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Axiomatic Measurement Theory1 . 

R. DUNCAN LUCE AND LOUIS NARENS 

Everyone is aware that measurement is a cornerstone of science, one that in 
some cases is highly controversial. Much complex technology underlies the 
refined measurement of certain physical quantities, some of which can be< 
estimated to surprisingly large numbers of significant figures; one of the more ' 
elaborate businesses spawned by the social sciences, a business that affects all of 
our lives, attempts to measure intellectual ability and/or achievement; and 
elaborate computer programs are widely used to provide numerical representa- 
tions (and simplifications), e.g., by factor analysis and multidimensional scaling, 
of complexes of data. Behind all of this activity is a belief, often sustained by a 
mixture of intuition and successful-if ill understood-procedures, that certain 
bodies of data can be represented in some fashion by numbers and their 
relations to each other. The goal of the semiphilosophical, semimathematical 
field of our title is to lay bare the types of empirical structures that admit such 
numerical representations. 

The reason for the term "axiomatic" in the title is that this is how the 
structures involved are described. The task is to isolate axioms that, on the one 
hand, are empirically and/or philosophically acceptable for at least one im- 
portant scientific interpretation of the primitives and that, on the other hand, 
permit us to prove mathematically that the structure is closely similar (usually, 
isomorphic or homomorphic) to some numerical structure. Ultimately, one aims 
for a finite collection of different classes of structures that span all the scientifi- 
cally interesting cases. 

At present, our knowledge appears quite adequate for the better developed 
parts of classical physics. It is interesting to note that many influential writers 
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considered that classical physics had achieved an adequate measurement-theo- 
retic underpinning by 1920, but that view simply was wrong and a tolerably 
adequate theory was only forged in the past'few years and it is still being 
improved. It is considerably less clear that existing theory is adequate for some 
of the classically intractable concepts, such as those having to do with turbu- 
lence and hardness. In relativistic physics things are much worse, and it is 
doubtful if existing theory is suitable for such variables as relativistic velocity. 
More generally, any bounded variable, including probability and sensory con- 
cepts such as loudness and brightness, raises tricky problems that are not yet 
fully understood. Further, it is quite clear that the existing theories are not suited 
to the measurement questions that arise in quantum mechanics, and to date little 
effort has been spent on these questions. 

If the field remains incompletely developed for physics, it is anyone's guess as 
to how adequate it will prove to be for the biological, behavioral, and social 
sciences. These fields, especially the latter two, have struggled for yea;s with 
problems of measurement, and although much is "measured, the underlying 
conceptual basis is still poorly understood. In fact, a major motive for much of 
the work on axiomatic measurement since 1947, when the work of von Neu- 
mann and Morgenstern [1944, 1947, 19531 on utility theory became widely 
known, has been to clarify just what the measurement options are. There was a 
time-Campbell[1920], Cohen and Nagel [1934]-when measurement was said to 
be limited to those structures isomorphic to the additive reds and things that 
could be "derived" from them. This position was asserted, and asserted strongly, 
despite the fact that the ring of real numbers clearly played a role in the 
representation of physical measures-witness the additivity of length, mass, time, 
and the like, and the product of powers of measures to form other measures, as 
reflected in the units of physical measurement. Today, we know of several 
classes of structures with vastly richer numerical representations than the addi- 
tive group of the reals, which nonetheless still plays a highly central role, and we 
hope that behavioral and social scientists will find useful some of the recently 
developed generalizations. There exists a small group of theoretical and empiri- 
cal scientists who are working on the interplay of these kinds of measurement 
concepts with data, but it probably will take a considerable time before we have 
any 'clear sense of just how applicable this kind of "applicable mathematics" is 
outside of physics. 

At this juncture, two quite different types of programs are needed. The one is 
to recast, to simplify, and to inject these ideas into the mainstream of the 
behavioral and social sciences, just as was done with statistics over the past 50 
years. This has begun on many fronts, including texts, expository articles, 
empirical methods, computer programs, and the like. It will have ic continue for 
a long time, just as it has with statistics, and it will have to be shown to make L? 

difference. The other is to enlist the help of the mathematical community to 
enlarge our understanding of the relevant structures. It is not. however, just a 
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problem of mathematical generalization and more powerful proof techniques- 
although both are surely needed-but of developments that are sensitive to the 
possible empirical interpretations that can be given to the primitives. It is, after 
all, applicable mathematics, and more is required of the mathematician than just 
mathematical skills. It is all too easy to lose sight of or to underestimate the 
added sensitivity that is needed if the work is to remain scientifically deep as it 
becomes mathematically deeper. 

The body of this paper summarizes a number of the main results and 
approaches that have been taken. Some history and references are provided, but 
it is far from a scholarly survey. It is, rather, a highhghting of what we think is 
most important-always an idiosyncratic criterion-and is intended more as an 
overview and an invitation to dig more deeply and to contribute than it is a 
precise account of the whole field. A number of books provide more detail and 
depth. The most elementary and the one with the greatest number of illustrative 
social science examples is Roberts [1979]. The earliest and most compact is 
Pfanzagl[l968,1971]. The most comprehensive, provided one takes into account 
the projected second volume, is Krantz et al. [IWI.], [in preparation]. The most 
advanced is the nearly completed one by Narens [in preparation]. 

All measurement rests upon having a qualitative ordering 2= of the set X of 
objects. It is well known (Krantz, et al. [lWl, $2.11) that an order preserving 
numerical representation exists if and only if (X, 2= ) is a total order with a 
finite or countable order dense subset. Moreover, any two such representations 
are related by a monotonically strictly increasing function. Such so-called 
ordinal scales are far too weak to be useful for measurement: concepts such as 
the derivative of a quantity are not invariant under admissible changes in the 
representation. In order for the representation to be firmer, it is necessary that 
the numerical measures preserve structure in addition to but related to the order. 
In practice, this has meant one of four things: either a single operation is 
included which is represented by some numerical operation, often addition; or 
the ordered elements are themselves structured in the sense that X is the 
Cartesian product of two or more sets, which structure is represented by some 
numerical operation, often multiplication; or X is a Cartesian product of the 
form A x A and the representation is in some geometric space with distance 
preserving the ordering relation; or there is even more structure such as two 
operations or a Cartesian product and an operation on one of the components, 
which is represented by two (or more) numerical operations. We deal with the 
first two cases, which are closely related, in the first major part of the paper, and 
the latter in the second major part. The third case, the geometric one, is not 
covered in this paper; see Beals and Krantz [1%7], Beals, Krantz and Tversky 
[1968], Tversky and Krantz [lWO], and Krantz et al. [in preparation]. 
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1. Extensive structures. 
DEFINI~ON 1. Let 0 be a partial binary operation on the nonempty set ,lr' (i.e., 

a function from a subset of X x X into X), > be a total ordering oc X, R a 
subset of Re, and O a partial operation on R. Then cp is said do Re a. 
O-representation for the structure 3C = (X, > , 0) if and ody  if tp Is an 
isomorphic imbedding of 3C into the structure (R, > , 0).  If p, is a 9-repre- 
sentation and O is +, then cp is said to be an additive representarjon. 

