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A review is presented of a number of recent results concerning fundamental measurement 
structures with a particular emphasis on generalizations of physical measurement. Relational 

structures are classified in terms of richness and redundancy of their automorphism groups 
(i.e., in terms of their symmetries). By means of this classification, the possible types of 

measurement scales are described, and the possibilities for structures with concatenation 

operations (either associative or nonassociative and either positive or intensive) and for 
conjoint structures whose automorphisms factor into component automorphisms are explicitly 

spelled out. Certain conjoint structures with concatenation operations on components are 
viewed as generalizations of classical physical measurement and some of their most important 

algebraic and representational properties are explored. 

0. INTRODUCTION 

The purpose of this paper is to summarize in one place the major results that the 
authors and y. Cohen have uncovered about the possibilities of generalizing the 
classical measurement structures of physics. The research is not fully complete in 
ways that will be indicated, but there is sufficient understanding about the options 
available to other sciences that it seems useful to us to bring the results together 
unencumbered by all of the technical detail found in the several research papers. 

We begin with a brief summary of what we believe to be the salient features of 
classical physical measurement, those features that among other things led to the 
structures of units with which we are all familiar from elementary physics. It is 
divided into five remarks. 

First, the measurement of some one-dimensional attributes, such as length and 
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mass, rests upon having both a qualitative ordering, denoted 2, of one object having 
“more of the attribute” than another, and a qualitative combining operation, denoted 
0. The operation is such that if a and b are two objects exhibiting this attribute, then 
a o b is an object in the system that also exhibits the attribute. Classically, these 
structures are such that they can be represented numerically by a mapping onto the 
positive reals, Re + , in which 2 is replaced by > and 0 by +. Moreover, any two such 
representations onto (Ret , 2, +) differ only by a positive factor. Representations 
that differ in this way are said to form a ratio scale. The theories of qualitative 
structures (A, 2, 0) having such representations onto (Re+, >, +) are generally 
called extensive measurement. 

Second, the measurement of some other one-dimensional attributes rests upon 
factoring the underlying objects into two or more components that each affect the 
attribute in question. Such qualitative structures for two component attributes are of 
the form (A x P, k), where A and P are nonempty sets and 2 is an ordering of 
A x P. Examples of this are momentum with factors of mass and velocity and kinetic 
energy with factors of mass and the square of velocity. The representations found in 
classical physics are mappings va and wP from A and P, respectively, onto Re + such 
that va vP and > represents 2. In other words, the Cartesian product is represented 
by a numerical product. Any two representations of this type differ by a positive 
factor and a positive power, i.e., x -+ ax?, where a > 0 and y > 0. These are called log- 
interval scales. An equally satisfactory representation, but not the one conventionally 
employed, is obtained by taking the logarithm, log v/A + log w,,, which is order- 
preserving and unique up to a positive linear transformation. The set of such 
representations is called an interval scale. Theories of qualitative structures that 
admit such “additive” representations are collectively known as additive conjoint 
measurement. Note that while the theory concerns the measurement of a single new 
dimension, A x P, it does so in terms of the components, A and P, so in a sense such 
“conjoint” measurements are the beginning of something multidimensional. 

Third, all measurements of physical attributes can be achieved in one of these two 
ways, and some can be measured both ways. For example, mass is extensive and also 
conjoint since it can be affected by two factors: the substance employed and the 
volume of it used. When two such representations exist, it turns out that they differ 
by a positive power relation. That is, if v, is the extensive measure of the attribute and 
li/ = v/~ ‘l/p is the conjoint one (using the multiplicative representation), then for some 
positive constants /I and p, w  =/I@‘. The extensive operation may exist on a factor, 
say A, in which case the extensive measure and the conjoint one on the factor vzr are 
related by a power transformation. This fact implies a distribution property that can 
be given a qualitative interpretation. Let w, x, y, z be values of v,.~ and U, v those of 
vlP. Suppose they are such that 

WPU’ = yq)’ and x”u’ zz zpvr. 

Taking the l/p root, adding, and then raising to the p power yields the consequence 

(w + xy ur = (y + zy 2,‘. 
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This distribution property recast in qualitative structures will play an important role 
in our development. Note that any ratio scale transformation of the extensive 
structure appears as that factor raised to the power of the conjoint structure 

P(ap,>” wp = a*&2 wp = aPvA VP. 

Fourth, physics has uncovered a large number of triples of attributes of the sort 
just mentioned. They are of the form (A x P, 2, 0, oA, 0,) where at least one of the 
operations 0, oA, and op on A x P, A, and P, respectively, is assumed to exist. Taken 
together these triples form a tightly interlocked network of scales that can, in fact, be 
imbedded in a finite-dimensional, Euclidean, multiplicative vector space. Moreover, a 
set of extensive scales vi, wZ ,..., wN can be chosen as the basis of that space, and all 
other scales are then expressed as products of powers of these base scales. 

This fact is reflected in the units of physical scales which can be expressed as 
products of powers of the basis units, usually chosen to be grams, meters, seconds, 
etc. 

Fifth, physical laws that are formulated in terms of these measures are assumed to 
exhibit a principle called dimensional invariance, which states a relation among 
measures is a possible law if it is invariant under any change of units of all the 
measures generated by changes in the units of the basis scales. This is invoked 
because these choices of units only reflect arbitrary conventions in the numerical 
representation of the qualitative information. This postulate was shown by 
Buckingham (1914) to lead to a very useful representation of all possible physical 
laws in terms of dimensionless products of powers of the relevant variables. His result 
is the mathematical key to the powerful method of dimensional analysis. 

The topic of this paper is the possibility of useful generalizations of these kinds of 
structures. This is of interest primarily in nonphysical sciences where the structures of 
attributes do not closely mimic those of physics. The issue of generalization is, as 
always, one of relaxing some aspects while retaining others-relaxing those that do 
not seem essential while retaining those we believe to be essential. In what follows we 
shall retain four major features. 

The first is that we continue to work primarily with ratio and interval scales. These 
reflect aspects of symmetry in the structures employed, and we shall come to 
understand very completely why these two types of scales are so important. 

The second is that we focus on concepts that exhibit invariance under ratio and 
interval scale transformations. This is not only natural to do because of the principle 
of dimensional invariance, but it arises from much more general considerations about 
the measurement-theoretic concept of meaningfulness that infuse our discussions 
throughout this paper. (A technical development of results that we have about 
meaningfulness will not, however, be given in this paper.) 

These two features are, in our view, essential to retain, and perhaps they are the 
only ones that should be. In reality, however, our work has retained two others. 
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The third feature concerns the qualitative distributive interlock of an operation on 
one factor of a conjoint structure with that structure. That there are important 
nondistributive structures is not to be questioned since in relativistic physics the 
operation of combining (“adding”) velocities is not distributive in the additive 
conjoint structure: distance = velocity x time. However, at this time we do not know 
how to handle such structures measurement-theoretically, although we are working on 
the problem. 

The fourth feature assumes that the conjoint structures are “solvable” in the sense 
that given any three of a, b in A, p, q, in P we may find the fourth that fuhils the 
equivalence up - bq (where we have abbreviated the more usual notation (a,~) E 
A x P by up). A number of results hold for much weakened versions of solvability, 
but many of the most important ones assume it and are not valid without it. For a 
time we believed that weakening the solvabilty assumption was largely a technical 
matter and that the results would differ little from the unrestrictedly solvable case. 
We now know this to be false, and in some of our future research we hope to gain a 
much deeper understanding of the possibilities that arise with weaker forms of 
solvability. 

The paper proceeds as follows: In Section 1 we set up the general mathematical 
framework of the representation homomorphisms of relational systems by numerical 
relational systems. In Section 2 we provide a classification of the uniqueness of the 
representations into different groups of transformations which, when the represen- 
tations are onto the real numbers, corresponds to aspects of the automorphism groups 
of the qualitative structures. In Section 3 these theorems are applied to represen- 
tations of general concatenation structures in order to classify the interesting 
possibilities. The concept of extensive structures is much generalized in Section 4. and 
we characterize these monotonic operations that have a ratio scale representation 
onto Ret. In Section 5, we present incomplete results about ordered measurement 
structures with an intensive operation, i.e., an operation 0 such that for all x >p, 
x > x o y, y o x > y. Section 6 presents generalizations of conjoint structures. and 
their relation to the structures of Section 4 is described. In Section 7 we state more 
precisely what dimensional invariance is. Section 8 discusses the concept of 
distributivity as a way of interlocking the operations with the conjoint structure, and 
we see how much it tends to force us toward additive conjoint structures. Because the 
automorphisms of conjoint structures that play a role in the discussion of physics are 
all factorizable into separate mappings on the components, we examine more fully 
and abstractly in Section 9 those conjoint structures that are well endowed with 
factorizable automorphisms. The final section provides a summary and an indication 
of what needs to be done next. 

1. REPRESENTATIONS OF RELATIONAL STRUCTURES 

A central concept of measurement is that of a representation of a relational 
structure. The relational structure is to be thought of as an idealization of an 

480/27/l-4 
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empirical setting. It consists of a nonempty set of (empirical) objects together with a 
set of (empirical) relations on those objects. A representation (or scale) for this 
structure is then an assignment of numbers to the objects of the structure that is 
consistent with the relations of the structure. The next two definitions precisely 
capture these concepts. 

DEFINITION 1.1. &’ = (A,RO, R, ,..., Ri,...) is said to be a relational structure if 
and only if A is a nonempty set and R,, R , ,..., R, ,..., are finite relations on A. A is 
called the domain of discourse of ZY and R,, R, ,..., Ri ,..., the relations of ;cP. 
Elements of A will often be referred to as “elements of _cP.” & is said to be a weakly 
ordered (respectively, totally ordered) relational structure if and only if R, is a weak 
(respectively, a total) ordering. 

In Definition 1.1 some or all the relations Ri may be 0-ary relations, that is, may 
be elements of A. However, each relation Ri must be an n-ary relation for some 
nonnegative integer n. Some or all of the R, may be operations since each n-ary 
operation on A may be considered as a (n + 1)-ary relation. 

DEFINITION 1.2. Let &‘=(A,R,,R ,,.. ., Ri ,...) and let ,Y-= (N, S,, S, ,..., Si ,...) 
be a numerical relational structure (that is, a relational structure such that NS Re). cp 
is said to be a homomorphism from d into ,N- if and only if cp is a function from A 
into N, for each i and n, Ri is an n-ary relation iff Si is an n-ary relation, and for 
each i, if Ri is an n-ary relation and a, ,..., a,, is in A, then 

Ri(a, 3-3 a,> iff si(P(alL da,)>. 

cp is said to be a ,4-representation for J@’ if and only if cp is a homomorphism of M’ 
into -4, For the case of weakly ordered or totally ordered &, we will assume by 
convention that the relation S, of the numerical structure is the natural numerical 
ordering relation >. 

Once an appropriate numerical structure ,N” is chosen, the N-representations for a 
given empirical situation d will be considered as the permissible assignments of 
numbers to the objects of J&‘. This characterization of “permissible assignment” is 
pervasive throughout the entire measurement literature. 

The existence of a numerical representation for a weakly ordered empirical 
structure imposes certain constraints on that structure. These are captured in 

THEOREM 1.1. Suppose & = (A, 2, R,, R, ,...) is a weakly ordered relational 
structure. Then the following two statements are equivalent: 

(1) M’ has a M-representation for some numerical structure J-; 

(2) (A, 2) has a countable dense subset, i.e., there exists a finite or 
denumerable subset B of A such that for each u, v in A, if u > v, then there exists y in 
B such that u 2 y 2 v. 
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The proof of Theorem 1.1 is essentially given in Cantor (1895). A more accessible 
proof is given in Section 2.1 of Krantz et al. (197 1). 

