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A relational structure is said to be of scale type (M, N) iff M is the largest degree of 
homogeneity and N the least degree of uniqueness (Narens, Theory and Decision, 1981, 13, 

l-70; Journal qf Mathematical Psvchology, 1981, 24, 249-275) of its automorphism group. 
Roberts (in Proceedings qf the.first Hoboken Symposium on graph theory, New York: Wiley, 

1984; in Proceedings of the fifth international conlerence on graph theory and its applications, 

New York: Wiley, 1984) has shown that such a structure on the reals is either ordinal or M is 
less than the order of at least one defining relation (Theorem 1.2). A scheme for characterizing 

N is outlined in Theorem 1.3. The remainder of the paper studies the scale type of con- 

catenation structures (X, 2, ‘ ), h w ere 2 is a total ordering and 0 is a monotonic 

operation. Section 2 establishes that for concatenation structures with M > 0 and N < co the 

only scale types are (1, 1). (1, 2) and (2, 2), and the structures for the last two are always 
idempotent. Section 3 is concerned with such structures on the real numbers (i.e., candidates 

for representations), and it uses general results of Narens for real relational structures of scale 
type (M, M) (Theorem 3.1) and of Alper (Journal of Mathematical P.yychology, 1985, 29, 

73-81) for scale type (I, 2) (Theorem 3.2). For M>O. concatenation structures are all 

isomorphic to numerical ones for which the operation can be written ~0 y = ,P~(.x/v), where ,f 
is strictly increasing and ,f(.u)/ x is strictly decreasing (unit structures). The equation 

,f’(+) = f(s)” is satisfied for all I as follows: for and only for p = 1 in the (I, 1) case; for and 
only for p = k”, k > 0 fixed, and n ranging over the integers, in the (1. 2) case; and for all p > 0 

in the (2,2) case (Theorems 3.9, 3.12, and 3.13). Section 4 examines relations between con- 

catenation and conjoint structures, including the operation induced on one component by the 
ordering of a conjoint structure and the concept of an operation on one component being dis- 

tributive in a conjoint structure. The results, which are mainly of interest in proving other 
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results, are mostly formulated in terms of the set of right translations of the induced operation. 
In Section 5 we consider the existence of representations of concatenation structures. The case 

of positive ones was dealt with earlier (Narens & Lute (Journal qf Pure & Applied AIgebra 27, 
1983, 197-233). For idempotent ones, closure, density, solvability. and Archimedean are 

shown to be sufficient (Theorem 5.1). The rest of the section is concerned with incomplete 

results having to do with the representation of cases with M > 0. A variety of special con- 
ditions, many suggested by the conjoint equivalent of a concatenation structure, are studied in 

Section 6. The major result (Theorem 6.4) is that most of these concepts are equivalent to 
bisymmetry for idempotent structures that are closed, dense, solvable, and Dedekind com- 

plete. This result is important in Section 7. which is devoted to a general theory of scale type 
(2. 2) for the utility of gambles. The representation is a generalization of the usual SEU model 

which embodies a distinctly bounded form of rationality; by the results of Section 6 it reduces 

to the fully rational SEU model when rationality is extended beyond the simplest equivalen- 
ces. Theorem 7.3 establishes that under plausible smoothness conditions, the ratio scale case 
does not introduce anything different from the (2, 2) case. It is shown that this theory is 

closely related to, but somewhat more general, than Kahneman and Tversky’s (Economeirica 

47, 1979, 263-291) prospect theory. c 19X5 Academic Pres Inc. 
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1. SCALE TYPE 

1.1. Introduction 

Until recently, most work in the theory of measurement has consisted of specify- 
ing axiomatically particular qualitative structures and then, first, showing that they 
have homomorphisms into some particular numerical structure-this is known as a 
representation theorem-and, second, specifying how the various homomorphisms 
are related to one another-this is known as the corresponding uniqueness theorem. 
Although in some cases [e.g., semiorders (Lute, 1956) or the unfolding model 
(Coombs, 1964)] it has proved difficult to give a universally acceptable formulation 
of the uniqueness theorem, for the vast majority of cases in the measurement 
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literature it is an easy and straightforward matter. Almost always this consists of 
specifying a group of transformations that take one homomorphism into another. A 
notable exception to this occurred in Narens and Lute (1976) where extensive 
measurement was generalized to cases for which the qualitative concatenation 
operation need not be associative. These structures, which are called positive con- 
catenation structures (PCS), were shown to exhibit the following type of uni- 
queness: whenever two homomorphisms agree at a single point, then they are iden- 
tical. Later Cohen and Narens (1979) showed that uniqueness for these structures 
could be specified in terms of a multiplicative subgroup of the real numbers, but 
that the nature of the subgroup varied with the structure. For some structures the 
subgroup consists only of the identity; for others the subgroup is the integers; and 
for still others it is a densely ordered subgroup that may consist of all positive real 
numbers. Thus, for the general case, there is no way to specify the uniqueness of 
positive concatenation structures in terms of a specific group of transformations. 

A somewhat different approach to the uniqueness problem suggested by the 
above example is as follows: If cp is a homomorphism of a qualitative structure r%^ 
into a numerical structure S?, then for each automorphism cz of !E, qcr is another 
homomorphism of 9 into 55 In many important cases for measurement, e.g., when 
all homomorphisms are one-to-one and onto 4?, the uniqueness theorem can be 
captured by stating how the automorphisms of X relate to one another. This is the 
approach employed by Cohen and Narens (1979) in dealing with positive con- 
catenation structures and it was generalized by Narens (1981a, 1981b) to general 
relational structures. Narens ( 1981 b) classified relational structures in terms of two 
properties of their automorphism groups: degree of uniqueness, which is defined to 
be the minimum number such that if two automorphisms of the structure agree at 
this many distinct points then they are identical, and the degree of homogeneity, 
which is the maximum number such that any two ordered sets of this number of 
elements can be mapped into each other by automorphisms of the structure. He 
established that ratio scalability is essentially captured when the degree of 
uniqueness = degree of homogeneity = 1 and that interval scalability corresponds to 
degree of uniqueness = degree of homogeneity = 2. He further showed that there are 
no structures for which the two degrees are finite, equal, and >2. 

Lute and Cohen (1983) applied these concepts to conjoint measurement struc- 
tures. They focussed their attention on the case where many of the automorphisms 
of the structure consist of functions operating separately on the components of the 
structure. For the cases where the degrees of uniqueness and homogeneity of these 
“factorizable” automorphisms agree on a component, they were able to uncover a 
good deal of information about the possible numerical based homomorphisms of 
the structure. However, when the degrees disagree, they, as was true in Narens 
(1981b), were unable to say much about the numerical automorphisms. 

The purpose of the present paper is to carry out an analogous program of 
classification for general concatenation structures-i.e., ordered structures with a 
binary operation that is increasing in each variable-and to establish some close 
interconnections between these structures and conjoint ones. As we shall see, 
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classifying concatenation structures according to these uniqueness and homogeneity 
concepts is quite revealing of their possible numerical representations, which turn 
out to be considerably more limited than one might at first guess. As we shall see, 
the work is not complete because, once again, we do not understand fully the 
possible transformation groups in which the degree of uniqueness and homogeneity 
differ. But at least the statement of what we do not understand is clear and unam- 
biguous. 

1.2. General Definitions 

DEFINITION 1.1. Suppose X is a nonempty set. A relation of order n on X is, for 
n > 0, a subset of X” or, for n = 0, a single element of X. A relation offinite order is 
one of order n for some finite n. Let J be an index set. Then 3 = (X, Sj)jEJ is called 
a relational structure iff each S, is a relation of finite order. A relational structure 
may have uncountably many relations, but when J is countable or finite the 
notation (X, S,, Sz ,... ) is often used. If one relation of 3 is a weak ordering, i.e., a 
relation of order 2 that is transitive and connected, then X is said to be weakly 
ordered. Weak orders are usually denoted 2, and as is usual we define > = 2 n 
not (5) and - = 2 n 5. Endomorphisms of 5F are homomorphisms of $7 into 
itself, and automorphisms of % are isomorphisms of X onto itself. We denote the 
group of automorphisms of X by $9, sometimes with added notation when several 
structures are involved. 

The following two concepts are usually invoked with respect to the group of 
automorphisms, but there are occasions when they will be used in which the 
transformations either do not form a group or the transformations are not 
automorphisms or both. 

DEFINITION 1.2. Suppose X = (X, S, ), E J is a weakly ordered relational struc- 
ture and 2 is a set of order preserving maps from X into X, i.e., for all x, y in X 
and c( in 9, .X 2 y iff U(X) 2 CI( y). Let M and N be nonnegative integers. The set Z 
is said to be M-point homogeneous in 3 iff for every xi, yi in X, i= l,..., M for which 
X,-XX,< ... <.x,+, and y,<y,< ‘.’ <y,, there exists an c( in 2 such that 
cr(x,)- yi, i= l,..., M. If $P is M-point homogeneous for every nonnegative integer 
M, then X is said to be co-point homogeneous. The set X is said to be N-point uni- 
que in 3 iff for every c(, B in Z? and all xi in X, i= I,..., N, such that 
x,Xx,< ... <x,, if cr(x,)-B(xi), i= l,..., N, then for each x in X, a(x)-p(x). If 
there is no nonnegative integer for which Z is N-point unique, then 2 is said to be 
co-point unique. If M is the largest value for which X is M-point homogeneous and 
N is the smallest value for which 2 is N-point unique, then 2 is said to be of type 
(M, N). The structure X is said to have the degree of homogeneity and uniqueness 
of its automorphism group 53 and is said to be of scale type (M, N) if 9 is of type 
CM, N). 
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Observe that for either M or N > 2, the definitions of M-point homogeneity and 
N-point uniqueness make use of the ordering relation in a critical way. However, 
for M, N6 1, the ordering is immaterial and so these concepts make sense for unor- 
dered structures. In other literatures the concept of l-point homogeneity is called 
“transitivity.” 

When 2 is a total order, the following two facts are easily shown: If X is infinite 
and %? is M-point homogeneous for M > 1, then 2 is (M - 1 )-point homogeneous. 
And if X is infinite and Z is of scale type (M, N), then M 6 N. Neither of these 
statements is true for the present definitions of homogeneity and uniqueness when 
X is finite. For if M> 1x1, then the structure is vacuously M-point homogeneous 
whereas it need not be M-point homogeneous for any M’ < 1x1. And if 
X= (1,2,3}, then (X, > ) is 3-point homogeneous and O-point unique. Roberts 
and Rosenbaum (1984) have begun studying the finite case, and for this case they 
propose modified definitions. 

As we shall see when we examine structures having a relation of order 3 that is 
an operation, the possible values for the scale type are quite limited. The limitation 
on M is general, as is shown in Theorem 1.2, but we do not know of any com- 
parably general result that places limits on N. For example, one can wonder if there 
are reasonable conditions under which the value of M limits that of N, e.g., to 
N - M < 2. For real numerical concatenation structures with X= Re or Re + and 
2 = >, we present below conditions that limit N6 2, but nothing yet has been 
established for the general case. There are additional general questions. If a 
numerical structure is of scale type (M, N), does its group of automorphisms 
include a subgroup of type (M, M)? And for the case of real numerical structures, 
where the automorphism group is a group of real transformations, does there exist 
an extension of 3 to a group of type (N, N)? As we shall see shortly, a good deal is 
known about the answers in the case where N is finite and the structure is on the 
real numbers. 

1.3. Relations Between Structure and Scale Type 

THEOREM 1.1. Suppose X = (X, 2, Si)iEJ is a weakly ordered relational struc- 
ture and Y is its automorphism group. If $9 is commutative, N-point unique for some 
N > 0, and for each x in X there exists y in 23 such that y(x) +x, then 3 is of scale 
type (O,l) or (1,l). 

ProojI Let CC, /I be in 3 and suppose that for some x in X, a(x)“/?(x). We first 
show there is no loss of generality in assuming a(x)+x. Suppose a(x)-X. By 
hypothesis there exists y in $!J such that y(x)+x. Since U(X)-8(.x) and the 
automorphisms commute 

yB(x)-v(x)--ccy(x)+x, 

proving that ya and y/? have the desired properties. Since a(x)+x and 2 is connec- 
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ted, either U(X) > x or U(X) < x. Without loss of generality, assume the former. Then 
for all integers m and n, m>n implies a”(x)>a”(x). But for each integer n, 

pa”(x)-aflb(x)-a%(x)-aan( 

and so a and fl agree at the points a”(x) for n = l,..., N and a’(x)< 
a’(x) 4 . . . < a”(x). Since, by hypothesis, the structure is N-point unique, 
a(y)-/?(y) for all y in X. Thus, X is l-point unique, and since M 6 N, X is of scale 
type (0, 1) or (1, 1). Q.E.D. 

The following result is due to Fred S. Roberts and was communicated to us in 
August of 1982. An improved version is given in Roberts and Rosenbaum (1985). 

THEOREM 1.2 (Roberts). Suppose X = (X, 2, Si)ltJ is an ordered relational 
structure that is isomorphic to a real relational structure 92 = (Re, 3, Rj>,EJ, M is a 
positive integer and the automorphism group of ?E is M-point homogeneous, and that 
the order of each S,, j in J, is GM. Then 2” is w-point homogeneous and the 
automorphism group of 9 consists of all strictly monotonic increasing transformations 
and thus forms an ordinal scale for X. 

Prooj Since X is M-point homogeneous and M>O, none of the Si can be 
individual constants, i.e., relations of order 0. Let cp be an isomorphism between X 
and 9 and let ,f be any strictly increasing function from Re onto Re. We show that 
f * cp, where * denotes function composition, is also an isomorphism. Clearly, f * cp 
is order preserving. Consider the relation Si of X which is of order k(i). If 
( x, , x2 ,..., xkti,) is in S,, then for some permutation p of 1, 2 ,..., k(i) they are ordered 
x,&:‘~,~)? ... k--~~,~~,,,~ and so CP(-Q,,) >cp(~,,~,P ... hG,Ck,i)l). Since f is 
increasing f * cp preserves the latter inequalities. However, since cp is onto, there 
exist Y,,~, in X, j= 1, 2 ,..., /r(i), such that ‘p(~,,~,,) = fq(x,,,,,). Since 9 is order preser- 
ving, ~~~~~~~~~~~~~~ ... 2 ~~~~~~~~~~ Since k(i) < M, by M-point homogeneity there 
exists a in 9 such that a(x,,,,)- ~1,~ ,,,. But cp * a is an isomorphism of X onto 2, 
and so (.u,, .Y~ ,..., .u,(,,) in S, iff [I, cpa(x2) ,..., cpn(x,,,,)] in R, iff [cp(y,), 
cp(yz),..., ~p(y,,~,)] in Ri iff [fq(x, ), fq(x2),..., fip(xkci,)] in R,, which proves that 
f * cp is an isomorphism. Thus, X has an ordinal scale representation, and so it is 
M-point homogeneous for every M’, i.e., m-point homogeneous. Q.E.D. 

As an illustration of this result, consider a relational structure on the reals for 
which its relations are all of order 3 or less, e.g., (Re, 8, 0 ), where 0 is a binary 
operation and so a relation of order 3. If the structure is not co-point 
homogeneous, then it must be either 0, 1, or 2-point homogeneous. 

The following is an example of a structure of type (1, 1) in which all of the 
relations are of order 2. 

EXAMPLE 1.1. For each r in Re +, define the relation R, by 

R,= ((x, rx)(x in Re+}, 
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and let B= (Re+, 2, Rr)reRe+. Then %? is a relational structure with infinitely 
many relations, all of which are of order 2. It is trivial that for each r > 0, CL,(X) = rx 
is an automorphism of W, and so W is at least l-point homogeneous. It is not more 
since, as we now show, B is l-point unique. Suppose /I is an automorphism of W, 
and let r = /?( 1). So a,( 1) = /?( 1). Consider any s > 0, then s = CI,( 1). Since /? is an 
automorphism and a, is both an automorphism and a relation of W, 

P(s) = PCdl)l = cMl)l = dr) =sr=~,b), 

whence p = CI,. So B is l-point unique. 

The next example is of a structure that has relations of orders 2 and 3 and is of 
scale type (2, 2). 

EXAMPLE 1.2. Let B = (Re, >, 0 ), where for each x, y in Re, 

xoy=(x+y)/2. 

We show that the structure is interval scalable and from this it follows easily that it 
is of scale type (2,2). Suppose CI is an automorphism, then 

a(xo y) = a[$x + y)] = a(x)oa(y) = &[a(x) + a(y)]. 

Set y = 0, 

a($x) = i[a(x) + a(O)]. 

so, 

a(x) + a(z) = 2cr[$(x + z)] = a(x + 2) + a(0). 

Since this holds for all x, z in Re and a is strictly increasing, the only solution 
(Aczel, 1966, p. 34) is 

a(x) = a(0) + rx, r >O, 

which is an interval scale transformation. It is obvious that all interval scale trans- 
formations leave 0 invariant. 

It follows from a theorem of Narens (1981b) (see Theorem 3.1 below) that there 
are no similar structures of scale type (M, M) for M > 2, and so the pattern of the 
previous examples does not extend. 

The definitions of M-pont homogeneity and N-point uniqueness use ordered sets. 
A similar concept using unordered sets is important in topological group theory: a 
group 2 of continuous, one-to-one transformations of a topological space onto 
itself is called M-transitive iff for all subsets (a,,..., a,,,,} and {b,,..., b,,,,}, each con- 
sisting of M distinct points of the space, there exists a transformation Tin X such 
that T(ai) = bj, i = l,..., M; and it is called strictly M-transitive iff it is M-transitive 
and for all transformations T, U in Z if T and U agree at M distinct points of the 
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space, then T= U. Consider a relational structure % = (X, 2, Sj)jeJ, where k is 
a total ordering on X, then by using the interval topology on (X, 2 ) we may 
regard $5 as endowed with a topology. With respect to this topology, all 
automorphisms of S are continuous, one-to-one transformations of the space onto 
itself since they preserve 2. So the group ‘9 of automorphisms of X is such a group 
of transformations. Thus, $9 is O-transitive iff it is O-point homogeneous, and Y is 
l-transitive iff it is l-point homogeneous. But for M> 1, the two concepts differ. 
M-transitivity implies M-point homogeneity but not vice versa. Since 2 is a total 
ordering, strict N-transitivity of 55 implies N-point uniqueness of Z”. 