Partial operations, rather than operations (which we will often call closed 
operations to distinguish them clearly from partial operations) play a critlca'l roic 
in some measurement situations. 

Often in measurement theory, structures of the form (X, 2,  0) are c~i\sid- 

ered where 2 is a weak ordering (transitive and connected) rather &an a total 

ordering (also asymmetric). The measurement theoretic results for such struc- 
tures are almost identical to those of the totally ordered case. In this paper, the 
totally ordered case is often invoked (although not always) to simplify nobQ' a )on 
and some definitions. 

The first serious results in the foundations of measurement go back to 
Helmholtz [I8871 and Holder [1901], who presented axiomatizations for additive 
physical attributes. These axiomatizations have been greatly refined by a n u -  
ber of researchers, and today find their most useful formulation in the following 
definition due to Krantz et al. [1971]. 

DEFINITION 2. Let X be a nonempty set, > a binary relation on X, 2nd 0 a 
partial binary operation on X. The structure % = (X, > , 0) is szid to be aii 
extensive structure if and only if the following eight axioms hold for all w ,  x, y. z 

in X: 
1. Total ordering. > is a total ordering. 
2. Nontriviality. There exist u, v in X such that u > v. 
3. Local definability. If x o y  is defined, x > w, and y > z, then w ~ z  is 

defined. 
4. Monotonicity. ( I )  If XOL and y o z  are defined, then x > y iff xOz /==. y o z ,  

and 
(2) if LOX and zOy are defined, then x > y iff LOX. =r' zoy. 
5. Restricted solvability. If x > y, then there exists u such that x > y o u .  
6. Positivity. If xOy is defined, then xOy > x and xOy > y. 
7. Archimedean. There exists n E I +  such that either nx is not defined G X  

nx > y, where mx is inductively defined by lx  = x, and if (mx)Ox is defiied, 
then (m + 1)x = (mx)Ox. 

8. Associativity. If xO(y0z) and (x0y)Oz are defined, ?hen x ~ ( y C z )  = 

(x0y)Oz. 
If 0 is a closed operation, then % is said to be a closed extezive str;:,:tuie. 
The theoretical measurement of length is often taken as an example ot an 

extensive structure. Let X be a set of (straight) measuring rods. For each x, y :a 
X, let x > y stand for "the rod x is at least as long as the rod y," anrl iei ::O-:P 5:: 
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the rod that is obtained by abutting x toy along a straight edge. In theoretical 
physics, it is assumed that % = (X, > , 0) is an extensive structure and 0 is a 
closed operation. Another, slightly more subtle application, is to probability 
theory. Here we assume 8 to be a nonempty set, Y an algebra of subsets of 8 ,  
and X = Y - (0) .  Let 2 be a binary relation on X, to be interpreted as the 

concept of "at least as likely as." Thus, axiomatically, we assume > to be a 
5 

weak ordering. A natural partial operation to define on X is @, where for all 
x, y in X, 

x @ y = z  ifandonlyif x n y = @ a n d x u y = z .  

Then 5% = (X, 2, @) starts to resemble an extensive structure: 2 is a weak 

ordering and @ is associative for the elements for which it is defined. Further- 
more, monotonicity of @ is a natural assumption to make, i.e., for all x, y, z, w 
inxsuchthatx n z = B a n d y  n w = 0 a n d z - w ,  

x L y  iff x @ z = x u z ~ y U W = y @ w .  

What is missing is that the partial operation @ is not defined for sufficiently 
many pairs of events. This can be partially rectified by letting X = X/-, 
2== 2 /-- , and defining @ by: for each A, B, C inX, A @ B = C if and only 
if for some x in A, y in B, z in C, x CB y = z, and considering the totally ordered 
structure % = (X, *, @ ). % is very close to an extensive structwe. Its 
primary lack is that local definability and Archimedean may not hold. However, 
rather plausible axioms in terms of the primitives 2 and u can be given that 

guarantee that % is an extensive structure. Such an extensive structure % in this 
paper will be called a qualitatiw probability structure. The interested reader 
should consult Luce [1965], or Krantz et al. 11971, Chapter 51 or Fine [l971a], 
[l971b] for a detailed axiomatization. It should also be noted that it is inherent 
in the nature of probability, which has 8 as a maximal element, that @ must be a 
partial, not a closed, operation. 

The following theorem shows that extensive structures have a restricted set of 
additive representations, and this fact is widely used to justify and establish 
numerical scales of empirical variables. 

THEOREM 1. Suppose % = (X, tr , 0) is an extensive structure and (X, > ) 
does not haw a maximal element. Then the following three statements are true: 

(i) there exists an additive representation for %; 
(ii) if cp and I) are both additive representations of %, then for some r in Re+, 

cp = nCI; 
(iii) rcp is an additive representation for 5% for each r in Re+ and each additive 

representation cp of %. 

A proof of Theorem 1 is given in Chapters 2 and 3 of Krantz et al. [1971]. 
Theorem 1 can be used to show for the example of length presented above 

that positive numbers can be assigned to measuring rods so that rod x is at least 
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as long as y if and only if the number assigned to x is > the number assigned to 
y, and the number assigned to the rod resulting from abutting x toy is the sum 
of the numbers assigned to x and y. Furthermore, any other assignment with 
these properties is essentially the same: it differs by at most multiplication by a 
positive constant. It also follows by applying Theorem 1 to the probabilistic 
situation discussed above with 32, being a qualitative probability structure that a 
unique, finitely additive probability representation exists, i.e., there exists a 
unique function P from the algebra of events Y of D such that 

(1) P(D) = 1 and P(0) = 0; 
(2) P(x u y)  = P(x) + P(y) for all x, y in Y such that x n y = 0; and 
(3) for each x, y in X, x is at least as likely as y (i.e., x k y )  if and only if 

P(x) > P(Y). 
The axioms for extensive structures are sufficient for the existence of additive 

representations but not necessary. For the case of a closed operation, Roberts 
and Luce [1%8] have given necessary and sufficient conditions for the existence 
of additive representations and showed a result like Theorem 1. (These results 
are presented in Krantz et al. [lWl].) 

2. Generalizations of extensive structures. A number of generalizations of 
extensive structures have appeared in the literature. A very brief description of 
some of these will be now given. 

Structures with weakened forms of Axiom 1, total ordering, are considered in 
Narens [in preparation] and Holman [1W4]. Narens considers the case where 0 
is a closed operation and & is a transitive and reflexive relation, and gives 
necessary and sufficient conditions for such structures to have an additive 
representation. Holman considers a case that has an equivalence relation instead 
of an ordering relation. By considerably strengthening the Archimedean axiom, 
he shows a theorem analogous to Theorem 1. 