Frequently we will want to consider cases where the representations of a totally 
ordered empirical structure are onto a numerical structure with domain of discourse 
an open interval of reals. The following definition and theorem characterizes such 
situations: 

DEFINITION 1.3. (A, 2) is said to be of order type 8 if and only if the following 
four conditions hold: 

(i) 2 is a total ordering on the nonempty set A ; 

(ii) (A, 2) has no maximal or minimal element; 

(iii) there exists a denumerable subset B of A such that for all U, u in A, if 
u > U, then there exists y in B such that u > y > v; 

(iv) (A, 2) is D d k’ d e e m complete: each bounded nonempty subset of A has a 
least upper bound. 

A total ordered relational structure (A, 2, R 1, R 1 ,...) is said to be of order type 9 if 
and only if (A, 2) is of order type 8. 

(The phrase “order type” is used in set theory to refer to a class of structures 
isomorphic to a given ordered structure. Those isomorphic to the reals were called 
type B by Cantor and others and called type I. by other set theorists.) 

THEOREM 1.2. Suppose ~2 is a totally ordered relational structure. Then the 
following two statements are equivalent: 

(1) ~-4 has a representation onto a numerical structure with domain of 
discourse an open interval of reals. 

(2) S’ is of order type 8. 

Theorem 1.2 was originally proven in Cantor (1895). A proof can also be found in 
Narens (1983). 

2. RATIO, INTERVAL, AND ORDINAL SCALABILITY 

DEFINITION 2.1. Suppose J is a weakly ordered relational structure. XZ’ is said 
to be ratio scalable if and only if there exists a J*-representation for L&’ and the 
following two conditions hold for all J-representations rp, I// of &‘: 

(1) for each r E Re+, rq is a ,&representation; 

(2) there exists r E Re + such that u, = rv. 

,rd is said to be positively ratio scalable if and only if conditions (1) and (2) hold and 
the domain of discourse of -4“ is a subset of Re’. 
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& is said to be interval scalable if and only if there exists a, 4 --representation for 
&’ and the following two conditions for all -4 -representations p, v of .@‘: 

(1’) for each rE Re+, s E Re, r-y, + s is a >Krepresentation; 

(2’) there exist r E Re+, s E Re such that rp = rv + s. 

.KZ’ is said to be ordinal scalable if and only if there exists a C [ .-representation for 
,d and the following two conditions hold for all .4 --representations q, I+Y of ,cJ: 

(1”) for each strictly increasing f from Re onto Re,f(cp) is a *k--representation 
of J/; 

(2”) there exists a strictly increasingffrom Re onto Re such that v, =f(w). 

Note that in the definition of ordinal scalability given, condition (2”) requires that 
the function f be onto Re. 

DEFINITION 2.2. Suppose ~2 = (A, R,, R, ,..., Ri,...) is a relational structure. An 
endomorphism of &’ is an homomorphism of .c3 into itself. Formally, a is an 
endomorphism of & if and only if a is a function from A into A such that for all 
relations Ri of ~8’ and all a, ,..., ani in A, 

Ri(a, T.v.9 a,J iff Ri[a(aI),..., a(a,,)]. 

An endomorphism of JZ? that is one-to-one and onto A is called an automorphism of 
d-. 

Automorphisms are, in fact, isomorphisms of the structure with itself. In other 
words, for each automorphism the structure exhibits a symmetry that allows itself to 
be reflected upon itself by that automorphism. The study of symmetry in a structure 
and the study of its automorphisms are exactly the same topic. 

If all ./Y-representations of a totally ordered relational structure are onto ,f ‘, then 
there is, as the reader can readily verify, a simple relationship between the 
automorphisms of &’ and the . C-representations of &‘, namely, for all ~ I ‘- 
representations cp and w of ,cP, q-‘v is an automorphism of M’. and for all 
automorphisms a of &’ and all ,b-representations (a of &‘, qa is a ~ +-representation 
of d, i.e., there is a natural one-to-one correspondence between the , t .- 
representations and automorphisms of ,d. For the cases of ratio, interval, and ordinal 
scalability, this relationship can be exploited for Lo of order type 8, as is shown in 
the next two theorems. 

THEOREM 2.1. Suppose xf is of order type 0 and is either positively ratio, 
interval, or ordinal scalable, and suppose XI’ has at least one &“-representation that is 
onto -47 Then all ,Krepresentations of d are onto ,4’-. 

DEFINITION 2.3. Let A4, N be nonnegative integers and &’ be a totally ordered 
relational structure. M’ is said to satisfy M-point homogeneity if and only if for all 
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x, ,..., x,, y, ,..., y, in &, if x, > x2 > . +. > xM and y, > y? > ..a > yw, then there 
exists an automorphism GI of s&’ such that a(~,) = yi. J is said to satisfy N-point 
uniqueness if and only if for all automorphisms /I and y of ,sP, if /I and y agree at N 
distinct points of -M’, then j? = y. 

Note: If cd is M-point homogeneous and N-point unique, then A4 < N. 

Suppose .r9 is of order type 0. It is not difficult to show that if -2 is positively 
ratio scalable, then it satisfies l-point homogeneity and l-point uniqueness; and if it 
is interval scalable, then it satisfies 2-point homogeneity and 2-point uniqueness. It is 
a rather interesting and important fact that the converses of these statements are also 
true: 

THEOREM 2.2. Suppose ,d is of order type 8. Then the following two statements 
are true: 

(i) .,& is positively ratio scalable tf and only ~fit satisfies l-point homogeneity 
and 1 -point uniqueness; 

(ii) &’ is interval scalable tf and only tfit satisfies 2-points homogeneit?, and 2- 
point uniqueness. 

Proof Theorems 1.2 and 1.3 of Narens (1981b). (The proof of part (i) appears in 
Narens. 1981a.) 

Ordinal scalability requires a form of infinite point homogeneity and uniqueness. A 
characterization of it using such concepts is given in Theorem 1.5 of Narens (1981b). 

Ratio, interval, and ordinal scalability are widely used throughout science. The 
following somewhat surprising theorem perhaps indicates why other forms of scale 
types may have not arisen: 

THEOREM 2.3. Suppose ,d is of order type I3 and satisfies N-point homogeneity 
and N-point uniqueness. Then N < 2. 

Proof. Theorem 1.4 of Narens (198 lb). 

3. GENERAL AND REAL M-POINT HOMOGENEOUS CONCATENATION STRUCTURES 

This section concerns the specialization of the above concepts to the class of 
structures in which there is only an ordering and a binary operation. We classify 
these structures in terms of homogeneity and uniqueness properties and specify some 
of the possible numerical representations, namely, those onto either Re+ or Re. The 
results of this section are taken from Lute and Narens (in preparation). 

DEFINITION 3.1. For A # 0, let 2 be a binary relation on A, and o a partial 
binary operation on A. Then ~2 = (A, 2, O) is a concatenation structure if and only if 
the following four conditions hold for all w, x, y, z in A: 
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(1) 2 is a total ordering. 

(2) There exist U, u in A such that u > u. 

(3) If x o y is defined, x 2 W, and y 2 z, then w  0 z is defined. 

(4) (i) Ifxozandyozaredefined,thenxkyiffxozkyoz, 

(ii) Ifzoxandzoyaredefined,thenx~yiffzox~zoy. 

It is Archimediun if and only if there exists n in the set of positive integers, I+, such 
that either nx is not defined or nx > y. (As is usual, lx = x and for n E I’, 12x is 
defined inductively by (n + 1) x = (nx) o x when the latter is defined.) The partial 
operation 0 (and &‘) is said to be closed if and only if xo y is defined for all x, y in A. 
It is idempotent, weakly positive, or weakly negative if and only if for all x in A either 
x 0 x - x, x 0 x > x, or x 0 x < x, respectively. 

THEOREM 3.1. Suppose ~4 = (A, 2, O) is a closed concatenation structure. 

(i) If 0 is idempotent, then it is intern in the sense that for all x, y in A if 
x>y, then x>xoy, yox>y. 

(ii) IfJ is M-point homogeneous, M > 1, then o is either idempotent, weakly 
positive, or weakly negative. 

(iii) If J is l-point homogeneous and N-point unique, then either 0 is idem- 
potent or N = 1. 

(iv) If& is N-point unique, N > 2, and o is idempotent, then N = 2. 

The net effect of this theorem can be summarized in a simple tree diagram that 
applies to all M-point homogeneous, closed concatenation structures. 

co-point unique 

idempotent 

M>l 

<: 

< 

M=2 

N=2SM=I 

N=M= 1 

nonidempotent 
(M=N= 1) 

weakly positive 

weakly negative 

Thus, the only cases we need focus on are (M, N) = (1, I), (2,2), (1, 2), and (M, co). 
Our next result is a plausible means for ruling out (M, co) as a case of interest. 

DEFINITION 3.2. Let d = (A, 2, 0) be a concatenation structure. For any x, y, in 
A, a mix of x and y is defined inductively as follows: x, y, x 0 y, and y o x are mixes, 
and if u and u in A are mixes of x and y, then u o u and u o u are also mixes. 
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THEOREM 3.2. Suppose ~2 = (A, 2, 0) is an idempotent concatenation structure 
with the following property: for all x, y, u, v in A, tfx 2 u 2 v 2 y, then there exists a 
mix z of x and y such that u > z > v. Then ~4 is 2-point unique. 

Let us turn now to those (M, IV) concatenation structures that are of order type 8. 
By Theorem 2.2, we know that the (1, 1) case is ratio scalable and (2,2) is interval 
scalable. At present we do not understand the (1,2) case except that it is nonempty. 
Theorem 3.3(iii) shows how to construct concatenation structures with groups of 
transformations of the form x + k”x + s, where x, s are in Re, k > 0 is fixed, and n is 
an integer (positive, negative, zero). We do not know if all (1, 2) transformation 
groups are subgroups of the affine group (2,2) or if something radically different can 
arise. 

Knowledge of these transformation groups is important since it can be used to 
characterize fully all of the possible real representations. The technique is to write o 
as a function F : Re X Re + Re defined by 

xoy=z iff F(x, y) = z 

and then to note that for all automorphisms a, F must satisfy the real functional 
equation 

WX,Y) = F[a(x), a(y)I. 

The following theorem yields all possible solutions to this equation for the above 
three groups. 

THEOREM 3.3. Suppose 9’ = (R, >, 0) is a real concatenation structure with 
R = Re or Re’ and let Y be its group of automorphisms. 

(i) If 9’ is the similarity group (multiplication by positive reals), then there 
exists some f : Re ’ -+ Re’ for which f and f/t, where I is the identity map, are strictly 
monotonic increasing and decreasing, respectively, and for x, y E Re ‘, 

x o Y = Yf WY). 

0 is idempotent, weakly positive, or weakly negative according as f (1) =, >, or < 1, 
respectively. 

(ii) If .% is the aflne group (positive linear transformations), then there are 
constants a, b with either a, b < 0, 0 < a, b < 1, or 1 < a, b such that for all x, y E Re. 

xoy=ax+ (1 -a)y, x >-VT 

=bx+(l -b)y, x <I’. 

(iii) Iffor k > 0, ,F: = { k”x + s 1 x, s E Re, n E I), then there exist g, h : Re + Re 
that are strictly monotonic increasing and decreasing, respectively, such that for all 
x, y E Re 

g=h+z, g(kx) = kg(x). g(0) = h(0) = 0, 
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and 

xoy=g(x-y)+y=h(x-y)+x. 