The concepts of co-point homogeneity and uniqueness are really bundles of 
rather distinct uniqueness and homogeneity concepts. One can give descriptions of 
the distinct concepts within these bundles by using Cantor’s set theoretic concept of 
order type. Since, for the purposes of this paper, such refinements are not needed, 
we do not pursue their detailed development. 

We turn now to the question of uniqueness. We have not been able to establish a 
direct structural connection analogous to that for homogeneity in Theorem 1.2, but 
we are able to show that under a plausible condition the uniqueness must be finite. 

DEFINITION 1.3. Suppose %” = (X, 2, Si)ieJ is a totally ordered relational 
structure. 

(1) If A is a subset of X, then A is said to be dense in (X, 2 ) iff for each U, v 
in X, if u>v, then for some a in A, ukaav. 

(2) Suppose for some positive integer n, F is an n-ary operation on X. Then F 
is said to be X-invariant iff for each .Y, ,..., x, in X and each automorphism c1 of 3, 

aF(x, ,..., x,) = F[a(x,) ,..., c((x,)]. 

(3) Suppose K is a set and for each k in K, Fk is a n(k)-ary operation n(k) > 0 
and let 9 = (Fk 1 k in K}. Let A c X. Then, the algebraic closure of A under 4 is 
the smallest set Y such that 

(i) AZ Y, 

(ii) for each k in K and all xi ,..., x,(~, in Y, 

Fk[xl ,..., x,(~,] is in Y. 

We note that the algebraic closure of A exists. 

THEOREM 1.3. Suppose 3= (X, 2, Sjjj,, is a totally ordered relational struc- 
ture, 9 is a set of X-invariant operations on X, and the identity function is in FG. Zf 
for some integer N, the algebraic closure under 4 of each set of N distinct elements 
of X is dense in (X, 2 ), then X is N-point unique. 
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ProoJ Suppose not. Let A = {a,,..., aN } be a set of N distinct points and let tl, fl 
be automorphisms such that c1# /I and a(a,) = P(ai) for i = l,..., N. Define Y, induc- 
tively as: Y, = A and for integers k > 0 

Let 

Y k+ I = {F(x, ,*.., X,)IXI,-, x,arein Y,andFisinF}. 

Y= (y Y,. 
k=O 

Then Y is the algebraic closure of A under 9, and since 9 contains the identity 
function, Yk E Yk+ , for each nonnegative integer k. Observe that tl = fl on Y,. Sup- 
pose CI = /? on Y,, and let y be any element of Yk + i. So, for some integer n and 
some F m %, there exist y, ,..., y, in Yk such that y = F(y i ,..., y,). By the inductive 
hypothesis, a( yi) = /J( y,), i = l,..., n, and since F is X-invariant, 

4~) = @yl,-., YJ 

= FC~Y, L ~Y,)I 

= FMY,L B(YJI 

= /WY, )...y Y,) 

= P(Y). 

Thus, cr=j? on Y,,, and so, by induction, on Y. 
Suppose CI # /?, then there exists some x such that a-‘(x) #b-‘(x). Without loss 

of generality, suppose K’(X) > /? ~ ‘(x). By hypothesis, the closure of A under 8, Y, 
is dense in (X, 2 ), and so let y in Y be such that K’(X) 2 ykfl-i(x). If 
~1~ ‘(x) 2 y > fi- l(x), then taking inverses we have x 2 c1( y) and b(y) > x. But over 
Y, CI = fi, which results in the contradiction x> x. The case K’(X) > y 2 B-‘(x) is 
similar, so a = /3, proving that X is N-point unique. Q.E.D. 

To apply Theorem 1.3, one must select an appropriate set 9 of X-invariant 
operations. Usually such an B turns out to be the primitive operation(s) of !Z 
together with some additional operations that are definable in terms of the 
primitives of X. (It can be shown that any nontrivial operation that can be defined 
in terms of the primitives by use of the first-order predicate calculus is X-invariant.) 
For example, it is easy to show that for a PCS (see Definition 2.1) with half 
elements, the half element function h defined by h(x) = y iffy 0 y = x, is s-invariant, 
and it is not difficult to show (see Lemmas 2.1 and 2.2 of Narens & Lute, 1976) 
that for each x in X, the algebraic closure of {x} under { 0, h, I}, where 1 is the iden- 
tity function, is dense in (X, 2 ). Thus, by Theorem 1.3, a PCS with half elements 
is l-point unique. 

From an axiomatic standpoint, the key assumption of Theorem 1.3 involving the 
density of a closure of a set under a set of X-invariant operations is hardly elegant. 
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However, in many cases-as in the example just given-it is a consequence of more 
elegant axioms. Theorem 1.3 attempts to isolate what is common to such situations 
and shows what drives many uniqueness proofs. 

2. GENERAL CONCATENATION STRUCTURES 

2.1. Definitions 

The classical model for a number of basic physical attributes, including mass and 
length, is extensive measurement. The basic idea is that objects exhibiting the 
attribute in question can be both ordered qualitatively and combined to form new 
objects that also exhibit the attribute. The structure is such that the order can be 
represented by numerical ordering and the operation by addition. The general con- 
cept of a concatenation structure is the generalization of extensive structures in 
which the operation is no longer modelled by +, but by some other binary 
numerical operation. In particular, three major assumptions are abandoned: 
associativity, which is substantially equivalent to additivity; positivity, which 
restricts the representation to the positive reals when + is the operation; and the 
Archimedean property, which is one way of formulating that we are dealing with a 
single dimension that can be represented by > on the reals. The following states 
explicitly the various concepts involved. 

DEFINITION 2.1. Let X be a nonempty set, 2 a binary (order 2) relation on X, 0 
a partial binary operation’ on X, and % = (X, 2, 0 ). !E is said to be a con- 
catenation structure iff, for all w, x, y, z in X, the following five conditions hold: 

(1) k is a total ordering; 

(2) for some U, u in X, u > U; 

(3) for some U, v in X, u 0 u is defined; 

(4) local definability: if x 0 y is defined and x 2 w  and y kz, then w  0 z is 
defined; 

(5 ) monotonicity : 

(i) if xoz and yoz are defined, then x2 y iff xozk yoz; 

(ii) if wax and wo y are defined, then x2 y iff woxkwo y. 

If condition (1) is weakened to assuming that 2 is a weak ordering and conditions 
(2-5) hold, we say that X is a weakly ordered concatenation structure. 

’ A partial binary operation on X is a function from a subset of Xx X into X. The expression ~0 J is 
said to be defined iff (x, y) is in the domain of 0. Note that a partial binary operation is a relation of 
order 3. 
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In the following definitions, 37 = (X, k:, 0 ) is said to have the property denoted 
by the italicized word provided that the defining conditions hold for all x, y, z in X 
for which the indicated operations are defined: 

Closed iff 0 is an operation, i.e., x0 y is defined for all x, y in X. 
Idempotent iff x 0 x = x. 
Weakly positive iff x 0 x > x. 
Weakly negative iff x 0 x < x. 
Positive iff x 0 y > Tc, y. 
Negative iff x 0 y < x, y. 
Intern iff whenever x>y, then x>x 0 y>y and x>y 0 x>y. 
Intensive iff X is both intern and idempotent. 
Associative iff x 0 (y 0 z) = (x 0 y) 0 z. 
Half elements iff for each x in X there exists a u in X such that x = u o U. 
Restrictedly solvable iff whenever x > y, there exists u in X such that either 

x > y 0 u > y or x > x 0 u > y. (Note that if X is positive and restrictedly solvable, 
the latter inequality canot arise.) 

Solvable iff given any three of w, x, y, z the fourth exists such that w  ox = yoz. 
Dedekind complete iff (X, z ) is Dedekind complete, i.e., every nonempty 

bounded subset of X has a least upper bound in X. 

Suppose 3 is a concatenation structure and J is an interval of integers. The 
sequence {X,}.,EJ, . x in X, is said to be a standard sequence iff J is an interval whose j  

first element is 1 and x, is defined inductively by: X, =x and if j in J then 
X, = xi-, 0 x is defined. A sequence {xi}itJ is said to be a difference sequence iff for 
some u,u in X,u#v, and allj such thatj,j-1 are in J; xjou and xjprov are 
defined and xi0 u = xj- ,o v. A sequence { xj}jEJ is said to be bounded iff for some 
p, q in X, pkx,kq for allj in J. 

X is said to be Archimedean iff either 

(i) 2” is positive, restrictedly solvable, and either every bounded standard 
sequence is finite or every bounded difference sequence is finite, or 

(ii) Y is solvable and every bounded difference sequence is finite. 

X is said to be a PCS’ iff it is positive, restrictedly solvable and Archimedean in 
the sense that every bounded standard sequence is finite. 

3 is said to be extensive iff it is an associative PCS. 

Comment. We have not formulated the concept of “Archimedean” in an 
exhaustive way, but rather for the classes of structures that have been or will be 
shown below to have Archimedean representations in the sense of numerical com- 
parability. A positive structure may be Archimedean in two senses, but an idem- 

’ Narens and Lute (1976) called this a “positive concatenation structure” and abbreviated it PCS. We 
use just the abbreviation in an attempt to avoid confusion with a concatenation structure that is positive 
but need not be either restrictedly solvable or Archimedean. 
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potent one can be Archimedean only in the second sense given in the above 
definition. 

A number of simple relations hold among these concepts, including the following: 
A concatenation structure that is positive (negative) is weakly positive (negative); a 
closed concatenation structure that is idempotent is intern, i.e., intensive; an 
associative, idempotent structure is degenerate. 

The following theorem shows the relationship between Dedekind completeness 
and the Archimedean condition. 

THEOREM 2.1. Suppose !.F = (X, k,n ) is a concatenation structure that is 
Dedekind complete. Then the following two statements are true: 

(i) If 3 is positive and for each x, y such that x > y there exists z such that 
zcy=x, then X is A h’ d rc tme ean in the sense that each bounded standard sequence is 
finite. 

(ii) If 3 is solvable, then 3 is Archimedean. 

Proof (i) Suppose not. Let {x, ) be a bounded, infinite standard sequence. 
Then X, = X, x2 = x 1 X, x3 = x1 0 x ,..., and by positivity x, < x2 i x3 < . . ‘. By 
Dedekind completeness, let a be the 1.u.b. of (.x~).. Then a>x, =x. By hypothesis, 
let z be such that a = z 0 x. By positivity, a > z. Therefore, by the choice of a, let x, 
be such that a > xi > 2. By positivity, 

x /+I = x, 0 x > z c x = a, 

contradicting the choice of a. 

(ii) Suppose .% is solvable and not Archimedean. We may suppose that there 
exists a bounded infinite sequence (xi) and elements u, u of X such that 
x I+1 0 u = xi 0 u. Without loss of generality, we may suppose x1 < x2 4 . . ., which by 
monotonicity implies v > u. By Dedekind completeness, let a be the 1.u.b. of {x;}. 
By solvability, let y be such that a 0 u = you. Since v > u, it follows from 
monotonicity that a > y. Since a is the 1.u.b. of the sequence, let j be such that 
a > xi > y. Then by monotonicity, 

-yI + I ou=x,ov> yov=aou, 

and so by monotonicity, x, + , > a, which contradicts the choice of a. Q.E.D. 

2.2 Homogeneous Structures 

THEOREM 2.2. Suppose X is a concatenation structure whose automorphism group 
is 1 -point homogeneous. Then, 

(i) % is closed; 

(ii) X is either idempotent, weakly positive, or weakly negative; 
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(iii) zf 2” is N-point unique for some finite N, then either N = 1 or 3 is idem- 
potent and N = 1 or 2. 

Proof (i) Since there exist U, u such that u 0 v is defined, it follows by local 
definability that w  0 w  is defined for w  = min(u, 0). Consider any x, y in X and let 
z = max(x, y). By l-point homogeneity there exists tl in 9 such that a(w) = z, and 
SO zo z is defined since by monotonicity and local definability cl(w o w) = 
cI(w)~a(w)=z~z. By local definability x0 y is defined, proving 0 is an operation. 

(ii) Suppose for some x, x 0 x = x. Then for each y, there exists a in 9 such 
that U(X) = y. By monotonicity 

y~y=a(x)~a(x)=cr(xox)=a(x)= y, 

proving that 3 is idempotent. The proofs in the other two cases are similar. 

(iii) Suppose 9 is N-pont unique. Since % is l-point homogeneous, N> 1. 
Suppose 9” is not idempotent, then by (ii) it is either weakly positive or negative. 
Without loss of generality, suppose the former. Note that by weak positivity, 

x<x~x<(x~x)~(x~x)<[(x~x)~(x~x)]~[(x~x)~(x~x)]< . . . . 

Now, suppose a, fl are in 9 and agree at x. Then, by induction on the fact that 

c((X0.Y) =a(x)ocL(x) = p(x)op(x) = B(xox), 

they agree at all points within the above sequence of inequalities. Thus, by N-point 
uniqueness, c( = 8, and so N = 1. Next, suppose X is idempotent and so is intern. 
Let x, y in X and tl, /? in 9 be such that x> y, a(x) = /I(x), and a(y) = p(y). Since 
x>x~y>.v, and 

by using induction it follows that a and /I agree at N distinct points and so are iden- 
tical, proving N < 2. Q.E.D. 

This result establishes that if a finite uniqueness condition holds, then each 
homogeneous concatenation structure falls into one of three scale types: (1, l), 
(1,2), or (2,2). This means that we should try either to understand or to rule out 
those cases that are not unique for any finite N. Theorem 1.3 shows that the den- 
sity of the algebraic closure of 0 is sufficient to do so. And in the next section, 
another sufficient condition for real concatenation structures is presented, namely, 
continuty of the operation. 

The several cases that remain after co-point uniqueness is ruled out are sum- 
marized in the simple tree, where M is the degree of homogeneity of the structure in 
Fig. 1. 
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M>O 

idempotent 

’ nonidempotent (1.1) < 
weakly positive 

weakly negative 

FIGURE 1 

3. FUNCTIONAL CHARACTERIZATION OF REAL 
CONCATENATION STRUCTURES 

3.1. Zntroduction 

This section is devoted to an attempt to construct all real concatenation struc- 
tures for the several scale types (M, N). We say “attempt” because we do not have 
satisfactory results for the M = 0 case. 

The following results of Narens (1981a, 1981b) are essential to the developments 
in this section. In the statement of these results, the similarity group refers, as is 
usual, to the multiplicative group of positive reals, and the affine group to the group 
of real transformations { rx + s 1 r in Re + and s in Re}. 

THEOREM 3.1. Suppose X= (X, 2, SjjjcJ is a totally ordered relational struc- 
ture for which (X, 2 ) and (Re +, 3 ) are isomorphic. Then the following three 
statements are true: 

(1) Zf X is of scale type (1, 1 ), then X is isomorphic to a real relational struc- 
ture 9 = ( Re + , 2, Rj >jc J whose automorphism group is the similarity group and the 
isomorphisms of X onto W form a ratio scale. 

(2) Zf X is of scale type (2, 2), then X is isomorphic to a real relational struc- 
ture ~8 = (Re +, 2, RjjiEJ whose automorphism group is the affine group and the 
isomorphisms of X onto 9 form an interval scale. 

(3) X cannot be of type (M, M) for M > 2. 

Proof Theorem 2.6 of Narens (1981a) and Theorems 2.2 and 2.3 of Narens 
(1981b). Q.E.D. 

This result is related to, but apparently different from, ones that can be found in 
the mathematical literature. The following references of related results were brought 
to our attention by K. Strambach. Holder (1901) established that a real transfor- 
mation group that preserves order and is l-point unique can be Archimedean 
ordered, and so is isomorphic to a subgroup of the similarity group; see Fuchs 
(1966). A brief proof can be found in Salzmann (1958). Brouwer (1909) studied real 
transformation groups that are order preserving, locally compact, and continuous, 
and showed that if such a group is M-point homogeneous, M> 1 (in this literature, 



SCALE TYPESOF CONCATENATION STRUCTURES 15 

this property is called “transitivity”) and 2-point unique, then it is isomorphic to 
the affine group. Strambach (1969) studied groups of order preserving 
homeomorphisms (both the map and its inverse are continuous) that are 2-point 
unique, and he showed the equivalence of three properties which are distinct from 
either l- or 2-point homogeneity. Other references that include some related 
material are Glass (1981) and Rosenstein (1982). 

The section is subdivided as follows. In Section 3.2, we show that under very 
reasonable conditions, real concatenation structures are 2-point unique. Thus, for 
these real structures we have the four cases mentioned earlier: M = 0, (1, 1 ), (2,2), 
and (1,2). We do not know much about the M= 0 case (Section 3.3). Thanks to 
Theorem 3.1 we can fully characterize the (1, 1) and (2, 2) cases (Sects. 3.4 and 3.6). 
Section 3.5 is concerned with (1, 1) idempotent structures that are related to 
positive structures by doubling functions. For the (1,2) case, the following result 
due to Alper (1985) gives us the necessary understanding to characterize the (1,2) 
real concatenation structures. 

THEOREM 3.2. Suppose X = (X, 2, Sj)jcJ is a totally ordered structure, 
(X, 2 ) and (Re, > ) are isomorphic, and X is of scale type (1, 2). Then there 
exists a real relational structure 9 = (Re, 2, Rj)j,J such that X and 9 are 
isomorphic, the automorphism group of 9i? is a subgroup of the affine group for which 
all of the translations x + x + r, r in Re, are included. 

ProoJ: Alper ( 1985). Q.E.D. 

We must at this point enter into an aside about the domains of representations 
and their corresponding automorphism groups. If !X = (X, 2,o ) is an arbitrary 
concatenation structure such that (X, 2 ) 

(i) has no maximal or minimal element, 

(ii) has a countable dense subset (Definition 1.3), and 

(iii) is Dedekind complete (Definition 2.1), 

then for some real operations 0 and 0, X is isomorphic to the real concatenation 
structures (Re, 2, 0) and (Re+, 8, 0) (Cantor, 1895). Thus, in general the 
choice of Re or Re+ as the domain of a real concatenation representation is 
arbitrary. Physicists almost always use Re +, in which case the (2,2) representation 
has as its automorphism group not the afhne group but rather transformations 
x -+ oxp, where o > 0 and p > 0. Stevens (1957) called such scales “logarithmic 
interval,” which has come to be abbreviated “log interval,” because a logarithmic 
transformation of a Re+ representation yields an interval scale representation on 
Re. To maintain a consistent terminology, it seems appropriate to call this group of 
automorphisms the log affine group. It is important to realize that the unit in the 
(2,2) case, i.e., the parameter that is comparable to that of the similarity transfor- 
mations of the (1, 1) case, is the g of the log affine transformation, not p which is 
the parameter that multiplies the variable log x in the interval scale representation. 
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Put another way, if we formulate the (1, 1) case as a representation on Re, the 
automorphisms become the translation group x -+ x + s, where s = log cr. Following 
the convention of physics, we shall mostly use the Re+ representation, but we shall 
also refer to the automorphisms of the similarity group as translations. When we 
come, in Section 7, to discuss the utility of gambles, we will shift to Re, which is the 
convention followed in economics and psychology. 

