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Let .$‘= (X, >,R,,R, ,...) b e a relational structure, (X, >) be a Dedekind complete, totally 
ordered set, and n be a nonnegative integer. Z is said to satisfy n-point homogeneity if and 
onlyifforeachx ,,..., xn,y ,,..., y,suchthatx,>x,>... >x,andy,>y,>... >y,,there 
exists an automorphism a of .% such that (I(x,) = y,. .K is said to satisfy n-point uniqueness if 
and only if for all automorphisms p and y  of K, if /3 and y  agree at n distinct points of 3, 
then /I and y  are identical. It is shown that if .F satisfies n-point homogeneity and n-point 
uniqueness, then n < 2, and for the case n = 1, .g is ratio scalable, and for the case n = 2. 
interval scalable. This result is very general and may in part provide an explanation of why so 
few scale types have arisen in science. The cases of @point homogeneity and infinite point 
homogeneity are also discussed. 

PART 1: CONCEPTS AND THEOREMS 

Introduction 

Almost all sciences use numbers. These numbers appear throughout all levels of 
the complex chain of mathematical, logical, and heuristic analyses that constitute 
scientific explanation and argumentation. Usually the first place they appear is in the 
quantification of empirical concepts. This is obviously a very important step in scien- 
tific formulation, but one for which there exists surprisingly little research given its 
obvious foundational and universal character. This step is usually called 
measurement. 

The measurement of an empirical variable is a consistent assignment of numbers to 
the variable. Such an assignment is called a scale for the variable (Stevens, 1951). A 
variable may have several scales, and how these scales relate to one another 
determines the scale type of the measurement process. Many types of scales have 
arisen in science, and by far the most important of these are the ordered scales--ones 
for which there is a natural ordering of the empirical variable, which under measure- 
ment maps into the numerical > relation of the real number system. So far in science 
only three types of ordered scales are in wide use, and while other types of ordered 
scales have been suggested and occasionally used, their impact on science has been 
very minimal. The three widely used types usually go by the names “ratio,” 
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“interval,” and “ordinal.” Ratio scales are ones for which the proper assignments of 
numbers to the empirical variable consist of positive real multiples of any single 
proper assignment; interval are ones for which the proper assignments consist of 
linear transformations rcr + s of any single proper assignment o, where r ranges over 
the positive reals and s over the reals; and ordinal are ones for which the proper 
assignments consist of all strictly monotonic transformations of any single proper 
assignment where the resulting transformation has the same range as the given 
assignment. 

Obviously if one assumes that a particular type of scale is proper for the 
measurement of a variable, then one is implicitly making “empirical” assumptions 
about the variable that allows for the existence of the scale type. Just what these 
empirical assumptions are is not at all obvious. For example, in the case of ratio 
scalability, it is not at all obvious as to what corresponds empirically to the highly 
structured, abstract concept of multiplication by a positive real. Until very recently 
(Narens, 1980), this kind of issue was sidestepped by the literature, which concerned 
itself instead with the derivation of scale types from highly specific properties of 
empirical models. This approach taken in the literature does not clarify questions 
about the possible range of scale types and does not lead to a rational classification 
of scale types. 

In-this paper a very general approach to ordered scale types is given. Concepts and 
theorems are developed which allow for a reasonable classification of scale types, and 
these are used to show that the traditional ones-ratio, interval, and ordinal-share a 
core of properties that are not readily generalizable to other kinds of ordered scale 
types. 

The paper is divided into two parts: Part 1 develops concepts and states theorems; 
Part 2 gives proofs of theorems in Part 1 that are not referenced to other papers. 

Dedekind Completeness 

Throughout this paper, we will concentrate on ordered structures whose 
measurements are onto the reals or positive reals. This obviously imposes certain 
structural and topological conditions on the empirical ordering relation, and these 
assumptions are specified in the following definition: 

DEFINITION 1.1. (X, >) is said to be of order type 8 if and only if > is a binary 
relation on the nonempty set X and the following four conditions hold: 

(1) Total ordering. > is a total ordering. 
(2) No endpoints. For each x in X there exists y, z in X such that y > x > z. 

(3) Denumerable density. There exists a denumerable subset Y of X such that 
for each x, z in X, if x > z, then for some y in Y, x > y > z. 

(4) Dedekind completeness. For each nonempty subset Y of X, if there exists 
an upper bound of Y (i.e., there exists x in X such that x3 y for all y in Y), then 



SCALES OF MEASUREMENT 251 

there exists a least upper bound (l.u.b) for Y (i.e., there exists an upper bound z of Y 
such that for all upper bounds u of Y, u > z). 1 

G. Cantor (1895) showed the following theorem: 

THEOREM 1.1. Suppose (X, +) is of order type 0. Then there exist functions f 
and g from X onto the reals and positive reals respectively such that for all x, y in X, 

X>Y z@- f(X)hf(Y) 287. g(x) > &T(Y). I 

There are measurement situations where the empirical ordering is not of order type 
0. In some of these, the ordering relation is not a total order. However, in many of 
these situations (e.g., weak orders, semiorders), there are naturally induced orderings 
which are total, and for measurement purposes these can serve as an empirical 
orderings for the establishment of scales. There are of course ordered structures that 
have natural endpoints, and these pose no problem for the development presented 
here; they are excluded only as a matter of convenience to simplify definitions and 
statements of theorems. Denumerable density is a more serious concern. It can be 
argued that empirical structures are really finite and thus infinite structures should 
not be used for describing empirical phenomena. However, much of science is 
concerned with large finite structures, and it can be argued that certain infinite 
structures are “idealizations” of large finite ones, and what we are really dealing with 
in measurement and calling “empirical” are these kinds of idealizations. Such a view 
is implicit in the thinking and procedures of most scientists, but to my knowledge has 
not been rigorously justified by theorems which show that the use of these infinite 
idealizations in science are accurate approximations of the corresponding proper 
quantitative analyses for sufficiently large finite structures. Dedekind completeness 
presents a different kind of problem. In the presence of the other conditions for order 
type 8, Dedekind completeness implies that the structure is infinite and non- 
denumerable. While one might be able to accept certain denumerable models as 
idealizations of empirical settings, it is much harder to accept infinite, non- 
denumerable models as idealizations. However, in many measurement situations. a 
denumerable structure can be imbedded in a Dedekind complete one in such a way 
that the Dedekind complete structure inherits the denumerable structure’s 
measurement-theoretic properties. This is discussed in some detail in Narens (1980). 

Isomorphic Representations 

DEFINITION 1.2. Let .Z = (X, R,, R 1 ,...) be a relational structure (i.e., let X-the 
domain of discourse of %-be a nonempty set and R,, R,,...-the primitives of 
Z-be relations on X), Re be the set of real numbers, Re+ the set of positive real 
numbers, and I+ the set of positive integers. cp is said to be an H-representation for 
.X if and only if JV is a relational structure with domain of discourse a subset of Re 
and 9 is a homomorphism of 37 into .,V, i.e., .A’- = (N, S,, S, ,... ), where N !Z Re, and 
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Si is an ni-ary relation on N, where ni is such that Ri is an n,-ary relation, and for 
each i in It and each x, ,..., x,, in X, 

R,(x, ,..., x,J iff sj[V(x*)Vm*3 P(X,Jl- 

(D is said to be a representation onto JF if and only if IJJ is an N-representation and v, 
is onto the domain of discourse of M. ~1 is said to be an isomorphic N- 
representation for X (or equivalently, an isomorphism from 37 onto J+‘“) if and only 
if cp is a one-to-one function and tp is an x-representation for X that is onto JtT. 

Suppose X is a relational structure with domain of discourse X, p is an 
isomorphic &‘--representation for X, and JF has domain of discourse N. Then for 
each subset Y of X, each n-ary relation R on X, and each set H of relations on X, 
q(Y) = (p( JJ) ( y E Y), o(R) is the n-ary relation S on N such that for each U, ,..., u,, 
in N, 

m 1 T’.., U”) iff R/v-‘(u,),..., P-‘(u,)l, 

and q(H) = {o(T) 1 T E H}. o(Y), p(R), and p(H) are called the images ?f Y, R, and 
H respectively under ~0. d 

Note that if .X = (X, >, R,, R, ,... ), where > is a total ordering on % and 
,K = (N, >, S, , S, ,...), where N G Re, then it easily follows that each Jtr-representa- 
tion of X is a one-to-one function. 