This result means that we understand fully all possible representations of 
concatenation structures (1, 1) and (2,2) that are onto a real interval and that the 
only remaining case of interest is the (1,2) one, whose real transformation groups we 
have not yet characterized. The next section concerns axiomatizations of qualitative 
structures that yield (1, 1) and some (0, 1) cases. 

4. POSITIVE CONCATENATION STRUCTURES 

Specific relational structures that are ratio scalable have been in wide use for at 
least a century. Helmholtz (1887) and Holder (1901) used such structures as the 
theoretical foundations for the measurement of physical attributes. These were later 
refined by other measurement theorists and became-until recently- the basis of 
most of measurement theory. These sorts of structures became known in the literature 
as “extensive structures.” They were generalized by Narens and Lute (1976) and 
Cohen and Narens (1979). These generalizations-called “positive concatenation 
structures”-are interesting in their own right and play a central role in conjoint 
measurement. 

4.1. Definition and Uniqueness 

DEFINITION 4.1. For A # 0, let 2 be a binary relation on A and let 0 be a partial 
binary operation on A. Then .d = (A, 2, 0) is said to be a positive concatenation 
structure (PCS) if and only if it is an Archimedian concatenation structure 
(Definition 3.1) for which 0 satisfies the property that for all x, y in A, x 0 y > x, y, 
and .d is (restrictedly) solvable in the sense that for all x, y in A, if x > JJ then there 
exists u in A such that 4’ o u is defined and x > J’ o U. 

Definition 4.1 is the same as the one given in Narens and Lute (1976) except that 
here 2 is a total ordering rather than a weak ordering as they assumed. This change 
is made to simplify certain subsequent definitions; it does not alter the theory in any 
substantive way. 

DEFINITION 4.2. J is said to be an extensive structure if and only if .d is a 
positive concatenation structure and o is associative whenever defined, i.e., for each x, 
J’, z in &‘, if (X o y) o z and x o (y o z) are defined, then (x 0 y) 0 z = x O(J) 0 z). 

Positive concatenation structures have strong uniqueness properties, as the next 
two theorems show. 

THEOREM 4.1. Let S? be a positive concatenation structure. Then zf satisfies I- 
point uniqueness. 
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THEOREM 4.2. Let JZ? = (A, 2, O) be a positive concatenation structure. Then (i) 
there exists a numerical structure ..K = (R, >, 0) with R g Ret such that a . J/ ‘- 
representation for ,pP exists; and (ii) ~fq~ and IJJ are L +-representations of .JZZ for some 
t ^, y(A) = y(A), and q(x) = y(x) for some x in A, then v, = ty. 

Theorem 4.1 immediately follows from Lemma 2.2 of Cohen & Narens (1979). 
Part (i) of Theorem 4.2 follows from Theorem 2.1 of Narens & Lute (1976) and Part 
(ii) follows from Theorem 4.1 above. 

4.2. Extensive Structures 

DEFINITION 4.3. Suppose .d = (A, 2, 0) is an extensive structure. The element a 
is said to be a maximal element of .c8’ if and only if a E A and for each x in A, a 2 x. 
It is said to be a S-maximal element of d (“S” is for “solvable”) if and only if a is a 
maximal element of ,w’ and there exists x, 4’ in A such that a = x o y. 

Extensive structures with S-maximal elements occur frequently in science. Perhaps 
the best known of these are the ones induced by probability structures (Fine, 197 1): 
Associated with the set 8’ of equivalence classes of equally probable events is a 
binary relation 2, and a partial operation o such that for each a, ,& y in 8, a kp if 
and only if for some D E CI and E E p, D is at least as probable as E, and a 0 /3 = y if 
and only if for some DEa, EE/3, and FEy, DnE=0 and DUE=F. If the 
probability structure has a sufficiently rich set of events, then (8, 2, 0) will be an 
extensive structure. In this case (8, 2, 0) will have a S-maximal element, namely, the 
equivalence class that contains the sure event X. This equivalence class is clearly 
maximal, and since by the hypothesized richness of the probability structure 
E u (X-E) =X for some E and X - E of nonzero probabilities, the equivalence 
class containing X is S-maximal. 

The following well-known result shows why extensive structures are of such impor- 
tance: 

THEOREM 4.3. Let & be an extensive structure such that ,d has no maximal 
element or ~2 has a S-maximal element. Let J’= (Re’, >, +). Then the following 
two statements are true: 

(1) There exists a c I-representation for .cr/. 

(2) The. I -representation of .& forms a ratio scale. (DeJnition 2.1.) 

4.3. The Automorphism Group of a Positive Concatenation Structure 

DEFINITION 4.4. Let ,@’ be a relational structure and G be its set of 
automorphisms. The Greek letter I denotes the identity automorphism of J, and * 
denotes the composition of automorphisms. 

It is well known that (G, *) is a group. For positive concatenation structures, this 
group is highly constrained, as will shortly be seen. 
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THEOREM 4.4. Let & = (A, 2, O) be a positive concatenaion structure and a, /? 
be automorphisms of &. kf a(x) 2 /I( x ) f or some x in A, then a(y) 2 /?(y)for each y 
in A. 

Theorem 4.4 immediately follows from Theorem 2.1 of Cohen & Narens (1979). It 
justifies the following: 

DEFINITION 4.5. Let ~8 = (A, 2, 0) be a positive concatenation structure and 
(G, *) be its automorphism group. Define 2 on G as follows: for each a, /I in G, 

ak/I iff for some X, 4-4 Z P(x). 

THEOREM 4.5. Let H = (A, 2, O) be a positive concatenation structure and 
(G, *) be its automorphism group. Then (G, 2, *) is an Archimedean, totally ordered, 
commutative group, i.e., 

(i) &s a total ordering on G; 

(ii) (G, *) is commutative; 

(iii) foreacha,p,yinG,aZpl~a*yZP*y; 

(iv) for each a, /I in G, tf a > I, then for some positive integer n, a” > /I, where 
a k is defined inductively as follows: a ’ = a, ak f ’ = ak * a. 

Proof Theorem 2.4 and Lemma 2.5 of Cohen & Narens (1979). 

Theorem 4.5 allows us conveniently to classify automorphism groups of positive 
concatenation structures: 

DEFINITION 4.6. Let -29 = (A, 2, O) be a positive concatenation structure and 
.V = (G, 2, *) its ordered automorphism group. r is said to be trivial if and only if 
G = {I ). a E G is said to be positive if and only if a > 1. .‘? is said to be discrete if and 
only if ,?? has a smallest positive automorphism. .q is said to be dense if and only if 
.Y is nontrivial and nondiscrete. 

The following are some examples of various kinds of positive concatenation 
structures: 

EXAMPLES 4.1. Let or, 02, o3 be defined on Ret as follows: for each x, y in Re +, 

xo,y=x+y, 

x 02 y = x + y + x”*y”*, 

xo3y=xtytx”4y3’4. 

Let 4 = (Re+, >, oi) for i = 1,2, 3. Then -4 are positive concatenation structures. 

For each r, s in Re+, let a,(s) = rs. Then for i = 1,2,3, and for each r in Re’, a, is 
an automorphism of 4, and thus 4 satisfies l-point homogeneity and therefore has 
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a dense automorphism group. 0, is an associative operation; o2 is a commutative and 
nonassociative operation; and o3 is a noncommutative and nonassociative operation. 
Note that 4 satisfies l-point homogeneity and l-point uniqueness for i = 1, 2, 3. 

Define o., on Re+ as follows: for each x, y in Ret, 

x~~y=x+y+(xy)“* [2+sin(flog[xy])]. 

Let -dd = (Ret, >, 0,). Then b&4 is a positive concatenation structure. Define for each 
integer n, p, on Ret by 

p,(x) = xe*““. 

Then /I, is an automorphism of J&‘~ for each integer n, and all automorphism of &d 
are of this form, i.e., &d has a discrete automorphism group. Note that &e satisfies O- 
point homogeneity and l-point uniqueness. 

Define os on Re+ as follows: for each x, y in Ref, 

xo5y=x+y+x*y*. 

Let 385 = (Re+, >, Ok). Then J& is a positive concatenation structure that has the 
identity as its only automorphism. Note that dT satisfies O-point homogeneity and O- 
point uniqueness. 

Proof. Examples 2.1, 3.1, and 4.2 of Cohen & Narens (1979). 

Positive concatenation structures with nontrivial automorphism groups must have 
closed operations, as the following theorem shows: 

THEOREM 4.6. Suppose ~8’ = (A, 2, 0) is a positive concatenation structure that 
has a nontrivial automorphism group. Then the partial operation 0 is in fact an 
operation. 

Proof. Theorem 2.5 of Cohen & Narens (1979). 

4.4. Fundamental Unit Structures 

DEFINITION 4.7. Let ,w’ = (A, 2, 0) be a positive concatenation structure. .,d is 
said to be Dedekind complete if and only if each nonempty bounded subset S of 
(A, 2) has a least upper bound in A. 

Let .w’ = (A, 2, 0) be a Dedekind complete positive concatenation structure. It 
easily follows that (A, 2) is of order type 8. 

DEFINITION 4.8. &’ is said to be a fundamental unit structure if and only if J/ is 
a Dedekind complete positive concatenation structure that satisfies l-point 
homogeneity. 

Let ,d be a fundamental unit structure. Then since &’ is of order type 0 and 
satisfies l-point homogeneity and l-point uniqueness (Theorem 4.1), it is ratio 
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scalable onto some numerical structure Jy‘= (Re+, >, a). This kind of numerical 
representing structure has special properties and is given the name “unit represen- 
tation”: 

DEFINITION 4.9. A” is said to be a unit representing structure if and only if. I . is 
a positive concatenation structure of the form (Re ‘, 2, a), where 0 is such that 
there exists a function f from Re’ onto Re+ such that for each x, J’ in Re ‘, 

(o is said to be a unit representation for a positive concatenation structure ,d if and 
only if rp is a J-representation for J/ for some unit representing structure L t . . 

The following remarks show some of the relationships of unit representations with 
ratio scalability and fundamental unit structures. 

Remark 4.1. (Ret, >, +) is a unit representing structure since x +J’ = 

Y(l + (X/Y)>. 

Remark 4.2. Suppose .Y is a unit representing structure. Then , + is a 
fundamental unit structure and the automorphisms of M are multiplications by 
positive reals. 

Remark 4.3. Suppose ,JV is a unit representing structure and ,d is a positive 
concatenation structure that has a ,b -representation, rp. Then (r@ r E Ret } is a ratio 
scaling of ,d into .K. 

Remark 4.4. Suppose d is a fundamental unit structure ,d ‘= (Re +, >, a), q is 
a ,&-representation for XY that is onto .H, and {rqlr E Ret } is a ratio scaling of .a;i’ 
onto M. Then ,6  ̂ is a unit representing structure. 

THEOREM 4.1. Suppose ,d is a fundamental unit structure. Then there exists a 
unit representation for ,&. 

Proof: Theorem 3.2 of Cohen & Narens (1979). 

Remarks 4.4 and 4.5 show that there is, for fundamental unit structures, a very 
strong connection between ratio scalability and unit representations. The following 
theorem shows how two unit representations are related: 

THEOREM 4.8. Suppose &’ is a fundamental unit structure and v, and cp’ are unit 
representations for ,k’ = (Ret, >, 0) and -4-I = (Ret, 3, 0’) respectively. Then 
there exist s, t in Ret such that 

(D’ = s(p”f and 24 0’ v = (u’ 0 v’)“‘. 

