concatenation structure, 
namely, that restricted solvability and Archimedean (Definition 2.1) are defined using the 
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“right side” of the operation. In terms of Eq. (3.20), a0r must be 1 since if a,,, < 1, then 
for sufficiently large x and sufficiently small y, 

x 0 y = 4)1x + a,,y < x, 

and this contradicts positivity, and if a,, > 1, then for sufficiently large x and y such that 
x - y is a sufficiently small positive number, x > y, and for all x in Re+, y 0 z > x, 
and this contradicts restricted solvability. Now it follows from an argument similar to the 
one for the impossibility of a,, < 1 that it is impossible for a,, < 1. However, by the 
asymmetry in the definition of restricted solvability, it is possible for a,, < 1. In fact 
(Ref, 3, a>>, where 0 is defined by x (D y = x + 2y is a fundamental unit structure. 
Now “left restricted solvability,” i.e., for each x, y in X, if x > y, then for some z, 
x > z 0 y, is a reasonable assumption for measurement theory, and if added as an 
assumption for this case yields the conclusion a,, = 1, i.e., x 0 y = x + y, i.e., 0 is an 
associative operation. Thus to summarize, if 5?” has a representation (v, O> with a power 
series expansion for the operation 0, and if (Re +, 2, Q> has a nontrivial automorphism 
that acts as multiplication, then 0 is a bisymmetric operation, and if in addition “left 
restricted solvability” holds for %, then 0 is associative. 

4. CHARACTERIZATIONS OF AUTOMORPHISMS OF 37 

Throughout this section we will assume X is the set of positive real numbers, the rela- 
tion > is 2, and 0 is a closed operation. 

The basic goal of this section is to find methods for transforming 3 into a representa- 
tion whose automorphisms can be characterized as multiplications by positive reals. 
Unit representations have this property; however, some positive concatenation structures 
with a discrete set of automorphisms also have this property, e.g., see Example 3.1. To 
accomplish this goal, we assume that 0 has certain differentiability properties and then 
give the explicit form of the appropriate transformation as an integral equation involving 
the first partials of 0. This method can also be used to show that certain positive con- 
catenation structures have only the trivial automorphisms. 

CONVENTION. Throughout this section we will often write x 0 y as H(x, y). We will 
also often write partial derivatives as subscripts, e.g., 

CONVENTION. Throughout this section, it is convenient to sometimes appropriately 
extend the automorphisms of SY and the operation H so that they take values at 0. This is 
done as follows: For each 01 in A, let a(0) = 0, and for each x in X, let H(x, 0) = 
Km,, H(x, y) = x and let H(0, 0) = 0. However, by the asymmetry between x and y 
in the restricted solvability condition, lim,,, H(x, y) need not be y; thus we define 
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H(O, y) = lim,, H(x, y). Then for each 01 in A, OL and H are monotone on {0} u X, 01 

is onto (0) U X, a(O) = 0, and for all x, y in {0} u X, a[H(x, y)] = H[a(x), a(y)]. 

Throughout this section, we use the following theorem of real analysis: 

THEOREM 4.1 (The Inverse Function Theorem). Let f:  Re+ -+ Re be continuously 
d@rentiable in an open interval containing a. Then there exists an open interval S containing 
f(a) such that th e inverse off, f-l, exists on S and is continuously ds@rentiable there, and 

is such that for ally in S, 

(f VY) = Lf’(f -‘(rW* 

DEFINITION 4.1. H is said to be smooth if and only if H, H, , H, are continuously 
differentiable on X. H is said to be smooth at 0 if and only if for each x, x’ E X 
lim,, Hy(x, t)/Hy(x’, t) exists and is finite. 

THEOREM 4.2. Suppose H is smooth and (II in A is continuously ds@-rentiable on X. 
Then the following three statements are true: 

~,(x> = lim ~‘(t> H~(c~(x), I) 
t-0 f&(x, t) 

(ii) I f  in addition H is smooth at 0, then limt,,, HY(x, t)/H,(x’, t) may be written as 
g(x)/g(x’) for some function g. Furthermore, in this case for each 01 in A and x in X, 

44 &M~(4) = Km (4.2) 

for some constant K, dependent only on 01. 