Falmagne [1971], [1W5] considers structures which have additive representa- 
tions, but in which local definability (Axiom 3) is weakened so that arbitrarily 
small elements need not exist. "Arbitrarily small" here means arbitrarily small in 
terms of some additive representation rather than in terms of the ordering 
relation > , i.e., in terms of some additive representation of % assuming values 
arbitrarily close to 0. Falmagne's axiomatization yields a theorem analogous to 
Theorem 1. 

Structures without Archimedean axioms are considered in Narens [1W4a], 
[1W4b], [in preparation]. In general, such structures do not have additive 
representations in the reals. However, Narens shows that they have additive 
representations in certain structures richer than the reals, namely t3r -..o-.::3~- 
dard reals and structures that resemble lexicographcally ordered vector : .. . - 

Skala [1W5] has collected together various results abo:lt nonarchimedeac .. . . - 
suremen t. 

Perhaps the most important generalization of extensive structures corncs :..or;: 
deleting Axiom 8, associativity. This structure, whch was first constde$.-.,' 
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Narens and Luce [1976], has surprisingly strong measurement theoretic proper- 
ties. 

DEFINITION 3. 5% = (X, > , 0 )  is said to be apositiw concatenation structure 
if and only if 5% satisfies all the axioms for an extensive structure except 
possibly Axiom 8, associativity. 

Narens and Luce [1976] showed that positive concatenation structures have 
0-representations for some 0 ,  and that such representations have strong 
uniqueness properties. Cohen and Narens [I9791 gave a slightly different version 
of uniqueness for these structures, and their version is given in statement (ii) of 
the following theorem. 

THEOREM 2. Suppose 5% = (X, > , 0 )  is a positive concatenation structure. 
Then the following two statements are true: 

(i) 5% has a 0-representation for some O ;  
(ii) if cp and J/ are O-representations for 5% such that cp(X) = J/(X) and if for 

some x in X, cp(x) = J/(x), then cp = J/. 

There are some scientifically important concatenation operations, such as 
temperature and averaging, that do not satisfy positivity of Definition 2. In these 
cases Axioms 6, 7, and 8 do not hold, but they can be replaced by another 
Archimedean axiom and the following property (called intern): 

if x > y, then x > xoy > y. 

Such concatenation structures are called intensiw. Some work on a special case, 
satisfying a property called bisymmetry, was reported by Pfanzagl [1959a], 
[1959b] (see Krantz et al. [1971, $6.91). Narens and Luce [1!?76] showed that a 
broad class of intensive structures is closely related to positive concatenation 
structures. 

3. Conjoint structures. Structures of the form (X, >, 0 )  where > is an - - 
ordering and 0 is a partial operation naturally arise in physical science with > 

.Y 

and 0 being directly observable relations on physical variables. The correspond- 
ing situation of directly observable concatenation operations happens rarely in 
the behavioral sciences. Still they play an important, indirect role as follows: A 
prevalent type of structure both in the physical and behavioral sciences is a 
directly observable ordering on a Cartesian product-e.g., the ordering by energy 
over mass-velocity pairs or by loudness over energy pairs to the two ears. Krantz 
[1%4] first showed how extensive structures arise in the simplest such cases, and 
Narens and Luce [1!?76] showed that more general ordered structures are often 
transformable into positive concatenation structures. In these cases, the con- 
catenation operation 0 results from the interaction of objects in different 
components of the Cartesian product. The following definition describes two 
types of such structures. 

DEFINITION 4. C? = ( X  X P ,  2, a b )  is said to be a conjoint structure solvable 
with respect to the element ab if and only if ab is in X x P and the following 
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seven axioms hold: 
1. Weak ordering. > is a weak ordering on X  x P. - 
2. Nontriuiality . There exists xp in X  x P such that xp > ab. 
3. Density. For each xp, yp in X  X P, if xp > yp, then for some z in X ,  - 

XP r ZP >YP. 
4. Solvability (with respect to ab). For each xp in X  X P, there exist z and q 

such that xp - zb and xb  - aq. 
5. Archimedean. For each x ,  y in X  such that xb  > ab, there exists n in I +  

such that (nx)b  > yb, where nx  is defined inductively as follows: l x  = x ,  and if 
nx is defined and s is such that xb  --as, then ( n  + 1)x is some u such that 
ub - (nx)s.  

6. Independence. For each x ,  y in X  and p, q in P, (i) if x s z  ys for some s, 

then xp > yp ; and (ii) if wp > wq for some w, then xp > xq. - - - 
From Axiom 6, independence, it easily follows that the relations z x  and 

r defined on X  and P respectively by: for each x ,  y in X  and eachp, q in P, - 
x > y iff for some s, xs 2 ys, 

- x  

and 

p > q iff for some w, wp > wq, 
- P  - 

are weak orderings on X  and P respectively. Once again, to simplify notation 
and some definitions, we will assume the following axiom. 

7. Component total ordering. 2 ,  and 2 are total orderings, which will be 

written as >, and >,. 
If in addition to Axioms 1-7 above, ab is the minimal element of X  x P (i.e., 

xp r ab for all xp in X  x P), then C? is said to be a conjoint structure solvable - 
with respect to a minimal element ab. 

Let C? = ( X  x P, 2 ) be a conjoint structure solvable with respect to a 

minimal element ab (i.e., xp r ab for all xp in X  X P). We will now sketch the - 
construction of Narens and Luce I19761 which shows how to code C? as a 
positive concatenation structure; it generalizes the proof for the additive case 
given in Holman [1971.]. By solvability and component total ordering, let 5: 
X x P + X  and a: X + P be defined as the unique solutions to the following 
equations for each xp in X x P, 

xp -- ( (xp)b  and xb -- aa(x).  

Let X  + = ( x l x  E X  and x r ,  a )  and for each x, y in X  +, let xoy  = axa(y )J .  
Then it follows from results in Narens and Luce [I9761 that %+ = 

( X  +, >,, 0 )  is a positive concatenation structure. Note that for each x ,  y ,  rr. r: 
in X +, x 0 y  > x  uOu iff a x u ( y ) J  > x  aua(u)J i ff  xa(y)  - > ~ru(u). 

For 0 to be associative, the following condition on P is necessary and 
sufficient. 

The Thompsen condition. For each x ,  y ,  z in X and eachp, q, r in P, i f  xp - yq 

- and yr - zp, then xr -- zq. 
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THEOREM 3. Suppose (2 is a solvable conjoint structure with a minimal element 
ab and satisfies the Thompsen condition. Then 0 is associatioe and there exist 
functions cp: X + ~ e +  U {O), #: P + Re+ U (0) such that 

(i) cp(a) = #(b) = 0, 
(ii) for each xp, yq in X x P, 

XP ZY4 iffcp(x) + #(PI > cp(y) + #(q), (1) 
and 

(iii) if cp', #' is another pair of functions on X and P respective& that satisfy (i) 
and (ii) a b m ,  then for some r in Re+, cp' = np and # = 4. 

The interested reader should consult Narens and Luce [1976] for the proof of 
Theorem 3 and details of the above construction. (Structures (2 that satisfy 
Equation 1 for some cp, # are called additiue conjoint structures.) 