Let ,X = (X, +, R,, R2,...), where > is a total ordering on X. Traditionally, the 
theory of measurement for .X has proceeded by specifying a numerical structure 
,N = (N, >, S,, S, ,...), where N c Re, and considering x-representations of 3. If 
,H is isomorphic to %, then this procedure is easy to justify since by isomorphism 
all scales are “perfect” correspondences between 37 and JC However, if some .fl- 
representations are not onto, then it is much more difficult to justify the measurement 
process, and to my knowledge there is in the literature no serious attempt to do so. 
To see some of the problems with non-onto representations, consider the following 
example: 

Let f and g be the functions on Re’ defined by 

f(x)= 1-h and g(x) = 2 - & 
and let 0, and 0, be binary operations defined on the open intervals (0, 1) and (1,2), 
respectively, by 

x 01 Y =m-‘W +f-‘(YIl 
and 

24 022, = g[ g-‘(u) + g-‘(u)19 

and let 0 be a binary operation on Re+ that is an extension of both 0, and 0,. Let 
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.K = (Re+, 2, +) and M== (Re+, >,O). (Note that in “% = (Re+, 2, +>,’ we 
consider “2” and “+” to be the restrictions of > and + to Ret thus making 5 a 
relational structure. Throughout this paper, we will observe the mathematical 
convention of writing obviously intended restrictions of relations and operations as 
the relations and operations themselves.) It is not difficult to verify that f and g are 
,K-representations for %. From a measurement standpoint, the structure JL’ is rather 
bizarre, and the representations f and g are at best capriciously related to each other, 
and certainly not intrinsically related through the structure ,%‘. It seems to me that 
one does not want to consider A’” as a candidate for a numerical representing 
structure for .Z, and one way to eliminate its candidacy is to demand that only onto 
representations be considered. Now this demand of focusing on only onto representa- 
tions eliminates certain special situations where successful measurement can take 
place through non-onto representations, e.g., scaling the structure %/ = ((0, l), 2, +) 
into -4 = (Re”, >, +). In this case, the scaling is usually done so that all .4- 
representations of j? are of the form 9(x) = TX, where r is an arbitrary positive real, 
However, my view is that this situation should be considered as a special case, and 
the reason why the measurement process works here is that ,$Y has only one extension 
with “consistent” measurement-theoretic properties, namely, (ReC, >, +), and this 
extension is isomorphic to ..X and has only ,&-isomorphic representations. 

This paper will focus on representations that are onto. Not all measurement 
situations can be handled by this kind of representation (e.g., see the discussion 
following Example 1.3), and a more general definition of “representation” is required. 
One such is given in Definition 1.12 which includes e 4 -representations that are into 
as a special case. 

Automorphisms 

DEFINITION 1.3. Lets=(X,R,,R ,,...) be a relational structure. a is said to be 
an automorphism of X if and only if a is a function from X onto X such that for 
i = 0, 1, 2 ,... and each x, ,..., x,. in X 

Ri(Xl v***y Xni) iff R,[a(x,) ,..., a(x,,)]. 

Throughout this paper z will denote the identity function on X, i.e., z(x) =x for all x 
in X. It is immediate that I is an automorphism of %. Thus z is often called the 
identity automorphism of X. For all automorphisms a and p of Z, let a + j3 be the 
function on X defined by a * p(x) = a[j3(x)] f or a x in X. Then it is also immediate 11 
that a * p is an automorphism of 5 for all automorphisms a, /? of X. m 

Suppose X = (X, 2, R , , R z ,... ) is a relational structure, > is a total ordering on X, 
and 9 is an isomorphic M-representation for %. Then it is easy to show that for each 
isomorphic M-representation w  of A?, 9 -‘y is an automorphism of %, and for each 
automorphism a of %, 9a is an isomorphic x-representation for %. Thus in a very 
natural way automorphisms and isomorphic M-representations of JK correspond, and 
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thus properties about the set of isomorphic Jlr-representations of X can be translated 
exactly into properties about the set of automorphisms of S. Now this type of 
translation is particularly useful since the automorphisms of S under the operation * 
form a rich type of mathematical structure known as a group, and there exists an 
abundance of mathematical results about groups, many of which through the above 
“translation” are applicable to measurement theory. Thus the tack that will be taken 
in this paper will be to describe the measurement-theoretic properties of X in terms 
of its automorphisms. (I prefer this to the equivalent one that uses representations of 
X since the group structure of automorphisms play the critical role in the 
mathematical proofs.) 

Homogeneity and Uniqueness 

Measurement structures can be classified in terms of properties of their represen- 
tations, which by the above discussion is equivalent to a classification in terms of 
automorphisms. The following definition gives properties of automorphisms that will 
play a central role in the classification of measurement structures. 

DEFINITION 1.4. Let S = (X, 3, R , , R 2 ,...) b e a relational structure, ) a total 
ordering on X, H a nonempty set of automorphisms of S, and n a nonnegative 
integer. Then H is said to satisfy n-point homogeneity if and only if for each x, ,..., x,, 
y1 ,..., y, in X with x, > x2 > ... > x, and y, >y, > .a. > y,, there exists an auto- 
morphism a in H such that a(xi) = yi for i = l,..., n. (This condition is assumed to 
hold vacuously for n = 0, and thus all sets of automorphisms satisfy O-point 
homogeneity.) H is said to satisfy n-point uniqueness if and only if for each a and /3 
in H, if a and j? agree at least at n distinct elements of X, then a = p. (Thus in 
particular, if H satisfies O-point uniqueness, then H consists of exactly one auto- 
morphism.) X is said to satisfy n-point homogeneity if and only if the set of auto- 
morphisms of X satisfies n-point homogeneity; and X is said to satisfy n-point 
uniqueness if and only if the set of automorphisms of X satisfies n-point 
uniqueness. I 

Other concepts of homogeneity and uniqueness will be considered later. 
It immediately follows from Definition 1.4 that n + l-point homogeneity implies n- 

point homogeneity, and that for infinite X, n-point uniqueness implies n + l-point 
uniqueness. It is also easy to show that if a structure satisfies n-point homogeneity 
then it cannot satisfy m-point uniqueness for 0 < m < n. 

In this paper, homogeneity and uniqueness are directly postulated since we 
consider the completely general case of relational structures. However, for many 
measurement applications, homogeneity and uniqueness can be deduced and/or stated 
in terms of particular relational properties. This is particularly true of uniqueness 
which is often easily derived from monotonicity or solvability assumptions. 
Homogeneity appears to be a trickier concept to capture. In some situations, 
particular automorphisms can be defined in terms of the primitives of the structure, 
and these automorphisms can then be used to establish homogeneity. However, there 
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are many measurement situations in which only the identity automorphism is 
definable in terms of the primitives, and in these situations homogeneity must be 
established by some less direct means. (These issues involving homogeneity are 
discussed in Narens, 1980.) 

We will proceed with the classification of measurement structures by first 
considering cases where homogeneity and uniqueness match each other, i.e., by 
considering structures that simultaneously satisfy n-point homogeneity and n-point 
uniqueness for some n. 

Absolute Structures 

DEFINITION 1.5. X = (X, >, R,, R, ,...) is said to be an absolute structure if and 
only if the following three conditions are satisfied: 

(1) .% is a relational structure. 

(2) (X, >) is of order type 6. 

(3) .$- satisfies O-point uniqueness. I 

Suppose Z= (X,>,R,,R, ,...) is an absolute structure. The O-point uniqueness of 
Z implies that the identity is the only automorphism of .K and thus in particular 
that s satisfies O-point homogeneity. Therefore the measurement representations of 
.K are very limited, consisting of at most one isomorphic representation for each 
potential numerical representing structure. Isomorphic representations for .x‘ exist: 
By Theorem 1.1, let rp be an isomorphism of (X, @) onto (Ret, a), and S, , S,,... be 
the respective images under o of R, , R, ,..., and let ,/Y = (Re+, 2, S, , S, . . .). Then rp 
is an .K-representation for .%. 

The following is an example of an absolute structure: Let @ be the binary 
operation on Re’ defined by: for each x, y in Re+, x@ y=x + y +x2y2. Then by 
Example 4.2 of Cohen and Narens (1979), (Re+ ,a, 0) has the identity as its only 
automorphism and is therefore an absolute structure. 

Absolute structures have not been intensively investigated, and when they appear, 
their implications for measurement (or perhaps the lack of measurement) has, to my 
knowledge, not been explored. 

Dedekind Complete Scalar Structures 

DEFINITION 1.6. .K = (X, >, R,, R, ,.,. > is said to be a Dedekind complete scalar 
structure if and only if the following three conditions are satisfied: 

( 1) % is a relational structure. 

(2) (X, >) is of order type 8. 