(iii) Let H be smooth on X and at 0, let g be as in part (ii), and 

J(z) = [ dt/gW (4.3) 

Thenfor each continuously dzfferentiable cy in A, a(z) = J-l(K,J(z)). The map w: A + Re+, 
defined by ~(a) = K, , is an isomorphism from the continuously dilferentiable automorphisms 
on A onto a multiplicative subgroup of the positive reals. Furthermore, if we define 0 on 

1(X> bY 

x 0 Y = JW’(~) 0 P(Y)) 

and for each 01 continuously differentiable in A, 

E(z) = K,z, 

then J is an isomorphism between x and 9? = <J(X), 2, 0) and Cu is an automorphism 

of J&W* 
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PYOO~.~ (i) Since 01 is an automorphism of X, 

lim H(“l(x)’ I) - H(a(x)’ “(‘>> = lim cu(H(x’ t)> - ol(H(x’ ‘)> 
u+t t-u u+t t-u (4.4) 

However, by the chain rule we obtain 

lim H(LU(X)’ ~(t>> - H(“l(x)’ ~(‘)) = I’ H~(ar(x), I). 
u-t t-u 

Similarly by the chain rule we get 

lim or(H(x, t)> - ol(H(x’ ‘)> = OII(H(x 
t-u , u+t 

t)) H ( yx, . t) 

Combining (4.4), (4.5), and (4.6) we get 

+qx , q> = a) KM4 40) 
fux, t> * 

(4.5) 

(4.6) 

(4.7) 

Letting t + 0 and noting that (Y’ is continuously differentiable, we obtain 

oI’(x) = lim ~‘(t> HY(ar(x)’ I) 
t-u f&(x, t) ’ 

which is (4.1). 

(ii) By hypothesis for each x, x’ in X, limt,, Hy(x, t)/H&x’, t) exists and is finite. 
It then follows by elementary properties of limits that 

for some fixed x,, . Since Hy(x, t) is strictly positive for each x, t (i.e., since 0 is strictly 
monotonic in both coordinates), g(x) > 0. From the assumption that His smooth at zero, 
it immediately follows that g(x) > 0. 

Choose x, x’ arbitrarily. Then by elementary properties of limits and the fact that (y.‘(x) 
and (y.‘(x’) > 0, 

* Ideas for part of the proof of this theorem were suggested by Geoffrey Iverson. 
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Regrouping in (4.8) yields 

44 E(X) = 44 dx’) 
g(4xN &4x’)) * 

(4.8) 

(4.9) 

However, since x and x’ are arbitrary, it follows that 

where K, depends only on 01. Furthermore, K, > 0 since g(x), g(E(x)), and a’(x) are 
positive. 

(iii) Regrouping in (4.2), integrating, and utilizing the fact that ~(0) = 0, we 
obtain after a change of variables, 

s t a’(x) dx 
o --&@) = Ka 

t dx 
s- 0 &) ’ 

i 

a(t) du 
- = K, 

s 

t dx 

0 ‘Y(u) OTN’ 

J(4)) = KJ(4. 

Since g is strictly positive it follows that J is differentiable and strictly monotonic 
and therefore one to one. Therefore, 

To show that w is an isomorphism from the set of continuously differentiable automor- 
phisms of A onto a multiplicative subgroup of positive reals, first note that 

O1 * B(t) = 43(t)) 
= ~JWW(t>) 
= J-lKJ(J-lW(~>> 
= J-V& * K&b 
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Therefore w[a t /3] = CO(~) * c&3). Furth ermore since 01 is strictly monotonic on Ref, 
by the inverse function theorem, 01-l is continuously differentiable if 01 is, and hence 

w[a-‘(a)] = w(a-1) - w(a), 

W(L) = 1, 

where c is the identity. Thus 

(W(a))-’ = w(a-1). 

Furthermore w is order preserving since 

a >, j3 iff for some x, O(X) > /I(x) 

iff for some x j-l(~(a) J(x)) > J-‘(CO@) J(x)) 

iff W(U) 3 w(p). 

The above observations show that w is an order-preserving isomorphism from the 
continuously differentiable automorphisms of A onto a multiplicative subgroup of 
positive reals. 

That J is an isomorphism from (X, >, 0) onto (J(X), 3, 0) follows immediately 
from the definition of 0 and the monotone continuity of J. Furthermore, 

Since J is monotone continuous the result has been proved. 
Theorem 4.2, especially part (ii), gives powerful methods for determining the form 

and structure of differentiable automorphisms. However, to fully utilize this theorem, 
we need to know general sets of conditions for which all automorphisms are continuously 
differentiable on X. This is done in Theorem 4.5, where it is shown that if His smooth, 
then all automorphisms of 9Y are continuously differentiable. The method of proof of 
Theorem 4.5 uses ideas developed by Aczel (1966) for the solutions of functional equa- 
tions. 