The solvability condition in Definition 3 requires 0 to be a closed operation. 
A weaker form of solvability that yields partial operations is considered in 
Narens and Luce [1976], and a weaker form for conjoint structures satisfying the 
Thompsen condition is considered in Luce [1%6] and Chapter 6 of Krantz et al. 
[1971]. 

4. Uniqueness of positive concatenation structures. The uniqueness of represen- 
tations of positive concatenation structures, as given in statement (ii) of Theo- 
rem 2, takes a form different from that of extensive structures, as given in 
statements (ii) and (iii) of Theorem 1. The two kinds of uniqueness are equally 
"unique" in the sense that a value at one point determines the representation. 
However, Theorem 1 also tells how any two representations are related to each 
other, whereas Theorem 2 does not. 

To clarify that question for a positive concatenation structure % = (X, + , 
o), we consider the automorphism group of %. Suppose cp is a O-representa- 
tion and a is an automorphism of %. It is easy to verify that p is a 
0-representation of %. Furthermore, each 0-representation # of '% such that 
#(X) = cp(X) is of this form since it easily follows that cp-'# is an automorphism 
of %. Thus to understand how 0-representations of '5% with the same range are 
related, it is sufficient to understand how automorphisms are related. 

Cohen and Narens [I9791 showed that the group of automorphisms (A, *) of 
a positive concatenation structure '% = (X, > , 0) has a natural ordering > 
defined on it by: for each a, /3 in A, 

a > /3 iff for some x in X, a(x) > /3(x). 

They showed that the structure 4 = (A, > , *) is an Archimedean, totally 
ordered group. It is well known that such groups are of the following three types. 
Let L be the identity automorphism, and A +  = (a E A(a > 1). Then 9 is trivial 
if A+ = 0, discrete if A +  has a least element, and dense if A+ has no least 
element. There are positive concatenation structures with automorphism groups 
of each type: Consider (Re+, > , CB) and its group of automorphisms Q .  In 
each of the following choices for CB, the structure is a positive concatenation 
structure. 
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1. x @ y = x + y. @ is commutative and associative. B is dense and consists 
of multiplication by every positive real. 

2. x @ y = x + y + ~ ' / ' y ' / ~ .  @ is commutative and nonassociative. B is 
dense and consists of multiplication by every positive real. 

3. x 63 y = x + y + x'/)y2/'. @ is noncommutative and nonassociative. B is 
dense and consists of multiplication by every positive real. 

4. x @ y = x + y = (xy)'/*[2 + sin(: log xy)]. @ is commutative and nonas- 
sociative. Cohen and Narens [I9791 showed B to be discrete and consist of 
multiplication by e2"", n = 0, 1, 2, . . . . 

5. x 03 y = x + y + x4'. @ is commutative and nonassociative. Cohen and 
Narens [I9791 showed 6' to be trivial. 

All of the above structures are Dedekind complete (every nonempty bounded 
subset has a least upper bound). Narens and Luce [197q, Cohen and Narens 
[I9791 and Narens [I9811 investigate conditions under which positive concatena- 
tion structures are extendable to Dedekind complete ones. The arguments are 
much more complicated and subtle than those familiar from the associative case, 
and several results are established concerning what sort of measurement-theo- 
retic properties are inherited by such Dedekind completions. The interested 
reader should consult the above papers. Throughout the rest of this part we 
consider only the Dedekind complete case with a dense automorphism group. 

5. Homogeneous structures. 
DEFINI~ON 5. Let % = (X, R,, R,, . . . ) be a relational structure (i.e., X is a 

nonempty set and R,, R,, . . . are relations and/or functions on X). Then % is 
said to be homogeneous if and only if for each x, y in X there exists an 
automorphism a of % such that a(x) = y. 

Cohen and Narens [I9791 showed the following theorem. 

THEOREM 4. Suppose % = (X, > , 0) is a Dedekind conplete positiw con- 
catenation structure. Then the following three conditions are equivalent : 

(i) 5K is homogeneous; 
(ii) % has a dense automorphism group; 
(iii) for each n in I +, n(x0y) = (nx)O(ny). 

DEFINITION 6. Dedekind complete positive concatenation structures that 
satisfy one of the conditions of Theorem 4 are called fundamental unit structures. 

Condition (iii) in Theorem 4 is of particular interest since it formulates in the 
language of the first order predicate calculus what is meant by % being 
homogeneous despite the fact that the concept of "autom~rphism" is a h l p k r  
order concept, not formulable in the first order predicate zalculus. In ari 
extensive structure, condition (iii) of Theorem 4 follows from as~ocia~ivity, and 
it amounts to an interesting generalization of zssocia!ivity, a- tF fL";ovir t~ 

theorem shows. 
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THEOREM 5. Suppose GX = (X, > , 0) is a fundamental unit structure. nten 
there exists a O-representation cp of GX such that the jollowing three statements are 
true: 

(1) There exists j: X + Re+ such that, for all x ,  y in X, cp(x)Ocp(y) = 

cp(~lf[cp(x)/cp(~)l; 
(2) for each O-representation I) of %, there exists r in Re+ such that I) = np; 

and 
(3) for each r in Re+, rcp is a O-representation of %. 

DEFINITION 7. 0-representations cp of fundamental unit structures % that 
satisfy statements (I), (2) and (3) of Theorem 5 are called unit representations of 
G X .  

Properties of fundamental unit structures are thoroughly explored in Cohen 
and Narens [1979], and we know a great deal about this class of structures. In 
particular the form of the function f in statement (1) of Theorem 5 is highly 
constrained. 

The method of establishing Theorem 5 extends to other kinds of structures, 
and Narens [1981] has exploited this fact to show that ratio scalability-unique- 
ness of the representation up to multiplication by positive reds-holds in a 
variety of structures. The following theorem, which generalizes Theorem 5, is an 
instance of this approach. 

THEOREM 6. Suppose X is a nonempq set, > is a binary relation on X, and 
GX = (X, & , R,, R,, . . . ) is a relational structure that has the following four 
properties : 

(1) (X, > ) is a totally ordered and Dedekind complete. 
(2) % is homogeneour (Definition 4). 
(3) The group of automophisms of GX is commutatiue. 
(4) (X, > ) is dense in the sense that if x ,  y are in X and x > y, then there is a 

z in GX with x > z > y. 
Then there exists a structure % = (Re+, > , S,, . . . , S,, . . . ) that is isomor- 

phic to GX and is such that for all isomophisms cp, I) oj  GX onto %, (i) there exists 
r in Re+ such that I) = rcp, and (ii) for each s in Re+, scp is an isomophism of GX 
onto %. 

6. Introduction. It is easy enough to speak of studying general relational 
structures of the form ( A ,  2 ,  R,, . . . , R,), where > - is a weak (or quasi) 
order. However, until recently (Narens [1981]), little measurement research has 
been done on the general case, and a good deal of attention has been con- 
centrated on structures with two operations (or the equivalent thereof) that in 
one way or another can be mapped into addition and multiplication. 