Proof: Theorem 3.5 of Cohen & Narens (1979). 
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Let .d = (A, 2, o) be a Dedekind complete, positive concatenation structure. The 
necessary and sufficient condition given in Definition 4.8 for &’ being a fundamental 
unit structure is that d satisfies l-point homogeneity. However, this formulation is 
not “relational” since it is about the set of automorphisms of Op rather than about 
relations on A. It is natural to ask if a set of necessary and sufficient conditions for 
.d being a fundamental unit structure can be given in terms of the relations 2 and 0. 
A sufficient condition is that 0 is an associative operation, as is easily seen by 
applying Theorem 4.3. However, as Example 4.1 shows, this condition is not 
necessary. A necessary and sufficient condition is given in the following definition 
and theorem: 

DEFINITION 4.10. Suppose .cy’ = (A, 2, 0) is a positive concatenation structure 
and o is an operation. For each positive integer n and each x in A, let 

a,(x) = nx. 

a, is called the n-copy operator of &. 

THEOREM 4.9. Let ~8 = (A, 2, 0) be a Dedekind complete, positive concatenation 
structure. Then the following three statements are equivalent: 

( 1) .EC’ is a fundament unit structure. 

(2) ,c3 has a dense automorphism group. 

(3) 0 is an operation and for each positive integer n and each x, y in A, 
a,(x 0 y) = a,,(x) 0 a,(y), where a, is the n-copy operator of &. 

Proof. Theorems 2.5 and 3.1 of Cohen & Narens (1979). 

Note that statement (3) of Theorem 4.9 is tantamount to saying that a, is an 
automorphism, since it is easy to prove that a, preserves the ordering 2. Thus in 
some concatenation structures it is possible to define certain specific nontrivial 
automorphism directly in terms of the partial operation of the structure. However, 
this is not the case in general: In any interval scalable structure (Definition 2.1), the 
identity is the only automorphism that is definable in terms of relations of the 
structure. (See pp. 36-37 of Narens, 1981a, for a proof of this and a discussion of 
this issue.) 

Dedekind completeness is not a necessary condition for a positive concatenation 
structure to have a unit representation, as the following theorem shows: 

THEOREM 4.10. Suppose SC’ = (A, 2, O) is a positive concatenation structure that 
satisfies the following two conditions for all positive integers n and all x, y in A: 

(i) If either n(x 0 y) or nx 0 ny are defined, then the other is defined and 

n(x 0 y) = nx 0 ny; 



60 LUCE ANDNARENS 

(ii) there exists z in A such that nz =x. 

Then a unit representation for JZY exists. 

Proof. Theorems 5.3 and 3.2 of Cohen & Narens (1979). 

In conjoint measurement, an extension of a positive concatenation structure that 
has “negative” elements and a “zero” element is sometimes needed. Such an 
extension is given in the following definition (Lute and Cohen, 1983). 

DEFINITION 4.11. Let A # 0, 2 be a binary relation on A, 0 be a binary partial 
operation on A, a, be an element of A, and .d’ = (A, 2, 0). Then .d is said to be a 
total concatenation structure if and only if the following six conditions hold: 

(1) 2 is a total ordering. 

(2) The restriction of &” to A’ = {xix> a,) is a positive concatenation 
structure. 

(3) The restriction of &’ to A- = {xja,> x) is a positive concatenation 
structure when the converse ordering 5 is substituted for 2. 

(4) ForeachxinA,xoa,=a,~x=x. 

(5) For each x, y, z in X, 

(i) if x 0 z and y o z are defined, then, 

XZY iff xoz2yoz; 

(ii) if z 0 x and z o y are defined, then 

XkY iff zox~z0y. 

(6) ForafA’andbEA-,thereexistc,dEAsuchthatcobanddoaexist. 
cob>a and b>doa. 

5. INTENSIVE STRUCTURES 

In the preceding section, we axiomatized positive concatenation structures, and 
showed that this rather general subclass of concatenation structures had many 
important measurement-theoretic characteristics. In particular, for this subclass of 
structures l-point homogeneity is equivalent to ratio scalability. Positivity, i.e., 
x o y > x, y for all x, y, is a key condition for this subclass of concatenation 
structures. In this section we will consider some of the measurement-theoretic 
properties for a subclass of concatenation structures similar to those of the previous 
section except that positivity fails. In place of positivity, the condition intern, which is 
characterized by x > x 0 y, y 0 x > y for all x, y such that x > y, will be assumed. The 
resulting structures are called intensive. Despite the fact that intensive structures are 
the only concatenation structures that are interval scalable, very little has been 
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written about them. We are aware of only two approaches to them, neither of which 
produces results as nearly as comprehensive as one would like. 

The first approach, which can be found as Theorem 6.10 of Krantz et al. (1971), 
involves imposing a strong condition called bisymmetry: for all w, X, y, z in the 
structure, 

With sufficient structural assumptions, it can be shown that o induces an additive 
conjoint structure (see Section 6), from which one is able to derive the existence of an 
interval scale representation (R, 2, a), w h ere R is a subset of the real numbers and 
0 is a binary operation of the following form: for all r, s in R, 

ras=ar+(l -a)s, O<a<l. 

Observe that this is the special case with a = b of the possible interval scale represen- 
tations stated as part (ii) of Theorem 3.3. Of course, bisymmetry is not implied in the 
general case of a # b, and so more general constructions are needed for that case as 
well as for the idempotent ratio and (1, 2) scales. 

The second idea is to seek those intensive structures that can be represented within 
positive concatenation structures, and then to use the numerical representations of the 
positive concatenation structures as a basis for formation of the representations of the 
intensive ones. To this end, Narens & Lute (1976) introduced the following concept 
which turns out to define the relevant mapping: 

DEFINITION 5.1. Suppose (A, 2, *) is an intensive structure, D G A, and 6 is a 
function from D into A. The function 6 is a doubling function if and only if the 
following five conditions are met for all x, y, xi in A: 

(i) 6 is strictly increasing: 

(ii) if x is in D and x 2 y, then y is in D; 

(iii) if x> y, then there exists u in D such that y * u is defined and in D and 
x>6(y * u); 

(iv) if x * y is defined and in D, then 6(x * y) > x, y; 

(v) suppose (x,} is a sequence such that x1 - x and if x,- , is in D, then either 
6(x,-r) * x is defined and equals x, or x, is not defined; then for some n either X, is 
not defined or x, > y. 

First, let us consider the question of the uniqueness of a doubling function. Cohen 
has established the following result: 

THEOREM 5.1. If an intensive structure has a doubling function, then either it is 
unique or there is just one other which dlJ?ers at exactly one point (up to equivalence), 
and that point is maximal in the structure. 
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Next we formulate the close relation of intensive structures to positive 
concatenation structures, as was shown by Narens & Lute (1976). 

THEOREM 5.2. Suppose 2 is an ordering on A # 0 and * and 0 are binary 
operations defined for the same pairs of elements and are related by a function 6 from 
a subset of A into A such that for all x, y in A for which x * y is defined then it is in 
the domain of 6 and x 0 y = 6(x * y). Then, (A, 2, *) is an intensive structure and 6 
is its doubling function if and only if (A, 2, a) is a positive concatenation structure 
and 6- ’ is its half-element function, i.e., for all x in A for which 6- ’ (x) 0 6 - ‘(x) is 
defined it is equal to x. Moreover. the two structures have the same group of 
automorphisms. 

From the representation of a positive concatenation structure (Theorem 4.2) and 
this theorem, a representation of the following form can be constructed: There exists 
a binary operation 0 on Re + with half-element function h (i.e., a function h such 
that x = h(x) 0 h(x) for all x in A) and a mapping (o from A into Re+ such that for 
all x, y in A 

X2Y iff P(X)> v(y), 
if x * y is defined, cp(x * y) = h[p(x) 0 p(y)], 
and if x is in the domain of 6, p(x) = hp6(x). 

When we restrict attention to (1, 1) structures onto Re ‘, which have unit represen- 
tations, then the following result (Lute & Narens, unpublished) characterizes the 
existence of doubling functions. 

THEOREM 5.3. Suppose (Re+, >,a) is a real intensive structure with a unit 
representation g, i.e., 

x a Y = Y&/Y )* 

Then the necessary and sufficient conditions for it to have a doubling function are the 
existence of a constant k > 0 such that 

(1) lim,,, x/g(x) = k 

(2) lim,+, &k(x) < k 

(3) if g,(k) is deJned by g,(k)= 1 and g,(k)=g[kg,-,(k)] then 
lim n-m g,(k) = ~0. 

In this case, the doubling function is kx and the resulting positive concatention 
structure has the unit representation f = kg. 

Since by Theorem 5.2 the automorphism groups are necessarily the same, Theorem 
5.3 covers all of the homogeneous intensive structures that have doubling functions 
and are onto Re+. We suspect that this is only a small fraction of the possible 
intensive structures. 
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6. SOLVABLE CONJOINT STRUCTURES 

6.1. Background and Definition 

Perhaps the most natural reason for developing a theory of numerical represen- 
tations for orderings on Cartesian products of empirical objects is the fact that they 
abound in physics. Such Cartesian products are called “conjoint structures” in the 
measurement literature. Any simple physical law involving three dimensions, for 
example, E = mv2/2, can be looked at as a conjoint structure, with, in the example, 
the ordering of mass-velocity pairs by kinetic energy. But historically the motive for 
developing such a theory came mostly from economics and psychology. The major 
economic stimulus was consideration of utility functions for commodity bundles 
consisting of several components. Psychologists throughout this century commonly 
have reported data in terms of tradeoffs between two independent factors that leave 
constant some psychological variable. Three examples of this are (i) the amount and 
delay of reward that maintains a constant response rate, (ii) the combinations of 
frequency and intensity of pure tones that exhibit the same loudness, and (iii) the 
combinations of intensity and duration of light flashes that result in equal detec- 
tability. The question naturally arose as to whether these equal-attribute contours 
could in some fashion be used to establish a numerical scale of that attribute. 

As additive forms of conjoint theories began to be developed, two important facts 
began to be recognized. The first, due to Holman (1971) and later generalized by 
Narens & Lute (1976), is that it is possible under suitable solvability conditions to 
induce on a single component of the conjoint structure an operation the encodes all of 
the information about the structure, thereby reducing the study of such structures to 
that of certain operations (see Section 6.3). The second is that this induced operation 
is totally distinct from the usual physical operations that are often found on one or 
another component of a conjoint structure. Moreover, in classical physics at least, 
this “induced” operation interlocks with the usual physical operations on the 
components so that there is a representation of these structures as products of powers 
of the additive scales for the physical extensive structures of the components. This 
and generalizations of it are treated in Section 8. 

The precise definition of a conjoint structure that we shall use is: 

DEFINITION 6.1. Suppose 2 is a binary relation on A x P, a, is in A, and pO is in 
P. (A x P, 2, a,,p,) is said to be a conjoint structure that is A-solvable relative to 
a,~,, if and only if for all a, b in A and p, q in P: 

(1) Weak ordering: 2 is transitive and connected. 

(2) Independence: up 2 bp iff aq 2 bq; up 2 aq iff bp 2 bq. 

(3) Solvability: There exist <(a,p) in A and $a) in P such that: 

W3 P) p. - ap 

ao+> - UP,. 
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(4) Density: If up, > bpO, then there exist p, q in P such that 

ape > bp > bpo and vo>aq>bpo. 

(5) Archimedean: For all a in A and all positive integers n, define a standard 
sequence na inductively by: la = a, na = <[(n - 1) a, n(a)]. Then every strictly 
bounded standard sequence is finite. 

A symmetric definition of being P-solvable relative to a,p, can be given; the only 
required changes are in axioms (4) and (5). 