THEOREM 4.3 (Differentiation of Integrals Theorem). 
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Suppose f(x, y) and af /ax are continuous in the rectangle (x - E, x + e) x [a, b]. Then 

z. d j-if (x, y) 4 le = f &f lx, y) 1 4s Z.Y 

and the derivative is cotitinuous. 

LEMMA 4.1 (Implicit Function Theorem). Dejke the function G as follows: For each 
x, y, v in X, G(x, y) = v $7 y = x 0 v. Suppose S is smooth and G(a, b) = c. Then 
G, and Gy exist and are continuous at (a, b). 

Proof. Left to reader. 1 

LEMMA 4.2. Suppose 35 is smooth, OT is an automorphism of %, u, v E X, and u < v. Then 

W(x) = j’ 4Wx, Al dr 
lb 

(4.10) 

is a continuously digerentiable function of x. 

Proof. Since 01 is monotonic and onto Ref, 01 is continuous. First we will make a 
change of variables in Eq. (4.10). Let Q = H(x, y). Let G(x, y) be defined as in Lemma 
4.1. Then G(x, Q) = y. By Lemma 4.1, G is continuously differentiable at points for 
which it is defined. Since dQ = H,,(x, y) dy and H is monotonic in both variables, and 
thus HJx, y) > 0, it follows that 

dy = H,[x,:Tx, Q)] ’ 

Thus by changing variables we get 

w(x) = J--:;’ 48) dQ 
, f&h Wt &)I ’ 

We will now show that W is differentiable in x. We first write W(x) in the form 

where 

W(x) = -ww, B(x), C(x)l, 

48) dQ 
L(a’ b’ ‘) = s.” H,[c, G(c, Q)] ’ a < b, c < Q, 

u(x) = H(x, v), 

B(x) = H(x, 4, 

C(x) = x. 

In order to apply the chain rule to L to show that w’(x) exists, we first must show that 
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U, B, C are differentiable in x and L is continuously differentiable in each partial. U and B 
are differentiable in x by assumption, and it is immediate that C is differentiable in X. 
Let us consider L(a, b, c). aL/ab exists and is continuous since 

48) 
E(Q9 ') = HJc, G(c, Q)] 

is continuous on (-• + H(x, u), E + H(x, v)) x (X - E, x + c) for some E > 0 and since, 
by the fundamental theorem of calculus, 

$1’ E(Q, 4 dQ = E(x, 4. 
a 

Similarly, aLlaa exists and is continuous. To show aLI& exists and is continuous, the 
differentiation of integrals theorem is used. Letting E(Q, c) be as in Eq. (4.1 l), we note 
that E(Q, c) is differentiable in c since by assumption (a/&) Hy(z, p) exists and is con- 
tinuous and since by Lemma 4.1, (a/&) G(z, p) exists and is continuous. Thus by 
holding Q constant and applying the chain rule, 

aE 
ac= 

-4Q> 
W& % QNI” 

(H&, G(c, Q)] + f&,u[c, G(c> 811 W, QD (4.12) 

Thus, since E, is formed by taking compositions, sums, and products of continuous 
functions, E, itself is continuous. Combining the above results we get 

w4 
dx 

(4.13) 

from which it immediately follows that W’(x) is continuous. a 

THEOREM 4.4. Suppose % is smooth and 01 is an automorphism of 3. Then Q is continu- 
ously d$%rentiable on Re+. 