(3) % satisfies l-point homogeneity and l-point uniqueness. 1 

Specific models of Dedekind complete scalar structures have appeared throughout 
the literature. The most prominent of these are models of phsyical attributes such as 
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length and mass. These models are structures of the form (X, >, 0), where 0 is an 
associative operation on X that is strictly monotonic in each variable. Such structures 
and their modifications form the basis for what the literature calls “extensive 
measurement,” a measurement process that goes back to Helmholtz (1887) and is 
characterized by giving numerical representations in which 0 is represented by the 
addition operation, t, on the positive reals. Extensive measurement gives rise to ratio 
scales, and these two concepts should not be confused. 

Their difference becomes very apparent when one considers the work of Cohen and 
Narens (1979) where ratio scalability is shown to result in a generalization of 
extensive measurement to cases with nonassociative operations. These generalized 
structures are called “fundamental unit structures”, and the structure (Ret, 2, O), 
where @ is defined by x @ y =x + y + x”~JJ*‘~ for all x, y in Re+, is an example of 
one of these nonassociative structures. 

Dedekind complete scalar structures made their appearance in Narens (1980) 
under a slightly different but equivalent definition. The following important theorem 
is shown in Narens (1980): 

THEOREM 1.2. Suppose 37 = (X, >, R , , R 2 ,...) is .a Dedekind complete scalar 
structure. Then there exists N= (Re+, >, S,, S,,...) such that the following two 
statements are true: 

(1) There exists an isomorphic N-representation for 37. 

(2) The set of isomorphic N-representations for X forms a ratio scale, i.e., (i) 
for each isomorphic N-representation v, of X and each r in Re’ , ryl is an isomorphic 
N-representation for X, and (ii) for all isomorphic N-representations ~1, w of X, 
there exists s in Ret such that cp = SW. 

Proof. See Theorems 2.11 and 2.6 of Narens (1980). 1 

Suppose X = (X, 2, R,, R, ,...) is a relational structure and (X, >) is of order type 
0. Then if X is ratio scalable onto Ret, then it easily follows that X satisfies l-point 
homogeneity and l-point uniqueness. Thus in the presence of X being a relational 
structure (a truly innocuous assumption) and (X, >) being of order type 0 (a natural 
assumption for measurement), the ratio scalability of X onto the positive reals is 
equivalent to the simultaneous assumption of l-point homogeneity and l-point 
uniqueness. It will next be shown that the simultaneous assumption of 2-point 
homogeneity and 2-point uniqueness for 3%’ is equivalent to the interval scalability of 
.z-. 

Linear Structures 

DEFINITION 1.7. Z = (X, >, R , , R, ,...) is said to be a linear structure if and 
only if the following three conditions are satisfied: 

(1) X is a relational structure. 
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(2) (X, +) is of order type 19. 

(3) .F satisfies 2-point homogeneity and 2-point uniqueness. 4 

THEOREM 1.3. Suppose Z = (X, 3, R , , R 2 ,... > is a linear structure. Then there 
exists .fl= (Re, 2, S,, S,,...) such that the following two statements are true: 

(1) There exists an isomorphic J-representation for .K. 

(2) The set of isomorphic ,&-representations for% forms an interval scale, i.e., 
(i) for each isomorphic ,&*-representation cp of .S, rrp + s is an isomorphic .A ‘- 
representation of .S for each r in Re’ and s in Re, and (ii) for all isomorphic ~ t .- 
representations v, and w of ,A%-, there exist u in Ret and v in Re such that Ed = uv f u. 

Proof See Theorem 2.2. I 

Suppose .x‘= (X, >, R,, R, ,... > is a relational structure, (X, >) is of order type 6, 
and K is interval scalable. Then it easily follows that Z satisfies 2-point 
homogeneity and 2-point uniqueness. 

It should also be noted that a relational structure cannot be interval scaled onto a 
numerical structure with domain of discourse Re +. 

The impossibility for n > 2 of an n-point homogeneous, n-point unique structure 

The kind of matching of homogeneity with uniqueness which appears in absolute, 
Dedekind complete scalar, and linear structures cannot be cannot appear in any other 
type of structure: 

THEOREM 1.4. There exists no structure S=(X,>,R,,R, ,...) that 
simultaneously satisfies the following three conditions: 

(1) .F is a relational structure. 

(2) (X, 2) is of order type 8. 

(3) .P‘ satisfies n-point homogeneity and n-point uniqueness for some integer 
n > 2. 

Proof See Theorem 2.3. I 

Thus in light of Theorem 1.4, if we are to look for additional types of scales, we 
must look at structures that satisfy some form of infinite point homogeneity (and 
therefore some form of infinite point uniqueness), or look at structures where 
homogeneity does not match up with uniqueness. We will first look at a case of 
infinite point homogeneity. 

Monotonic Structures 

DEFINITION 1.8. Suppose (X, >) is of order type 0. Then Y is said to be 
denumerably dense in (X, >) if and only if Y is a denumerable subset of X and for 
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each x, z in X, if x > z, then for some y in Y, x > y > z. A subset Y of X is said to be 
without endpoints if and only if for each y in Y, there exist u, v in Y such that 
U>Y>V. 

Suppose X= (X,2, R,, R, ,...) is a relational structure and (X, >) is of order type 
@. Then % is said to satisfy n-homogeneity if and only if for all denumerably dense 
subsets without endpoints Y and Z in (X, >), there exists an automorphism a of X 
such that a(Y) = Z. X is said to satisfy n-uniqueness if and only if for all auto- 
morphisms a, /I of X, if o(Y) = p(Y) for some denumerably dense subset without 
endpoints Y of (X, >), then a = /3. 1 

DEFINITION 1.9. % = (X, >, R, , R, ,...) is said to be a monotonic structure if and 
only if the following three conditions are satisfied: 

(1) 3 is a relational structure. 

(2) (X, &) is of order type 8. 

(3) X satisfies q-homogeneity and v-uniqueness. 

THEOREM 1.5. Suppose Z is a monotonic structure. Then there exists 
JV= (Re+, 2, S,, S,,...) such that the following two statements are true: 

(1) There exists an isomorphic N-representation for X. 

(2) The set of isomorphic N-representations for 37 forms an ordinal scale, i.e., 
(i) for each isomorphic N-representation 9 of Z and each strictly monotonic function 
Ffrom Re’ onto Re’, F(9) is an isomorphic M-representation of 37, and (ii) for all 
isomorphic N-representations 9 and w  of 5, there exists a strictly monotonic 
function H from Re’ onto Re+ such that 9 = H(w). 

Proof. See Theorem 2.4. a 

Suppose X=(X,>,R,,R, ,...) is a relation structure, (X, )) is of order type 0, 
and Z is ordinal scalable. Then it is not difficult to show that 5 is a monotonic 
structure. It is also easy to show that monotonic structures have isomorphic represen- 
tations onto numerical structures that have domains of discourse Ret and Re. 

Other Structures 

DEFINITION 1.10. Let % = (X, >, R,, R, ,... ) be a relational structure, (X, >) be 
of order type 8, and n be a nonnegative integer. Then n is said to be the degree of 
homogeneity of % if and only if % satisfies n-point homogeneity but not n + l-point 
homogeneity. Similarly, n is said to be the degree of uniqueness of X if and only if 
X satisfies n-point uniqueness but not n - l-point uniqueness. Z is said to have 
infinite degree of homogeneity (uniqueness) if and only if Z does not have degree of 
homogeneity (uniqueness) k for some nonnegative integer k. (Monotonic structures 
are examples of structures with infinite degrees of homogeneity and uniqueness.) X is 
said to have a finite degree of homogeneity (uniqueness) if and only if Z does not 
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have an infinite degree of homogeneity (uniqueness). If % has degree of homogeneity 
k and degree of uniqueness m, where k and m are nonnegative integers, then the 
degrees of homogeneity and uniqueness of X are said to matchup (or be matching) if 
and only if k = m. 1 

Let .X = (X, +, R,, R,,...) be a relational structure and (X, >) be of order type 8. 
Suppose X has finite degrees of homogeneity and uniqueness. Since the degree of 
uniqueness of -‘& must be at least as great as its degree of homogeneity, it follows 
from Theorem 1.4 that the degrees of homogeneity and uniqueness matchup if and 
only if they are degree 0, 1, or 2, Thus if X has finite degree of homogeneity and is 
not an absolute, Dedekind complete scalar, or linear structure, then it must have a 
nonmatching degree of uniqueness. Some examples of such structures with non- 
matching degrees will be given after the following definition. 