Perhaps the most natural example for mathematicians is the concept of a ring 
that can be mapped into subrings of (Re, > , +, a ) ,  and a generalization of 
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this will be considered in 87 with applications to two different measurement 
problems: qualitative conditional probability and polynomial conjoint measure- 
ment. 

To a physicist, it probably seems more natural to consider an ordering on the 
Cartesian product of two (or more) distinct sets, which under certain assump 
tions induces an operation on each component, together with an explicit 
operation on either the product itself or on one of the components. Here the 
explicit operation is represented by addition and the Cartesian product by 
multiplication. A typical example is the measure of kinetic energy, f mu2, where 
mass and velocity are the component attributes, and mass, at least, possesses a 
concatenation operation. Much the same sort of representation occurs when we 
think of the probability measure over independent repetitions of an identical 
experiment (as in a random sample). We take up the latter in 88 and the former 
in 89. 

8 10 is devoted to the philosophical topic of meaningful statements in measure- 
ment contexts and, in particular, the relationship between this topic and the 
concept of dimensionally invariant laws in physics. 

To a social scientist or a statistician, still another role for addition and 
multiplication comes to mind, namely, in the computation of expected values or, 
more generally, weighted averages. Much work along this line has centered on 
the specific economic problem of subjective expected utility theory, but the 
formalism can be interpreted more generally. This we take up in 8 11. 

7. Semirings. In formulating the concept of a semiring in a form suitable for 
use in measurement theory, it is again necessary to work with partial operations. 

DEFINI~ON 8. Suppose A is a set, 2 a binary relation on A, 0 and partial 

binary operations with domains B0 and B* G A X A. Then (A, - > , 
BO, B*, 0 ,  *) is said to be apositive, regular Archimedean ordered local semiring 
if and only if 

1. (A, > , BO, 0) is an extensive structure (Definition 2). - 
2. (A, > , B*, *) satisfies Axioms 1-4 and 8 of Definition 2. - 
3. (i) If (b, c) E BO, (a, boc)  E B* then (a, b), (a, c) E B* and 

(a b)O(a * c) E B0 and a*(bOc) = (a b)O(a c). 
(ii) The right distributive analogue of (i). 

4. For a E A, there exist b, c E A such that (b, c) E B0 and (a, boc) E B*. 
(The notion of an Archimedean ordered semiring presented here is a little 

more restricted than the one presented in Chapter 2 of Krantz et al. which does 
not assume that (A, > , BO, 0) satisfies positivity as given in Defi~itio? 3 and - 
assumes a weaker form of restrictive solvability than given in Definiti ,a 7 . )  

This generalizes the concept of an Archimedean ordered ring in which both 
operations are closed, (A, > , 0) is an Archimedean ordered group, (A, 0 ,  *) - 
is a ring with zero element e, and if a > e, b > c ,  ;hen a * b > c and 
b a > c a. The following theorem generalizes the classic result that any 
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Archimedean ordered ring is uniquely isomorphic to a subring of (Re,  > . 
+, . ) (see Krantz et al. [1971, 2.271). 

THEOREM 7. Sujyose ( A ,  t , B O, B *, 0, * ) is a positive, regular Archimedean - 
ordered local semiring. Then there is a unique homomorphism of ( A ,  t , 

kl 

BO, B*, 0, *) into (Re+,  > , Re+2, Re+2, +, -). 
To date, this has been used in the proof of two measurement theorems. The 

first arises in the study of qualitative conditional probability. 
Let & be an algebra of subsets of X,  % c &, and t a relation on - 

& x (& - %). The interpretation of ( A ,  B)  - t (C,  D )  is that event A given 

event B is at least as probable as event C given event D. The following theorem 
can be shown. 

THEOREM 8. Sujyose ( X ,  6 ,  %, - t ) satisfies the following eight axiom: for 

al lA,  A' E &, B, B', C, C' E & - %, 
1. t is a weak order. - 
2. X E & - % andA E % i f f ( A , X ) - - ( 0 , X ) .  
3. ( X ,  X )  -- (C ,  C )  and ( X ,  X )  2 ( A ,  B). 

4. ( A ,  B)  -- ( A  n B, B). 
5. Suppose A n B = A' n B' = 0. If ( A ,  C ) t  ( A ' ,  C ' )  and 

( B ,  C )  - t (B', C'), then ( A  U B, C )  2 (A' u B', C ) ;  and i j  ; holdr in either 

antecedent, it holdr in the conclusion. 

6. Suppose A C B C C and A' c B' c C. If ( B ,  C )  t - (A',  B') and 

( A ,  B)  2 (B', C'), then ( A ,  C )  2 (A',  C'). 

7. (Archimedean) Euety standard sequence is finite, where {A,) is a standard 
sequence #Ai  E G - %, 2 A;, and ( X ,  X )  t (Ai7 A,+,) --(A,, A3.  

8. (Soluability) If ( A ,  B)  ? ( A f ,  C ) ,  there exists A" E & such that A' n C 

A" and(A, B ) - ( A " ,  C).  
There then exists a unique real-valued function P on & such that for all 

A , A f E  & , B , B f E  & - %, 
(i) ( X ,  & , P ) is a finite& additive probability space. 
(ii) N E % iff P ( N )  = 0. 
(iii) ( A ,  B)  t (A', B') i f f  P(A n B) /P(B)  > P(Af n Bf)/P(B').  - 
The proof of Theorem 8 is given in Krantz et al. [1971, $5.61, and involves 

defining t ' on & by ( A ,  X )  t (A', X )  which with the union of disjoint sets as - - 
0 leads to an Archimedean ordered local ordered semigroup on & /-- '. Define 
* on & /--' by [ A ]  * [ B ]  = [ C ]  iff ( A ,  X )  --(C, B). Then one can show the 
conditions of Theorem 7 hold, from which the representation follows readily. 

The other application of Theorem 7, which will be described in less detail, 
concerns the generalization of additive conjoint measurement to representation 
by simple polynomials (see Krantz et al. [1971, Chapter 71). For n = 3, these are 
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x + y + z ,  q z ,  x ( y  + z )  and q + z  and all permutations of the symbols. 
More generally, a polynomial on n factors is simple if and only if, for some m, 
0 < m < n, it is the sum or the product of a simple polynomial on a set of m 
factors and another simple polynomial on the remaining n - m factors. In some 
cases, such as x ( y  + z ) ,  Theorem 7 is used to amve at the representation from 
axioms somewhat like, but more complex than, those for additive conjoint 
measurement. 

8. Independence in qualitative probability. In $1, the reduction of qualitative 
probability to extensive structures required the assumption of solvability condi- 
tions. This is also true for the reduction just given of conditional probability to 
local semirings. 