Proof. Since OL is an automorphism of .F, the functional equation 

W(x, Y)I = HFW 4r)l (4.14) 

holds. Letting u < v and integrating both sides of Eq. (4.14) with respect to y, we get 

sv cJ@, Y) 4 = j+’ H[+), 4~11 dy. 
u u 

(4.15) 
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However, by Lemma 4.2 we know that the left side of Eq. (4.15) is a continuously 
differentiable function, W(x), of x. Thus 

and w’(x) exists and is continuous for each x in X. Let P be the function from Re+ 
into Ref defined by 

(4.17) 

Since 01 is monotonic and onto X, 01 is continuous. Also, H is continuous and monotonic 
increasing. Therefore P is continuous and monotonic increasing. Since His continuously 
differentiable, it follows that both H[z, a(y)] and H,[x, a(y)] are continuous on (a - E, 
x + c) x [u, V] for some E > 0. Thus by the differentiation of integrals theorem, P is 
continuously differentiable, and since P is monotonic increasing, P’(z) > 0 for ail z in X. 
Thus by the inverse function theorem, P has a differentiable inverse function, P-l. 
Applying P-l to both sides of Eq. (4.16), we get 

P-l[W(x)] = P-l 1’ H[a(x), a(y)] dy = a(x). 
u 

Thus by the chain rule, 

d(x) = (P-1[W(x)])’ * w’(x). 1 

EXAMPLE 4.1. Let 9 = (Re+, 2, O), where 

xOy=x+Y+xY* 

Then I is a positive concatenation structure and 0 is smooth and smooth at zero. Since 
Hv(x, 0) = 1 + x and H is smooth, g(x) = 1 + x and therefore, 

J(z) = 6 + = log(1 + z). 

Thus 

x 0 Y = JW’W 0 J-‘(r)1 

= Wl + W1(~) 0 J-W>1 
= log[l + (eZ - 1 0 ev - l)] 

= log[l + e5 - 1 + ear - 1 + (@ - l)(@ - l)] 

= log[ezeY] 

=x+y. 
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Thus (Re+, >, 0) is isomorphic to (Re’, 2, +) and J(x) = log(l + z) is the isomor- 
phism. 

EXAMPLE 4.2. (An example of a Dedekind-complete positive concatenation structure 
with a closed commutative operation that has only the trivial automorphism.) Let % = 
(Re+, 3, O), where 

x 0 y = x* + y -t x2y2. 

Since HV(s, 0) = 1, g(x) = 1 and therefore 

and thus it follows that 0 is 0, where 0 is defined by 

Since by Theorem 4.5 all automorphisms of 9’ are continuously differentiable and by 
Theorem 4.3 all continuously differentiable automorphisms of (Re+, 2, O> are multi- 
plications of reals, it follows from 0 = 0 that all automorphisms of 55 are multiplica- 
tions of reals. However, 

r(1 0 2) = (Y * 1) 0 (r -2) iff r * 7 = 3r + 4r4 

iff 7 = 3 + 49 

iffr = 1. 

Thus % has only the trivial automorphism. 

5. PRE-UNIT STRUCTURES 

Although the axioms for fundamental unit structures are straightforward and simple, 
they are stronger than what one would like for measurement theory. In its present state, 
measurement theory is concerned with idealizations of empirical processes. By their 
nature, empirical processes are finite, and therefore their idealizations should be potentially 
infinite, or at most denumberably infinite. Dedekind completeness forces fundamental 
unit structures to have much higher cardinality. The homogeneity condition of funda- 
mental unit structures (like Dedekind completeness) is not formulatable in first-order 
languages; and the assumption of closed operations of fundamental unit structures 
excludes many natural measurement applications. In this section we will avoid these 
difficulties by axiomatizing a weaker structure that is imbeddable in a fundamental unit 
structure. 
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CONVENTION. In this section we will often write x = (l/m)y or y/m = x for y -;: mx 
when x, y E X and m E Ii-. 

DEFINITION 5.1. 3 is said to be a pre-unit structure if and only if the following two 
conditions hold for all x, y in X and all m in I+. 

(i) Partial homogeneity: If either m(x 0 y) or mx 0 my are defined, then 

m(x 0 y) = (4 0 (my); 

(ii) Partial divisibility: There exists z in X such that mz = x. 

Let 9’ be a pre-unit structure. Then the partial operation 0 need be not closed. 
However, as the following theorem shows, 9? can be imbedded in a pre-unit structure 
with a closed operation. The proof is straightforward but long, and we shall omit it. 

THEOREM 5.1. Suppose .% is a pre-unit structure. Then % is isomorphically imbeddable 
in a pre-unit structure with a closed operation. 

Basically, partial homogeneity and partial definability is one way of saying that 3 has 
a dense set of “local” automorphisms. More precisely, a local automorphism of % is a 
function OL defined on some nonempty subset Y of X such that for all x, y, x 0 y in Y 
and z in X: 

(i) If x > z, then z E Y; 

(ii) if a(x) > z, then z E a(Y); 

(iii) 4x 0 y) = 4x1 0 a(y); 

(iv) x > y iff a(x) > a(y). 