DEFINITION 1.11. Let A? = (X, R,, R, , R,,...) be a relational structure and a be 
an element of X. Then a is said to be an invariant of 5%’ if and only if for each 
automorphism a of %, a(a) = a. I 

Obviously, if a structure has an invariant, then it must have degree of homogeneity 
0. Some examples of structures with degree of homogeneity 0 will now be considered. 
The first has degree of uniqueness 1 and no invariant elements: 

EXAMPLE 1.1. Let A? = (Re+, 2, 0), where 0 is defined on Re+ as follows: for 
each x, y in Ret, 

x 0 y = x + y + (xy)“’ (2 + sin[ l/2 log(xy)l). 

Then by Example 3.1 of Cohen and Narens (1979), the automorphisms of A- are 
functions a,, where n is an integer and for each z in Re+, 

a,(z) = zeZnn, 

and from this it easily follows that A? has no invariants, has degree of homogeneity 0, 
and has degree of uniqueness at least 1. From Example 3.1 and Lemma 2.2 of Cohen 
and Narens (1979) it follows that .5? satisfies 1 -point uniqueness. Thus 5%? has degree 
of uniqueness 1. I 

The next example shows that some ratio scalable structures have degree of 
homogeneity 0 and degree of uniqueness 2: 

EXAMPLE 1.2. Let Z.? = (Re, >;, +). It is well known that the automorphisms of 
5%? consist of all multiplications by positive reals, and from this it easily follows that 
0 is the only invariant of 5%’ and that if two automorphisms of S agree at some 
nonzero point of Re, then they are identical. Thus it follows that 5P satisfies O-point 
homogeneity but not l-point homogeneity and 2-point uniqueness but not l-point 
uniqueness. Now the identity function, I, is an isomorphic 5representation for .w. 
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and it easily follows that the set of all isomorphic s-representations of ~2 consists of 
all multiplications of I by positive reals, i.e., that 5Y is ratio scalable. 1 

The following is an example of a structure that has degree of homogeneity 0 and 
intinite degree of uniqueness. 

EXAMPLE 1.3. For each c in Ret, define the operation 0, on Re’ as follows: for 
each x, y in Re+, 

X&Y = 
x+Y 

1 + &Y/c’ 
if x<c and y<c, 

xO,y=cifeitherx<candy>corx>candy(c, 

and 

XC&Y= 
XfY 

1 + xy/c2 
if x>c and y>c. 

Then the restriction of 0, to the interval (0, c) is the well-known “addition” operation 
for relativistic velocities with c being the velocity of light. It is easy to directly verify 
that 0, is an associative operation on the interval (0, c) that is monotonically strictly 
increasing in each variable. From this is easily follows that Yc = ((0, c), a,@,) is 
what Chapter 3 of Krantz, Lute, Suppes, and Tversky (1971) calls an “extensive 
structure,” and it also easily follows from Theorem 3 of that chapter that PC is a 
Dedekind complete scalar structure. As is the usual mathematical practice, let 
(c, co)= (x)xER e+ and x > c). Again it is easy to show by direct verification that 
0, is an associative operation on (c, co) that is monotonically strictly decreasing in 
each variable. From this it follows by Chapter 3 of Krantz et al. (1971) that ((c, a), 
<, 0,) is an extensive structure, and from this it immediately follows that 9, = 
((c, co), 2, 0,) is a Dedekind complete scalar structure. Let a be an automorphism 
of Yc, p be the identity function on (c}, and y be an automorphism of 2c. Then it is 
easy to show that a U /3U y is an automorphism of 5$ = (Re+, >, a,> and that all 
automorphisms of -v/, are of this form. PC has 0 degree of homogeneity since it has c 
as an invariant element. Let a, and a2 be automorphisms of .2$ such that a, # a2, y 
be the identity function on {c}, and /? be an automorphism of 5Pc. Then a1 U y  Up 
and a2 U yU/3 are distinct automorphisms of-i”, that agree on all elements of (c, co), 
and from this it follows that Yc has infinite degree of uniqueness. Note that if two 
automorphisms of Yc agree at an element <c and an element >c, then they are 
identical. I 

Structures with invariant elements often present technical difficulties for 
measurement theory. For example, consider the measurement of a structure Y that 
for some c in Re+ is isomorphic to Y= as defined in Example 1.3. Each -4” (c in 
Re+) is a reasonable candidate for a numerical representing structure for 9 since for 
each d, e in Re+, Pd and -4”, are isomorphic by the function f(x) = (e/d)x. Thus a 
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particular one, say, 9&, can be picked as the numerical representing structure. 
However, to my point of view this produces an unwanted consequence: namely, the 
invariant element of 9’ under each permissible assignment is assigned the number 10, 
and clearly there is no special relationship between the number 10 and the invariant 
element of 5“; rather this relationship results from the arbitrary selection of Pi,, as 
the numerical representing structure. The way I suggest to proceed with situations 
like this is to generalize the measurement process so that the representations of a 
structure are onto members of a set of structures rather than onto a single structure. 
In the present case, a proper measurement of 9 would be any isomorphism onto ‘yC 
for some c in Re+. In this situation, any two representations rp, v of .y would then be 
represented by the formula rp(x) = a[P(~&))l, w  h ere for some 9; and ‘4Cd, ,f3 is an 
automorphism of yd and a is the isomorphism of -4”& onto LVC given by the formula 
4 y) = (44 Y. 

The following definition gives a general formulation of representation into a set of 
structures: 

DEFINITION 1.12. Suppose 37 is a relational structure and Y is a nonempty set of 
relational structures such that each element of Y has domain of discourse a subset of 
the reals. Then cp is said to be Y-representation for 3 if and only if ~1 is a homo- 
morphism of 3X onto some element of Y. 1 

Suppose $ is a totally ordered relational structure, Y is a set of relational 
structures, and a Y-representation for X exists. Since 37 is totally ordered, all 
homomorphisms of X are one-to-one functions and thus isomorphisms, and from this 
it easily follows that all elements of Y are isomorphic. Let (p be a Y-representation for 
.%. Then it is easy to show that for each Y-representation y of X there exist an 
isomorphism a of &‘K) onto &5!7) so that for each x in the domain of discourse of 
s-, y(x) = a[p(x)l. 

Suppose 9” is a relational structure and M-representations for 3; exist. Let 
Y = (cp(X) 1 p is an ,,V-representation for Z}. Then the -b--representations and Y- 
representations for ,K coincide. Thus the concept of s--representation 
(Definition 1.2) is a special case of the concept of Y-representation (Definition 1,12). 

A serious problem for measurement theory-and one that in my opinion has not 
been satisfactorily dealt with-is the selection of “correct” set of scales for 
measurement in an empirical context from the set of possible candidate scales. The 
traditional proposed solution to this problem has been to choose a numerical 
representing structure, N, for the empirical structure under consideration, .X’. and 
consider the .X-representations for X as the “correct” scales. But traditionally, very 
little attention has been given to justifying the choice of ,.Y‘ over other possible 
numerical representing structures, e.g., numerical structures isomorphic to -4 ‘. 
Furthermore, as we have seen above, representing into a single numerical structure is 
sometimes too constraining. However in some situations even Y-representations 
(Definition 1.12) may be too constraining since if rp is a Y-representation for Z and 
a is an automorphism of cp(%), then w  defined by I&) = a[cp(x)l is also a Y- 
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representation, and it is conceivable that in some situations this may give rise to too 
many scales for the measurement process to be effectively carried out, particularly if 
the measurement of L8” is the measurement of a variable that interacts with other 
variables of the empirical context under consideration. 

The idea behind the construction in Example 1.3 is very general and can be 
extended to other situations. The gist of it is to select a point in Re+ and consider the 
two open intervals determined by it. On each interval a totally ordered relational 
structure is constructed. These relational structures may or may not be naturally 
related. (In Example 1.3 they are strongly related.) However, they must be of the 
same similarity type. (Two relational structures (X, S, , S, ,...) and (Y, T, , T, ,...) are 
said to be of the same similarity type if and only if for all n in I +, Si is an n-ary 
relation if and only if Ti is an n-ary relation.) Another relational structure of the 
same similarity type is then constructed on Re+ that is characterized by having only 
trivial interactions occurring between elements of opposite intervals or between the 
selected element and other elements of Re+. This kind of lack of interaction basically 
reduces the relational structure on Re+ to a disjoint union of the two relational 
structures defined on the intervals, and thus autmorphisms of the larger structure are 
basically decomposable into automorphisms of the smaller ones and vice versa. This 
allows for the construction of structures with automorphisms behaving on pieces of 
the structure in predetermined ways. Of course this kind of construction generalizes 
to cases with any number of intervals, and a great variety of relational structures with 
specific automorphism properties can be constructed in this manner by the 
appropriate use of absolute, Dedekind complete scalar, interval, and monotonic 
structures as component parts. 