The axioms of Definition 6.1 are of three types. Axioms (1) and (2) are necessary 
conditions for the existence of a numerical representation of the following form: 
There exist real functions (P~ and qP on A and P, respectively, and a monotonic 
binary operation 0 on the reals such that for all a, b E A and p, q E P 

ap Z bq iff coA@) 0 V,(P) > q,(b) 0 &q). 

Observe that axiom (2) renders well defined the following induced orderings on the 
components A and P: for u, b E A, 

a & b iff for all p in P, ap 2 bp, 

and for all p, q E P, 

P&q iff for all a in A, up 2 aq. 

The last axiom, the Archimedean one, or something equally unempirical, is needed if 
the representation is to be into the reals. Much of interest in a real representation can, 
however, be obtained without the Archimedean axiom by considering representations 
into richer algebraic structures such as the nonstandard reals. Axioms (3) and (4) are 
structural in nature, i.e., they restrict the scope of the theory. In some of the first 
developments (Debreu, 1960; Lute & Tukey, 1964) some version of unrestricted 
solvability was assumed, namely, that every equation up - bq can be solved for the 
fourth variable when the other three are given. For psychological applications this 
assumption was unrealistic, and later (Lute, 1966; Krantz et al., 1971, Chap. 6) a 
much weaker condition was shown to be adequate for additive representations. The 
present version (taken from Lute & Cohen, 1983) is still different but is just what is 
needed in order to induce a closed binary operation on the first component. 
Somewhat weaker conditions will suffice for partial operations, but they have not yet 
been worked out except for the case of structures with a minimal element (Narens & 
Lute, 1976). The density axiom, which is innocuous in most physical and 
psychological examples, is needed to establish some of the desired properties of the 
induced operations. 

6.2. Conjoint Structures as Relational Structures 

Consider (A x P, 2, a,,~,), where 2 is, a binary relation on A x P and a, E A and 
p. E P. Let C = A X P, e = a,~,, and q = (C, 2, e). If we consider g as a relational 
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structure, then we have no way of talking about C being a Cartesian product, and 
thus cannot define concepts such as independence and solvability in terms of the 
primitives of ‘Z. However, we can capture these concepts in a relational way by 
considering a different structure: Let X = A U P, and for each a, p, b, q in A U P, let 
R be the 4-ary relation on x such that 

ap Z bq iff R (a, p, b, 4). 

Let .K = (X, R, a,,p,). Then 227 is a relational structure and the concepts of indepen- 
dence and solvability are definable in terms of its primitives. Let a be an 
automorphism of Z. Then for each a, b E A and p, q E P, 

ap Z bq iff R(a, p, b, q) 

iff R [a(a), a(p), a(b), a(q)1 

iff 0) 4~) Z a(b) a(q). 

From the invariance of R under a, it must be the case that a(a) E A and a(p) E P. 
Let aA be the restriction of a to A and ap be the restriction of a to P. In this way, we 
can write each automorphism of a of % as an automorphism y of the structure g’, 
where y is defined as follows: for each ap E C, 

y(w) = a.&) aAP>. 

Such a y is called factorizable since in the structure (A x P, 2) it can be written as a 
“product” of a transformation on A with a transformation on P. Not all 
automorphisms of $Y need be factorizable. Indeed, if A = P = Re, 2 is defined by 

ap k bq iff a* +p* > b* + q*, 

and e = 00. Thus, ap 2 bq if and only if in the Cartesian plane the distance of (a,p) 
from the origin (0,O) is at least as great as the distance of (b, q) from the 
origin. Compositions of rotations and dilations about the origin are automorphisms 
of 2 and it is easy to show that not all of these are factorizable. 

In summary, orderings 2 on a Cartesian product can be formulated in terms of a 
relational structure, but in doing so certain types of automorphisms of 2 are omitted. 
In the following sections, which rely heavily on concepts involving automorphisms, 
we will not use such a relational structure formulation of 2 so that we can handle the 
theory in its full generality. 

6.3. Relation to Total Concatenation Structures 

As was noted above, one of the major insights into conjoint structures, first 
realized for additive ones and later recognized as equally useful for any with adequate 
solvability conditions, was that they can be mapped into operations on either the 
components or on the structure itself. The formal definitions in terms of the n and < 
notation on Definition 6.1 are: 
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DEFINITION 6.2. Suppose Q = (A x P, 2, a,,p,) is a conjoint structure that is A- 
solvable relative to a,,~,. Define operations *A, *p, and * relative to a,p, induced on 
A, P, and A x P respectively, as follows: for all a, b E A, p, q E P: 

(i) a *A b = l[a, z(b)]. 

00 P *r 4 = ~~]~(uO~p)~ 41 
(iii) up * bq = &u, P) @b, 4) = <(u, P) *A C(b, q), PO. 

It is convenient to have names for the induced structures. We use .5’ as the generic 
symbol and subscript it by the name of the defining set: A, P, A x P, or 

At = (u]uEA andu>,p,}, A- = (aluEAandu <Auo}, 

Pi = {pIpEPandp>,p,J, P-={p]PEAandp<,p,). 

It is implicit that the appropriate ordering and operation are restricted to the defining 
set. 

The first theorem establishes that the notions of positive and total concatenation 
structures describe what is induced by a solvable conjoint structure. 

THEOREM 6.1. Suppose ‘$5 = (A x P, 2, a,,~,), a, E A, p. E P, is a conjoint 
structure that is A-solvable relative to a,~,. 

(1) Zf a, p. is minimal with respect to 2, then 3’A + , ,W, + , and J +X p I are closed 
positive concatenation structures. 

(2) Zf u,p, is neither minimal nor maximal, then <Td, <&, and .7’, kP are total 
concatenation structures. 

(This is Theorem 2 of Lute & Cohen, 1983, and it generalizes Theorem 4.1 of 
Narens & Lute, 1976.) 

One can, of course, ask if this is the best possible result under the circumstances or 
are there further constraints on the induced operation that we have failed to capture. 
The next result (Theorem 3 of Lute & Cohen) shows we cannot do better. 

THEOREM 6.2. Suppose M’ = (A, 2, O, a,) is a closed total concatenation 
structure. Then for &” isomorphic to ~4, there exists a conjoint structure 
F = (A X A’, >‘I, a,, ah) that is A-solvable relative to uouo and for which .4; is 
isomorphic to ~2. 

Observe that these results both involved closed operations, whereas the general 
concept of a total concatenation structure entails partial operations. Presumably, 
there is some weakening of the solvability conditions that will be just adequate to 
yield the constraints of axiom (3) of Definition 3.1, but so far this has not been 
developed, except for structures with a minimal element (Narens & Lute, 1976). 

If we combine the results of Theorems 4.2 and 6.1, we obtain the following 
representation of a general solvable conjoint structure: 
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THEOREM 6.3. Suppose %? = (A X P, 2, a,, p,,) is a conjoint structure that is A- 
solvable relative to a,p,. Then there exists real functions (Do on A and (ap on P and a 
binary numerical operation 0 such that 

(i) cP.&d = 0, (o,(po> = 0, 
(ii) for real x, x Q 0 = 0 @ x = x, 

(iii) for all a, b E A, p, q E P, 

ap Z bq iff cp,&> 0 V,(P) > (o,(b) 0 (Pp(q). 

6.4. The Thomsen Condition 

The earliest representation that was studied, and by far the best understood, is the 
additive one, where the numerical operation 0 is +. It was early recognized that a 
key qualitative property underlying additivity of the representation is the so-called 
Thomsen condition which first appeared in the theory of webs (Blaschke & Bol, 
1938). 

DEFINITION 6.3. A conjoint structure (A x P, 2) satisfies the Thomsen condition 
if and only if for all a, b, f E A and b, q, x E P. 

if ax -fq and fi - bx, then ap - bq. 

(In their treatment of the additive case, Lute & Tukey, 1964, used a stronger version 
of this property in which - is everywhere replaced by 2.) Lute & Cohen (1983) have 
proved: 

THEOREM 6.4. Suppose GF = (A x P, 2, a,p,) is a conjoint structure that is A- 
solvable relative to a,~,. The structure satisfies the Thomsen condition if and only if 
the induced operation Y~ is associative. 

COROLLARY. The induced operation *,,, is also commutative. 

Under somewhat different solvability conditions, Holman (1971) showed that the 
Thomsen condition implies associativity. Before turning to the representation that 
results from this theorem, we turn to an alternative characterization of the Thomsen 
condition that arises from comparing the induced structures arising from different 
reference points. 

DEFINITION 6.4. A conjoint structure has invariant induced operations if and 
only if for every a,~,, aAp6 for which it is solvable, the respective induced operations 
*,4 and *; satisfy the following condition for every a, b, c, d, 01, 

a*,bkc*,d iff a *J, b >, c *,; d. 

Lute & Cohen (1983, Theorem 6) proved: 
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THEOREM 6.5. Suppose 59 = (A x P, 2) is a (conjoini) structure that satisfies 
axioms (I), (2), and (5) of Defkition 6.1 and, in addition, is unrestrictedly solvable. 
Then @? satisfies the Thomsen condition tf and only tf it has invariant induced 
operations. 

It will follow from Theorems 9.2 and 9.3 that when the Thomsen condition holds, 
any two induced structures are isomorphic. 

6.5. Additivity and Factorizable Automorphisms 

The representation that follows from the Thomsen condition is, by now, classical: 

THEOREM 6.6. Suppose that 59 is an A-solvable conjoint structure for which the 
Thomsen condition holds. Then in the representation of Theorem 6.3 the operation 0 
can be chosen to be +. 

There are other versions of this result using somewhat different solvability 
conditions; see Chapter 6 of Krantz et al. (1971). 

The question of the uniqueness of this additive representation can be formulated in 
terms of automorphisms, just as was the case for fundamental unit structures. 

THEOREM 6.7. Suppose 2, is the relation on Re x Re defined by: for ail x, y, u, 
vERe, 

XY 2, uv zff x+yau+v. 

A function a : Re x Re + Re is an order automorphism of 2 + if there are real 
constants r > 0, s, , s2 such that for all x, y E Re, 

c&y) = (rx + s,, ry + sJ. 

This is a classical result. We say that such automorphisms are factorizable into 
correlated (since r is common to both) transformations on each component 
separately. Because the property of factorizability appears to play a crucial role in 
the classical theory of dimensional analysis (see Sects. 7 and 8), we explore it more 
fully in Section 9 by considering classes of conjoint structures that are richly 
endowed with factorizable automorphisms. 

6.6. The Set of Translations 

A somewhat different perspective on the concepts we have been examining can be 
obtained by studying the family of translations corresponding to the induced 
operation *A: 

DEFINITION 6.5. Suppose Q = (A x P, 2, a,~,,) is a conjoint structure that is A- 
solvable relative to a,~,, and let *A be the operation given in Definition 5.2. For 
each a in A, the transformation 

O,(x) =x *A a, x inA, 

is called a translation, and the set of all translations is denoted 6. 
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THEOREM 6.8. Suppose $F is a conjoint structure that is A-solvable relative to 
a, pO and d is the set of its translations. Then the following five statements are true: 

(1) d satisfies l-point uniqueness. 

(2) d satisfies l-point homogeneity if and only if F is unrestrictedly solvable 
in the sense that if a, b in A and p in P are given, then there exists q in P such that 
ap - bq. In this case, d includes inverse translations. 

(3) d is closed under function composition tyand only if *A is associative. 

(4) d is commutative if and only if F satisfies the Thomsen condition, in 
which case f,, is associative and commutative. 

(5) If g is unrestrictedly solvable and Archimedean and *A is associative, then 
V satisfies the Thomsen condition and g is an Archimedean ordered group. 