A development similar to the one in Section 2 for automorphisms can be given for partial 
automorphisms, and a result similar to Theorem 5.1 can be shown: namely, if 9” has a 
dense set of local automorphisms, then I can be imbedded in a positive concatenation 
structure with a dense automorphism group. However, we will not proceed further with 
this topic in this paper. 

Suppose X = (X, 2, 0) is a pre-unit structure and 0 is a closed operation. Then nx is 
defined for all n in I+ and all x in X. Thus by partial homogeneity and monotonicity, for 
each x, y in X and each n in I+, n(x 0 y) = nx 0 ny and x > y iff nx > ny, i.e., nx is 
an automorphism of 3. By Lemma 3.3,%” has a dense group of automorphisms. Observe 
that x/n is the inverse of the automorphism nx and is itself an automorphism of X. We 
will often write 

rnf 
?a 

for m 3 
0 

and note that since the automorphisms of 9? are commutative, 
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We state two definitions and prove a lemma to be used in subsequent development. 

DEFINITION 5.2. xi is said to be a standard seqknce in X if f  there are u, v  in X, u > v  
and either 

(i) xi 0 v + xi-l 0 24, 

(ii) zI 0 xi > u 0 xiwI 

CONVENTION. u denotes the complement of U. 

DEFINITION 5.3. 9” is said to be strongly Archimedean if and only if every strictly 
bounded standard sequence is finite. 

LEMMA 5.1. Suppose 3 is a pre-unit structure with a closed operation. Then J is strongly 

Archimedean. 
Proof. Suppose X is not strongly Archimedean. A contradiction will be shown. 

Let xi be an infinite standard sequence in % that is bounded by a in X. Let 

% = {.z 1 z is in X and for some i in I+, si > z}. 

Then +I? is clearly a bounded set. Let w be an element of %?, and let 

We will show the following three propositions: 

(i) X and J? are nonempty; 

(ii) 2 contains positive elements; 

(iii) for each O, 7 in 9, if (J E # and (T > 7, then 7 is in &‘. 

Proposition (iii) immediately follows from the definitions of %? and &? and the definition 
of > on 9. To show Z is nonempty, observe that xi > w for some i in I+. Therefore 

since 9 is dense, by Lemma 2.4 there exists 01 in 9 such that xi > a(w) > w for all i in I+, 
which also shows that Z contains positive elements. By the proof that 9 is Archimedean 
(Theorem 2.1) there exists t in X such that a”(w) > nt for all n in If. By choosing n 
such that nt > a, it follows that CL~” is in %?. Thus we have shown propositions (i), (ii), 
and (iii). 

Now since .yi is a standard sequence, without loss of generality, let u, v  be elements of S 
such that u > v  and xi 0 u > xieI 0 u. We will show that there exists o in X’ and 6 
in 2 such that o(u) > 6(v). Since 9 is dense, by Lemma 2.4 there exists [ in !!C? such that 
u > E(v) > z’. Let R = max{m j E” E X}. By the above argument, k exists. Then 
E”(u) > Ek+l(v), 5” is in Z, gX‘fl is in f f .  Thus letting (T = 8” and (5 = tkfl, we get the 
desired result. 

Now to complete the proof of this lemma, let 6 in 2 c in &’ be such that 

(T-l(u) > u-l(v). 
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By monotonicity in CZ, 
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w 0 6-‘(u) > w 0 u-‘(v). 

Again by Lemma 2.4, let 7 in 9 be such that 

w 0 c?‘(u) > q(w) 0 70-1(7J) > w 0 u-‘(n). 

Let p = max(m / 7m E %‘}. Then 

7p(w) 0 7+-yu) > Tp+yw) 0 7p+1a-1(v). 

But by the definition of p, u, ~7, 

7”0-1 < L, 

7 
P+lu-l > ‘ 

'IPEg:, 

and 

7yfl(w) E 4. 

But then 

TP(W) 0 u > 77”+yw) 0 v. 

Since 7j?+l(w) E 8, 7jP+l(w) > x, f or i E I+. However, since T”(W) E V, there exists j such 
that xj > TV(W). Therefore by monotonicity in 37, 

xj 0 u > 7p+‘(w) 0 zI > xj+l 0 zI k xj 0 % 

and this is a contradiction. 1 

Suppose 9 = (X, >, 0) is a pre-unit structure and 0 is a closed operation. Let X 
consist of all subsets Y of X for which the following three conditions hold: 

(i) Y and X - Y are nonempty. 