3.2. Uniqueness Results 

For measurement theory, PC!% (Definition 2.1) are by far the most important 
structures that satisfy positivity. The following result of Cohen and Narens (1979) 
nicely characterizes uniqueness for this class of structures: 

THEOREM 3.3. Suppose X is a PCS. Then the following are true: 

(1) % is either 0 or l-point unique. 

(2) rf the operation is not closed, then X is O-point unique, i.e., the identity is 
the only automorphism. 

ProoJ: Theorems 2.4 and 2.5 of Cohen and Narens (1979). Q.E.D. 

Note that it follows from Part 2 of this result that if (X, 2 ) has a maximal 
element, then 5?” is O-point unique. The following result is comparable for real struc- 
tures with an intern operation: 

THEOREM 3.4. Suppose [a, b], a <b, is a closed interval in Re and 0 is an intern 
operation on [a, b]. Then 9 = ([a, b], >,o ) is O-point unique. 

Proof: Suppose CI is an automorphism different from the identity 1. Since c( and r 
are strictly increasing functions of Re onto Re, they are continuous and, therefore, 
so is h = CI - 1. Let p be in [a, b] and u(p) # p. Since u(a) = a and cr(b) = 6, p is in 
the open interval (a, b) and h(p) # 0. Since h is continuous, there is an open interval 
U about p such that UG [a, b] and h(q) # 0 for all q in U. Let (c, d) be the largest 
open interval about p such that U E (c, d) s [a, b] and h(q) # 0 for all q in (c, d). 
Suppose h(c) # 0. Then h(c) # h(a) and so c #a. Thus a < c, and so we can find an 
open interval V about c such that VG [a, b] and h(q) # 0 for all q in V. But in that 
case, (c, d) u V would be an open interval about p meeting the defining conditions 
of (c, d) and larger than (c, d). As this is impossible, h(c) = 0. Similarly, h(d) = 0. 
Since c < d and 0 is intern, c 0 d is in (c, d), and so 

O#h(cod)=a(cod)-cod=a(c)oa(d)-cod=cod-cod=O, 

which is impossible. So CI = z. Q.E.D. 

Note that Theorem 3.4 only assumes 0 to be intern; it does not assume that W is 
a concatenation structure. 

We turn now to a sequence of three theorems that establish 2-point uniqueness. 
The first, which is a consequence of Theorem 3.4, applies to real intensive structures 
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that meet a special condition. This is then used in Theorem 3.6 to formulate a con- 
dition that applies to nonintensive structures as well. And finally, Theorem 3.7 
shows that this condition is satisfied by any real concatenation operation that is 
continuous. 

THEOREM 3.5. Suppose 9 = (Re, 2, 0 ) is a real intensive concatenation struc- 
ture with the following property: for each u, v in Re, if u < v, there exist w, x, y, z in 
Re such that 

w<u<x, y<v<z and u<w~y,x~z<v. 

Then W is 2-point unique. 

Proof: Suppose not. Then there are r < s in Re and distinct automorphisms ~1, /I 
of 92 such that a(r) = b(r) and a(s) = j?(s). So y = P-‘LI has the property y(r) = r and 
y(s) = s. Let Y = ([r, s], 3, o’), where 0 ’ is the restriction of 0 to [r, s]. Applying 
Theorem 3.4 to 9, the restriction of y to Y, which is an automorphism of 9, must 
agree with the identity I on [r, s]. Since y # 1, let p in Re be such that y(p) # p. 
First, assume p < r. Let 

u=lub{zlp<z<r and y(z)#z}. 

Then for all x in (u, s], y(x) = x. Hence since c1 and /? are continuous, so is y and it 
agrees with I on (u, s], so y(u) = u. By hypothesis, let y in [u, s] and w  < u be such 
that t = w  0 y is in [u, s]. Then since y is an automorphism of 9, 

Y(t) = Y(W"Y) = Y(w)"Y(Y). 

But y(t) = t and y(y) = y, so 

WOY =Y(t)=Y(w)“Y(Y)=Y(w)o)‘, 

which by monotonicity yields y(w) = w. Therefore, by Theorem 3.4, y = I on [w, s]. 
But by the choice of w  and u, [w, s] must include a z for which y(z) #z, which is 
impossible. Thus, we assume p > s, and the argument is similar, using the other half 
of the hypothesis. Q.E.D. 

THEOREM 3.6. Suppose 9 = (Re, >,o ) is a real concatenation structure with a 
closed operation and with half elements that satisfies the property: for each u, v in Re, 
zf u < v, then there exist w, x, y, z in Re such that 

w<u<x, y<v<z and u~u<w~x,z~y<v~v. (3.1) 

Then W is 2-point unique. 

Proof: Since 92 has half elements, let h be the function from Re to Re defined by 
h(x) 0 h(x) = x. Note that for each automorphism a of $8 and each x in Re, 

a(x)=a[h(x)oh(x)]=ah(x)oah(x), 
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and so by definition of h, ah(x)=h[cr(x)]. If for each x, y in Re we define the 
operation * by x * y = h(x 0 y), then 

4x * Y) = 4IW)~NY)l 
= ah(x) 0 ah(y) 

= Ma)1 OhCdY)l 
= a(x) * a(y). 

Since the automorphisms of 9 preserve 3, we conclude that they are also 
automorphisms of Y = Re, 2, * ). Now, suppose x, y are in Re and x < y. From 
the fact that by monotonicity of 0, ?sox<x~y<y~y and that for all z in 
Re h(z 0 z) = z, we may conclude 

x<h(xoy)=x*y<y, 

and so * is an intern operation. Since h and 0 are strictly monotonic, it follows that 
Y satisfies monotonicity, and so Y is an intensive structure. By applying h to the 
right inequalities of Eq. (3.1), we see that for each U, u in Re, if u < u, then there 
exist w, x, y, z in Re such that 

w<u<x, y<o<z and u<w*y,z*x<v. 

So, by Theorem 3.5, 9’ satisfies 2-point uniqueness and, since each automorphism 
of 9 is one of 9, so does 9%‘. Q.E.D. 

The next result, which is a consequence of Theorem 3.6, seems to be the one that 
will usually be invoked in applications to assure that a real concatenation structure 
is 2-point unique, since the property of continuity of the operation is usually accept- 
able to scientists. 

THEOREM 3.7. Suppose 9i? = (Re, >, 0 ) is a closed concatenation structure and 0 
is onto Re. If the operation 0 is continuous, then 9 satisfies 2-point uniqueness. 

Prooj We first show that 9 has half elements. Let w  be in Re and choose w, 
and w2 such that wi < w  < w2. Since o is onto, there are u, u, x, y in Re such that 

Let p = min(u, u} and q= max{x, y}, then 

By the monotonicity of 0, p c q. Define the function f by f (s) = s 0 s. Since 0 is con- 
tinuous, so is f: Since f(p) < w  <f(q), by the intermediate value theorem of the 
calculus, for some r with p < r < q, r 0 r =f(r) = w, and so r is the half element of w. 
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According to Theorem 3.6, to prove the result it suffices to show for each u, u in 
Re, u < u, there exists w, x, y, z meeting Eq. (3.1). As the proofs of the w, x and y, z 
pairs are similar, we only do the former. Let y be such that u < y < u. Since 0 is 
monotonic, u 0 u < u 0 y < u 0 u. Let E > 0 be such that 

Since o is continuous, there exists 6 > 0 such that for each w, x in Re, if I w  - uI < 6 
and Ix- ~1~6, then Iwox-uo yl <E. So choose any w<u such that jw-ul<6 
and set x = y, and we have ., 

w<u<y<u and u~u<w~y<u~u. 

Using a similar proof for x and z, we conclude 2-point uniqueness. Q.E.D. 

3.3. O-Point Homogeneity 

We do not at this time have a theory for O-point homogeneous structures, not 
even concatenation ones. All we have are techniques for generating a large variety 
of examples, but we have nothing approaching a satisfactory classification scheme. 
The following are some examples: Let oI be the operation and Re+ defined by 

x0, y=x+ y+x2y2. 

Cohen and Narens (1979, Example 4.2, p. 225) showed that (Re+, k, o1 ) is a PCS 
of scale type (0,O). The structure %! = (Re, >, + ) is, perhaps, the best known 
example of one having an invariant element under its automorphisms, namely 0, 
and it is of scale type (0, 1). The similarity group is the automorphism group of .%‘, 
as it is of the (1, 1) substructures (Re +, 2, + ) and (Re -, <, + ) which, inciden- 
tally, are both PCSs. Thus ST! is decomposable into well defined, well-behaved sub- 
structures together with relations involving a single point 0. To understand such a 
structure with an invariant element, it appears sufficient to understand the struc- 
tures on either side of the invariant element and the behavior of the element itself. 
Using this strategy, one can reduce the study of a structure with finitely many 
invariant elements to the study of structures with no invariant elements. Unfor- 
tunately, there are structures with no invariant elements that are O-point 
homogeneous, and we do not understand much about these. An example (Cohen 
and Narens, 1979, Example 3.1, p. 207) is (Re+, 2, 02), where 

x o2 y =x + y + (xy)‘l’{2 + sin[(i) log xyl}, 

which is a PCS with automorphisms x + x exp(2rcn), n = 0, l,..., that are a group of 
type (0, 1). The structure has no invariant elements. 

3.4. Scale Type (1, 1): The Ratio Scale Case 

The following concept, which appeared in Cohen and Narens (1979) is essential 
to understanding concatenation structures that are l-point homogeneous. 
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DEFINITION 3.1. A real structure (Re +, 2, 0, f) is said to be a real unit struc- 
IS a closed concatenation structure and f is a function from 

k”: ifn;oR;;: :;,,’ ihat 

(i) f is strictly monotonic increasing, 

(ii) f/z, where c is the identity function, is strictly decreasing, i.e., if x < y, 
thenf(4l~>f(.dl~~ and 

(iii) for all x, y in Re+, 

x o Y = yf (x/y). (3.2) 

THEOREM 3.8. Zf B = (Re+, a,~, f) is a real unit structure, then the following 
statements are true: 

(1) lim,+, f (x)/x exists and = k 6 f ( 1). 

(2) 9i? has half elements. 

(3) Zf W is weakly positive, then f (1) > 1. 

(4) ZfB is positive, then f (x) > x and k 2 1, and B is Archimedean ifff (“‘( 1) is 
unbounded; a sufficient condition for the latter statement is k > 1. 

(5) Zf 9 is positive and restrictedly solvable, then k = 1. 

(6) Zf .%? is weakly negative, then f( 1) < 1 and it is impossible for W to be 
restrictedly solvable. 

(7) rfB is negative, then f(x) < x. 

(8) Suppose 9 is idempotent. Then f(l)=l; andfor each x<l,x<f(x)<l; 
andfor each x> l,x>f(x)> 1. 

Proof (1) Since f/z strictly is decreasing and >O, the limit k exists, and for 
x>l,f(x)/x<f(l)/l and so k<f(l). 

(2) For each x in Re +, let y = x/f (1 ), then y 0 y = yf( y/y) = x, proving that 
half elements exist. 

(3) Since B is weakly positive, x < x 0 x = xf ( 1 ), whence f ( 1) > 1. 

(4) Since 9 is positive, x < x0 y = yf(x/y). So, setting z = x/y, we have 
z< f(z), and so k> 1. Observe that 

2x=x~x=xf(x/x)=xf(1)=xf[f(1)x/x], 

and so by induction for n > 2, 

nx=(n-l)xox=xf[(n-l)x/x]=xf[f’“-”(l)x/x]=xf’”)(l). 

Thus, nx is unbounded iff f”“( 1) is. Suppose k > 1. Then from the fact that f/t is 
strictly decreasing, f (x) > kx, and so f ( 1) > k. Since f is strictly increasing, by induc- 
tion f (“)( 1) > k”, and so f (“)( 1) is unbounded. 
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(5) For each E > 0, restricted solvability implies there exists 6(y, E) such that 
y < y 0 6( y, E) < y( 1 + E). Using part (iii) of the definition of a unit structure, letting 
6 = 6(y, E), and dividing by y, 

1 <f(YP)/(YP) < 1 + 6. 

Now, let E + 0, then since 6 + 0 it follows that k = 1. 

(6) As in part (3), f( 1) < 1. Were restricted solvability to hold, an argument 
analogous to that used in part (5) shows k = 1 >f( I), which is impossible by 
part (1). 

(7) The proof is analogous to the first part of part (4). 

(8) Suppose x is in Re+. Since x=xox=xf(l), we see f(l)= 1. Suppose 
x<l.ForanyzinRe+,lety=xz,theny<yo z = zj( y/z) = zf(x), and so x < f(x). 
Since f( 1) = 1 and f is strictly increasing, f(x) < 1. Similarly, if x > 1 then 
x >f(x) > 1. Q.E.D. 

The following result generalizes slightly Theorems 3.3 and 3.4 of Cohen and 
Narens (1979). 

THEOREM 3.9. Suppose B = (Re +, 2, 0 ) is a real, Ased concatenation struc- 
ture. Then, .CA? is of scale type (1, 1) iff 2~2 is isomorphic to a real unit structure 
(Re+, &of, f ) with the following property: if for all x > 0 and some p > 0, 
f(x”) = f(x)P, then p = 1. 

Proof: Suppose L% is a closed concatenation structure of scale type (1, 1). Since, 
by Theorem 3.1, W is isomorphic to a real structure with the similarity group its 
automorphism group, we may without loss of generality assume %? is that structure. 
Thus, 0 must satisfy the functional equation that for all x, y, r > 0, 

r(xn y)=rxory. 

Define the function f by f(z) = z 0 1, which is well defined since 0 is an operation. 
Then by setting r = l/y, we see that 

(XOYVY = (X/Y)‘= 1 =f(dy), 

which establishes part (iii) of the unit representation. By monotonicity of the 
operation, 

x/y > x’jy iff x2x’ 

iff x0 y>x’o y 

iff yf (xh) 2 yf (x’ly) 

iff f(x/y) >f(x’/y), 
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proving that f is strictly increasing. And 

4.v d x1.v’ iff y>y’ 

iff x0 y>xo y’ 

iff yf(x/y) 3 y’f(-‘clv’) 

iff f(x/~Mx/.v) ~ff(x/~‘)l(x/~‘) 

proving that f/t is strictly decreasing. 
Now suppose that for some p # 1, f(x”) = f(x)“. We show that this implies that 

U(X) =xp is an automorphism, which is impossible since it is not a similarity. 
Obviously, a is increasing and onto, and 

a(x a ,v) = yPf (x/y)” 

= y"f(x"/v") 

=~(Y)fC~(-~)I~(Y)l 
= E(X) 0 a(y), 

and so tx is indeed an automorphism, which is impossible. So such p # 1 cannot 
exist. 

Conversely, it is easily verified that any real unit structure is a closed con- 
catenation structure for which the similarities are all automorphisms, and so the 
automorphism group Y contains a ( 1, 1) subgroup. Since 0 ’ is onto and is con- 
tinuous, by Theorem 3.7, the structure is 2-point unique. Thus, by Theorem 3.2, 3 
is a subgroup of the log afftne group. If a(x)= rrxp is in 9, then by the above 
argument f(xP) = f(x)j’ and so p = 1, proving l-point uniqueness. Thus, the unit 
structure is of scale type (1, 1). Q.E.D. 

3.5. Idempotent Structures with Doubling Functions 

A major part of the literature on measurement concerns the construction of 
numerical representations for particular qualitative structures, Most of Krantz et al. 
(1971) is devoted to this sort of enterprise, focusing on structures with additive and 
polynomial representations. Narens and Lute (1976) and Cohen and Narens (1979) 
carried out a similar program for PCSs (see Definition 2.1). The key to the known 
constructions is positivity and the Archimedean axiom, and so these methods do 
not extend to idempotent structures, which are nonpositive and not Archimedean in 
the sense of PC%. It would be nice to have a general constructive device for idem- 
potent structures that is similar to the standard sequence approach used with PCSs, 
but none has appeared in the literature. Something along these lines is developed in 
Section 5. An alternative tack was suggested by Narens and Lute (1976) for those 
idempotent structures that can be mapped onto a PCS by means of a function hav- 
ing the following properties: 
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DEFINITION 3.2. Suppose !X = (X, 2, *) is an intensive structure and 6 is a 
function from A c X into X. Then 6 is said to be a doubling function iff for every 
x, y in X, 

(i) 6 is strictly monotonic increasing; 

(ii) if x k y and x is in A, then y is in A; 

(iii) if x> y, then there is u in X such that y * u is in A and x> S(y * u); 

(iv) ifx*y is in A, then 6(x*y)>x, y; 

(v) let x,, n = 1,2 ,..., be such that x, -x and if x,_, is in A, then 
x,- (x,~ 1) * x; then either there exists an integer n such that x, is not defined or 
XnkY. 

Let 3 and 6 be as in Definition 3.2. Narens and Lute (1976, Theorem 3.1) 
proved that the operation 0 defined by x0 y = 6(x * y) is such that (X, k=,o ) is a 
PCS with half elements. They also proved that any PCS with half elements yields 
an intensive structure with a doubling function equal to the inverse of the half 
element function. The question of uniqueness of the doubling function was left 
unresolved, and later it was answered by Michael Cohen but not published. 
Although he dealt with partial operations, we present his result only for the simpler 
case of an operation. 

*THEOREM 3.10 (Cohen). Suppose X = (X, 2, *) is a closed, idempotent con- 
catenation structure having a doubling function 6 with domain A. If 6’ is another 
doubling function with domain A’, then 6’ difjfers from 6 at most at one point, which is 
maximal in the structure. The PCS (X, 2, 0 ), where 0 is defined by x 0 y = 6(x * y) 
when x * y is in the domain A, and 3 have the same group of automorphisms. 

Proof By Theorem 3.1 of Narens and Lute (1976), let 0 and 0’ be the PCS 
operations induced by 6 and 6’, respectively. For any c in 6(A n A’), define h by 
h(c) = 6’6-l(c). We show that h has three properties: 

(i) h is strictly increasing. This follows from the fact that 6 and 6’ are strictly 
increasing. 