Theorem 6.8 is partially proved in Narens (1981a), more fully in Lute 8c Cohen 
(1983), and completely in Lute & Narens (unpublished). A further result about B is 
given in Theorem 8.3. 

7. DIMENSIONAL ANALYSIS IN PHYSICS 

7.1. Extensive and Conjoint Measures of the Same Things 

Classical physical measures are of two types: extensive and additive conjoint (the 
latter usually written in terms of a multiplicative rather than an additive represen- 
tation). For example, length, mass, and time are modeled as extensive structures, 
whereas momentum and density arise out of conjoint structures. To be specific, 
consider density. Let A denote a set of homogeneous liquids and P a set of 
containers. Then ap E A x P is interpreted as the amount of liquid a needed to fill 
container p, and 2 is the ordering of A x P obtained by comparing the masses of the 
two liquids poured from the two containes into the pans of an equal-arm pan balance. 
In this situation, the axioms of additive conjoint measurement are met to a high 
degree of accuracy, and so we know by Theorem 6.6 that there is a representation of 
the form vA v,,, where both scales are positive, that preserves the mass ordering. 

Since mass is extensively measurable, it has a representation m that is additive over 
concatenation of objects. Thus, there must be an increasing function f so that 
‘I/~ v/p =f (m). Focussing on the components, yA is a measure associated with the 
liquids that is induced by the mass ordering and wP is one associated with the 
volumes of the containers. Once again, we know that volume is an extensive quantity 
with a measure V that is additive over concatenations of volume. So there is an 
increasing function f, such that v,, =fp(V), and so we can write the representation as 

m =f~‘Iw.&VTl. 
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But physics tells us more, namely, that the functions f and f, can, within the 
uniqueness of the conjoint representation, both be selected to be the identity function 
so that 

m = lyA v. 

In this case, va is abbreviated p and called the density measure. 
More generally, one of the major discoveries of classical physics was that 

whenever there is a triple of variables that have a conjoint structure and some are 
also extensively measurable, then each pair of dual measures, one conjoint and one 
extensive, are related by a power function. So, for example, if a quantity has a 
multiplicative conjoint representation v/A v/P and each component has an extensive 
(additive) representation v)~ and qP, then there are (rational) numbers r and s and a 
(real) number c such that 

If the attribute with the representation va I+V~ is itself extensive with an additive 
representation (4, then there is a (rational) number t and a real number c such that 

The combination of these facts of physics ultimately results in our system of units, 
where each physical unit can be written as the product of powers of units from a 
fixed, small set of basis units. 

Thus, one problem to be solved by a qualitative theory for physical measurement is 
the laws on a conjoint structure (A x P, k), which has one or more of the empirical 
operations 0, oA, oP on, respectively, A X P, A, and P, that are adequate to lead to the 
following representation: There are real functions (4, pa, and qp that transform one or 
more of o, o,~, and op into addition and result in a conjoint representation of the 
form 

One solution to this problem was suggested in Chapter 10 of Krantz et al. (1971). 
but a better one was formulated in Narens & Lute (1976) and subsequently 
improved. It is summarized in Section 8. 

7.2. Structure of Physical Quantities 

As was suggested above in the remark about the structure of units in physics, there 
is a substantial extension from triples of variables to a structure of all physical quan- 
tities that is represented as a multiplicative vector space. In particular, a basis of m 
extensive quantities, with additive measures pi ,..., v,, can be selected such that any 
other measure of the space can be written as 
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where the p,,...,p,,, are rational numbers and c is a real number. Such a numerical 
structure is postulated explicitly in most books on dimensional analysis. Perhaps the 
most explicit and simple version of what is assumed is due to Whitney (1968) (for a 
discussion, see also Sect. 10.2.1 of Krantz et al., 1971). We do not describe here 
explicitly how one can impose axioms on the underlying qualitative structures that 
are sufficient to ensure that triples of the sort discussed both in Section 7.1 and again 
in Section 8 lead to the representation just mentioned. One such attempt can be found 
in Section 10.9 of Krantz et al. (1971) and a better version will appear in Vol. II of 
that work. 

7.3. Physical Laws and Dimensional Invariance 

Within the framework of interlocked physical dimensions just discussed, a physical 
system is assumed to be described as collections of coexisting values on some, but 
not all, of the possible physical measures. A description of all the possible 
combinations of these variables that can be observed for the system is said to be the 
law describing that system. Such a mathematical relation, for that is what it is, is 
usually characterized as follows. Let x, ,.., x, denote values on the n physical 
attributes that characterize the system. Then for some function F from Re” + Re, the 
n-tuple (xi . . . ..x.) is a realizable configuration of the system if and only if 

F(x , )..., XJ = 0. (7.2) 

Having said this, the question immediately arises about the uniqueness of F as we 
vary the representations used for the variables. Each of the physical measures is 
defined, at best, on a ratio scale, and so the information we have about the structure 
can be recoded by scale changes of the form 

6 , ,..., x,) + (r,x, ,..., rn-4 (7.3) 

where r-i ,..., rn are positive reals. However, in general, not all of the changes of scale 
represented by Eq. (7.3) are possible because the scales are not all independent. This 
is reflected in Eq. (7.1) where we have said there is a basis of m scales and all the 
remaining ones can be expressed as products of powers of these. So. once the scales 
of the basis are fixed, then those of all of the other scales are also fixed by relations 
of the form 

(7.4) 

So transformations of the form of Eq. (7.3) but subject to constraints given by 
Eq. (7.4) are the ones we need to consider. These are called similarities. 

The condition physicists have imposed on laws of the type given in Eq. (7.2) is that 
they must be invariant under similarly transformations, i.e., if (a,,..., a,) is a 
similarity transformation, then 

F(x 1 ,...) X”) = 0 iff F(a,x ,,..., a,~,,) = 0. 

This property is known as dimensional invariance. 
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One question that has troubled all who have written about dimensional analysis is 
just why one should assume dimensional invariance (Birkhoff, 1950; Bridgeman, 
1931; Causey, 1969; Lute, 1959, 1978; Sedov, 1959). On the one hand, it seems 
most plausible; but on the other hand, it has proved elusive to justify formally. One 
can provide an account of it in terms of a concept of meaningfulness cast in terms of 
invariance under automorphisms of qualitative structures (Narens, 198 1 a). 

Once dimensional invariance is accepted, use may be made of the famous fl- 
Theorem of Buckingham (1914) which characterizes more fully the nature of such a 
law. We do not state the result formally (see Theorem 10.4 of Krantz et al., 1971) 
but do attempt to convey its meaning. Suppose F is defined over n variables in a 
minimal structure of physical quantities having a basis of m quantities. The assertion 
is, then, that there are n -m independent products of powers of the n variables, 
17 flnprn, , ,***, that are each dimensionless, and so do not undergo any change in value 
under a similarity, and that the law F can be replaced by a function of just these 
n -m dimensionless quantities. In some applications there is a single dependent 
variable, say xi, of interest and it appears in just one of the dimensionless quantities, 
say the first one. In that case one can usually rewrite the law as 

n, = G(ZZ,,..., n,-,). 

Further, this can be solved for the dependent variable x, and, taking into account that 
the ZZ’s are products of powers of the several variables of the system, it must be of the 
form 

x1 =x!p . . . x:“W,,..., fl,-,,,I, 

where some of the p’s may be 0. This provides a great deal of information about the 
system, especially if, as sometimes is the case, ZZ2,..., nn-m are parameters of the 
system that remain constant and so can be estimated experimentally. 

7.4. Physically Similar Systems and Dimensional Constants 

All we have said about dimensionally invariant laws presupposed that we know the 
relevant variables of the problem. If we do not, we can be seriously misled. 
Sometimes it is quite a subtle matter to know what the variables are. If, for example, 
the physics of the process is understood to the point where a ful1 set of dynamic 
equations have been developed, as is true in hydrodynamics and electromagnetism, 
then the relevant variables and parameters are those that appear in the equations. 
Usually some of the parameters are not the least bit obvious. A simple example is 
illustrative. 

Consider the law-Hooke’s-that describes the linear behavior of springs. If we let 
I denote the amount of deformation of the spring and F the force required to achieve 
it, we find F and 1 are related by a law of the form 

F-CCI=O. 

where C is characteristic of the spring involved. Change the spring and C changes; it 
is called the spring constant. Now it is easy to see that this law is dimensionally 
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invariant if and only if C has dimensions of mass/time*. This follows from the fact 
that if mass, length, and time form a basis, and we introduce the similarity (r, , r,, r,), 
then F is transformed by r,,, r,/r: and 1 by r,. So, if we believe that laws must be 
dimensionally invariant, we are forced to conclude that C is transformed by r,/rf. In 
this case, there is just one dimensionless quantity II, = F/Cl. 

This is typical of physics. In addition to quantities that may vary within the 
system, parameters are associated with the system and are called dimensional 
constants. One can think of such situations as a family of systems, as in the spring 
example, and a mapping from the family into a dimension that in some sense serves 
to identify the different members of the family. And any laws about the family will 
involve these constants as well as the variables. For a detailed development of this 
idea, see Causey (1969), Sect. 10.10.2 of Krantz et al. (1971), and Lute (1971. 
1978). 

8. DISTRIBUTIVE STRUCTURES 

As we have just discussed, a basic and very important class of measurement 
structures is formed by adding positive concatenation operations to conjoint 
structures. These structures are called “distributive” and appear ubiquitously 
throughout physical, psychological, and economic settings. The published literature 
concerning the abstract nature of these structures is contained in five papers: Narens 
(1976), Narens & Lute (1976), Lute (1978), Narens (198la) and Lute & Cohen 
(1983). Since the focus of each of these papers is on other topics, the uses of 
distributive structures in them are mostly technical or illustrative, and a really clear 
and systematic development is not given in any of them. (Lute & Cohen 1983 comes 
closest to such a development.) Nevertheless, taken in sum, an impressive number of 
theorems and concepts have evolved. Unfortunately, the best and sharpest results are 
not directly stated as theorems; however, they are usually easily obtainable by 
combining together the proofs given for various theorems. In this section we will state 
a few of the most useful and important results about distributive structures and 
indicate how some of these may be generalized. 

DEFINITION 8.1. (A x P, 2) is said to be an unrestrictedly solvable conjoint 
structure if and only if (.4 x P, 2) satisfies the conditions of weak ordering and 
independence given in Definition 6.1 and the following: 

Unrestricted solvability: for x, y in X and each p, q in P, there exists z in X and r 
in P such that xp - yr and xp - zq. 

Note that Definition 8.1 does not assume the density and Archimedean conditions 
for a solvable conjoint structure (Definition 6.1). 

DEFINITION 8.2. (A X P, 2, 0) is said to be an A-distributive structure if and 
only if the following four conditions hold: 

(1) (A xP>2) is an unrestrictedly solvable conjoint structure; 
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(2) (A, kA) is Dedekind complete and totally ordered; 

(3) (A, kA, 0) is a positive concatenation structure with a closed operation 
(Definition 3.1); 

(4) A-distributive: for each xp, yp, uq, vq in A x P, if xp - uq and yp - vq, 
then (x 0 y)p - (u 0 v) q. 

The theory of distributive structures can easily be developed without condition (2) 
of Definition 8.2; it is assumed here to simplify notation and the statement of 
theorems. 

The following theorem presents what is probably the most important result about 
distributive structures: 

THEOREM 8.1. Suppose (A x P, 2, 0) is an A-distributive structure and 
.d = (A, &, 0). Then the following two statements are true: 

(1) &’ is a fundamental unit structure. 