(ii) For each x, y in Y, if x > y and x E Y, then y E Y. 

(iii) Y does not have a maximal element. For each x in X, let 

x ={yjyEXandx>y}. 

Let X* = (x 1 x E x>. Then it immediately follows that X* C X. Define 3 on X as 
follows: For each Y, 2 in X, 

Y$ZiffY3_2. 
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Define 0 on X as follows: For each Y and 2 in X, 

Then the following lemma follows from the proof of Theorem 7.4, especially Lemmas 7.3, 
7.4,7.6, and 7.8 of Narens and Lute (1976). (Although the proof of Lemma 7.8 of Narens 
and Lute (1976) uses an additional assumption called “interval solvability,” another 
proof can easily be given that does not use this assumption.) 

LEMMA 5.2. % = (X, $, 0) satisjes all the axioms for a totally ordered, positive 
concatenation structure (DeJnition 2.1) except possibly for restricted solvability, monotonicity, 
and positivity. Furthermore, 0 is a closed operation, (X, 3) is Dedekind complete, X* is an 
order dense subset of (X, *), and %* = (X*, a’, 0’) and (X, 3 , 0) are isomorphic, 

where $’ and 0’ are the restrictions of $ and 0 to X*. 

LEMMA 5.3. Let Y, Z be arbitrary elements of X. Then the following two statements 
are true: 

(i) Y 0 2 > Y; 

(ii) Y 0 2 > 2. 

Proof. (i) Let Y, 2 be in X and let Y 0 2 be given. Then by definition and by 
positivity in 3, Y 0 23 Y. Suppose that Y 0 Z = Y. Then there is a sequence yi 
such that yi is in Y and 

Yi+1> Yi 0 s 

for a fixed .a in 2. Since for arbitrary u < x, yi+r 0 u > yi 0 z, the sequence yi is a 
standard sequence. Since by Lemma 5.1 I is strongly Archimedean, the sequence y1 
is unbounded. However by definition of Y, there is a x in X such that z > y for each y 
in Y. In particular, x > yi for each i, and this contradicts unboundedness of the sequence. 
The proof of (ii) is entirely similar. 1 

LEMMA 5.4. Let W, Y, Z be arbitrary elements of X. Then the following two statements 
are true: 

(i) WOZ$ WO YiffZ> Y; 

(ii) 2 0 W3 2 0 Y iff 2 > Y. 

Proof. (i) Let Z > Y. It suffices to show that W 0 Z > W 0 Y. By definition of 
0 and monotonicity in 3, W 0 2, W 0 Y. Suppose W 0 Z = W 0 Y, a contra- 
diction will be shown. Since 23 Y and Z has no maxima, there are u, v such that u > v 
and u, v are in Z - Y. We will now show that there is a sequence of wi in W such that 

W,,l 0 v > wi 0 u. 
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We define the sequence by induction. Let wa be an arbitrary element of W and suppose 
wi is defined. Since wi 0 u is in W 0 2, it is in W 0 Y, and so there exists y in Y such 
that w~+~ () y > w8 0 u. But by deiinition of v, v > y for each y in Y, and from mono- 
tonicity in d it follows that 

%+1 0 v > wi+1 Or + wi 0 u. 

The sequence wi is a standard sequence, and since I is strongly Archimedean, it is 
unbounded. However, by the definition of W there is a z in X such that z > w for each 
in W. In particular z > wi for each i, contradicting the unboundedness of W. 1 

LEMMA 5.5. S satis$es restricted solvability. 

Proof. Let Y, W be arbitrary elements of 9’ and suppose Y > W. Since X* is order 
dense in (X, )), let u, v in X be such that 

Y>u>v> w. 

Then u > v by the isomorphic imbedding of I into %. By restricted solvability in 9?, 
let x in X be such that u > v > 0 x > v. Then u > v 0 z > v. Thus by positivity 
and monotonicity in b, 

Y>u>vOz> woz> w, 

i.e., Y > W 0 z > W. a 

LEMMA 5.6. For each Y, 2 in X, 

Y 0 2 = l.u.b.(x 0 w 1 Y$ x and Z$ w}. 