Structures with infinite degrees of homogeneity and uniqueness that are not 
monotonic structures can be constructed, but because of the apparent adequacy of 
monotonic structures for the infinite homogeneous case and the current lack of 
applications in science of other infinitely homogeneous structures, the description and 
development of these kinds of structures will be omitted. 

Discussion 

Homogeneity and uniqueness have been shown to provide a useful basis for 
classifying and specifying measurement structures. Indeed, they provide a means for 
formulating necessary and sufficient conditions in the general case of relational 
structures for the traditional types of ordered scalings-ratio, interval, and ordinal. 
Furthermore, we have shown that a characteristic property of structures with these 
traditional scalings-having matching degrees of homogeneity and uniqueness- 
extends to other cases with finite degrees of homogeneity to only those degenerate 
cases of a scale type consisting of a single scale. (This may be part of the reason why 
scientists have not employed other types of ordered scales.) Although I consider the 
m-point homogeneity, n-point uniqueness classification of measurement structures an 
improvement, it has obvious shortcomings, particularly in dealing with structures 
with invariant elements, and more refined concepts of homogeneity and uniqueness 
are needed to achieve a better and more systematic classification. 
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The approach taken in this paper is to describe measurement structures in terms of 
their automorphisms. The rationale for this is that the most important measurement- 
theoretic properties of a scale type are reflected in the automorphisms of any 
empirical structure scalable by that type. However, the concept of “scale type” given 
requires that the whole structure be given a numerical representation, and for some 
applications this may be too restrictive. (For example, in geometry local coordinate 
systems are employed that only partially represent the space.) Of course, the aban- 
donment of the requirement of representing the whole structure will limit the 
usefulness of automorphisms as a means of classifying measurement structures. 
Section 3 of Narens (1980) discusses this problem and indicates some promising 
generalizations of the concept “automorphism.” 

In summary, I think the description presented here of measurement structures in 
terms of their automorphisms has been fruitful and has provided insights into the 
possible range of measurement structures. However, there are still problems, and from 
my view, the most important of these revolve around the concept of “representation”: 
at this time we just do not have a very clear idea as to what “representations” should 
be or how to select the “correct” one or set of ones. 

PART 2: THEO&MS 

DEFINITION 2.1. (X, >, A) is said to be a structure of Linear automorphisms if 
and only if X is nonempty, > is a binary relation on X, (A, *) is a subgroup of 
automorphisms of (X, >), and the following three conditions hold: 

(1) (X, $) is of order type 8. 

(2) A satisfies 2-point homogeneity. 

(3) A satisfies 2-point uniqueness. m 

LEMMA 2.1. Let (X, >, A) be a structure of linear automorphismx Suppose a, /3 
are in A, a, b are in X, a < b, a(a) <P(a), and B(b) <a(b). Then for some u in X, 
a < u < b and a(u) = p(u). 

Proof. By Theorem 1.1, let (p be an isomorphic representation of (X, >) onto 
(Re+, 2). Let a’, b’, a’, /I’ be the images under cp of a, b, a, /3 respectively. Since a’ 
and p’ are automorphisms of (Re + , >), they are order preserving functions from Re + 
onto Re’ and therefore are continuous. Consider the function y =/I’ - a’. y is 
continuous, y(a’) > 0, and y(b’) < 0. Thus by the intermediate value theorem of 
analysis, there exists u’ in Ret such that a’ < u’ <b’ and y(u’) = 0, i.e., 
a’(~‘) = p’(u’). Letting u = v, - ‘(u’), it follows by isomorphism that a < u < b and 
a(u) = P(u). I 

DEFINITION 2.2. Let (X, &, A) be a structure of linear automorphisms. Define & 
on A as follows: for each a, /3 in A, a >/.I if and only if there exists y in X such that 
for all x $ y, a(x) + p(x). I 
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LEMMA 2.2. Let (X, >, A) be a structure of linear automorphisms. Then > is a 
total ordering on A. 

Proof: Let a, j3, and y be arbitrarily elements of A. 

Transitivity. If a >/I and /I $ y, then it immediately follows from Definition 2.2 
that a > y. 

Connectivity. To show a contradiction, suppose that neither a > /3 nor /I > a. 
Then for each y in X, there are x, z in X such that y =$x -=C z, a(x) <p(x), and 
p(z) < a(z), which by Lemma 2.1 implies that for each y in X there exists u > y such 
that a(u) = j?(u), i.e., a and p agree on infinitely many elements of X, which by 2 
point uniqueness yields a =/I, and this contradicts the hypothesis that it is not the 
case that a >/I. 

Antisymmetry. Suppose a >/I and /.I > a. Then it follows from Definition 2.2 
that there is an x in X such that for all a, b in X if x < a < b, then a(a) <@a) and 
/l(b) < a(b), and this (by using Lemma 2.1 if necessary) implies that a(u) =/I(U) for 
infinitely many u in X, which in turn by 2-point uniqueness implies a =,& 1 

LEMMA 2.3. Let (X, >, A) be a. structure of linear automorphisms. Suppose a, b 
are elements of X, a, p are elements of A, a < b, a(a) </3(a), and /3(b) < a(b). Then 
a>P. 

Proox By Lemma 2.1, let u in X be such that a < u <b and a(u) =/I(U). To show 
a contradiction, suppose it is not the case that a > p. Then by Lemma 2.2, /3 $ a, and 
thus by Definition 2.2 we can find c in X such that b < c and a(c) </3(c). If 
a(c) =/I(c), let v = c, and if a(c) </3(c), by Lemma 2.1, let v in X be such that 
b < v < c and a(u) =p(v). Then a(v) =/I(v), and thus by 2-point uniqueness, a = /-% 
which is impossible since a(a) #/3(a). m 

LEMMA 2.4. Let (X, >, A) be a structure of linear automorphisms. Then 
(A, >, *) is a totally ordered group. 

Proox It is well-known that (A, *) is a group, and by Lemma 2.2, > is a total 
ordering on A. Suppose a, /3, and y are arbitrary elements of A. 

We will first show a >/3 iff a * y>/3 * y. Suppose a &p. By Definition 2.2, let yO 
in X be such that for all x > y,, a(x) +/3(x). S ince y is order preserving and is onto 
X, let y, in X be such that for all x+y,, y(x)>y,. Then for all x&vi, 
a * y(x) +p * y(x), and thus by Definition 2.2, a * y >@ *‘y. Now suppose 
a * y>/? * y. By Definition 2.2, let y, in X be such that for all x > y,, 
a * y(x) + /3 * y(x). Let y3 = y( yZ). Then since y is order preserving and is onto X, for 
each x > y, there exists u > y, such that x = y(u) and thus 

49 = a * Y(u) > P * v(u) = P(x), 

which by Definition 2.2 yields a >/3. 
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We will now show a 3 p iff y * a > y * j?. Suppose a > /3. By Definition 2.2, let y, 
in X be such that for each x > y,, , a(x) + ,8(x). Then, since y is order preserving, for 
each x > y,,, y + a(x) > y * /3(x), and thus by Definition 2.2, y * a > y * p. Now 
suppose y * a & y * 8. Let y, in X be such that for all x >yI, y * a(x) > y * /3(x). 
Then, since y is order preserving, a(x) > P(x) for all x + y, , and thus by 
Definition 2.2, a > ,4 1 

DEFINITION 2.3. Let (X, $,A) be a structure of linear autornorphisms, a E A, 
and a E X. Then a is said to be a dilution at a if and only if a(u) = a. a is said to be 
a dilution if and only if a is a dilation at b for some b in X. I 

LEMMA 2.5. Let (X, >, A) be a structure of linear uutomorphisms, a and p be 
elements of A, and a be un element of X. Suppose a and /I ure dilutions at a and 
a > j3. Then a(x) > P(x)@ all x > a. 

Proof. To show a contradiction, suppose b in X is such that u < b and 
a(b) <p(b). If a(b) =/3(b), then by 2-point uniqueness a =p, contradicting the 
hypothesis a >/I. Thus a(b) <p(b). Since a > p, by Definition 2.2, let c in X be such 
that b < c and p(c) <a(c). Then by Lemma 2.1, let u in X be such that b < u < c and 
a(u) = B(U). Then by 2-point uniqueness, a = /I, contradicting the hypothesis 
0~. m 

Recall that I is the identity element of A. 

LEMMA 2.6. Let (X, 2, A) be a structure of linear uutomorphisms. Suppose a 
and b are in X, a < b, a and /? are in A, I < a < /?, a is a dilution at a and /3 is a 
dilation at b. Then P(u) <a. 