(ii) If a, b are in A n A’, then a 0 b is in &A n A’) and h(a 0 b) > a, 6. The for- 
mer is obvious and the latter follows from 

h(a 0 b) = X6-‘6( a * b) = 6’(a * b) = a O’ b > a, b. 

(iii) If a>b, th en there is a c such that b 0 c is in 6(A n A’) and a > h(b 0 c). 

To show this, observe that by Definition 3.2(iii), there exist d and d’ such that 
a > 6(b * d) and a > 6’(b * d’). Choose c = min(d, d’), then by Definition 3.2(ii) c is 
in A n A’. Thus 

h(boc)=6’6-‘6(b*c)=6’(b*c)ia. 
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We now use these properties to show that h is the identity over &4 n A’). Sup- 
pose a is in 6(A n A’) and h(a) > a. By property (iii) of h, there exists c such that 
h(a) > h(a 0 c), which by property (i) implies a > a 0 c, contrary to the positivity of 0. 
Suppose u>h(u). By restricted solvability there is some b such that a> h(u)0 b. 
Since a is in 6(A n A’) then so is h(u) 0 b by Definition 3.2 (i) and (ii). So by proper- 
ties (i) and (ii) of h, h(a)>h[h(u)~ b] >/z(u), which is impossible. Therefore, 
h(u)-a. 

Now, without loss of generality, suppose a’ is in A’- A, in which case 
A - A’ = 0. If a is in A, we show u is in A’. If a’ 2 a, this is trivially so. If a > a’, 
then a’ is in A, contrary to choice. Now, suppose a’ and a” are both in A’ -A and 
a’ > a”. Let b’ = 6’(u’) and 6” = d’(u”). By the monotonicity of 6’, b’ > 6” > 6’(c) for 
all c in A. By Definition 3.2(iii), there is a d in X such that b” * d is in A and so, by 
what was shown above in A’. Using the identity of 6 and 6’ over A n A’, 
b’ > 6(b” * d) = o’(b” * d). But by Definition 3.2 (iv), o’(b” * d) > b”, which con- 
tradicts the fact that for b” * d in A, b” > #(b” * d). So u/--a”. 

Next, we show that 6’ = 6’(u’) is maximal in X. Suppose not, then there is c in X 
such that c> 6’. By Definition 3,2(iii) and (iv), there is d in A such that 6’ * d is in 
A and c>6(b’ * d)> b’. But 

o’(b’ * d) = 6(b’ * d) > b’ = #(a’), 

and so by monotonicity, b’ * d> a’. Thus, by Definition 3.2(ii), a’ is in A, contrary 
to choice. 

As Narens and Lute (1976, Theorem 3.3) showed, if CI is an automorphism of X, 
then a-‘6a is also a doubling function, and so by its uniqueness a6 = 6a. We use 
this to show that a is also an automorphism of the induced PCS: 

a(x0 y)=ao(x * y)=6a(x *y)=o[a(x) * a(y)] =a(x)oa(y). 

Since 6a 6 ~ ’ = a6 6 ~ ’ = a, we see that a6 ~ ’ = 6 ‘a, and so if a is an automorphism 
of (X, k=,o ), then 

proving that a is an automorphism of s. Q.E.D. 

Since the automorphism group of a l-point homogeneous PCS is, by 
Theorem 3.3, of scale type (1, l), the same is true of its associated intensive struc- 
ture. Thus, by Theorem 3.1, they both have real ratio scale representations and by 
Theorem 3.9 we know that they can be put in the form of real unit structures. Thus, 
we can ask under what conditions such real structures have doubling functions. 

THEOREM 3.11. Suppose 99 = ( Re + , 2, *, f  > is a real unit structure that is idem- 
potent and k = lim, _ o. f(x)/x. The necessary and sufficient conditions for W to have 
a doubling function are 
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(1) lim,,,,f(x)>k, and 

(2) defining f,(k) inductively by f,(k) = 1 and f,,(k) =f[J;,- ,(k)/k], then 
lim .+mfn(k)= a. 

In this case, the doubling function is 6 = l/k. 

Proof First, assume that the conditions hold. We show that 6 = z/k is a doubl- 
ing function with domain Re+. 

(i) and (ii) 6 is obviously strictly increasing and defined on Re+. 

(iii) Suppose x > y and let z be such that 1 <z < x/y. By the definition of k 
and the fact (Definition 3.1) f/z is decreasing, let u > 0 be such that kz > f (u)/u, and 
let u = y/u. Then 

&y*u)=uf(y/u)/k= yf(u)/uk< yz<.v. 

(iv) Since f/l is decreasing, we know that f(x/y)/(x/y) > k and so 6(x * y) = 
yf(x/y)/k > x. By assumption (1) and the fact f is increasing, f(x) > k and so 
W *Y) = yf(x/y)/k > Y. 

(v) Suppose x, is a sequence of the type defined in Definition 3.2(v). 

Then by induction x, = -uf(k)/k. By assumption (2), f,(k) is unbounded, therefore 
so is x, and the Archimedean property holds. 

Conversely, suppose that a doubling function 6 exists. We first establish that it is 
linear. Since 9 is homogeneous, its induced PCS is (1, 1) by Theorems 3.10 and 3.3, 
and thus by Theorems 3.1 and 3.8 we know that its operation 0 satisfies x o y = 
yg(x/y) for some g meeting conditions (i)-(iii) of Definition 3.1. Thus, 

Setting y = x and noting f( 1) = 1 (Theorem 3.8 (8)), we obtain 

xg(l)=G[xf(l)]=6(x). 

By Theorem 3.8 (3), g( 1) > 1. Let k = l/g( 1). We next show that lim r; _ oc, f(x)/x = k. 
By Definition 3.2(iv), x < 6(x * z) =zf(x/z)/k, and so for all x, z > 0, 
k < f(x/z)/(x/z), proving that lim,, ‘* f(x)/x > k. Select any 2, E > 0 and let 
X=Z+&>z. By Definition 3.2(iii), there exists a u such that 

-+~=x>h(z*u)=(~*u)/k=uf(y/u)/k, L 

and so dividing by z, 

1 + E/Z > f(z/u)/(z/u) k. 

Since z and E are arbitrary and the limit exists, we see k B lim, _ co f (x)/x, thereby 
proving their equality. 
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To show property (i), note that by the positivity of the doubling function 
(Definition 3.2 (iv)), for all x, y > 0, y < 6(x*y) = yf(x/y)/k, and sof(x/y) > k. Since 
f is increasing, the limit exists and 2 k. 

To show property (2), we let x, be as in Definition 3.2(u) and note that, as in the 
first part of the proof, x, = xf,(k)/k, and so the Archimedean property of the doubl- 
ing function impliesf,(k) is unbounded. Q.E.D. 

This result definitely does not encompass all real (1, 1) idempotent structures. 
For example, those of the form 

f(x)=ax+bxC+ 1 -a-b, o<c< 1, 

satisfy the first property of Theorem 3.11 only for a < (1 - 6)/2. The reason is that 
k=a and lim .r +0 f(x) = 1 - a - b. So there is much more to be understood about 
ratio scale idempotent structures. 

3.6. Scale Type (2,2): The Interval Scale Case 

THEOREM 3.12. Suppose B= (Re+, 4,o > is a real, closed concatenation struc- 
ture. Then the following statements are equivalent: 

(1) W is of scale type (2, 2) with the log affine automorphism group. 

(2) There exists a real unit structure (Re+, 2, 0’) f) that is isomorphic to 
(Re+, 8, 0 ) and f has the property that for all x, p > 0 

f(x”) =f(xY. (3.3) 

(3) There exist real constants c, d, 0 < c, d < 1, such that 

x0 y&j- 1yx>y 

=x ifx=y (3.4) 
=Xdyl-d if x-c y. 

Proof (1) implies (2). Since 0 is invariant under the log afine group, which 
includes the similarity group, which is (1, 1 ), it follows from Theorem 3.9 that R is 
a real unit structure. So the invariance 

may be reformulated, using Definition 3.1 (iii), as 

from which Eq. (3.3) follows directly. 
The converse, (2) implies (1) is obvious. 
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(2) implies (3). Observe that Eq. (3.3) is really two independent equations since 
for p > 0, x 2 1 iff xP > 1. By Theorem 1, p. 66 of Aczel (1966), both solutions are 
power functions with, let us say, exponents c and d. The fact that f must be 
monotonic increasing and f/z monotonic decreasing forces 0 < c, de 1. Using 
Definition 3.1 (iii) yields Eq. (3.4). 

The converse, (3) implies (2), is trivial. Q.E.D. 

As was noted earlier, economics and psychology follow the convention of writing 
(2,2) cases in interval scale fashion rather than as a log interval scale. In the case 
just discussed, taking logarithms yields the following representation: for all u, u in 
Re, there exist constants c, d, where 0 < c, d < 1, such that 

u~u=cu+(l-C)# if u > 0, 

= z4, if u = u, (3.5) 

=du+(l-d)u if u<u. 

As this representation seems to be important (see Sect. 7 below), it probably deser- 
ves an identifying name. Since it generalizes the familiar linear representation of the 
idempotent, bisymmetric structure in which c = d (see Krantz et al., 1971, Sect. 6.9), 
we refer to it as the dual bilinear representation. 

3.7. Scale Type (1, 2) 

For continuous real concatenation structures, the only l-point homogeneous case 
that can arise with N> M is (1, 2) (Theorem 3.7), and we also know that it is 
isomorphic to a subgroup of the alIine group (Theorem 3.2). 

One example of such a (1,2) group is the set of transformations x + axp, where 
p = k” for some constant k > 0 and every integer n, and a > 0. It is easily verified 
that this is a group, that it is l-point but not 2-point homogeneous, and that it is 
2-point but not l-point unique. We refer to it as the discrete log uffine group. 

THEOREM 3.13. Suppose W= (Re+, a,~) is a real, closed concatenation struc- 
ture. Then the following statements are equivalent: 

(1) 9 is of scale type (1,2). 

(2) There is a real unit structure (Re+, 2, 0’) f) such that 9 is isomorphic to 
(Ret, 2, a’) and there exists a constant k>O such that Eq. (3.3) (Theorem 3.12) 
holds zff for some integer n, p = k”. 

(3) The automorphism group of 9 is isomorphic to the discrete log affine 
group. 

Proof (1) implies (2). By Theorem 3.2, the automorphism group 9 of this 
representation is a subgroup of the log affine group and the (1, 1) subgroup 
corresponds to the multiplicative positive reals. So, they are of the form axp, where 
a > 0 and p is in subgroup X of the positive reals. &? cannot be the identity since, 
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by Theorem 3.9, that would mean %Y is (1, l), not (1,2). If H is dense in the reals, 
then by the continuity off-it is onto and strictly increasing-it would follow that 
Eq. (3.3) is true for all p > 0, in which case by Theorem 3.12, %! would be (2,2), not 
(1, 2). So A? must be discrte, in which case it is generated by some k > 0 and so the 
elements of Z’ are of the form k”, n an integer. 

It is trivial to show that (2) implies (3) and (3) implies (1). Q.E.D. 

The next and last result of the section provides a characterization of differen- 
tiable, real unit structures that satisfy the properties of Theorem 3.13. It makes it 
quite clear that such structures exist since the characterization is easily realized. 

THEOREM 3.14. .% = (Re+, >, 0 > is a real, closed, idempotent concatenation 
structure and (Re+, 3, 0, f > is a real unit structure with the following two proper- 
ties: 

(i) f is differentiable everywhere except at x = 1, and 
(ii) there exists a unique k > 1 such that, for all x > 0, Eq. (3.3) holds iff p = k”, 

n an integer, 

iff there exist two functions q, and q2 on the closed interval [0, log k] with the 
following properties, where x is in [0, log k] and i = 1, 2: 

(a) q,(O) = q,(log k), 

(b) O<qi(-x), 
(c) qi is not constant, 

(d) qi is differentiable on (0, log k), 

(e) lim,io 4X-~) = hyT,,,k 4Xx), 
(f) O<q(x)+q’(-xl< 1, 

such that tf pi is the periodic ,function qf period log k that agrees with log qi on 
[0, log k] and hi= I + pi, then 

f(x) = exp exp h,(log log X) ifx>l 

=l $x=1 (3.6) 

= l/exp exp h,(log log l/x) if xc 1. 

Proof Suppose qi satisfy properties (a)-(f) and f is defined by Eq. (3.6). We 
establish that f defines a unit structure (Definition 3.1) that exhibits properties (i) 
and (ii) of the theorem. By assumptions (d) and (e), the definitions of pi, hi, andf, 
it is clear that f is differentiable except possibly at 1. To show property (ii), let 
c = log k and observe that 

hi(X+c)=x+c+pi(x+c)=x+c+pi(x)=hi(x)+c. 
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So, for x> 1, 

f(xk) = exp exp h,(log log xk) 

= exp exp h, (log k log x) 

= exp exp h,(c + log log x) 

= exp exp[c + h,(log log x)] 

= exp k exp h,(log log x) 

= [exp exp h,(log log x)lk 

= “f(X)k. 

By essentially the same calculation, the result holds for x < 1. From this is follows 
immediately that Eq. (3.3) holds if p = k”. Suppose it holds for some p not of this 
form. Then, by a well-known argument, it holds for a set of p’s that is dense in Re + 
and so by the continuity off it holds for all p > 0. This implies that h,(x + a) = 
h;(x) + a for each a > 0, in which case pi is periodic with every period, i.e., a con- 
stant, and so qi is a constant, violating assumption (c). 

Next we show that f is increasing. Since exp x > 0, exp exp x > 1, and so f(x) > 1 
if x > 1 and f(x) < 1 if x < 1. So it suffices to show that ,f is increasing on each side 
of 1. For x > 1, f is increasing 

iff h, is increasing 
iff h;(x) > 0 [by (d) and .(e) and definitions of p, and h,] 
iff 1 + p;(x) > 0 [definition of h,] 
iff 1 + p;(x) > 0 for x in [0, c] [by the periodicity of p,] 
iff 1 + q;(x)/q,(x) > 0 [p, = log q1 for x in [0, c]] 
iff q,(x) + q;(x) > 0 Cql(x) > 01, 

which condition is assumed in property (f). For x < 1 the reasoning is similar, using 
p2, since the two inversions l/x and l/exp exp h, maintain the relation that f is 
increasing iff h, is increasing. 

Finally, we show that f/l is decreasing. For x > 1, f/z is decreasing 

iff f( exp exp x)/exp exp x is decreasing 
iff exp exp h, (x)/exp exp x is decreasing 
iff exp[exp h,(x) - exp x] is decreasing 
iff e”[exp p,(x) - l] is decreasing [because h, = r + pl] 
iff e”[p;(x) exp pi(x) + exp p,(x) - l] < 0 [because p, is differentiable] 
iff [exp p,(x)] [p;(x) + l] < 1 [e-‘>O] 
iff [exp p,(x)] [p;(x) + l] < 1 for x in [0, c] [because p, is periodic] 
iff q,(x)[ 1 + q;(x)/q,(x)] < 1 [definition of pl] 
iff q,(x) + q;(x) < 1, 

which is true by property (f). Again, the argument is similar for x < 1. 
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Conversely, suppose f is a unit representation satisfying properties (i) and (ii). 
Define 

h 1 (x) = log log f(exp exp x), x> 1, 

h*(x) = log log l/f( l/exp exp x), x< 1. 

Using property (ii) it is easy to verify that for c = log k, 

hi(X + c) = hi(X) + c. 

This is Abel’s equation with the particular solution h, = z and so, as is well known, 
the general solution is hi = z + pi, where pi is periodic with period c. By property (i) 
pi is everywhere differentiable. Define qi on [0, c] by qi = exp pi. Properties (a), (b), 
(d), and (e) are immediate. Property (c) follows from the fact that k is unique. And 
property (f) was shown above to follow from the facts that f is increasing and f/l is 
decreasing. Q.E.D. 

4. RELATIONS BETWEEN CONCATENATION AND CONJOINT STRUCTURES 

4.1. Definitions 

Conjoint structures of the form (A x P, 2 ), where A and P are sets and 2 is a 
weak ordering that is independent (monotonic) in a sense defined below, have at 
least three important ties to concatenation structures. For one, when reasonable 
solvability conditions are satisfied, the conjoint structure induces on each com- 
ponent a concatenation structure which is closely related to a PCS. For a second, 
many measurement contexts are modeled as conjoint structures together with one 
or more operations defined either on the conjoint structure itself or on one of its 
components. Moreover, in many such situations the operations combine either with 
the conjoint ordering itself or with the orderings induced by it on A and/or P to 
form concatenation structures that nicely interlock with the conjoint structure in 
such a way that their automorphism groups are closely related. An example is the 
conjoint structure of pairs consisting of substances and volumes, for which there is 
an ordering and concatenation of masses on the whole structure and a con- 
catenation of volumes on the second component. The third tie comes from the fact 
that it is always possible to construct from a concatenation structure a conjoint one 
that encodes the same information. This recoding sometimes suggests alternative 
ways to study the concatenation structure. The first two possibilities are explored in 
this section, and the third is considered in the next two sections. Some of the results 
are already known in part, but as they have been cast in a somewhat different and 
less informative guises in earlier publications, we believe that some partial 
repetition is not amiss. In each case, we make clear what is new and what is old. 
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The following is a precise statement of what a binary conjoint structure is and of 
some of the solvability conditions that will be used. 

DEFINITION 4.1. Suppose A and P are nonempty sets and 2 is a binary relation 
on A x P. Then, Gf = (A x P, 2 ) is a conjoint structure iff for each a, b in A and 
p, q in P, the following three conditions are satisfied: 

(1) 2 is a nontrivial weak ordering; 

(2) independence holds, i.e., 

(i) apkbp iff aqkbq, 

(ii) up 2 aq iff bp 2 bq. 

Observe that independence permits one to define induced weak orders on A and P, 
which are denoted kA and kP, respectiveiy. 

(3) 2 A and 2 P are total orderings. 

In addition, 

(4) V is said to satisfy the Thomsen condition iff for all a, b, e in A and p, q, x 
in P, 

ax-eq and ep y bx ‘imply up m bq. 

(5) For a, in A and pO in P, V is said to be A-solvable relative to aopo iff 

(i) for each a in A, there exists n(a) in P such that 

(ii) for each up in A x P, there exists <(a, p) in A such that 

4fa, PI PO-v. 

(6) %? is said to be unrestrictedly A-solvable iff for each a in A and p, q in P 
there exists b in A such that up- bq. The definition of unrestrictedly P-solvable is 
similar. 