Proof. Let Y, Z be arbitrary elements of X and let 

S = l.u.b.{x 0 w 1 Y) x and Z 3 w>. 

It immediately follows from the definition of 0 and $ that Y 0 Z 1 S. Thus we need 
onlyshowthatS2YOZ.LetxEYOZ.LetyEYandzEZbesuchthatyOz>x. 
Since % is a pre-unit structure, let LY be an automorphism of !I? such that 

Y 0 x > 4Y 0 4 = ‘y(y) 0 “(Z) > x. 

Then it follows that x is in y 0 z. Since y E Y and z E Z, Y 9 y and Zp z. Thus 
XEyOZES. g 

The following lemma summarizes the results of Lemmas 5.2-5.6 in a more convenient 
notation. 
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LEMMA 5.7. Let 5? = (X, 2, 0) be a pre-unit structure with a closed operation 0. 

Then there exists an extension of I, AY1 = (X1 , >, OJ, with a closed operation O1 such 

that X is an order dense subset of (X, , &), (X, , >) is Dedekind complete, and (X1 , +, 
0,) is a positive concatenation structure. Furthermore for each x, y  in Xl , 

LEMMA 5.8. Let X, %I be as in Lemma 5.7. Then y/n exists for each y  in X1 and each n 

in I+. 

Proof. Let y E X, and n E I+. Let 

q,Jy) = 1.u.b. f x EX and y >, x 
I I 

Then 

(5.1) 

nol,,,(y)=n[l.u.b. /ff/xEXandy>,x/ 

>l.u.b. n: 
I I 

x~Xandy>,x 
1 

= Y* 

Thus to show that nor &y) = y, we need only show that nor,,,(y) >1 y leads to a contra- 
diction. Suppose nol&y) >1 y. Since X is order dense in (Xr , &), let u in X be such 
that na,,,(y) >1 ur > y. Since % is a pre-unit structure, u = n(u/n). Thus nol,,,(y) >r 
n(u/n), which by monotonicity of 0, yields a&y) > u/in. Thus by Eq. (5.1), let z 
in X be such that c+,Jy) > x/in > u/In and y >1 z. Then we have u >1 y >r z and 
z/n > u/In which is impossible by monotonicity in x1 . 

LEMMA 5.9. Let % and 2Z1 be as in Lemma 5.7. Suppose x, y  are in X1 and n is in I+. 

Then 

n(x 0,~) = nx O1 ny. 

Proof. We need only show that both n(x Or y) >r nx O1 ny and nx Or ny >r 
n(x 0 y) lead to contradiction. 

Suppose n(x OIY) h nx Or ny. Then by monotonicity of Or, x Or y > (l/in) 
(nx Or ny). By Lemma 5.8, let u, v in X be such that x >r u, y >r v, and 

Then since ZZ is a pre-unit structure and by Lemma 5.7, 

n(x O1y) >1 n(u O1 v) = nu O1 nv >1 nx 01 *Y. (5.2) 
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However, nx & nu since x >r u. Similarly ny >1 nv. Thus by monotonicity, 

nx O1 ny >l nu 01 nv, 

and this contradicts Eq. (5.2). 
Suppose nx or ny >1 n(x or y). By Lemma 5.7, let z and w in X be such that nx >I Z, 

ny >1 w, and 
nx O1 ny h z O1 w >I 4% 01 r>. 

Since x = n(x/n), w = n(x/n), and X is a pre-unit structure, it follows that 

(5.3) 

However, x >1 z/n and y >I w/n by monotonicity of Or. Thus by monotonicity, 
x O1 y > z/n O1 w/n, which by monotonicity of 0, yields 

n(x O1 Y) 21 n (z 01 +)y 

and this contradicts Eq. (5.3). 1 

THEOREM 5.2. Let X‘, X2”, be as in Lemma 5.7. Then 3?‘1 is a fundamental unit structure. 

Proof. By Lemma 5.7, .FI is a Dedekind complete, positive concatenation structure. 
By Lemma 5.8, nx is an automorphism of .Yr for each n in I+. Thus by Theorem 3.1, 
%I is a fundamental unit structure. i 

THEOREM 5.3. Suppose X is a pre-unit structure. Then I is isomorphically imbeddable 
in a fundamental unit structure. 

Proof. Immediately follows from Theorems 5.1 and 5.2. 1 
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