(2) For each ratio scale .F of &’ and each ~1 in 3, there exists I+V : P + Re ’ 
such that (cp, w) is a multiplicative representation for (A x P, >), i.e., such that for 
each up, bq in A x P, 

ap 2 bq lfl da> V(P) > cp(b) w(q). 

Proof: Statement (1) follows by the proof of statement iv of the corollary to 
Theorem 10 of Lute & Cohen (1983). Statement 2 follows from statement 1 and 
Theorem 4.1 of Narens (198 lb). 

Notice that if (A x P, 2) is an unrestrictedly solvable conjoint structure, 
yd = (A, &, o), and t t s a ements (1) and (2) of Theorem 8.1 hold, then it easily 
follows that (A x P, 2, 0) is a distributive structure, so that an appropriately 
formulated converse of Theorem 8.1 is true. 

Also notice that the conclusion of Theorem 8.1 implies the Thomsen condition 
holds for (A x P, 2). 

We do not know if a result comparable to Theorem 8.1 holds when (A, >,(, 0) is 
an intensive structure or when the assumption of unrestricted solvability is weakened. 
We do, however, have an example that shows both changes void the conclusion. 
Consider ((Re’ U {0}) x Re t,~),whereforallx,yERetU{O}andu,vERet, 

(x9 u> z (Y3 0) iff xu+uz>yv+v2. 

This fails to be unrestrictedly solvable since (x, u) - (y, v) holds if x = 
(yv + v* - u2)/u, which is not always > 0. We establish later (from the corollary to 
Theorem 9.7) that this conjoint structure is not transformable into a multiplicative 
representation. Let the operation o on the first component be 

x+y 
xoy=y, 
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which is easily seen to be intensive, closed, and distributive. Then Theorem 8.1 is not 
true for an intensive operation and a conjoint structure that is not unrestrictedly 
solvable. 

The next theorem establishes a crucial link between distributivity and a qualitative 
analog of dimensional invariance. 

THEOREM 8.2. Suppose (A x P, 2) is an unrestrictedly solvable conjoint 
structure and ..d = (A, >/1, 0) is a fundamental unit structure. Then the following two 
statements are equivalent: 

(1) o satisJies distributivity (Definition 8.2). 

(2) For all ap, bq in A x P and all automorphisms a of .B/, ap - bq iff a(a) p - 
a(b) 4. 

Proof Statement (1) implies statement (2) by Remark 4.2 and Theorem 8.1. 
Statement (2) implies statement (1) is provided in Theorem 10 of Lute & Cohen 
(1983). 

The next result, proved in Lute & Cohen (1983), establishes a connection between 
the translations of *A, the automorphisms of .w’, and distributivity: 

THEOREM 8.3. Suppose V = (A x P, 2) is an unrestrictedly solvable conjoint 
structure, *A is one of its induced operations, B is the set of translations of *,, (see 
Theorem 6.8), and .G+’ = (A, &, 0) is a positive concatenation structure with the 
automorphism group .%. Then K = -6 if and only if o is A-distributive. 

Note that by Theorem 6.8, if F is Archimedean and 0 is distributive, then it 
follows from Theorem 8.3 that B is a group, *A is associative, and the Thomsen 
condition holds. Thus, G? has an additive representation. 

A-distributive structures have an operation o,~ on the A-component. An analogous 
definition of P-distributive structures can be given in the obvious way. Such 
structures have an operation op on the P-component. The following definition extends 
the concept of distributivity to structures of the form (A x P, 2. o), where 0 is an 
operation on A x P: 

DEFINITION 8.3. (A x P. >,, O) is said to be an A X P-distributive structure if and 
only if the following four conditions hold: 

(1) (A xP,2) is an unrestrictedly solvable conjoint structure: 

(2) W 2.,> and P, 2,) are Dedekind complete, totally ordered sets; 

(3) (A x P, 2, o> is a positive concatenation structure; 

(4) A x P-distributivity: for each a, b, c in A and each p, q in P, 
(apI 0 @PI - CP iff (aq) 0 (bq) - cq. 

The following theorem establishes the relationships between A X P-distributivity 
and A- and P-distributivity. 
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THEOREM 8.4. Suppose (A x P, 2, O) is an A x P-distributive structure. Then the 
following two statements are true: 

(1) For each a, b in A and each p, q, r in P, (ap) o (aq) - ar zfl 

(bp) 0 (bq) - br. 
(2) Define oA and or on A and P, respectively by: for each a, b, c in A: 

ao,b=c lJT for somep in P, (ap) 0 (bp) - cp, 

and for each q, r, s in P, 

qorr=s lfl for some d in A, (dq) 0 (dr) - ds. 

Then (A x P, 2, o.,,) and (A x P, 2,0,> are respectively A-distributive and P- 
distributive structures. 

Proof: See Section 5 of Narens & Lute (1976). 

In Classical Physics, it is commonplace to find structures of the form 
V = (A x P, 2, oA, op), where oA and o,, are, respectively, A- and P-distributive. They 
often occur when ~4 = (A, kA, oA) and .P = (P, &, 0,) are extensive structures of 
fundamental physical qualities such as length and mass. The fundamental qualities 
are measured by giving additive representations (D and v/ to s-’ and Y, respectively. 
By the appropriate use of Theorem 8.1 and the uniqueness result for additive conjoint 
structures, Theorem 6.7, it follows that (A x P, 2) has a multiplicative representation 
of the following form: there exist r, s in Re+ such that for each ap, bq in A x P, 

aq Z bq if (P(a)’ V(P)” > q(b)’ v(q)‘. (8.1) 

In the above representation, r and s are not uniquely determined although the ratio 
r/s is. Qualitative axioms can be stated in terms of the structure V that specify any 
particular ratio r/s (see Chap. 10, Krantz et al., 1971). 

Not all structures in physics are appropriately distributive. For example, there 
exists the structure (V x T, 2, or), where V is the set of positive velocities in a given 
direction that are less than the velocity of light, c, T is the set of times, and 2 is the 
ordering of distance, i.e., vi t, 2 v2 t, stands for o, t, (the distance that a particle with 
veocity v, displaces in time tl) is at least as great as v2 t, . Then in relativistic physics, 
(K zv, ov> is an extensive structure, (V x T, 2) is an unrestrictedly solvable conjoint 
structure (which in fact is an additive conjoint structure), but or. does not satisfy V- 
distributivity. This can all be easily checked by considering the representations used 
in relativistic physics, 

and 
v,t, 2 v2t2 iff (D(v,) w(tA > v(v2) v(t2) 

vP(v, ov v2> = rp(vJ + fP(v2) 
1 - ((D(v1) (P(v2Yc2) 

for all v, t, and v2t2 in V x T. 
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9. CONJOINT STRUCTURES WITH FACTORIZABLE AUTOMORPHISMS 

In Theorem 6.7 we noted that the automorphisms of an additive representation of a 
conjoint structure can be thought of as factorizable into correlated linear transfor- 
mations on each of the components, and considerable use of that fact is made in 
dimensional analysis. In addition, we noted in Section 6.2 that if a conjoint structure 
is recast as a relational structure, the automorphisms of that relational structure 
correspond exactly to the factorizable automorphisms of the conjoint structure. The 
question posed in this section is whether the notion of a conjoint structure with a rich 
set of factorizable automorphisms is an interesting generalization of the concept of an 
additive conjoint structure. It is clear that the methods of dimensional analysis are 
generalizable without revision to this class of structures. The discussion is divided 
into four major parts. The first establishes some rather general properties of 
structures with factorizable automorphisms. The second introduces suitable concepts 
of homogeneity and uniqueness of the group of factorizable automorphisms, and this 
leads to a partial classification of such structures. The third considers structures that 
have numerical representations with a certain amount of smoothness (in the sense of 
derivatives existing). The fourth considers the case in which the structure has an 
intrinsic zero, in the sense of an element that transforms into itself under all 
factorizable automorphisms. In this case, it is shown that representations exist that 
are very closely related to those of fundamental unit structures. In the other cases 
that have been investigated (Section 9.5) the additive structure or a minor variant 
arise. 

9.1. General Properties 

We begin with the obvious formal definition of factorizable automorphisms. 

DEFINITION 9.1. Suppose F is a conjoint structure. An order automorphism a of 
F is factorizable iff there exist 1: 1 functions 19 : A + A and q : P -+ P such that for all 

a E A, P E P, a(a,p> = &a) v(p). 

.F will denote the set of all factorizable automorphisms, .F4 will denote those 
transformations that arise on A, i.e., 

.& = (t?le : A a A and there exists q : P sPsuchthat(O,q)E.iTt 

,Yp will denote those that arise on P, i.e., 

.17,= (qJ?/:P s P and there exists 0 : A a A such that (0, q) E F). 

Note .Y c ,FA x .Fp but in general, .F # .F4 x ,Fp, In fact, if .F is nontrivial, 
equality is almost never the case. 

It follows readily that under function composition all three of ,F, .Ff, and -iT, are 
groups. 
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Recall from our discussion of fundamental unit structures that the n-copy operator 
is an automorphism (Theorem 4.9). This gives rise to the following result (Theorem 7 
of Lute 8c Cohen, 1973), which can be used to show the existence of nonadditive 
conjoint structures with factorizable automorphisms. 

THEOREM 9.1. Suppose $5 = (A x P, 2) is an A-solvable conjoint structure 
relative to a,p, E A x P. Then the mapping a,,, which is definedfor each integer n by1 
a,(a,p) = (na, np), is a factorizable automorphisms of @ tf and only if the n-copy 
operator of *A induced by @ on A is an automorphism of ,7, = (A, 2,, *,,). 

The next result, while not terribly difficult to prove, is absolutely central to all 
work on structures with factorizable automorphisms because it establishes very 
strong interlocks between the two factors of the automorphism and certain of the 
induced positive concatenation structures. 

THEOREM 9.2. Suppose that conjoint structure V = (A X P, 2) is A-solvable 
relative to both a,~,, and abp;, 0 is a function from A onto A with B(a,) -.4 al,, and n 
is a function from P onto P with n(pO) wpph. Let 71 and n’ denote the solutions 
relative to a,~,, and a/,~;, respectively of DeJnition 6.1. Then (t?, n) is a factorizable 
automorphism of V tf and only tf n = 7c’&- and 0 is an isomorphism from 
4=@,&,* .4, a,) onto ,Ti = (A, &, *.i , ah). 

COROLLARY. Let tA and t, denote the identity maps of A and P, respectively. If 
(8, b) (respectively, (I.~. q)) is a factorizable automorphism, then for some c E A 
(respectivelVv, r E P) e -A c *,4 t,4 (respectively, n -p I, *p r). 

The condition that the two induced structures are isomorphic together with the 
existence of a factorizable automorphism forces enormous regularity on the conjoint 
structure. However, something more is needed to get the Thomsen condition, as the 
next result shows: 

THEOREM 9.3. Suppose that q is a conjoint structure that is A-solvable relative 
to a, p,, and that for every a in A, p in P there exists b in A such that bp - ap, . Then 
the following two statements are true: 

(1) q satisfies the Thomsen condition if and only iffor euerjl c in A, r in P, 
( c *A i,, I, *,, r> is an automorphism of SF. 

(2) Suppose 0 is a one-to-one function from A onto A and n is a one-to-one 
function from P onto P. Under the conditions of part 1, (8, n) is an automorphism of 
q if and only iffor some automorphism B* of ~J, 

e = e(a,) *,4 e* and q = ne*n--’ *p n(pO). 

9.2. Assumptions about the Factorizable Automorphisms 

In Section 1 it was shown that assumptions about automorphisms-specifically M- 
point homogeneity and N-point uniqueness-limit in significant and interesting ways 
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the possible representations of a relational structure. Within the context of conjoint 
structures with factorizable automorphisms, it is clear that some modifications of 
these concepts are needed since it is not only properties of the automorphisms of the 
conjoint ordering that matter but also those of the components. 