Proof: /(l(a) # a, since if ,&a) = G, then by 2-point uniqueness ,8 = I, contrary to 
hypothesis. It is also not the case that /I(a) > a, for if /3(a) > a = a(u), then by 
Lemma 2.5, 

a(b) > z(b) = b = B(b), 

which by Lemma 2.1 implies that a(u) = p(u) for some u in X for which a < u < b. 
but since a < j3, for some sufficiently large c in X, b(c) > a(c), and this together with 
a(b) >/I(b) and Lemma 2.1 yields a(u) =p(v) for some v such that b < u < c, which 
in turn by 2-point uniqueness yields a = jI, which contradicts the hypothesis a </I. 
Since 3 is a total ordering on X and &a) # a and it is not the case that p(a) > a, it 
follows that P(u) < a. 1 

DEFINITION 2.4. Let (X, >, A) be a structure of linear automorphisms. Then, by 
definition, for each a in X, let 

A, = (a ) a is a dilation at a) 

and .Fi = (A,, $, *>. 
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LEMMA 2.1. Let (X, +, A) be a structure of linear automorphisms and 
SF = (A, >,*). Then .I? is a nonarchimedean totally ordered group. 

Proof: By Lemma 2.4, F is a totally ordered group. It is well-known that all 
Archimedean totally ordered groups are commutative. Thus to show F is 
nonarchimedean it is sufficient to show it is noncommutative. Let a, b, c, d be 
elements of X such that a < b < c < d. By 2-point homogeneity, let a, p be elements 
of A such that a(a) = a, a(b) = c, /3(b) = 6, p(c) = d. Then 

a*P(b)=c<d=p*a(b), 

and thus a*P#p*a. g 

LEMMA 2.8. Let (X, >, A) be a structure of linear automorphisms. Then for ‘each 
a in X, ga is a Dedekind complete, dense, totally ordered group. 

ProoJ It is immediate that F= is a nontrivial, totally ordered group. 
To show Ya is dense, it is sufficient to show for all 7 and u in A, such that 

I < r,r < u, there exists v in A, such that q < v < u. Thus let q and u be elements of A, 
such that z < q < a, and let d be an element of X such that a < d and a < q(d) < u(d). 
Since (X, 2) is of order type 0, let e in X be such that q(d) <e <u(d). Then by 2- 
point homogeneity let v in A be such that v(a) = a and v(d) = e. Then v is in A,, and 
by Lemma 2.5, q < v < u, i.e., Pa is dense. 

To show Dedekind completeness, let S be a nonempty subset of A, and /3 be an 
element of A, such that /?&a for each a in S. Let b be an element of X such that 
b> a. Then by Lemma 2.5, P(b) > a(b) for each a in S. By the Dedekind 
completeness of (X, +), let 

y = 1.u.b. {a(b) 1 a E S 1. 

By 2-point homogeneity, let y in A, be such that y(b) = y. Let 6 be an arbitrary 
element A, that is an upper bound of S, i.e., 6 is in A, and 6 > a for each a in S. 
Then for all a in S, 

WI > Y = y(b) % a(b). (2.1) 

Thus if we can show that S 3 y, then we have shown that y is the least upper bound 
of S and thus that Pa is Dedekind complete. To show that 6 > y, assume the contrary, 
i.e., y > S. By Definition 2.2, let c be an element of X such that c > b and y(c) > 6(c). 
Now S(b) # y(b), since if 6(b) = y(b) then by 2-point uniqueness 6 = y, contradicting 
y > 6. Thus by Eq. (2. l), 6(b) > y(b). Therefore by Lemma 2.1, let u in X be such that 
b < u < c and 6(u) = y(u). Then by 2-point uniqueness 6 = y, a contradiction. 1 

LEMMA 2.9. Let (X, >, A) be a structure of linear automorphisms. Then for each 
a in X, <Fa is Archimedean. 
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Proof. It is well-known that all Dedekind complete, totally ordered groups are 
Archimedean. Thus by Lemma 2.8, F0 is Archimedean. a 

LEMMA 2.10. Let (X, &, A) be a structure of linear automorphisms. Suppose a 
and j3 are dilations of A such that a > 1 and /I > 1. Then for some m, n in I’, 

a”>/? and /3”>a. 

Proof. Since > is a total ordering on A, either a >/I or /3 > a. Without loss of 
generality, suppose a > /I. Then a2 >/I. Thus we need to only show /I” > a for some n 
in I+. If/?= a, this immediately follows since then /I’ > a. Thus suppose a > 8. 

Let a, b be elements X such that a is a dilation at a and /I is a dilation at b. If 
a = b, then since Ya = .5?$ is Archimedean, p” > a for some n in It. Thus assume 
a -f b. There are two cases to consider. 

Case 1. a < b. Then since a> z, by Lemma 2.5, a(b)> z(b) = b. Thus 
P(b)< a(b). Let c, d be elements of X such that b < c and a(c) <d. By ‘L-point 
homogeneity, It y in A be such that y(b) = b and y(c) = d. Then y is in A, and 

y(b) < a@) and 44 < Y(C), 

which by Lemma 2.3 yields y > a. Since by Lemma 2.9, F* is Archimedean, let n in 
It be such that /I” > y. Then /?’ > a. 

Case 2. b < a. By Lemma 2.6, a(b) < b. Since a is onto X, let z in X be such that 
a(z) = b. Since a(b) < b = a(z) and a is order preserving, b < z. Let y in X be such 
that y < b. By 2-point homogeneity, let y in A be such that y(y) = y and y(b) = z. 
y # I since y(b) = z > b. Also is is not the case that y < I, since then y(c) < z(c) = c for 
some c in X such that b < c and since z(b) = b < z = y(b), it would then follow from 
Lemma 2.1 that y(u) = I(U) = u for some b < u < c, which by 2-point uniqueness 
implies that y = I, which contradicts y < I. Thus, since 2 is a total ordering on X, 
y>r. Thus a*y>z, and since a*y(b)=a(z)=b, a*y is in A,. Since by 
Lemma 2.9, F* is Archimedean, let n in I+ be such that p” > a * y. Then b” > a since 
a*y>a. I 

LEMMA 2.11. Let (X, >, A) be a structure of linear automorphisms. Then for 
each a in A, if a > I then there exists a dilation /I in A such that /I > a. 

Proof. Let a be an arbitrary element of A such that a > z. Since a > I, let a in X 
be such that a < a(a). Let b in X be such that a < b and let c be an element of X such 
that a(b) < c. By 2-point homogeneity, let /3 in A be such that P(a) = a and P(b) = c. 
Then p is a dilation in A, and P(a) < a(a) and a(b) <P(b). By Lemma 2.3, p > a. 1 

DEFINITION 2.5. Let (X, >, A) be a structure of linear automorphisms. a in A is 
said to be a positiue infinitesimal if and only if a > I and for each dilation /I > I and 
each n in I+, /I > a”. a in A is said to be infinitesimal if and only if a is a positive 
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infinitesimal or a = I or a-’ is a positive infinitesimal. y in A is said to be non- 
iqjinitesimal if and only if y is not infinitesimal. I 

LEMMA 2.12. Let (X, >, A) be a structure of linear automorphisms and a be an 
element of A. Then a is a positive infinitesimal if and only if a > I and for some 
dilation j3 in A, p > a” for each n in I’. 

ProoJ: Suppose a is a positive infinitesimal. Then it is immediate from 
Definition 2.5 that for some dilation /3 of A, p > a” for all n in It. 

Suppose a is in A, a > 1, /3 is a dilation in A, and /I > a” for all n in I+. Then p > 1. 
Let y be an arbitrary dilation in A such that y > 1. By Lemma 2.10, let k in If be 
such that yk > 0. Then for each n in I+, yk >/I > ak”‘, from which it follows that 
y>a” for all n in I+, which by Definition 2.5 implies that a is a positive 
infinitesimal. I 

LEMMA 2.13. Let (X, >, A) be a structure of linear automorphisms and a, p be 
injinitesimal elements of A. Then a-l and a * p are infinitesimal. 

Proof It is immediate from Definition 2.5 that a -’ is an infinitesimal. There are 
three cases to consider. 

Case 1. a * /I = 1. Then by Definition 2.5, a * p is infinitesimal. 

Case 2. a * /I> 1. Then either a >/? or /I+ a. Without loss of generality, assume 
a > /I. Then a* 8 a * /I, and since a is a positive infinitesimal, 

y > a*’ = (a2)n 

for each dilation y in A such that y > I and each n in I+, and thus y > (a * /3)” for 
each dilation y > I and each n in I+. Thus a * p is infinitesimal, 

Case 3. a*/?<t. Then (a*/3)-‘=/3-‘*a-‘>I, and thus byCase2, (a*/?)-’ 
is infinitesimal, which implies a */I is infinitesimal. I 

LEMMA 2.14. Let (X, &-, A) be a structure of linear automorphisms. Then there 
exists a positive infinitesimal in A. 