(7) 55’ is said to be dense iff whenever up > bp, there exists q in P such that 
ap>bq>bp. 

(8) Let J be an (infinite or finite) interval of integers. Then a sequence 

tajljcJ~ J a. in A, is said to be a standard sequence on A iff there exist p, q in P such 
that (i) it is not the case that p mP q and (ii) for all j, j+ 1 in J, a,, , p-a,q. The 
sequence {aj},EJ is said to be bounded iff for some c, d in A, c 2 aj k d for all j in J. 
% is said to be Archimedean iff every bounded standard sequence on A is finite. 

Note that assumption (3) is inessential and it is made only as a matter of con- 
venience. 
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4.2. Induced Concatenation Structures 

DEFINITION 4.2. Suppose that V = (A x P, 2 ) is a conjoint structure that is 
A-solvable relative to a,p, in A x P. The induced operation on A, *, is defined as 
follows, for each a, b in A, 

a * b = t[a, db)l, 

where rr and 5 are defined in Definition 4.1 (5). 

DEFINITION 4.3. Let X be a nonempty set, 2 a binary relation on X, 0 a binary 
operation on X, and x0 an element of X. Then !Z” = (X, 2, 0, x0) is said to be a 
total concatenation structure iff the following live conditions hold: 

(1) (X, 2, 0 ) is a concatenation structure. 

(2) The restriction of $7 to X+ = 1x1 x in X and x>xO} is a PCS. 

(3) The restriction of Z” to X = (x 1 x in X and x < x0} but with the con- 
verse order 5 is a PCS, i.e., (X, 5, 3) is a PCS. 

(4) For all x in X, .YOX~NX~O~Y~.Y. 

(5) For x in X+ and y in X, there exist U, u in X such that u 0 y and u 0 x 
exist and uoy>x and y>uox. 

THEOREM 4.1. Suppose (A x P, 2 ) is an Archimedean conjoint structure that is 
A-solvable relative to a,,~, in A x P. Let * be the operation induced on A relative to 
aopo. Then (A, kA, *, a,) is a total concatenation structure. Moreover, any closed 
total concatenation structure is isomorphic to one induces by some A-solvable conjoint 
structure. 

Proof Lute and Cohen (1983, Theorems 2 and 3). Q.E.D. 

The main significance of this result is that we know just what properties of * 
follow from the very weak assumptions of a conjoint structure and A-solvability. 
The question is how best to use * to study conjoint structures. One useful device is 
a certain class of transformations defined in terms of *. 

DEFINITION 4.4. Suppose % = (X, 2, 0 ) is a concatenation structure. For x in 
X, the transformation r,= iox, where r is the identity transformation on X, is said 
to be a right transfation of X. (It is the mapping of X into X such that z,(y) = y 0 x. 
A similar concept of left translation can be defined, but it will not be used.) The 
class of all right translations is denoted Y or, if two or more operations are 
involved, by Y( 0 ). 

THEOREM 4.2. Suppose $9 = (A x P, 2 ) is a conjoint structure that is A-solvable 
relative to a, p. in A x P, * is the corresponding induced operation, YA = (A, 2 A, * ), 
and F is the class of right translations of *. Then the following statements are true: 
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(1) F satisfies l-point uniqueness in jA. 

(2) 7 satisfies l-point homogeneity in JJ~ iff %? is unrestrictedly P-solvable. 

(3) 5 is closed under function composition iff * is a closed associative 
operation. 

(4) 5 is commutative iff 59 satisfies the Thomsen condition, in which case * is 
both associative and commutative. 

(5) 5 is a group iff 55’ is unrestrictedly P-solvable and * is a closed associative 
operation. 

(6) If F is a group and V is Archimedean, then W satisfies the Thomsen con- 
dition and F is an Archimedean ordered group. 

Proof (1) Using the monotonicity of * (Theorem 4.1), 

7,(c) = 7Jc) iff c * a wA c * b iff a -A b iff a= b, 

which proves l-point uniqueness. 

(2) Suppose F is l-point homogeneous, and let a, b in A and q in P be given. 
So there exists c in A such that 

a*c=z,.(a)=b*Cl(q), 

which is equivalent to an(c) N bq. Thus, unrestricted P-solvability holds. Conversely, 
suppose a, b are in A and let p solve bp, m ap w a * n ~ ‘(p) pO. By independence 
(Definition 4.1 (2)), 7,-1~~) (a) = b, which establishes l-point homogeneity. 

(3) Assume 5 is closed under function composition, and let a, b, c be in A. 
By the closure of F, there exists d in A such that ~~7~ = zd, and in fact 

d= a, * d= 7JaO) = z,zb(aO) = (a0 * 6) * c = b * c. 

And so, 

a * (b * c) = a * d= zd(a) =7,.7,(a) = (a * b) * c, 

proving that * is a closed associative operation. Conversely, suppose * is 
associative, then 

z,z,(c)=(c*b)* a=c*(b*a)=z,,,(c), 

which establishes the closure of F. 

(4) Suppose F is commutative and ax-eq and ep- bx. These are equivalent 
to 

a*C1(x)=e*7Cp1(q) and e*z-‘(p)=b*n-l(x). 
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Freely using the commutativity of Y-, i.e., (a * b) * c= t,rb(u) =z~z,(u) = 
(a * c) * b, and the monotonicity of *. 

[ a * 71-‘(p)] * 7+(x)== [a * x-‘(x)] * C’(p) 

= [e * n-l(q)] * n-‘(p) 

= e * C1(p)] * K’(q) C 

= [b * C’(X)] * n-l(q) 

= [b * n-‘(q)] * n-‘(x), 

and so by the monotonicity of *, up- bq. 
Conversely, suppose the Thomsen condition holds. Apply it to the definitions: 

a * b, PO-~, n(b) and 4 x(c)-a * c, PO, 

to get a * b, n(c)-a * c, z(b), which is equivalent to (a * 6) * c = (a * c) * . This 
establishes the commutativity of Y. Observe that from this property, 

u*b=(u,*u)*b=(u,*b)*a=b*u, 

which establishes the commutativity of *. And using both properties. 

a*(b*c)=(b*c)*u=(b*u)*c=(u*b)*c, 

which is the associativity of *. 

(5) Suppose Y is a group. Since it is closed under function composition, 
part (3) implies * is associative. We next establish that Y is l-point homogeneous 
and so, by part (2), V is unrestrictedly P-solvable. Select a, b in A. Note that 
z,(uo) = a and rb(uo) = 6, and so r,z; ‘(a) = 6. Since Y is a group, tb7;l is in Y. 

Conversely, the closure of * insures that 5 is closed. We show that if 7, is in 5, 
then 7<;I’ is also in Y. Suppose T,(b)=c, then by l-point homogeneity of 3 
(part (2)), there exists td in Y such that rd(c) = b and so z,T,(b) = b = z(b). By the 
closure of Y-, 7d7u is in Y-, and so by l-point uniqueness (part (l)), ~~7~ = I, 

whence 7,=7;l. 

(6) Suppose F is a group and %? is Archimedean. Then by part (5) and 
Theorem 5 of Lute and Cohen (1983) V satisfies the Thomsen condition. 5 can be 
ordered as follows: for each a, b in A, 

zUk’ th iff for all c in A, 7,(c) 2A 7b(C), 

iff for all c in A, c*akAc*b, 

iff akA 6. 

From the associativity of *, we note that 7; = z*na. Since (A, kAt *) is a total con- 
catenation structure (Theorem 4.1), it follows that for each a, b >a a,, there exists 
an n such that nu kA b, and thus, 712’ TV, proving that Y is Archimedean. Q.E.D. 
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Part (4) of the above theorem is essentially the same statement as Theorem 5 of 
Lute and Cohen (1983), except that they assumed %? to be Archimedean. 

4.3. The Distributive Interlock 

Narens and Lute (1976) extended and developed an idea in Narens (1976) con- 
cerning the interlock between a concatenation operation on one component of a 
conjoint structure and the conjoint structure itself. This interlock appears to be 
what holds together the various scales of classical physics and leads to the 
mathematical structure that underlies the important structure of physical units. It, 
therefore, appears to be of great importance in measurement theory. The purpose of 
this subsection is to develop more fully its algebraic analysis which was initiated in 
Narens (1981a) and was carried out more fully in Lute and Cohen (1983). 

DEFINITION 4.5. Suppose V = (A x P, 2 ) is a conjoint structure and 0 is a par- 
tial operation on A. Then 0 is said to be distributive in V iff for all a, b, c, d in A for 
which a o b and c o d are defined and all p, q in P, 

v-c9 and b-4 imply sob, p-cod, q. 

DEFINITION 4.6. Suppose V = (A x P, 2 ) is a conjoint structure and a is an 
automorphism of %. Then tl is said to be factorizable iff there are maps /I from A 
onto A and y from P onto P such that for al a, b in A and p, q in P, 

44 P) = (P(a), Y(P)). 

THEOREM 4.3. Suppose V = (A x P, 2 ) is a conjoint structure that is A-solvable 
relative to a,p, in A x P, and let * be the induced operation and .F the corresponding 
set of right translations of *. Suppose that r% = (A, 2 A, 0 ) is a closed concatenation 
structure, B is its group of automorphisms, and & its set of endomorphisms. Then the 
following four statements are true: 

(1) If 0 is distributive in V, then Jo E 8. 

(2) Jo G 9 iff 0 is distributive in W and %? is unrestrictedly A-solvable. 

(3) F = 99 ijjf F s Y and Y satisfies l-point uniqueness. 

(4) Suppose %? is Archimedean. Then, F = 9 iff F 5 9, 5 satisfies l-point 
homogeneity, * is associative (and commutative), and for a in 9, both (a, ip) and 

(l/i? xa7c- 1 ) are factorizable automorphisms of 5~7. 

Proof (1) z, = I * a is order preserving because * is monotonic. Applying dis- 

tributivity to the definitions 

yields 

x * a, PO-x, n(a) and Y * 4 PO-Y, 4a) 

(~0 y) * a, pO-xo y, n(a)-lx * a)o(y * a), PO, 
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whence 

proving t, is an endomorphism. 

(2) Suppose 0 is distributive in W and W is unrestrictedly A-solvable. If z is in 
5, then by unrestricted A-solvability it is onto; since it is order preserving, it is 
one-to-one; and by part (l), it is an endomorphism. So .Y c 3. 

Conversely, suppose Y G $9. Suppose up N cq and bp -, dq. Observe, 

Similarly, 

ap-cq iff z,-I(,)(U) = a * n-‘(p) 

=c*?F(q) 

= t,- %/,(c1. 

bp-dq iff z,-,~,,(b)=z,-am,,. 

Since t,-lcpj and rn-lty, are automorphisms and 0 is monotonic, 

w(p)(@4 = T,~I,,,(U)OT,~I,,,(b) 

=~n-1~~,(~)0tn-l~~)(d) 

= w&4, 

which is equivalent to a 0 b, pw c 0 d, q, proving that 0 is distributive. To show 
unrestricted A-solvability, suppose a in A and p, q in P. Since z,~I(~) is in Y, its 
inverse exists. Let 

a * X-‘(P) = T,-I&U) = T,-l,Jb) = b * n+(q), 

whence up N bq, proving solvability. 

(3) Suppose Y = 9, then by Theorem 4.2 (l), Y is l-point unique. Conver- 
sely, suppose YE $9 and let r be in 9. Denoting a = ~(a,), then 

but since 5 E 99 and 59 is l-point unique, r = r,, and so Y = 3. 

(4) Suppose Y = ‘9 and 59 is Archimedean. Let a, b be in A. From the facts 
~,(a,) = a, zb(uO) = b, and r; 1 is in Y = ‘9, we see ~~5; ‘(a) = b, which establishes 
i-point homogeneity. By parts (4) and (6) of Theorem 4.2 and the fact that Y = 9 
is Archimedean, it follows that % satisfies the Thomsen condition and * is 
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associative and commutative. If z is in F = 9, then z is necessarily of the form 
zA * a=a * iA, and so by Theorem 9.1 of Lute and Cohen (1983) 

(a * 1,4, IP *ppo) = (1, * 4 IP) = cc IP) 

is a factorizable automorphism of w. Since 

nzlc’(p)=71{zA[7C-‘(p)] *u} 
= 7c[n-‘(p) * a] 
= ~5Cn-‘(P)? n(a)1 

= P *P da) {since p *p q= zt[x-‘(p), K’(q)] 

= [LP *P ~(a)l(PL 

and so by Theorem 9.1 of Lute and Cohen (1983), 

(la3 7m-‘)= (a, * ZA, lp *Pn(u)) 

is a factorizable automorphism of %?. 
We establish the converse. From the l-point homogeneity of Y and the 

associativity of *, Theorem 4.2 (2) and (4) imply Y is a group. That together with 
the fact that %? is Archimedean imply, by Theorem 4.2 (6), that k? satisfies the 
Thomsen condition. Let r be in Y. Since (z, rp) is a factorizable automorphism and 
the Thomsen condition holds, Theorem 9.2 of Lute and Cohen (1983) yields 
z = ~(a~) * T*, where z* is an automorphism of the structure (A, kA, *). By 
Theorem 8 of Lute and Cohen (1983), 

zp = (7t5*7cp’) *p Ip(po) =712*7c-‘, 

and so r* = zA. Since * is commutative, 

z = z(q)) * I A = I,4 * $4, 

proving that r is in Y. Q.E.D. 

COROLLARY 1. If 5 G ‘3, 59 is unrestrictedly P-solvable, $9 is N-point unique, 
N 3 1, and 0 is not idempotent, then F = $9. 

ProoJ By Theorem 4.2 (2), F satisfies l-point homogeneity and since Y E 3, 
so does 3. By Theorem 2.1 (3), 3 must be l-point unique since, otherwise, 0 is 
idempotent, contrary to assumption. By part (3) of the present theorem, Y = 3. 

COROLLARY 2. If YA is a PCS and F G Y, then F = $9. 

Proof: By Theorem 2.1 of Cohen and Narens (1979), the automorphism group 
of a PCS is l-point unique and so, by part (3) of this theorem, F = 3. Q.E.D. 
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Assuming & to be a PCS, Lute and Cohen (1983) proved in their Theorem 10 
that part (2) of the present Theorem 4.3 is equivalent to F = Y, and they proved 
substantially all of part (4) of the present Theorem 4.3. 

Some obvious questions, to which we do not know the answers, are these: Sup- 
pose 9 E %. Under what conditions is ‘ZJ 2-point unique? Given that it is 2-point 
unique, then when is it l-point homogeneous and when is it 2-point homogeneous? 
And what conditions on 9 force 5 to be a group? In particular, is 3 being of type 
(2,2) sufficient? Special cases of these questions are considered in the corollary to 
Theorem 5.4. 

The next result is of interest in light of Theorem 5.4 below and is the key to prov- 
ing a later important result (Theorem 6.4). 

THEOREM 4.4. Suppose X is a nonempty set, 2 is a binary relation on X, 0 is a 
binary operation on X, and 2’ and 2” are binary relations on Xx X that satisfy the 
following conditions: 

(1) X = (X, 2, 0) is a closed, totally ordered concatenation structure. 

(2) 59’ = (Xx X, 2 ’ ) and 59” = (XX X, 2 “) are both unrestrictedly solvable 
conjoint structures. 

(3) W is Archimedean and satisfies the Thomsen condition. 

(4) The induced orderings of 2’ and 2” are both equal to 2. 

(5) The operation 0 is distributive in both 2’ and 2”. 

Let *I and *” denote the operations induced by 2’ and k’“, respectively, relative to 
x0 in X. Then, *I = *lr, and so V’ also satisfies the Thomsen condition and is 
Archimedean. 

Proof Let Y be the group of automorphisms of X and Y-’ and 7” the set of 
right translations of *’ and *“. By assumption (3) and Theorem 5 of Lute and 
Cohen (1983), *’ is associative. This together with assumptions (2) and (3) and 
Theorem 4.2 (5) and (6) imply 9 is an Archimedean ordered group. By 
Theorem 4.2 (1) and (2), both 5’ and Y” are of type (1, 1). By assumptions (l), 
(2), (4), and (5), Theorem 4.3 (2) implies that both 5’ and .F”cY. By 
Theorem 3.2, ?? is isomorphic to a subgroup of the afline group and 5’ is 
isomorphic to the translations of the afftne group. Since F” & 9 and the elements of 
F” are not dilations, necessarily F” E 9’. Thus, for each y in X and T.: in F”, 
there exists a z in X such that zi is in 5 and r: = r-i!. Thus for these choices of y 
and z 

and so, for all x0, y in X, x0 *’ y =x0 *” y. Since %” is Archimedean, so is *’ = *“, 
whence %?” is Archimedean. By Theorem 5 of Lute and Cohen (1983) V” satisfies 
the Thomsen condition iff *” is associative, which it is because it is identical to *’ 
and that is associative because, by assumption (3), W satisfies the Thomsen con- 
dition. Q.E.D. 
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One might conjecture that the conclusion to Theorem 4.4 could be strengthened 
to 2 = 2”. This is false, as will be shown in Theorem 6.4. 

4.4. Some Examples of Distributive Structures 

EXAMPLE 4.1. Any real unit structure (Re+, 3, o), where for x, y in Re+, 
xo y = yf(x/y), is distributive in the conjoint structure (Re+ x Ref, 2 ), where 
(x, y) 2 (u, u) iff xv 3 uv. For suppose xu = x’u and yu = y’r, then x/y = xl/y’ and so 

(x0 y) u = yuf(x/y) = y’vf(x’/y’) = (X’@ y’) v. 

EXAMPLE 4.2. The ratio scale concatenation structure (Ret u {0}, 3, 0 ), 
where 0 is defined for x, y b 0 by x 0 y = (x + y)/2, is distributive in the conjoint 
structure ((Re+u{O})xRe’ , 2 ), where 2 is defined as follows: for I, y 3 0 and 
u, v > 0, 

b,U)~(Y,U) iff xu + u’ 3 yo + u2. 

We verify that 0 is distributive. Suppose 

xu + 22 = x’u + v2 and yu + I2 = ysv + v2, 

then adding and dividing by 2 yields 

[(x + y) U/2] + 22 = [(x’+ y’) u/2] + vl. 

It is easy to verify that the conjoint structure satisfies the independence axioms. 
Example 4.2 is interesting because the conjoint structure is not additive nor can it 

be transformed into an additive representation. This can be seen by directly verify- 
ing that the Thomsen condition fails, e.g., (5, 1) w  ( 1, 2) and (1, 3) m ( 11, 1 ), but not 
(5,3)-(11,2). 