The major idea to overcome the assumption of strong solvability conditions 
has been to incorporate, in one way or another, independence of events as a 
primitive of the structure. This is, of course, contrary to the spirit of 
Kolmogorov's [I9331 axiomatization of numerical probability in which indepen- 
dence is a defined concept [ A  and B are independent iff P(A n B) = 

P(A)P(B)] .  However, since there are qualitative probability structures with 
nonunique representations, it is clear that, in general, independence cannot be 
defined in t e r n  of the qualitative ordering of the events. Moreover, in scientific 
practice, the independence of many events is assumed on considerations such as 
physical isolation, and not just through the above numerical definition, and this 
kind of postulated independence is widely used in amving at estimates of 
probabilities from relative frequencies. 

Two directions for incorporating independence have been tried. The first, and 
the one that initially seems more straightforward, is simply to add a binary 
relation I on & to the structure (X, &, 2 ), where X is a nonempty set, G an 

algebra of subsets on X, and > the "at least as llkely as" ordering on G, and - 
then to search for axioms sufficient to yield a unique probability measure P on 
& such that P preserves the ordering > and if A I B,  then P(A n B) = - 
P(A)P(B). At first one might hope for a local ring to be involved, but that hope 
is dashed when one realizes that the relation of independence is really quite 
irregular; in particular, it utterly fails the property that if A I B and A > A' and - 
B > B', then A ' I  B', which is part of the ring definition. No one has yet seen 

ry 

how to make effective use of the extra independence primitive without imposing 
strong structural conditions that are unacceptable to many researchers (see 
Domotor [1970], and Krantz et al. [1971, $5.81). 

The second and far more successful approach is to model qualitatively the 
idea of an indefinite number of independent repetitions of an experiment. This 
is, after all, what lies qualitatively beneath the idea of independent repetitions of 
identical random variables, the resulting central limit theorem, and o w  standard 
procedure for estimating probabilities from data. True, there are experiments 
that cannot be repeated, and those await a better theory. For those that can be 
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repeated, it is really quite surprising how strong the results are-in essence, they 
amount to the joint qualitative space being rich enough that the solvability 
conditions are met and so Theorem 1 is applicable, and this leads to a unique 
probability measure that is multiplicative over the repetitions. This, and more, 
were worked out in Kaplan's [1!%71.] important master's thesis which was ex- 
posited in Kaplan and Fine [1977]. We summarize one of the key results here. 

Suppose (X, &, t ) is a nontrivial (there exists A E & with X t A t 0) 
u 

qualitative probability structure, and (4, Gi, L i ) ,  i = 1, 2, . . . , are isomor- 

phic copies of it. Let X* = X Xi. For any A E & , let A ' denote that subset 
of elements in X* such that the ith component falls in the isomorphic image of 
A. For any a c {1,2, . . . ), denote by &(a) the a-algebra generated by A' for 
all A E & and all i E a. Let & * = G ((1, 2, . . . 1). Finally, let t *  be a binary 

H 

relation on & *. 
DEFINITION 9. (X*, & *, - t *  ) is an infinite, independent, identically distributed 

product space for (X, &, 2 ) if and only if the following three conditions hold 

for all A, B E & : 
1. A ' t* B' iff A t B. - u 

2. Suppose a , P , y , 6  c { 1 , 2  ,... ), a n P = y n 6 = 0 ,  A E & ( a ) ,  B E  
&(P),  C E &(y), and D E &(a). Then A k* C and B t D implies A n B 

H 

>* C n D, and if t * holds in either antecedent, then it holds in the conclusion. 
3 . A i - - * A J j o r a l l i , j E { l , 2  , . . .  ). 
THEOREM 9. Suppose (X*, & *, z*) is an infinite, independent, identically 

distributedproduct space for (X, &, >- - ) with the property that >* is monotone& - 
continuous. Then there exists a unique countably additive probability measure P* 
on & * that preseroes the ordering k* and, for i # j, 

The proof rests on showing that (X, &*, 2 )  has no atoms and then 
invoking Villegas' [I9641 theorem (for that case see Krantz et al. [1971, p. 2161). 
The multiplicative property then falls out moderately easily. 

Luce and Narens [I981 present axioms for > , on & x & that are sufficient - 
to insure a finitely additive probability representation with the multiplicative 
representation of L ~ .  They also prove that if >- are orderings on Gn, - n 

n = 1, 2, . . . , which all can be represented multiplicatively by a probability 
measure, then that measure is necessarily unique. 

9. Distributive triples and dimensional analysis. Next we turn to the physicist's 
simultaneous use of addition and multiplication, where the former represents the 
combining operation within a dimension and the latter the combining operation 
between dimensions, as in expressions such as ;mu2. This is of considerable 
importance since, as is well known, the interaction of the major dimensions of 
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classical physics is as products of powers of additive scales. This structure is 
reflected in the nature of the units of physical scales and it underlies the 
surprisingly powerful method of dimensional analysis. Although a variety of 
axiomatizations exist for the mathematical structure representing the dimension 
of physics, the most satisfactory is Whitney's [1%8], which is reproduced in 
$10.2 of Krantz et al. [lWl]. Within that framework, one formulates the idea of 
a similarity transformation, imposes the requirement that any numerical law of 
physics be invariant under those transformations, which is referred to as the 
property of dimensional invariance, and then proves Buckingham's [I9141 a-theo- 
rem establishing that any such law is some function of the maximal number of 
independent dimensionless quantities that can be formed from the variables 
involved in the law (see Theorem 10.4 of Krantz et a]. [1971, p. 4661). 

From the point of view of a measurement theorist, two major questions must 
be considered. First, what is the qualitative nature of the interlock among 
dimensions that permits the representation of each dimension as the product of 
powers of a limited number of dimensions each of which has an associative 
operation? That is the topic of this section. Second, why should physical laws be 
dimensionally invariant? That is the topic of the next section. 

DEFINI~ON 10. Let 2 be a reflexive relation on A x P,  and suppose 0, is a 
closed binary operation on A .  Then 0, is said to be distributive if and only if for 
all a, b, c, d E A ,  p, q E P, whenever (a ,p )  - (c,  q)  and (b ,p )  - (d, q), then 
(a  O A  b, P )  - ( c  O A  d, 4). 

As the following theorem of Narens [I9811 shows, distributivity seems to be 
the key interlock exploited in the dimensional structures of physics. 

THEOREM 10. Suppose ( A  X P, 2 ) is a conjoint structure that satisfies weak 
ordering, independence, and solvability with respect to up for each up in A X P 
(Definition 3), and suppose O A  is a closed operation on A ,  and that & = 
( A ,  2 A ,  OA ) is a fundamental unit structure with unit representation cp, (Defini- 

tion 7). 
1. If oA is distributive, there exists cp, on P such that, for all a ,  b E A ,  

P ,  4 E P,  

( a ,  P )  2 (69 4 )  iff cp,(a)cpp(p) > cp,(b)cp,(q). 

2. oA is distributive if and only if, for all automophismr 8 of & and all 

a , b  E A , p , q  E P ,  

( a ,  P )  - (b ,  4 )  ilf (8(a),  P )  - (O(b), 4). 

3. If, in addition 0, is a closed operation on P such that ( P ,  2 ,, 0 , )  is a 

fundamental unit structure with unit representation cp,, then thsre is some comtant 
a such that, for every p > 0, cpfcp~8preserues the ordering relation > - on A X P. 