ProoJ: By Lemma 2.7, F = (A, +, *,) is nonarchimedean. Thus let a, p be positive 
elements of F such that a” <p for all n in I+. By Lemma 2.11, let y be a dilation in 
A such that /3< y. Then a” < y for all n in I+, which by Lemma 2.12 yields that a is 
a positive infinitesimal. I 

LEMMA 2.15. Let (X, >, A) be a structure of linear automorphisms and a, j3 be 
elements of A. Suppose a is infinitesimal and p is noninfinitesimal. Then p-’ * a Y 0 
is infinitesimal. 

Proof. If /?-‘a/?= I, then p-lap is infinitesimal. So suppose p-‘a/?# 1. By 
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Lemma 2.11, let y be a dilation in A such that y > /3, fl- ‘, a. Then, since a is 
infinitesimal, y > a 3n for each n in I+. Thus for each n in I+, 

y3 > /?-1a3nfl = (p-1aj3)3”, 

and therefore 

Similarly, for each n in It 

y > (/?-‘a-‘@” = [@-‘0$-‘1”. 

Since either p-lap> z or @-‘a/3-’ > I, we have shown (using Lemmas 2.12 and 
2.13) that both ,&lap and (p-lap)-’ are infinitesimal. 1 

LEMMA 2.16. Let (X, >, A) be a structure of linear automorphisms and a, /3 be 
elements of A. Suppose a, p are infinitesimals and a(x) = p(x) for some x in X. Then 
a =/3. 

Proof. Let x in X be such that a(x) = p(x). Then p-’ * a(x) = x. Thus p-’ * a is 
a dilation. By Lemma 2.13, 8-l * a is infinitesimal. Since I is the only infinitesimal 
dialtion, p-’ x a = I, and thus a = p. I 

LEMMA 2.17. Let (X,>, A) be a structure of linear automorphisms, a be an 
element of X, and a in A be a positive infinitesimal. Then for each x in X, if x > a, 
then there exists /? in A, such that p-’ * a * /I(a) =x. 

Proof. Let x be an arbitrary element of X such that x > a. Since a > I, by 
Lemma 2.16, a(a) > a. If a(u) = a, then a = I by Lemma 2.16. If a(u) < a, then since 
a > I, a(b) > b for some b > a, which by Lemma 2.1 yields a(u) = u for some u in X, 
which by Lemma 2.16 yields a = I, which is impossible. Thus a(a) > a. Therefore by 
2-point uniqueness, let /? in A be such that /3(x) = a(a) and P(a) = a. Then p is an A,, 
ando-‘*a*&a)=x. I 

LEMMA 2.18. Let (X, >, A) be a structure of linear automorphisms. Then for 
each x, y in X, there exists an infinitesimal a in A such that a(x) = y. 

Proof: Let x, y be arbitrary elements of X. There are three cases to consider: 

Case 1. x < y. By Lemma 2.14, let y be a positive infinitesimal. By Lemma 2.17, 
let p be an element of A, such that p-’ * y * p(x) = y. Then by Lemma 2.15. 
/?-’ * y * p is an infinitesimal. 

Case 2. x = y. Then z(x) = y and z is an infinitesimal. 

Case 3. x > y. Applying Case 1 to y <x, we can find an infinitesimal a such that 
a(y) =x. Then a-‘(x) = y and by Lemma 2.13, a-l is an infinitesimal. m 
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LEMMA 2.19. Let (X, >, A) be a structure of linear automorphisms. Suppose a, b 
are infinitesimal elements of A. Then a(x) %/I( x ) f or each x in X tf and only tfa >/I. 

Proof: Suppose a(x) >/3(x) for each x in X. Then by Definition 2.2, a >/?. 
Suppose a B/3. We will show a(x) > /I(x) for each x in X by contradiction. 

Suppose a in X is such that a(a) <P(a). Then a # j3 and thus a > p. Therefore by 
Definition 2.2 let b in X be such that a < b and p(b) < a(b). Then by Lemma 2.1, let 
tl in X be such that a(u) = p(u). Then by Lemma 2.16, a = j?, which is impossible 
since a(x) < /3(a). 

LEMMA 2.20. Let (X, >, A) be a structure of linear automorphisms and M be the 
set of inJinitesima1 elements of A. Then the following three statements are true: 

( 1) (M, >) is of order type 8. 

(2) (M, +, *) is a Dedekind complete totally ordered group. 

(3) (M, *) is commutative. 

Proof (1) Let a be an element of X and let f be the function from A into X 
defined by f(a) = a(a) for all a in A. Then by Lemma 2.18 and 2.19, f is an 
isomorphism of (A,>) onto (X, +), and since (X, >) is of order type 0, it then 
follows that (A, >) is of order type 0. 

(2) (M, *) is a group by Lemma 2.13, and (M, >, *) is therefore a totally 
ordered subgroup of (A, >, *> by Lemma 2.4. (M, >) is Dedekind complete by 
Statement 1. 

(3) By Statement 2, (M, 3, *) is a Dedekind complete totally ordered group, 
and it is well-known that all such groups are commutative. u 

Some of the more important facts of the previous lemmas are summarized in the 
following theorem: 

THEOREM 2.1. Suppose (X, >, A) is a structure of linear automorphisms and M 
is the set of infinitesimals of A. Then the following three statements are true: 

(1) (M, *) is commutative. 

(2) M satisfies l-point homogeneity and l-point uniqueness. 

(3) For each a in M and each /I in A - M, b-’ * a * /I is in M. 

Proof Statement 1 follows from Lemma 2.20, Statement 2 from Lemmas 18 and 
16, and Statement 3 from Lemma 15. a 

THEOREM 2.2. Suppose .Z = (X, >, R , , R 1 ,...) is a linear structure. Then there 
exists a numerical structure j? = (Re, >, S,, S,,...) such that the following three 
statements are true: 

(1) .K and j?J are isomorphic and all automorphisms of $? are of the form 
a(x) = rx + s, where r > 0 and s E Re. 
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(2) There exists a jY-isomorphic representation of S, and for all j% 
isomorphic representations q and y of X, there exist r > 0 and s in Re such that 
y= rq -t s. 

(3) For each r > 0 and each s in Re, a defined by a(u) = ru + s for u in Re is 
an automorphism of $2 and rq + s is jY’-isomorphic representation for .K for each 
,$?-isomorphic representation cp of X. 

Proof. Let A be the set of automorphisms of Z. Then (X, >, A) is a structure of 
linear automorphisms. Let M be the set of infinitesimal elements of A. Then by 
Theorem 2.1, (44, *) is commutative and A4 satisfies l-point homogeneity and l-point 
uniqueness. Thus X and M satisfy the hypotheses of Theorem 2.12 of Narens (1980), 
and therefore by that theorem let H= (Ret, 2, RI, Ri,...) be a numerical structure 
and (p be an M-representation for Z that is an isomorphism and such that for each a 
in M, (p(a) is an automorphism of JF that is a multiplication by a positive real, and 
for each r in Re+, multiplication r is (p(4) for some ,R in M. Let $Y be the log 
transformation of M, i.e., Re = log(Re+), > = log(>), S, = log(R r), S, = log(R,),..., 
and .g = (Re, 2, S,, S,,,..). 

(1) Since log is a one-to-one function, j? is isomorphic to J” and therefore to 
.F. Let q be an isomorphism of ,5!%’ onto j?. Let A’ be the set of automorphisms of 
.A-. Let M’ = (v(a) 1 a E M) be the infinitesimal automorphisms of A’. Since 
multiplications by positive reals were the infinitesimal automorphisms of -4”; and 
since j?Z is the log transformation of X, M’ consists of additions by reals, i.e., each a 
in M’ is of the form a(x) =x + s for some s in Re, and all functions on Re of this 
form are in M’. Now let p be an arbitrary element of A’ -M’. By Statement 3 of 
Theorem 2.1, j.? * a * /I-’ is in M’ for each a in M’. Thus for each a in M’, let y, in 
M’ be such that 

a*a*p-‘=y,. 

Then 

/?*a=y,*B. (2.2) 

Define f on Re as follows: for each a in M’, if a(x) = x + r, then y,(x) = x + f(r). 
Then by Eq. (2.2), for each x and r in Re, 

Ptx + 4 = B(x) +ftr). (2.3) 

Putting x = 0 in Eq. (2.3), we get 

P(r) = P(O) +f(r). 