Several theorems show that ratio-scale concatenation structures that are dis- 
tributive in an unrestrictedly solvable conjoint structure force the latter to be 
additive. The above example shows that unrestricted solvability is not a minor, 
technical restriction since we have a ratio-scale concatenation structure that is dis- 
tributive in a nonadditive conjoint structure which is not unrestrictedly solvable. 
The existence of distributive structures that violate unrestricted solvability opens up 
new possibilities for conjoint measurement: they are algebraically rich, have many 
properties in common with classical physical measurement, but are not additive. At 
this time, not much is known about this interesting class of structures. 

5. AXIOMATIZATIONS OF IDEMPOTENT CONCATENATION STRUCTURES 

5.1. What Has Been Done 

The earliest result in measurement theory was the axiomatization of extensive 
structures (Definition 2.1) in the late 19th century. Improved axiomatizations 
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appeared sporadically to the present. For a summary of such results until 1971 see 
Krantz et al. (1971, Chap. 3). For the extensive case, the representation is usually 
stated in terms of addition, and it is usually constructed by taking limits of 
approximations by standard sequences to the object being measured. Associativity 
of the partial operation and the Archimedean property are essential to this process. 
The method is constructive in the sense that approximate numerical measures can, 
in fact, be constructed by following the techniques of the proof. Indeed, meter sticks 
marked into millimeters and the series of weights for a pan balance are both finite 
portions of standard sequences which can be used to measure lengths and weights 
to a certain accuracy. 

Narens and Lute (1976) generalized these results appreciably by showing the 
existence of numerical representations for structures having nonassociative 
operations. Their method of “construction” was not direct and does not lead to 
practical methods for computing approximate measures. The proof entails showing 
that the axioms of a PCS (Definition 2.1) are adequate to establish the existence of 
a countable, order dense subset. By the Cantor-Birkhoff theorem, which states that 
each ordered set with a countable dense subset is homomorphic to (Re, 2 ), this 
was sufficient to find a scale, and then in terms of it a numerical operation can be 
defined so as to represent the qualitative one. On the assumption that half elements 
exist, they showed that the scale is l-point unique, but the entire uniqueness 
question was not completely clarified until Cohen and Narens (1979). They showed 
that the group of automorphisms of a PCS is Archimedean ordered, and so by 
Holder’s theorem it is isomorphic to a subgroup of the additive reals. Among these 
groups, only the dense ones have a unit representation; and only some of these are 
l-point homogeneous. Interestingly, they were able to establish a structural con- 
dition equivalent to l-point homogeneity, namely, that the n-copy operators are 
automorhisms, i.e., for each positive integer n and every x, y in X, n(x 0 y) = nx 0 ny. 
This is useful since it offers an empirical way to check if the structure is 
homogeneous. 

When we turn to idempotent structures, the results are considerably less com- 
plete. The major result is the axiomatization of bisymmetric structures (Pfanzagl, 
1959a, b), leading to the (2,2) unit representation with c = d (Theorem 3.12). One 
method of proof involves transforming the bisymmetric structure into an equivalent 
conjoint one, showing that it satisfies the Thomsen condition, and so in turn, reduc- 
ing it to an extensive structure. We generalize this strategy below. The only other 
result in this area of which we are aware is in Narens and Lute (1976) where it was 
pointed out that when an idempotent structure has a doubling function 
(Definition 3.2) then that structure is very similar to a PCS and its representation 
leads to one for the idempotent structure. As we have seen, for l-point 
homogeneous structures, doubling functions exist for only some (1, 1) cases, and 
when it exists it is unique and is an automorphism of the structure (Sect. 3.5). No 
axiomatic treatment has been provided for the remaining (1, 1) cases, the ( 1,2) 
ones, or the (2, 2) ones with c #d. As we shall see in Section 7, good reasons exist 
in utility theory for understanding the latter case more fully. 
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This section extends the axiomatic results about intensive structures. In par- 
ticular, two things are accomplished. First, Theorem 5.1 shows that every solvable, 
Archimedean, idempotent concatenation structure has a numerical representation. 
This result is on a par with the representation for PCSs found in Lute and Narens 
(1976), and together they pretty much close the issue of the existence of represen- 
tations for concatenation structures that are solvable. The major remaining open 
question is the degree to which the solvability conditions can be weakened. The 
current method of proof follows the scheme used previously in the bisymmetric 
case, reducing the problem to the representation of general conjoint structures. 

Having established existence, the next question to be considered is the scale type. 
It is easy to show that the structures in question are at most 2-point unique. 
However, establishing general conditions for at least l-point homogeneity is 
another matter. Recall that Cohen and Narens did this for PCSs by showing 
l-point homogeneity to be equivalent to the condition that the n-copy operators are 
automorphisms. Since our strategy is a chain of reductions-idempotent to conjoint 
to total concatenation to PCS-, one might conjecture that we might also trace 
through conditions for l-point homogeneity. Theorem 5.2 establishes exactly why 
this will not work. Nonetheless, one can still ask whether a concept corresponding 
to n-copy operators exists for idempotent structures and whether it can be used to 
formulate a condition equivalent to homogeneity. As we shall see in the next section 
(Theorems 6.3 and 6.4), this is possible only in the case of solvable bisymmetric 
structures. 

Our second accomplishment in this section, which is embodied in Theorem 5.4, is 
the formulation of a condition for the existence of unit structures. It is not, 
however, a condition stated explicitly in terms of the primitives of the structure, but 
rather a scheme for developing an axiomatization. Although it appears interesting 
and potentially useful, we have not successfully applied it to any important 
problem. 

5.2. Representations for Solvable, Dense, Archimedean Structures 

THEOREM 5.1. Suppose % = (X, z, 0 > is a concatenation structure that is totally 
ordered, closed, solvable, dense, and Archimedean (Definition 2.1). Then % is either l- 
or 2-point unique and it is isomorphic to a real closed structure (R, 2, @ > where 
RcRe’. 

Proof Let %? = (Xx X, 2’) be defined as follows: for each u, Y, x, y in X, 

Llv 2’ xy iff u 0 v 2 x 0 y. (5.1) 

Note that the orderings induced on the components, X, of %? by 2’ are both equal 
to 2. Following the proof of Krantz et al. (1971, p. 298), but omitting the proof of 
double cancellation which is the only part invoking bisymmetry, and noting that 
density of % implies density of V, it follows that ?? is a conjoint structure that is 
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dense, unrestrictedly solvable in each component, and Archimedean. In the 
corollary to Theorem 2 of Lute and Cohen (1983), it is shown that there are real 
mappings rp and II/ = (PK ‘, where rr is given in Definition 4.1 (5), and a real 
operation 0’ such that rp 0’ $ represents %?. If we define @ on Re+ by: for all 
r, s > 0, 

r@s=r @‘q~-~q-~(s), (5.2) 

then we have, 
24~u,)x~y iff uvk’xy 

iff cp(u)O’ q-W’(u)> q(x)@’ cpc’(y) 

iff cpb.4 0 CPW b ~~(-40 cpb4 (5.3) 

proving that cp and @ yield a representation. 
To show that X is at most 2-point unique, it is sufficient to show that each 

automorphism of X that leaves two distinct elements of X invariant is the identity. 
Suppose CI is the automorphism and a and b are distinct elements for which a(a) = a 
and a(b) = b. Suppose cp, 0 is a representation of X, R is the domain of q and 
RsRe+. Define 0’ by Eq. (5.2). Then by Eq. (5.3), cp 0’ $, where $ = qp71-‘, 
forms a representation of the equivalent conjoint structure W. Since c1 is an 
automorphism of X, it follows that cp’, 0, where cp’ = cpa is also a ,representation for 
X, and cp and cp’ agree at a and b. To show that a is the identity, it is sufficient to 
show cp = I$. By Eq. (5.2) and letting I,V = $cp -Iv’, 

cp’(x)Ocp’(y)=cp’(x)0’cpn~lcp~‘cp’(y) 

= v’(x) 0’ $cp -W(y) 

= cp’(x) 0’ ‘y(y). 

Thus, cp’@’ Ic/’ is also a representation for %?. By Theorem 2 of Lute and Cohen 
(1983), this means that cp and cp’ both represent the total concatenation structure 
induced by % relative to (a, a). Since cp and cp’ also agree at b, it follows from 
Theorem 1 of Lute and Cohen that cp = cp’. Q.E.D. 

To gain some idea why it is difficult to formulate the concept of l-point 
homogeneity in idempotent X even though it has been done for PCSs, it is useful to 
trace through the relations among the automorphisms of the several structures 
involved. 

DEFINITION 5.1. A nontrivial automorphism is called a dilation iff it has a fixed 
point. Any other nontrivial automorphism is called a translation. 

Recall that a (1, 1) subgroup of the afline group corresponds to the translations, 
not the dilations. The next result shows that it is the dilations, not the translations, 
that are maintained as automorphisms through the chain from idempotent to total 
concatenation structures. The translations appear only as isomorphisms among the 
induced total concatenation structures. 
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THEOREM 5.2. Suppose Z = (X, &o) is an idempotent concatenation structure 
meeting the conditions of Theorem 5.1, V is the conjoint structure defined by 
Eq. (5.1), and Y(a) is the total concatenation structure defined in terms of % and a in 
X (Definition 4.3 and Theorem 4.1). Then the following statements are true: 

(1) A mapping tl of X onto X is an automorphism of $7 fl (tl, a) is a fac- 
torizable automorphism of V. 

(2) a is a dilation of 3 with fixedpoint a in X lff a is an automorphism of Y(a) 
and arc = za, where 71 is defined in Definition 4.1 (5). 

(3) An n-copy operator of 9(a) is an automorphism of #(a) lff it is a dilation 
of$. 

(4) If 5 is a nontrivial translation of X, then for each a in X, 5 is an 
isomorphism between Y(a) and Y[z(a)] and 5 is not an automorphism of any of the 
induced structures. 

Proof ( 1) If a is an automorphism of 26, then from Eq. (5.1) and using both 
properties of an automorphism, 

uu 2’ xy iff u 0 v > x 0 1’ N . 

iff a(uov)ka(xop) 

iff c((u)~a(v)~a(x)~a(y) 

iff a(u) a(u) 2’ a(x) a(y), 

and so (a, LX) is a factorizable automorphism of W’. Conversely, if (a, a) is a fac- 
torizable automorphism, then a is order preserving since 

x 2 y iff x c 212 4’ 0 u 

iff .x24 2’ yz4 

iff a(x) a(u) 2’ a(y) a(u) 

iff a(x)oa(u)ka(y)oa(u) 

iff a(x) 2 a( y ). 

And a preserves 0 since, by idempotency, 

xoy=u iff x~y=u~u 

iff ,uy-‘uu 

iff a(x) a(y) N’ a(u) a(u) 

iff a(x) 0 a(y) = a(u) 0 a(u) = a(u) 

iff a(x) 0 cz( y) = a(x 0 y). 
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(2) Suppose c( is a dilation, then by part (1) and the definition of a dilation 
(~1, a) is a factorizable automorphism of %’ and so, by Theorem 8 of Lute and 
Cohen (1983), CI is an automorphism of 4(a) and t17c= rrtl. The converse follows 
also from Theorem 8 of Lute and Cohen and part ( 1). 

(3) By Theorem 7 of Lute and Cohen, if ~1, is the n-copy operator of 9(a), it 
is an automorphism of Y(a) iff (cI,, a,) is a factorizable automorphism of V, and so 
the conclusion follows from parts ( 1) and (2). 

(4) Suppose r is a translation of X. By Part 1 and the definition of a tran- 
slation (Definition 5.1), (r, z) is a factorizable automorphism of V and so, by 
Theorem 8 of Lute and Cohen (1983), it establishes an isomorphism between Y(a) 
and Y[r(a)]. It is not an automorphism of any of the induced structures since if it 
were, it would have the identity element a of that structure as a fixed point, making 
it a dilation, contrary to assumption. Q.E.D. 

5.3. Almost Homogeneous and Unique Structures 

The subgroup of dilations at a single point a, Y(a), is necessarily O-point 
homogeneous since a dilation cannot map the points below u into those above u 
and vice versa. Nonetheless, it is quite possible for the dilations to exhibit a good 
deal of homogeneity and/or uniqueness on either side of the fixed point a. We study 
this case briefly here because it is used in the next subsection as well as in Sec- 
tion 6.3. 

DEFINITION 5.2. Suppose X = (X, 2, R,),,, is a totally ordered relational 
structure. Let g be its group of automorphisms and, for each a in X, let 3(u) be the 
subgroup of dilations at u. Let A4 and N be nonnegative integers. Then, %(a) is said 
to be almost M-point homogeneous (almost N-point unique) iff the restriction of %(a) 
to X+ = {x 1 ?c in X and x z u} and to X- = {x 1 x in X and x < u} is, in each case. 
M-point homogeneous (N-point unique). If for some a in X, %(a) = 9 and $ is non- 
trivial, then a is said to be an intrinsic zero of 3. 

THEOREM 5.3. Suppose X = (X, 2, Rj)j,, is a totally ordered relational struc- 
ture, (X, 2 > is dense, and Y is the group of uutomorphisms of 3. Then, 

(1) ~9 is 2-point homogeneous iff, for each a in X, %(a) is almost l-point 
homogeneous. 

(2) 9 is 2-point unique iff, for each a in X, %(a) is almost l-point unique. 

Proof (1) Suppose 9 is 2-point homogeneous. Then for either x, y > a or 
x, y < u, there exists 01 in 9 such that cr(u) = a and M(X) = y. Thus, a is in Y(u) and 
that subgroup is almost l-point homogeneous. 

Conversely, suppose for each a in X %(a) is almost l-point homogeneous. We 
first establish that X does not have a minimal element. For suppose m were 
minimal, then since x km and for all c1 in Q, a(x) 2 a(m) 2 m, we conclude 
a(m) = m because CL is onto X. But that is impossible since for a > m, 9(u) is almost 
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l-point homogeneous and so m must map under automorphisms into every element 
<a. Consider any U, v, x, y in X with u > v and x > y. Select a < min(y, u), which 
exists since there is no minimal element. Without loss of generality, suppose y 5 v. 
Then, x, u > y and there exists a in %(a) such that a(y) = v. Furthermore, 

a-‘(u)>a-‘(u)=y. 

Thus, by hypothesis, there exists /? in 9(y) such that b(x) = a-‘(u). So aB(x) = u 
and ap( y) = a(y) = v, proving $ is 2-point homogeneous. 

(2) Suppose $9 is 2-point unique. Let a, B in Y(a) be such that for some 
x > a, a(x) = p(x). Since a(u) = a = P(a), it follows from 2-point uniqueness that 
x = B, and so 9(u) is almost l-point unique. 

Conversely, consider a, p in 99 and x, y in X, xf y, such that a(x) =p(x) and 
a(-v) = p(y). Without loss of generality, suppose x > y. Since a- ‘p(y) = y, a -‘/3 is 
in 9?(y). Since that subgroup is almost l-point unique, the fact that a-‘/3(x) = 
s = z(x) implies a-‘/? = I, proving 2-point uniqueness. Q.E.D. 

5.4. A Characterization oj’ Unit Representations 

As was remarked above (Sect. 5.1), l-point homogeneity in a PCS is equivalent 
to its n-copy operators being automorphisms; however we showed that no direct 
use of this fact leads to understanding l-point homogeneity in idempotent struc- 
tures (Theorem 5.2). Theorem 6.3 of the next section provides a directly com- 
parable result for a special class of idempotent structures called “self distributive” 
(Definition 6.1 (4)). However, as Theorem 6.4 makes clear, these structures are 
really bisymmetric, and so the remaining idempotent structures require an entirely 
different qualitative concept to establish their homogeneity. This subsection offers a 
scheme for characterizing all structures with unit structure representations, but we 
are not sure it will prove of practical use. So far, we have not been able to realize it 
in any specific example. 

THEOREM 5.4. Suppose 3” = (X, 2, c ) is a closed concatenation structure. Then 
the ,folIowing three statements are equivalent: 

(1) ?Z has a unit representation onto Re+; 

(2) There exists a binary relation kJ on Xx X such that 

(i) % = (XX X, 2’) is conjoint structure that is unrestrictedly solvable and 
Archimedeun; 

(ii) each ordering induced by kf on X is 2 ; 

(iii) the Thomsen condition holds in %‘; 

(iv) 0 is distributive in %. 
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(3) For each a in X there exists a unique operation *a on X such that 

6) (x, 2, *a, a> is a total concatenation structure; 

(ii) *o is associative and commutative; 

(iii) if 9(*,) is the right translations of *U and 9 is the automorphism group 
of !Z, then Y(*,) c 9. 

(iv) Y’(*,) is l-point homogeneous. 

Proof (1) implies (2). Suppose y.~ is the scale that maps ?Z’ into the unit 
representation f: Define 2’ by: for all U, v, x, y in X, 

uv 2’ xy iff cp(u) v(v) 3 v(x) CP(Y). (5.4) 

%? = (Xx X, 2’) is obviously a conjoint structure that is unrestrictedly solvable, 
Archimedean (statement (2)(i)) and for which statements (2)(ii) and (2)(iii) hold. 
Suppose xp-‘uq and yp~‘vq. BY Eq. (5.41, cp(x) cp(p) = v(u) (P(q) and 
Y(Y) V(P) = q(v) q(q), from which cp(x)/cp(~) = cp(u)lcp(v). Thus, 

which is equivalent to (x 0 y) p - ’ (u 0 v) q, proving that 0 is distributive in %. 
(2) implies (1). Suppose such a Gf: exists. Then by Theorem 6.1 of Krantz et al. 

(1971, p. 257), it has a representation satisfying Eq. (5.4). By assumption (2ii), cp is 
order preserving. Define f as follows: for each t > 0, select x, y in X such that 
t = cp(x)/cp(y) and set f(t) = cp(xa y)/cp(y). To show that f is well defined suppose 
t = cp(u)/cp(v)= cp(x)/q(y). So, by Eq. (5.4), we may select p and q such that 
xp-’ uq and ypw’vq. Since o is distributive, (xoy) pm’ (UOV) q. Thus, 
cp(XOY) V(P)= cp( UOV) (p(q), and so cp(x~y)/cp(~~)=cp(u~v)/cp(u). By its choice, f is 
a unit representation. 