Parts 1 and 3 of Theorem 10 were established for associative operations in 
Narens and Luce [1W6]. Proofs of Theorem 10 can be found i? Narens [1981], 
Krantz et al. [in preparation], and Narens [in preparation]. 
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In order to develop the usual numerical representation of a large number of 
interlocked physical dimensions, it is necessary to postulate an adequate density 
of distributive triples of the sort described in parts 1 and 4 of Theorem 10. When 
done properly-the details are given in Luce [I9781 and Krantz et al. [in 
preparation]-one is able to show the existence of a finite h i s  in fundamental 
unit structures such that all other scales are represented as products of powers of 
these scales. 

From the point of view of a nonphysical scientist, the major interest in these 
results is that they show exactly what is involved in adding a new dimension to 
those already discovered by physics. Whether or not such a fundamental 
dimension will be discovered in the biological realm is conjectural. What is not 
conjectural is the qualitative conditions that such a new dimension would have 
to exhibit in order to become a part of the existing structure of dimensions. 

10. Qualitative and quantitative meaningfulness. Once qualitative information 
is recast numerically-when measurement is possible-one needs to consider 
carefully just which numerical statements do and do not correspond to some- 
thing meaningful in the underlying structure. As a trivial example, if only order 
is preserved, there is nothing in the qualitative structure corresponding to 
x + y = z. This problem has been explored with some care, but a complete 
consensus as to its solution does not yet exist. The source of the uncertainty 
centers on exactly what is meant by saying that a relation is "meaningful" in a 
relational structure that is characterized axiomatically. Intuitively, one would 
like to say that a relation is meaningful if and only if it can be defined in terms 
of the primitives of the structure, but there is at this time no appropriate formal 
definition of "defined" that is useful in general measurement contexts. 

This inability to define directly these kinds of relevant concepts by some 
procedure of formal logic forces one to consider some sort of indirect procedure. 
The one exploited by measurement theorists rests on the idea that if a relation is 
definable in terms of the defining relations of a structure, then adding it to the 
structure does not further restrict the structure from the point of view of its 
measurement theoretic properties. Looking just at a structure, this implies that 
(1) it should remain invariant under the same transformations of the structure 
into itself that leave invariant the defining relations of the structure, i.e., the 
endomorphisms of the structure. But it also implies that (2) it does not alter the 
homomorphisms into numerical structures, which in turn suggests that (3) the 
homomorphic images of the relation should be invariant under the endomor- 
phisms of the representing structure. However, it is by no means obvious which 
of these three conditions is the strongest or when they agree. We examine this 
more carefully. 

Suppose = (A, S,, S,, . . . , S,) is a relational structure and 3 = 
(R, TI, T,, . . . , T,) is a numerical relational structure with being of the 
same order as Si, i = 1, 2, . . . , n. Suppose there is at least one homomorphism 
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cp from @ into 3, i.e., for each i = 1, 2 , .  . . , n, (a,,  a2,. . . , a,) E Si i ff  
(cp(a,), cp(aJ, . . . , cp(a,)) E T.. Let @(@, 3) denote the set of all homomor- 
phisms. For any relatio* T of order k on R and any cp E cp(&, %) define 

S(q9 T ,  = { ( a ] ,  . . . 9 ak)l(cp(al), . . 9 ~ ( ~ k ) )  

DEFINITION 11. A relation T on R is &-reference invariant relative to % if and 
only if, for all c p ,  4 E @(@, a), S(cp, T )  = S(4,  T ) ,  in which case the common 
value is denoted S ( T ) .  A relation S on A that is @-reference invariant relative to 
@ is said to be structure invariant. 

Put another way, S is structure invariant if and only if it is invariant under the 
endomorphisms of @. The term "reference invariant" is due to Adams, Fagot 
and Robinson [1%5], and the general definition, to Pfanzagl [1968, 19711. 

In order to avoid pointless distinctions, let us suppose that @ is irreducible in 
the sense that all homomorphisms are one-to-one. 

The following theorem is shown in Krantz et a1 [in preparation]. 

THEOREM 11. Suppose @ is irreducible and @(&, '3,) # 0. Let T be a relation 
of order k on R. If T is @-reference invariant relative to %, then S( T )  is structure 
invariant in @ . If, further, T LJ . ,, @(A k ) ,  where A is the Cartesian product 
of A with itself k times, then T is structure invariant in 3. 

One can show that if a relation S on A is structure invariant in @, it is not 
necessary for there to exist T on R such that T is @-reference invariant relative 
to '3, and S = S(T) .  Since, however, if such a T were to exist, the three notions 
of invariance would agree, it is thus interesting to know when this occurs. We 
formulate a simple, intuitively natural sufficient condition for such an occur- 
rence. 

Let cp E @(&, 3) and let y be a mapping of cp(A) into R that leaves invariant 
the restriction of 3 to cp(A); we speak of this as apartial endomorphism. It is not 
difficult to see that cp' E @(@, 3) if and only if there is a partial endomorphism 
y such that cp' = ycp. The converse-given cp and y, there exists the endomor- 
phism a of W such that p x  = ycp-is not generally true. In case it is, we say 3 is 
compatible with @. Krantz et al. [in preparation] show the following rzsult: 

THEOREM 12. Suppose @. is irreducible and 3 is compatible wirh @. 
1. A relation T on R is &-reference invariant relative to % iff T is structure 

invariant in 3. 
2. A relation S on A is structure invariant if and only if there exists a relation T 

on R such that T is &-reference invariant relative to '3, and S ( T )  = S. 

Under the conditions of Thzorem 12, it is wideiy believed iilat ?1:s comnica 
concept of Invariance correctly captures the idea of a meaningful ielatios~. b'ii:~~ 
they do not agree, the strongest-reference invariance-is piobably I ' I ~  :,I 
propriate one, if any are, for most measurement situations. 

An easy to remember and often applicable sufficient condition fcr cornpat~bil- 
~ t y ,  and so for Theorem 12, is that for every p E @(&, a), cp(A) = R ,  ~n ths  
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case all endomorphisms are automorphisms. 
There have been two major applications of these ideas. The first and perhaps 

the most important for the behavioral and sccial sciences is to characterize the 
types of statistical hypotheses that are meaningful in different measurement 
structures. Indeed, the whole problem of meaningfulness was initiated when 
Stevens [ l w ,  [I9511 pointed out that various familiar statistics are invariant 
under some groups of automorphisms that arise in well-known measurement 
systems but are not invariant under other groups. This observation and the 
structures he drew from it have led to a somewhat confused literature on the 
subject, but we need not go into that here. 