Recall that when placed in relational form, the conjoint structure becomes 
(A U P. R), where for all CI, b in A and p, 4 in P, 

R (a, b, P, 4) iff up? bq. 

An automorphism a of this structure has the property 

R@, hp, 4) iff R I~u), W), a(p), 0) I. 

It is, thus, clear that a maps A into A and P into P; it is not usually a map between A 
and P. Thus, in general the relational structure is necessarily O-point homogeneous. 
However, we can ask about the behavior of those groups that are obtained by 
restricting the automorphisms to A and to P separately, and to consider levels of 
homogeneity of these relational substructures. When translated back into the 
Cartesian formulation we arrive at the following notions of homogeneity and uni- 
queness. 

DEFINITION 9.2. Suppose @ = (A x P, 2) is a conjoint structure. Its factorizable 
automorphisms satisfy component M-point homogeneity if and only if for every 
a, ,..., a,w, b I ,..., b, E A, p1 ,..., pM, q, ,..., qr, E P such that for all i = I,..., M - 1, 

ai+l >A ai, bi+ r >A bi, pi+, >ppi, and qi+, >P qi, there are factorizable 
automorphisms (0, q) and (P, r’) such that for i = l...., M, 

@a,) = bi and rl(PM) = 9u. 

O’(a,) = b,,, and rl’(Pi) = 4i. 

If the value of M differs on the two components, say M and M’, respectively, we 
speak of (M, M’)-component homogeneity. 

They satisfy component N-point uniqueness iff for all a,,..., u,v, pi,...,p,, with 

‘itlPit1 > uipi, i = l,..., N - 1, and factorizable automorphisms (6’, q), (P, ?I’) with 
O(ui) = &(a,), q(pi) = v’(pi), i = l,..., N, if ui+ 1 >,( ui, i = I,..., N - 1, then 0 = 8’, or 
ifpi+I>Ppi, i= l,..., N- 1, then q=q’. 

Note that if the factorizable automorphisms satisfy component M-point 
homogeneity, they satisfy M-point homogeneity in the ordered structure w’; whereas if 
they satisfy N-point uniqueness in the F’, they satisfy component N-point uniqueness. 

An important distinction among conjoint structures with factorizable 
automorphisms is whether or not there is a fixed point. We formulate this as: 

DEFINITION 9.3. Suppose F = (A x P, 2) is a conjoint structure with a 
nontrivial set .F of factorizable automorphisms and a, E A, p,, E P. The point a, p. is 
an intrinsic zero of F if and only if for every (0, v) E .F, O(u,) = u,, and v(po) = p,,. 
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9.3. Assumptions about a Real Representation 

In the theorems to be reported, we begin with the assumption that the conjoint 
structure has a real representation, and attempt to characterize it is terms of 
properties of its automorphisms. The nature of the representation is captured in the 
next definition. 

DEFINITION 9.4. A function F : Re x Re + Re is a C” conjoint representation of 
the conjoint structure (Re x Re, 2) where, for x, y, u, u E Re, 

xy 2 uv iff F(x, y) > F(u, v), 

provided: 

(i) F(x, a) and F(a, y) map Re onto Re. 

(ii) F is strictly increasing and continuous in each variable. 

(iii) F is C”, i.e., it is continuously differentiable of order II. 

Such a representation is additive if and only if there exist strictly increasing functions 
f, , f,, and f from Re onto itself such that 

F&Y) =flfiCx) +fAy)l. 

We say 0 is an identity if and only if for all x E Re, 

F(x, 0) = F(0. x) = x. 

In terms of such a numerical representation, a factorizable automorphism is a 
strictly increasing function aeqq from Re onto Re together with one-to-one functions 
8, q from Re onto Re such that for all x,y E Re, 

LEMMA 9.1. Suppose F is Co and f, , f,, and f are strictly monotonic increasing 
functions from Re onto Re. Then F* =f [F(f,,fi)] is a Co conjoint representation 
and the two groups of factorizable automorphisms are isomorphic. 

9.4. The Case of an Intrinsic Zero 

THEOREM 9.4. Suppose 5?? has a Co real representation, and it is unrestrictedly 
solvable. Let X be its group of factorizable automorphisms. If G? has an intrinsic 
zero, then jT satisfies component l-point uniqueness. If, in addition, ST on 
(A + x P’, 2) satisfies component l-point homogeneity and l-point uniqueness, then 
there exists functions $A from A onto Re and #p from P onto Re such that #,(a,) = 0 
and Qp(pO) = 0, and a function F from Re x Re onto Re that is strictly increasing in 
both variables such that FQA, 4,) is a representation of B and F is of the following 
form: There exist strictly increasing functions fi from Re onto [ 1, a) and f- from 
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Re onto (-a, -11, where f, und -f- satisfy the properties of a unit representation 
(Definition 4.9) and 

F(xT Y> = I Y IfsignyCXll Y I>, y # 0, 

X, y = 0. 

This, which is Theorem 13 of Lute & Cohen (1983) is clearly a generalization of 
the usual representation of dimensional analysis. However, we are not aware of any 
empirical interpretations where such an intrinsic zero plays an important role. 

9.5. The Case of No Intrinsic Zero 

THEOREM 9.5. Suppose F is a conjoint representation for which 0 is the identity. 
Each of the following conditions is sufJicient for F to be additive. 

(1) F is C4, F, # 0, F,, # 0, and R satisfies component l-point homogeneity. 

(2) F is C3. F, # 0, F, # 0, and jT satisfies component (1,2)- or (2, l)- 
homogeneity>. 

(3) F is Co and unrestrictedly solvable, Y satisfies 2-point uniqueness and 

component 2-point homogeneity, and .FA on (A, 2,4) and & on (P, &) both satisfk 2- 
point uniqueness. 

The three parts of this result are, respectively, Theorems 17, 18, and 19 of Lute & 
Cohen (1983). It appears that there is some tradeoff between smoothness assumptions 
and the degree of homogeneity imposed. One suspects that other sufficient conditions 
entailing C” or C* smoothness can be found. 

The proofs of (1) and (2) use a result that is closely related to one of Scheffe 
(1965). Recall that he proved 

THEOREM 9.6. Suppose F is a C* conjoint representation with F,F,> # 0. Then F 
is additive tf and only tf F,.,/F,F, is a function of F. 

Lute & Cohen (1983, Theorem 16) show 

THEOREM 9.7. Suppose F is a C’ conjoint representation. Let 

‘%Y) = loglF,(x,~v)/F,(x,y)l. 

Then F is additive if and onlv tf there exist functions v/, and v2 such that e*l and 
e-*= are integrable functions on any bounded domain and 

W,Y) = w,(x) + WAY). 

COROLLARY. Suppose F is C3 and F,F, # 0. Then F is additive if and only if 
Y.r,, = 0. 
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The theorem has the advantage over Scheffe’s that only C’ is assumed, but the 
disadvantage that sometimes it may not be obvious whether !P is the sum of functions 
on the two factors. At the expense of going to C3, the corollary reduces the question 
to showing that the second partial of Y is or is not identically zero, which may be 
very much easier to do than to show that F,,/F,F, is or is not a function of F. 

As an example, consider the one mentioned following Theorem 8.1: 

Then, 

F(x,y) =xy +y*, x > 0, y > 0. 

F, = Y, F, = x + 2y. F,,. = 1 

So the Sheffe criterion is whether l/(xy + 2~‘) is a function of F. The criterion of 
Theorem 9.7 is whether 

Y(x, y) = log -!L = 
x + 2y 

-log c+ 2 
i 1 

is additive. The criterion of the corollary is whether 

2Y 
w = (x + 2.4* 

is identically 0, which it obviously is not. 

10. CONCLUSIONS AND OPEN PROBLEMS 

The basic strategy of the work reported has been to lay bare what we believe to be 
the key ideas of classical measurement, particularly those embodied in the structure 
of physical quantities and dimensional invariance. In this paper, the focus has been 
primarily upon generalizing these structures, and only implicitly have we considered 
issues involved in generalizing the corresponding meaningfulness concepts related to 
dimensional invariance. We have worked with four important interconnected 
measurement-theoretic concepts: (1) conjoint structures, (2) concatenation structures 
(which often appear on a component of a conjoint structure), (3) distributive 
operations (which give a powerful interlock between a conjoint structure and a 
component concatenation structure), and (4) the automorphism groups of all of the 
above structures and operations, which necessarily have strong interconnections and 
describe the underlying symmetries. 

We have studied three important, major ideas about the automorphism groups of 
measurement structures: (I) the richness of the group relative to the structure, which 
is captured by the notion of M-point homogeneity; (2) the redundancy of the group 
relative to the structure, which is captured by the notion of N-point uniqueness; and 
(3) the nature of the interlock among the automorphism groups that arise in conjoint 



CLASSICAL PHYSICAL MEASUREMENT 83 

measurement structures, and in particular, the idea of factorizable automorphisms. 
These three concepts provide a classification scheme that is very useful for 
understanding the measurement possibilities: (1, 1) structures that map onto Ret are 
equivalent to the concept of being ratio scalable onto Ret; (2, 2) structures that map 
onto Re are equivalent to the concept of being interval scalable onto Re; and (M, M) 
structures, M > 2, that map onto Re or Ret cannot exist. For concatenation 
structures that are M-point homogeneous, M > 1, only the (1, l), (2, 2), (1,2), and 
(M, co) cases can arise, and the (M, co) case is ruled out once a very reasonable 
density condition is imposed. At present, the nature of the (1, 2) group has not been 
worked out although examples of measurement structures with such groups have been 
given. Except for some of the (1, 1) cases, all of the concatenation structures are 
intensive. The nonintensive (1, 1) structures are well understood at this time, but very 
few results exist about the other, intensive, concatenation structures. 

Once an automorphism group of a measurement structure has been characterized, 
it is possible to set up a numerical functional equation whose solutions yield the 
possible numerical representations of the measurement. Such functional equations 
have been set up and solved in general for (1, 1) and (2, 2) structures and for the 
particular example we know of a (1, 2) structure. Similarly for conjoint structures 
with factorizable automorphisms, analogous concepts of homogeneity and uniqueness 
allow us to derive the possible numerical representations by solving appropriate 
numerical functional equations as before. Thus in the conjoint case we understand 
well the analog of the (1. 1) and (2, 2) cases, but are in the dark about the analog of 
the (1. 2) case. 

Once the possible kinds of scale types of representations are known, we can ask for 
qualitative conditions that specify measurement structures with those scale types. 
This is, of course, the kind of measurement theory that has dominated the field until 
recently. In particular, classical extensive measurement can be generalized by 
replacing associativity with a much more general qualitative condition that is 
equivalent to l-point homogeneity, and the resulting positive concatenation structure 
has representations that form a ratio scale. Intensive bisymmetric structures have 
interval scale representations, as do additive conjoint structures. These, and their 
variants, and ordinal scalable structure are basically the ordered measurement 
structures that have been axiomatized up until the writing of this paper. There 
remains much more to be done since we have axiomatizations for only a small 
fraction of intensive structures of types (1, l), (2, 2), and (1, 2) and for the 
corresponding analogous conjoint structures. 

There are vast gaps in our knowledge about the measurement possibilities for the 
following kinds of structures: (1) those that are neither of the concatenation nor 
conjoint type; (2) structures that are O-point homogeneous and thus lack any 
substantial degree of symmetry; and (3) conjoint structures that are rich in 
automorphisms but not in factorizable ones. 
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