(2) implies (3). Let *rr be the operation induced on X by W relative to a. By 
Theorem 2 of Lute and Cohen (1983), (X, 2, *U, a) is a total concatenation struc- 
ture. By Theorem 4.2 (4), *U is associative and commutative. By Theorem 4.3 (2), 
F(*,) c 3. And by Theorem 4.2 (2), .F(*,) is l-point homogeneous. 

(3) implies (2). By Theorem 3 of Lute and Cohen (19831, there exists 2’ on 
Xx X such that W = (Xx X, k’ ) is a conjoint structure whose induced total con- 
catenation structure relative to a is isomorphic to (X, 2, *u, a). By 
Theorem 4.3 (2) and assumption (3.iii), 0 is distributive in %’ and %? is solvable 
relative to the first component. By Theorem 4.2 (2) and assumption (3.iv), % is also 
solvable relative to the second component. Q.E.D. 

COROLLARY. Suppose 9” = (X, 2,o ) is a closed concatenation structure that has 
a unit representation onto Re+. For a in S, let *u, Y(*,), and % be as in Theorem 5.4. 
Then the following statements are true: 

(1) SC*,) is an Archimedean ordered group of scale type (1, 1). 

(21 F(*,)nW*,)= {I). 
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(3) 9(*,) is almost l-point homogeneous and almost l-point unique. 

(4) Zf %(*,) C_ g( 0 ), then 9( 0 ) is 2-point but not l-point unique. 

(5) Let 2= UasX 9(*,), then SC’S(O) iff % is of scale type (2, 2). 

Proof: There is no loss of generality in assuming ?Z itself is its own real unit 
representation. 

(1) This assertion follows from parts (I), (2), (4), and (5) of Theorem 4.2. 

(2) Suppose CI is in Y(*,)n%(*,). Then cc(a) = a and for some z in X and all 
x in X, LX(X) = x *U z. Thus, 

z = a *u z = a(a) = a, 

and so CI = I. 

(3) Since 9? is defined in terms of multiplication, one verifies that 
x *o y = xy/a. So c1 in 9?(*,) satisfies the functional equation a(xy/a) = CL(X *a y) = 
4x1 *rr 4~) = a(-~) Ny)la, and the only strictly increasing solutions are 
a(x) = xpa’-L’, p > 0. For x, y > a or x, y < a, the equation y = a(x) has the solution 
P = log( y/a)/bWa), P roving that g(*,,) is almost l-point homogeneous. If for 
some .Y in X, x # a, and LX, /? in %(*,), a(.~) =/I(x), then by what was shown above 
there are p, 0 > 0 such that x”a’ ~ (’ = x”a ’ ~ ‘, i.e., either x = a, contrary to choice, 
or p = G. Thus, %(*,) is almost l-point unique. 

(4) Suppose Y(*,) E 9( 0 ) and 9( 0 ) is l-point unique. A contradiction will be 
shown. If x, y > a, by part (3) there exists c( in 9(*,) G 9( 0 ) such that a(x) = y. But 
since Y( *U) is l-point homogeneous, it contains an element r such that r(x) = y. By 
part (3)(iii) of Theorem 5.4, 7 is in 9( 0 ), so by its l-point uniqueness, c1= 7. But 
that is impossible by part (2) of this corollary. Since 3 is a unit structure, 9( 0 ) is 
2-point unique. 

(5) Suppose &’ G 9?( 0 ). By part (3) and Theorem 5.3, X is 2-point 
homogeneous and unique. Thus, so is 9?( 0 ) and so .“x is of scale type (2,2). Conver- 
sely, if X is of scale type (2, 2) then its automorphisms are all of the transfor- 
mations of the form cxP, and by the proof of part (3) we know that those of %(*,) 
are also of this form, and so 9( *u) c 9( 0 ). Q.E.D. 

6. BISYMMETRY AND RELATED PROPERTIES 

6.1. Definitions 

The literature on concatenation structures has been concerned largely with struc- 
tures satisfying additional constraints, two of the most familiar being associativity 
and bisymmetry. We have previously made use of associativity, and now we turn to 
bisymmetry and to a number of quite closely related concepts, some of which are 
concatenation reformulations via Eq. (5.1) of conjoint measurement concepts. They 
are formulated as follows: 

48O’Wl.4 
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DEFINITION 6.1. Suppose 55 = (X, 2, 0 ) is a closed concatenation structure. 
Then, the following conditions are said to hold in 3, where p, q, u, u, x, y are in X, 

( 1) Thomsen iff 

x~u=o~q and uop= you imply xop=yoq. 

(2) Bisymmetry iff 

(3) Autodistributiuity (Acztl, 1966, p. 293) iff 

(XOY) “u=(x~u)o(y~u) and uo(xo y)=(u~x)~(u~ y). 

Separately, these are referred to, respectively, as right and left autodistributiuity. If it 
holds just for some fixed u = u, then it is referred to as autodistributiuity relative 
to u. 

(4) Serf distributiuity iff 

xop=uoq and y”p=uoq imply (x0 y)op=(uou)oq. 

(5) Solvable relative to a in X iff for each x in X there exist U, u in X such that 
u 0 a = x = a 0 u. Denote the right solution to y 0 a by rc,( y) and the left solution to 
x0 y by 5,(x, y). Then the induced operation *o is defined by x *u y = [,[x, n,(y)]. 
The set of right translations relative to a is denoted T(*,). The set of all n-copy 
operators of *U is denoted O(*,). 

(6) Dual bisymmetry iff for some a 3 is solvable relative to a and the induced 
operation *rr satisfies 

(uov)*, (zc”y)=(u*,x)~(v*, y). 

(7) For each p, q in X, the difference function 6,, is defined as follows: 
C?,,(X) = y iff y o p = x 0 q. The set of all difference functions with p fixed is denoted 
9(P). 

The theorems of this section describe how the concepts just defined relate to one 
another as we introduce increasingly stronger assumptions about .X, how ultimately 
they collapse into a single concept when X is solvable, idempotent, dense, and 
Dedekind complete (Theorem 6.4). 

6.2. Relations Among Concepts for Solvable Structures 

We first examine how several of the above concepts can be recast in the 
equivalent conjoint structure. 

THEOREM 6.1. Suppose 95” = (X, 2, 0 ) is a closed concatenation structure, 
%? = (Xx X, 2’ ), where 2:’ is defined by Eq. (5.1), and 0 is treated as an operation on 
the first component of 97. Then, the following five statements are true: 
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(1) 0 in 9Y satisfies the Thomsen condition iff V satisfies the Thomsen condition. 
If, in addition, X is solvable relative to a, then the induced operation *a is associative 
and commutative. 

(2) 0 in X is self distributive tff 0 in g is distributive. 

(3) Suppose 3 is solvable relative to b for all b in X, and let $9 be its group of 
automorphisms. If 0 is self distributive and satisfies the Thomsen condition, then 
S(*,) is a subgroup of ~9. 

(4) If in addition to all of the assumptions of (3), 3 is Archimedean, then 
Y(*,) is an Archimedean totally ordered group, where the order 2’ is defined by 
7,2' z,. iff*x 2 y. 

(5) If !Z” is solvable relative to a, then Y(*,) = 9(a). 

Proof (1) The equivalence is trivial. Observe that the induced operation of 3 
is identical to that of Definition 4.2 relative to aa, and so by Theorem 4.2 (4) we 
know *U is associative and commutative. 

(2) Trivial. 

(3) By Theorem 4.2 (4)(5) and part (2) of this theorem, F(*,) is a group. By 
Theorem 4.3 (2) Y(*,) E B. 

(4) Since S is Archimedean, so is V, and by Theorem 4.2 (6), Y(*,) is an 
Archimedean ordered group. 

(5 ) Fix a and let q be any element of X, Then, 

6,Jx) 0 a = x 0 q (Definition of 6,.,) 

= LAX, 4)oa (Definition of t,) 

= x *u n;‘(q)] oa C (Definition of *Lr). 

By monotonicity, the last expression holds iff 6,,(x) =x *o n;‘(q). Since X is 
soIvabIe relative to a and 71;’ is onto X, it follows that 9(a) = Y(*,). Q.E.D. 

THEOREM 6.2. Suppose % is a closed concatenation structure that is solvable 
relative to a in X. Let *o be the induced operation, $9 the set of automorphisms of 3, 
and & the set of endomorphisms of ?Z. Then the network of implications shown in 
Fig. 2 holds. 

Proof The numbered arrows of the diagram will be proved in order. 

(1) Krantz et al. (1971, p. 298). 

(2) ao7c,(xo.v)= (xOy)Oa (Definition of n,) 

= (xoa)o (yea) (Autodistributivity relative to a) 

= [a 0 rc,(x)] 0 [a 0 rc,( y)] (Definition of x,) 

=a~ Cdx)~d~)l, 
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r ____________ l---------------------7--* &J(a) = B(*,)Gb 

L ----- fj-- ------------ 4 self distributive 

FIGURE 2 

and so by monotonicity, n, is an endomorphism. By solvability it is onto, and by 
monotonicity it is one-to-one, so it is an automorphism. 

(3) Assume idempotence and bisymmetry, then we first prove 
autodistributivity: 

(xoy)~u=(xoy)o(z4ou) (Idempotence) 

= (x~u)o(you) (Bisymmetry ). 

The left-sided case is similar. Next, we show dual bisymmetry: 

[(u~u)*a(X~y)].u=(u~u)~71,(Xoy) (Definition of *O) 

= (U’JU)O C%(X)~%(Y)l (Part (2)) 

= c~“Tz(x)l c C~“%(Y)l (Bisymmetry ) 

=[(U*uX)Oa]@[(o*,~~)Oa] (Definition of *a) 

= C(u *ux)o(u *o .Y)loa ( Autodistributivity ) 

whence, by monotonicity, dual bisymmetry holds. 
Conversely, we first show idempotence. 

(XoX)*,(u~a)=(x*,u)~(x*,a) (Dual bisymmetry ) 

=x0x (a is the identity of *a) 

=(XOX)*uu, 
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and so, by the monotonicity of *u, a 0 a = a. Using this and autodistributivity 
relative to both a and x, 

and so, by the monotonicity of 0 , x 0 x = x. To show bisymmetry, consider, 

(u~u)~(x~y)=(u~u)~[n~~~‘(x)~~~~~’(y)] 

=(u”u)07r,[7r;‘(x)07To -‘(y)l (Part 3) 

= ((uw)*, [7r,‘(X)mJ-‘(y)]}.u (Definition of *u) 

= ([u *u 71,‘(x)] 0 [u *y 7c,‘(y)]} ou (Dual bisymmetry ) 

= ( [Iu *a x~;‘(x)] ~a} 0 { [u *u rc;‘( y)] ~a} (Autodistributivity) 

=(u~x)o(uoy) (Definition of *o). 

(4) Suppose x0 p = I( 0 q and yo p = u 0 q, then by monotonicity and right 
autodistributivity, 

(6) Suppose xc p = u 0 q and y 0 p = u 0 q. Applying the definition of *u to these 
yields, 

[x *u n,'(p)]"u= [u *a 7c;'(q)]ou 

CY *o 7-c:' (P)loQ= II0 *u~,1(4)loa. 

From this, monotonicity, idempotence, and dual bisymmetry, 

(x 0 y) *() n; ’ (PI = b”Y) *u h3PbT?(P)I 

= c-x *a T3P)l o [Y *u ~;‘(P)l 

= cu *o ~;‘(4)1 o Cl) *o ~,‘(4)1 

= (U’JU) *o C~?~d’??kd1 

= (UOU) *o q’(q), 

and so, by the definition of *rr, (x o y) o p = (u o u) o q. 

(6) Let 0, be the n-copy operator of *o. Observe, 
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and proceeding by induction and using dual bisymmetry, 

e”(XOY)=e,-,(XaY)*U(XoY) 

= con- l(x)oe,- ,(Y)l *a (-xo.Y) 

= ce,- 1(x) *a xl o ce,- ,(.Y) *a yl 

= e,(x)oe,(Y), 

proving that the n-copy operator is an endomorphism. 

(7) Let zb(x) = x *u 6, then 

Z&Y 0 y) = (x 0 y) *a b 

=(xoy)*,(bob) 

=(x*ub)O(y*ob) 

= Tb(X) o Tb(Y)r 

and so the right translations of *U are endomorphisms. By Theorem 6.1 (5), they are 
the same set as 9(a). Q.E.D. 

Our next result, which depends upon adding solvability to the assumptions about 
!Z, answers the question, raised at the end of Section 5.2, as to the idempotent 
analog of the result for PCSs that l-point homogeneity is equivalent to the n-copy 
operators being automorphisms. 

THEOREM 6.3. Suppose .F = (X, 2, o ) is a closed, solvable concatenation struc- 
ture. Then the following are true: 

(1) 9(a) is a subgroup of the automorphisms of % iff !Z is self distributive. In 
this case, for each a in X, 9(a) is l-point homogeneous, 

(2) If 0 satisfies both the Thomsen condition and right autodistributivity, then 0 
is bisymmetric. 

Proof (1) By Theorem 6.1 (5) for each a in X, 9(a) = F(*,). Let $? be 
defined by Eq. (5.1). By Theorem 4.3 (2), 9(a)= F(*,) is a subgroup of the 
automorphisms of X iff 0 is distributive in %? and V is unrestrictedly solvable in the 
first coordinate. By Theorem 6.1 (2), 0 is distributive in % iff X is self distributive, 
and the fact that X is solvable implies that V is unrestrictedly solvable in both coor- 
dinates. Thus, the condition holds. In this case, by Theorem 4.2 (2), F(*,) is 
l-point homogeneous because $? is unrestrictedly solvable in the second coordinate. 

(2) Let u, v, x, y be in X. By solvability, there exist p, q in X such that 
p 0 y = u 0 v and u 0 x = q 0 y, and so by Thomsen condition, p 0 x = q 0 v. Thus, 
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(~~u)~(x~Y)=(P~Y)“(x”Y) (Definition of p and monotonicity ) 

=(p”x)oy (Right autodistributivity) 

= (q”u)oY (Above) 

=(q~Y)~(u~Y) (Right autodistributivity) 

=(u’Jx)o(u~y) (Definition of q and monotonicity), 

which proves bisymmetry. Q.E.D. 

6.3. Equiualences in Solvable, Idempotent, Dense, Dedekind Complete Structures 

The remainder of this section is devoted to showing that in the presence of the 
further restrictions of idempotence, density, and Archimedean, all of the properties 
in Theorem 6.2, save the Thomsen condition and the fact that 71, is an 
automorphism, collapse into the single concept of bisymmetry. 

THEOREM 6.4. Suppose 3 = (X, 2, 0 ) is a closed concatenation structure that is 
idempotent, solvable, and Dedekind complete. Let 9 be its group of automorphisms. 
Then the following statements are equivalent: 

(1) I is bisymmetric. 

(2) ;‘x is right autodistributive. 

(3 ) 9” is self distributive. 

(4) For each a in X, O(*,) c 9. 

(5) 9(a) = Y(*,) is a subgroup of $9. 

Prooj To show the equivalence of (1 ), (2), and (3) it suflices, by Theorem 6.2, 
to show (3) implies ( 1). So suppose J!?” is self distributive. By Theorem 5.1, there 
exists a numerical representation cp and 57 is either l- or a-point unique. Since a 
closed, idempotent concatenation structure is intern, it is dense, and so by 
Theorem 6.3, self distribution implies X is l-point homogeneous. Thus, 9 has a 
unit representation (Theorems 3.2 and 3.9) f and, so by Theorem 5.4, there exists a 
conjoint structure fulfilling the properties of 2’ in Theorem 4.4. Define 2” by 

uv 2” xy iff uou~,x~y. 

Since 0 is self-distributive, Theorem 6.1 (2) establishes that 2” fulfills the conditions 
of 2” in Theorem 4.4. Since cp and f yield the unit representation of 0, (p(p 
represents 2’. Also, there exist $ 1 and $2 such that I/I, $2 represents k”,“, and each is 
monotonic in 2 since 2 is the order induced on the first component by both 2’ 
and 2”. We show that it is possible to select $1 = cp. Because 0 is distributive in k”, 
we have 
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implies 

and so, as in Theorem 5.4, we can define a function g such that $, and g constitute 
a unit representation. By the uniqueness of unit representations (see Cohen and 
Narens, 1979, Theorem 3.5), for some G, p > 0, $i = a@. So setting i+G = Il/ilp, we see 
that cp$ represents 2”. Moreover, by considering u 0 x 2 u 0 y, we see that there is a 
strictly increasing function h such that $ = h(q). Thus, we have two representations 
of 0) 

U~U~X~ y iff cp(4 CPW 3 cpb) QP(Y)I, 

iff cp(~)fC~(~Ycp(~)l2 rp(~)f[cp(x)lcp(~)l, 

and so for some strictly increasing F, 

Fb(x) CP(Y)I) = cp(~)f[cp(-~)lcp(~)l. 

If we select y = a such that h[q(a)] = 1, and set A = q(a), then 

(6.1) 

FCdx)l = MCdx)lAl. (6.2) 

Now, substituting Eq. (6.2) into Eq. (6.1) and setting W= cp(x)/A, Y = cp( y)/A, and 
H(z) = h(zA), we obtain 

fC ww n1= m W/Y). (6.3) 

Observe that by setting W= Y in Eq. (6.3) and noting that f( 1) = 1 because the 
structure is idempotent, 

H(W) =f-‘( W)/W. (6.4) 

If we set U= W/Y and V= f -‘( Y) and substitute Eq. (6.4) into Eq. (6.3), then f is 
characterized by 

which, since f is strictly increasing, is well known to have as its unique solution 

f(U)=U', c > 0. 

Since f is a unit representation, f/l is decreasing so c < 1. This defines the (2, 2) 
bilinear representation with c = d, and so the structure is bisymmetric. 

(1) is equivalent to (4). Suppose X is bisymmetric. By Theorem 6.2, we know 
that the n-copy operator of *o, 8,,, is an endomorphism of %. In the bisymmetric 
case, there is a real representation (Re +, >, @ ) under cp with, for r, s in Re+, 
r@S=fS’-’ for some c in (0, 1). It is easy to verify that the real induced operation 
*rr is given by r *a~=rs/A, where A= q(a), and so by induction O,(r)= r(r/A)“-‘. 
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Thus, it is onto the reals and 1: 1, hence it is an automorphism, and so, then, is the 
n-copy operator in 3. 