The other application (Luce [1978n is to the problem of dimensionally 
invariant laws in the structure of dimensional quantities. In essence, one pro- 
ceeds as follows. The qualitative development based on distributive triples, 
outlined in the last section, is assumed, and it has a homomorphic representation 
in Whitney's structure which in turn is isomorphic to a multiplicative vector 
space over the reals. Both of these are then mapped in a quite natural way into 
relational structures, which it turns out are compatible. In that reformulation, 
dimensionally invariant laws correspond to relations that are structure invariant, 
and so by Theorem 12 they correspond exactly to qualitative relations that are 
structure invariant and hence to qualitatively meaningful ones. Thus, according 
to Luce, the answer to the question, "Why are physical laws dimensionally 
invariant?" is that this class of laws corresponds exactly to the class of all 
meaningful qualitative relations, provided we accept reference invariance or its 
equivalent in this context, structure invariance, as defining meaningfulness. 

The concepts of meaningfulness discussed above are explored more fully in 
Narens [1981], Krantz et al. [in preparation] and Narens [in preparation]. The 
relationship between dimensional invariance and meaningfulness is discussed in 
Luce [I9781 and Krantz et al. [in preparation]. 

11. Averages and expected utility theory. Our final examples of a numerical 
representation involving both addition and multiplication are averages of the 
form Zw,cp,/Zw,, wi > 0. In economics, psychology, and statistics this represen- 
tation occurs as the expectation of random variables, especially in the theories of 
subjective expected utility. In psychology Anderson [1974a], [1974b] has also 
successfully applied averaging representations to category scale data from a 
wide variety of substantive areas. 

The literature includes two somewhat different approaches which, fortunately, 
can be described in closely parallel terms. Let (? be a set (of outcomes), X a set 
(sample space), and & an algebra of subsets of X. One type of theory concerns a 
weak ordering of the set 8 of all functionsf: X into (? subject to the restriction 
that, for all c E f(X), f-'(c) E &. Such functions are called "acts" because of 
the decision theory interpretation. The most important examples of such a 
theory is Savage's [I9541 subjective (personalistic) expected utility. 
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The other type of theory concerns a weak order of a set 9 of functions of the 
form: for A E G ,  A # 0 ,  j,: A + C? subject to the following two restrictions: 
forallA, B E G - (0) , jA,gB E 9 ,  

(i)ifA n B = O , j A  u g, E 9 ;  
(ii) if A 2 B, the restriction of j, to B is E 9. 

These functions are called "conditional acts". Pfanzagl [1%9], [1%7b] examined 
a special case of such a theory, and Luce and Krantz [1!Y71] studied the general 
case (also see Krantz et al. [1971, Chapter 81). 

The axioms, especially the structural and Archimedean ones, are sufficiently 
complex in both cases that we do not present them here. Rather we discuss the 
two most important necessary conditions, describe the line of proof, and state 
the representations obtained. 

Both theories capture two essential facts about averages. The one is that on a 
fixed domain it looks just like measurement on additive conjoint structures. The 
other is that on disjoint domains, the average of two equivalent conditional acts 
is equivalent to them. To state these in the unconditional theory, one in essence 
has to define what is meant by a conditional act. By contrast, they are quite 
direct in the conditional theory, so we state them explicitly. 

For all A, B E 6 - (01, A n B = 0 ,  fA,fi, gB E 9 ,  
(Of, - +j; ifff, U g,?f:, U g,; 
(ii) if j, -- g,, then j, u g, -- fA. 

The line of argument in the unconditional theory is to let 2 on @ induce an 
ordering on G and to assume an axiom adequate to prove the existence of a 
unique probability measure P that preserves the induced ordering. At that point 
the proof follows that of von Neumann and Morgenstern [1W7, p. 617) leading 
to a real-valued function u on C? such that, for all j, g E @, j + g iff  Ep[u(fl] > - 
E,[u(g)], where Ep is the expectation operator with respect to P. 

The line of argument in the conditional theory is to note that any partition of 
X into three or more nonnull subevents generates an additive conjoint structure. 
Using the results about uniqueness of representations for this structure, one is 
able to show simultaneously the existence of a real-valued function v on 9, 
unique up to positive linear transformations, and a unique probability measure 
P on G such that, for all j,, g, E 9 ,  

(i)fA 2 g, iff 4fA) > v( g,), and 
(ii) if A n B = 0, then v(j, u g,) = v(jA)P(A(A u B) + u(gB)P(BIA u B). 

If, in addition, for each c E C? there exists A E G - ( 0 )  and c, E 9 with 
c,(a) = c for a E A, and if whenever c,, c, E 9 ,  c, -- c,, then one can show 
there exists a real-valued function u on k? such that v(j,) = Ep[u( j,)]. 

For finite X, it has been shown how to map either expectation represenhtion 
into the other (Krantz et al. [1971, 58.6.41). 

As theories of decision making, both suffer from problems of interpretation. 
The inclusion of all possible acts, including all constant orps, in the uncondi- 
tional theory is highly unrealistic. The meaning of jA u g, in the ccndtional 
theory is obscure since the choice of a conditional act appears to pl~ce  u under 
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the control of the decision maker, whereas the axioms force a fixed probability 
on G .  For an extended discussion of these matters, see Balch [1974], Balch and 
Fishburn [1974], Krantz and Luce [1974], and Spohn [ l m .  

A general averaging model of the type assumed by Anderson [1974a], [1974b] 
arises from the conditional theory as follows. Let X = (1, 2, . . . , n), & = 2X, 
ei, i E X, be sets and define 

9 = { fAIA E G - (01,  fA(i)  E ei for i E A ) .  

Observe that if A n B = 0 and f,, g, E 9 ,  then, automatically, fA u g, E 63. 
Assuming the axioms of the conditional theory, it follows readily that there exist 
nonnegative weights wi = P({i)) and a real-valued function cpi on ei such that 

preserves the ordering relation > . For details, see Luce [1981]. 
N 

Our understanding of positive concatenation and of conjoint structures is 
reasonably adequate when the automorphism group is dense and especially so 
for fundamental unit structures. In contrast, we know very little about the 
discrete and trivial cases. Undoubtedly, many of these are so irregular as to be 
of no conceivable scientific interest, but some are clearly of importance, witness 
the case of probability. 

Our understanding of the interplay of solvable conjoint structures having at 
least one component that is a fundamental unit structure is adequate when they 
satisfy distributivity, as appears to be the case for classical physics. It is totally 
unsatisfactory when distributivity does not hold, as arises with velocity in 
relativistic physics. The problem evidences itself in our inability to relate closely 
the automorphisms of the conjoint structure and that of the positive concatena- 
tion one. Closely related to these problems of dimensional interlocks is the 
general conceptual issue of meanin&ulness and how it should be defined in 
terms of automorphisms and/or endomorphisms and/or some other invariance 
concept. Judging by the importance of dimensional analysis, this issue is of 
rather more than just philosophical interest. 

The study of structures with more than one operation, including the case just 
mentioned, is probably susceptible to considerable generalization, just as funda- 
mental unit structures generalized extensive ones. At the moment, all of the 
theories lead only to polynomial or metric representations. Almost certainly, 
more powerful algebraic proof techniques will be required since the existing 
methods seem to be leading to ever more complex, not easily generalized proofs. 
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