Thus 

P(x + r) = P(x) + l/W) - PtO)l, 
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and therefore, 

P(x + r) - P(O) = I&-> - P(O)1 + IPW - P(O) 1. 

Letting g(u) = p(u) -/I(O), Eq. (2.4) becomes 

(2.4) 

g(x + r> = g(x) + g(r). (2.5) 

Equation (2.5) is called Cauchy’s Equarion. Since /3 is an automorphism of JP, it is 
order preserving, and thus g is strictly monotonic. It is a well-known theorem of 
analysis that a strictly monotonic g that satisfies Eq. (2.5) for all x, r in Re is of the 
form g(u) = tu for some t > 0. Thus for some t > 0, j?(u) = cu + p(O) for all u in Re. 

(2) An isomorphism of .,% onto %/ is a jP/-isomorphic representation for &;‘, 
and such an isomorphism exists by Statement 1. Suppose o and y are y-isomorphic 
representations for X. Then it is easy to verify that ~(0-l is an automorphism of j?, 
and thus by Statement 1 there exist r > 0 and s in Re such that for each t in Re, 

yp-l(t) = rt + s, 

and letting x = u,-‘(t), it then follows that 

y(x) = y(x) + s. 

(3) Let r > 0 and s be in Re. 

Let a be defined by a(u) = ru + s for u in Re. We will show a is an automorphism 
of ,$Y. Let B, be the set of automorphisms of j% that are dilations at 0. By Statement 
1, each p in B, is of the form j?(u) = IU + q for some f > 0 and q E Re, which by 
p(O) = 0 reduces to p(u) = tu for some t in Re. Thus each element of B, is a 
multiplication by a positive real. Since by Lemma 2.8, (B,, 2, *) is a Dedekind 
complete, dense, totally ordered group, it is not difficult to show using standard 
Dedekind completeness arguments about the positive reals that B, consists of all 
multiplications by positive reals. Thus in particular, /3,, defined by a,(u) = ru for u in 
Re, is in B,. By construction, each infinitesimal element of j? is of the form u(u) = 
u + w  where w  is some element of Re. Let M’ be the set of infinitesimal elements of 
9. Since by Lemma 20, (M’, >, *) is a Dedekind complete, dense, totally ordered 
group, by the same line of reasoning as applied to (B,, 2, *) it follows that M’ 
consists of all additions by reals, i.e., the function y(u) = u + q is in M’ for each q in 
Re. In particular, a,, defined by a,(u) = u + s, is in M’. Then a is an automorphism 
of j? since 

a(u) = ru + s = a, * /3,(u), 

where a, E M’ and /I, E B,. 
Let o be an arbitrary $?-isomorphic representation for Z. By the above, let a be 

the automorphism of j? defined by a(u) = ru + s for u in Re. It is easy to verify that 
v = ay, is a $Y-isomorphic representation of Z since both a, and a are ‘structure 
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preserving. Since for each x in X, 9(x) = a&x) = F-~(X) + s, it follows that 
v=rcp+s. I 

LEMMA 2.21. Let (2, >,, D) be a structure of linear automorphisms. Then each 
element of D is either a dilation or an infinitesimal. 

Proof. The proof of Statement 1 of Theorem 2.2 only used assumptions about the 
structure .F = (X, >, R,, R, ,... ) that were identical (X, >,A) being a structure of 
linear automorphisms where A is the set of automorphisms of .K. Thus by a proof 
that is almost identical to the proof of Statement 1 of Theorem 2.2, (2, >), 0) is 
isomorphic to a structure of the form (Re, >, 0’) where each automorphism a in D’ 
is of the form a(x) = rx + s for some r > 0 and s in Re. Using this result, it is easy to 
verify that all automorphism in D’ are either dilations or infinitesimals, which by 
isomorphism yields that all automorphisms in D are either dilations or 
infinitesimals. I 

THEOREM 2.3. There is no structure W = (Y, >, S, , S, ,...) such that the 
following three conditions simultaneously hold: 

(1) (Y, >) is of order type 8. 

(2) @’ satisfies 3-point homogeneity. 

(3) F satisfies 3-point uniqueness. 

Proof. Let a, b, d be elements of Y such that a < b < d. Let 

H = {a 1 a is an automorphism of jP’), 

H, = {a ( a E H and a(d) = d}, 

and 

X= (-v]yE Yandy>d). 

Let “a r X” stand for the restriction of a to X, and let 

A = (fi )/I = a r X for some a in Hti). 

Then (X, >, A) is a structure of linear automorphisms. Let 

M = (a 1 a is an infinitesimal element of A}. 

Then by Theorem 2.1, M satisfies l-point uniqueness. Let 

H,,, = {a ( a E H, a(a) = a, and a(d) = d), 

H,,, = {a 1 a E H, a(b) = b, and a(d) = d), 

M,=(j3//3=arXforsomeainH,.,}, 
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and 

Mb = (,fl) p = a r X for some a in Hb,d}. 

Then 44, G A and Mb CA. Let y be an arbitrary element of M, and y’ in Ho,d be 
such that y = y’ r X. If for some x in X, y(x) =x, then y’(a) = a, y’(b) = b, and 
y’(x) = x, which by 3-point uniqueness in 9 yields y’ = I and thus y = 1. Therefore 
the only dilation in A that is in M, is the identity. Thus by Lemma 2.21, M, s M. 
Similarly M, c M. Let U, u be elements of X such that u < u. By 3-point homogeneity 
in p, let a’,/?’ in H be such that 

a’(a) = a, u’(d) = d, a’(u) = u, 

and 

P’(b) = b, P’(d) = 4 P’(u) = v, 

and let a = a’ r X and /? = /I’ /’ X. Then a E M, and /3 E Mb, and thus a and /3 are in 
M. Since a(u) = p(u) and (by Theorem 2.1) M satisfies l-point uniqueness, a = /?. 
Therefore a(u) = p(u). Thus a’(d) = P’(d), a’(u) =/I’(u), and a’(u) = p’(u), which by 
3-point uniqueness yields a’ = /I’. Thus a’(b) =/3’(b) = b. Therefore a’(a) = a, 
a’(b) = b, and a’(d) = d, which by 3-point uniqueness yields a’ = z. But this is 
impossible since a’(u) = v > U. 1 

THEOREM 2.4. Suppose 3?C = (X, >, R, , R, ,...) is a monotonic structure. Then 
there exists Jv‘= (Re’, 2, S,, S, ,... ) such that the following two statements are true: 

(1) There exists an isomorphic N-representation for X. 

(2) The set of isomorphic x-representations for .ZK forms an ordinal scale, i.e., 
(i) for each isomorphic N-representation qr of Z and each strictly increasing function 
Ffrom Re+ onto Re+, F(p) is an isomorphic N-representation of 3?, and (ii) for all 
isomorphic N-representations cp and e of 37, there exists a strictly increasing 
function H from Re’ onto Re’ such that (p = H(w). 

Proof (1) Since (X, >) is of order types 8, by Theorem 1.1, let y be an 
isomorphism of (X, >) onto (Re+, 2). Let M= (Re+, 2, y(R,), y(R,) ,... ). Then y is 
an isomorphic N-representation for X. 

(2) (i). Suppose u, is an isomorphic N-representation of Z and F is a strictly 
increasing function from Re+ onto Re +. For each x in X, let v(x) = F[&x)]. We will 
show that w  is an isomorphic N-representation for Z. It immediately follows that w  
is an isomorphism from(X, +) onto (Re +, >). Let a = (p-iv. Then it easily follows 
that a is an automorphism of (X, >), We will now show that a is an automorphism 
of A!?. Since A!? is a monotonic structure, (X, >) is of order type 8. Thus by 
denumerable density, let Y be a subset of X of order type q such that for each U, u in 
X, if u > v then for some y in Y such that u > y > U. Then, since a is strictly 
increasing, by q-homogeneity in 3, let /I be an automorphism of A!7 such that 



SCALES OF MEASUREMENT 275 

p(y) = a(y) for all y in Y. Since /3 and a are both strictly increasing and agree on an 
order dense subset, Y, of (X, >), it is easy to show that fi = a. Thus a = (p-‘y is an 
automorphism of 2K. Therefore, cpa = cp [rp -I w] = w  is an isomorphic .-4 ‘- 
representation for %. (ii). Now suppose (p and v are isomorphic X-representations 
for X. Define H on Re+ by: for each r in Re+, H(r) = q(x) where x in X is such 
that w(x) = r. Then H is a strictly increasing function from Re’ onto Re’ such that 
rp = WY). I 
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