Conversely, if the n-copy operators of *u are automorphisms, then their restric- 
tions to X+ and X- are the automorphisms of the PCSs that make up the two 
parts of the total concatenation structure (X, & *rr, a) (see Definition 4.3). Thus, 
by Theorem 3.1 of Cohen and Narens (1979) these PCSs are l-point homogeneous 
and l-point unique. Moreover, a is a fixed point, so the subgroup of dilations at a 
are almost l-point homogeneous and l-point unique. Therefore, by Theorem 5.3, 
the structure is of type (2,2). By Theorem 3.11 it has a log dual linear represen- 
tation (Eq. (3.5)). We next establish c = d, which proves that the structure is bisym- 
metric. It is easy to verify that for r > 0, 

~,(r)=r(r,A)‘“~l”‘~“‘!” -4 if r3A, 

= r(r/A) ,n ~ I )I I .~~ d);l I ~ L ) if r<A. 

Consider any r, s such that r > A > r 0 s > s. It is routine to show that 0, is an 
automorphism, as assumed, iff c = d 

(3) is equivalent to (5). By Theorem 6.2 (5), g(a) = F(*,), and by Theorem 6.3 
this set is a subgroup of the automorphisms iff condition (3) holds. Q.E.D. 

Observe that for a real concatenation structure with an operation that is con- 
tinuous in each variable, the conditions of the theorem are fulfilled, which settles 
affirmatively the conjecture on p. 299 of Aczel (1966) that for a continuous, 
monotonic operation right autodistributivity implies bisymmetry. 

As we mentioned at the end of Theorem 4.4, we cannot strengthen the conclusion 
of that result from *‘= *” to k’= k”, as the following argument shows: Suppose it 
were so, and consider the case of a bisymmetric structure satisfying the hypotheses 
of Theorem 6.4. In the first part of the proof, it would follow that h = I, and so 
H = AZ, whence Eq. (6.1) becomesf(XYA) = Yf(X/Y), and so setting X= l/YA and 
solving we find f(X) = X’12. But this is absurd since there are bisymmetric structures 
with c # 4. 

Given Theorem 4.4, the following question seems natural. Suppose (X, 2, 13 ) 
and (X, 2,~‘) are both concatenation structures that are closed, idempotent, 
dense, solvable, and Archimedean. Then, under what conditions is each operation 
distributive relative to the other in the following sense: if .YO p = uoq and 
y-p=uoq, then (xo’y)~p=(uc’ u)o q, and the corresponding statement with ‘J 
and 0’ interchanged? A sufficient condition is dual bisymmetry (Definition 6.1 (6)) 
since from the hypotheses and the monotonicity of 0’ we have 

whence by dual bisymmetry, 
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By the idempotence of o’, it follows that 0’ distributes across 0. The other half is 
similar. The converse, if true, may be difficult to prove since it implies the first three 
parts of Theorem 6.4. 

7. APPLICATION TO UTILITY OF GAMBLES 

7.1. Regular Mixture Spaces 

The problem of choosing between gambles is often cast in the framework of a 
mixture space in which the typical element has three components: an event A, 
sometimes assumed to be fully characterized by its probability p = Pr(A), and two 
outcomes x and y, where x is received if A occurs and y is received if A fails to 
occur. The outcomes x and y are assumed to be elements of the mixture space and 
so can be gambles themselves or pure outcomes, such as amounts of money. We 
may think of such a gamble as an “experiment” in much the same sense as 
statisticians use that term. The symbols (x, A, y) and (x, A; y, “A), where “A 
signifies the complement of A, are often used to denote such gambles, the latter 
notation having the advantage that it generalizes in a natural way to gambles with 
more than two outcomes. When only the probabilities matter, one writes (x, p, y) 
or (x, p; y, 1 -p) or even xpy. If x= (u, B, u), then (x, A, y) = ((u, B, v), A, y) is 
interpreted to mean.that outcome u is received when both A and B occur, v when 
both A and B, and y when neither A nor B. Lurking behind this notation for 
mixes of mixes is a question of independence. Our intention is to think of a mix of 
mixes as two statistically independent gambles in which the gamble based on A is 
carried out first and then following that, as an independent experiment, the one 
based on B is carried out. We do not think of A and B as subevents of a single 
experiment! In particular, in the gamble ((x, A, y), A, z) the second occurrence of A 
is to be thought of as an event that is statistically independent from the first 
occurence of A. Should ambiguity seem imminent, one may always write A and A’ 
or A, and A,. 

In order to reduce the possibility of inadvertently misinterpreting the notation, 
we find it helpful to think of the process of forming gambles based on an event A as 
an operation, oA. So, in this paper we shall write x oA y instead of the more usual 
notation (x, A, y). Thus, the structure we consider is based upon the following 
primitives: a nonempty set I of events (the events can be thought of as sets them- 
selves), a nonempty set X composed of pure outcomes and all gambles that can be 
generated inductively by the binary operations oA, A in &, operating on pure out- 
comes to generate gambles and on gambles to generate mixes of gambles, etc., and 
a binary relation 2 on X. 

DEFINITION 7.1. Let .X, &, 2, and ‘I~, A in &, be as above. Then the relational 
structure 

J@= <XT k,OA)AEB (7.1) 
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is said to be a mixture space iff 2 is a weak ordering. The mixture space JV is said 
to be regular iff each ?+?A = (X, 2, oA ) is a weakly ordered concatenation structure 
that is closed, idempotent, dense, solvable, and Dedekind complete. The mixture 
space J%’ is said to be closed iff there is a function x: d x 6’ + 6’ such that for every 
x, y in X, 

(x O/l Y) oBYNx oX(A.B)Y. (7.2) 

Observe that “solvability” in Definition 7.1 means that with the event A fixed and 
three of the four outcomes x, y, U, u given, the fourth outcome can be found so as to 
satisfy x oA y-u oA u. Also observe that B is assumed to be a nonempty set of 
events and not necessarily an algebra of events. In fact, if J%’ is regular one would 
not want to include either X or 0 in 6’ since oA is intern for each A in 6. We have 
adopted this approach so that definitions, statements of theorems, and proofs will 
be less complicated since the special cases of A =X and A = @ do not have to be 
considered. It does not constitute a loss of generality. 

The weak ordering assumption is common in utility theory, although recently 
Fishburn (1982, 1983) has questioned it and has developed a weakening of expected 
utility theory that avoids it. Closure under the operation oA is a widely accepted 
idealization which implies that each experiment can be repeated, independently, an 
arbitrary number of times. Idempotence is trivial given the interpretation of x oA X. 
Monotonicity within utility theory is highly controversial and is believed by many 
to be rejected by a substantial body of empirical data. There is no doubt that the 
data reject something embodied in the traditional expected utility theory, but as we 
argue in detail in Sections 7.4 and 7.5 it does not appear to be the version of 
monotonicity displayed by the concatenation operation oA that is the problem. 
Density, solvability, and Archimedean are all plausible and have been little 
questioned in discussions of the theory. Closure of ,,L! simply means that the space 
of events is suff’ciently rich that two successive independent events can be replaced 
by a single event. 

7.2. The Dual Bilinear Utility Representation 

If we just look at the ordered set of gambles G = (X, 2 ), a homomorphism of G 
into (Re, > ) is said to be a utility function. Note that we have shifted from Re + to 
Re in deference to the fact that psychologists and economists, unlike physicists, 
prefer to work with interval scales on Re rather than with log interval scales on 
Re +. A utility scale for G is a nonempty set % of utility functions. The concepts of 
M-point homogeneity and N-point uniqueness are unchanged, and we are 
interested in conditions that lead to the (2, 2) scale type of the mixture structure d 
given in Eq. (7.1) so that we can show the existence of a utility scale for G that is an 
interval scale. 

The general type of utility model that has been considered is one in which the 
utility of a gamble U(x oA y) can be expressed as some function of the utilities of its 
components, U(x) and U(y), and some weighting function of the event A that, in 
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general, depends also on x and y. This very general model takes the following form: 
If % is a utility scale for G, then there exists a collection of functions 
(F,, Wu)L,c*, where F,: Re3 -+Re and IV,: Re2xd-+Re, such that for all x, y 
in X, A in E, and U in a!, 

Wx OA Y) = F,(Wx), U(Y), W,CUxh Kv), Al). (7.3) 

This is far too general to say much about. The usual rational model for utility of 
gambling, which is known as the subjective expected utility (SEU) model, makes a 
number of very strong assumptions about Eq. (7.3). (For a general survey of 
models of this type see Fishburn (198 1 ).) Specifically, % is taken to be an interval 
scale; the weights are assumed not to depend on U or x or y, but just on A (and 
thus may be written as just W(A)), and this weighting function is assumed to be a 
(finitely) additive probability function on b, which is typically assumed to be a 
Boolean algebra of events; and finally the combining function F also does not 
depend upon U and in fact has the bisymmetric form 

F(r,s, p)=rp+s(l -p). (7.4) 

In accounting for human behavior, the general model of Eq. (7.3) is simply too 
general and the SEU one has turned out to be a bit too restrictive (see below). So 
our aim is to find something in between. We shall accept the following feature of 
the rational model, namely, that neither the weighting function W nor the combin- 
ing function F shall be subscripted by the utility function. So, Eq. (7.3) takes the 
form 

u(xo, Y)=F(U+X), U(Y), WW), U(yLAl). (7.5) 

LEMMA 7.1. Suppose ,&’ is a mixture space (Definition 7.1) such that for each A 
in F, %A is 2-point unique, that (X, 2 ) has a utility scale d% that is 2-point 
homogeneous in the sense that for all x, y in X and r, s in Re, if x > y and r > s, then 
for some V in 9X, V(x) = r and V(y) = s, and suppose each element of ($9 is onto Re 
and there exist functions F and W such that Eq. (7.5) holds for all U in 9’~. Then for 
each A, B in &‘, the automorphism groups of %,, and L!& are identical and are (2,2). 

Proof. For A in d, we show & is 2-point homogeneous which with the 
hypothesis that it is 2-point unique proves it is of scale type (2,2). Suppose 
x, y, u, v in X are such that x > y and u z u and V is in Q. Since by the assumption 
that 02 is 2-point homogeneous, there exists U in 4! such that U(x) = V(u) and 
U(y) = V(v). Since, by hypothesis, U and V are onto Re and order preserving, 
a = U-‘V is a function from X into X. In fact it is onto, since for any = in 
X, r~[ V-‘U(z)] = z. By the fact that V and UP’ are order preserving, so is CC. And 
by choice, c(( u) = x and cr( v) = y. Since X is the domain of !ZA, to show that CL is an 
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automorphism of 9YA it suffices to show that for all w, z in X, CY(W oA z) = 
a(w) aA N(Z). By Eq. (7.5) and the fact that Ucc = UU-‘V= V, 

U[cc(w) 0.4 cc(z)] = F( uY(w), Uct(z), W[ Us(w), Ucc(z), A]) 

=F(Uw), W), WUW), Uz), AI) 
= V(w GA z), 

and applying U’ yields the result. Thus, {UP’ V/ U, V in “a> is a set of 
automorphisms of ?& for every A in F, and therefore, since X, is a-point unique, Z-A 
must be of type (2,2). Q.E.D. 

THEOREM 7.1. Suppose 4?’ is a regular mixture space with a family of utility 
scales that are onto Re, are 2-point homogeneous, and are such that Eq. (7.5) holds 
for all A in 1. Then there exist an interval scale u?l and functions S+ and S from & 
into (0, 1) such that for all U in 4?, 

(i ) U is order preserving, and 

(ii) for all x, ~9 in X and A in 8, 

u(.u,-,, y)= U(x)S+(A)+ U(y)Cl -S+(A)1 if x > y, 

= U(x) {f x - I’, (7.6) 

= U(x) S-(A)+ U(y)[l -S (A)] (f x < .v. 

Proof By Theorem 5.1, each Z$ of a regular mixture space is 2-point unique, 
and so by Lemma 7.1 they have a common group of (2, 2) automorphisms. Thus, 
by Theorem 3.12 and Eq. (3.5) following it, each can be represented as in Eq. (7.6) 
since the constants c and d depend upon A. (Note that Theorem 3.12 and Eq. (3.5) 
are for totally ordered concatenation structures, but they easily extend to weakly 
ordered ones.) Q.E.D. 

We refer to (@, Sf, S ) that satisfies Eq. (7.6) as the dual bilinear utility 
representation of ~8’. In formulating this result, we have introduced the symbol S for 
the weights that depend upon both A and the ordering of x and y so as to suggest 
the subjective nature of the weights. Note that nothing has been said about how the 
two weighting functions S+ and S relate to one another nor have we suggested 
that they behave like probabilities. If the two weighting functions are identical, then 
we speak of Eq. (7.6) as the bisymmetric utility representation, and if in addition d 
is a Boolean algebra of events, Eq. (7.6) is extended in the obvious way to include 
events X and 0, and the common weighting function is a finitely additive 
probability measure on it, then we call Eq. (7.6) the (rational) SEU model for A. 

We turn now to various restrictions that further constrain the model. After that 
we will explore how the model relates to various empirical facts that invalidate the 
rational SEU model as one for human decision making. 



60 LUCE AND NARENS 

7.3. Various Additional Restrictions 

All of the following properties are plausible in varying degrees, and they impose 
additional restrictions on the form of the dual bilinear representation. 

DEFINITION 7.2. In all of the following statements J& is a mixture space and 
A, B, C are in F and W, x, y, 2, U, v are in X. 

(1) Commutativity holds in J?’ iff &? is closed and 

which is true iff 

(x OA Y) OE y-(x OB Y) OA Y. 

(2) Complementation holds in & iff & is a set of subsets that is closed under 
complementation with respect to X and 

(3) Self distribution holds in J%? iff 

(4) Right autodistributivity holds in .H iff 

(x OA y) OA z- lx ‘3.4 =) CA (Y 0.4 2). 

(5) Bisymmetry holds in & iff 

(x 0.4 Y) OA (u OA VI-(x OA u) OA (Y OA 0). 

(6) Outcome independence holds in JH iff for some x, y in X, x n,,, y-x oB y, 
then for all U, v in X for which u k v iff x 2 y it follows that u oA V-U os U. 

(7) Monotonicity of events holds in JZ iff for all A, B, C in 6 such that for 
AnC=BnC=QJ and AuC, BuCare in 6, then 

x”A .VN >X OB Y iff ?c OAUC YkxOBuC Y.  

(8) Consistency of preferences with event inclusion holds in JZ iff when A 2 B, 
then 

XkY iff x0, y kXOEY. 
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In each case, if one thinks through what the two sides of the condition mean in 
terms of the events that can occur and the outcomes associated with them, they are 
highly plausible. 

THEOREM 1.2. Suppose JX is a closed, regular, Dedekind complete mixture space 
with a dual bilinear utility representation. Then the following statements are true: 

(1) Commutativity holds in ,1. 

(2) Complementation holds in J# iff d is closed under complementation andfor 
every A in 6, 

S+(A)+S(-A)= 1. (7.7) 

(3) The following are equivalent: 

(i) self-distribution holds in Jt’, 

(ii) right autodistributivity holds in .&, 

(iii) hisymmetry holds in JY, 

(iv) S+ =S. 

(4) Outcome independence holds in Jz’. 

(5) Monotonicitv of events holds in ,R;t ijjf for all A, B, C in 8 such that 
A~7=B~C=@aandAvC,BuCinB, thenfori=+,-, 

S’(A) 3 S’(B) iff S’(A u C) 3 S’(Bu C). (7.8) 

(6) Consistency of preferences with event inclusion holds in & ifffx i= +, -, 

A 2 B implies S’(A) > S’(B). (7.9) 

Proof: (1) Applying the dual bilinear representation, Eq. (7.6), to both sides of 
(x nA y) oB y-(x oB y) oA y and using the closure of J& yields x(A, B) = x(B, A). 

(2) Select x > y, and observe that 

x0, y-- v:‘-~x iff U(x0, y)=U(yo-,x) 

iff U(x) S+(A) + U( y)[ 1 - S+(A)] 

=U(y)S-(“A)+U(x)[l-S(-A)] 

iff [U(x)--U(y)][S+(A)+S(“A)-l]=O, 

from which the assertion follows since U(x) - U(y) > 0. 

(3) The equivalence of (i), (ii), and (iii) was established in Theorem 6.4. To 
show that (iv) is equivalent to (iii), it sufftces to apply Eq. (7.6) to the bisymmetry 
condition, much as in (2). 
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(4) If xw y, the result is trivial. If x > y, then applying Eq. (7.6) to x oA y- 
x~,yweseethatSf(A)=S+(B),andsou~,u-u~,uholdsforallu,uwithu~u. 
The case x 4 y is similar. 

(5) Observe that from Eq. (7.6) 

ux OA Y) - w 0s v) = CW) - NY)1 [S+(A) - S+(mI if x 2 y, 

= cw- NY)1 CSp(A)-S-(B)I if x < y, 

and 

U(x 0 AUCY)-U(xoE,cy)=[U(x)-U(y)l Cs+(AuC)-S+(BuC)l if x2x 
=[U(x)-U(y)] [S-(AuC)-Sp(BuC)] if x<y. 

The equivalence of monotonicity of events and Eq. (7.8) follow immediately from 
the two equations above. 

(6) Equation (7.9) follows directly by applying Eq. (7.6) to the definition of 
event consistency. Q.E.D. 

Before turning to applications of the dual bilinear model, it is perhaps worth 
mentioning the possibility of a utility model that is either a ratio scale or of type 
(1,2). If we suppose in Theorem 7.2 that we are dealing with a general unit 
representation (now switching from Re to Re+ and setting cp = exp U) of the form 

0t.x OA Y) = cp(.~)f,4c~(xMY)l~ (7.10) 

then using the same line of argument one can establish conditions on the fA’s 
equivalent to the various ones stated. In particular, commutativity in ,&’ is 
equivalent to 

.fAfB=fsfA, (7.11) 

and complementation in J&’ is equivalent to 

f-.4(r)=tiA(V), r > 0. (7.12) 

Combining Eqs. (7.11) and (7.12) yields the functional equation 

fACrfA(W)l =fA(r)fACl/fA(r)l, r > 0. (7.13) 

It is not difficult to verify that the log interval version of the dual bilinear utility 
model satisfies Eq. (7.13) and T. Alper (personal communication) has exhibited 
some other strictly increasing solutions. It would be interesting to find all of its 
solutions because commutativity and complementation are extremely weak con- 
ditions of rationality that are probably satisfied by most people. 
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1.4. The Allais and Ellsberg Paradoxes 

A typical version of the Allais paradox (Allais, 1953; see also Allais and Hagen, 
1979) is of the following form. Suppose A, B, C are events, and A and B are 
statistically independent, and P(C) = P(A) P(B) > 0, where P is an objective 
probability with all of its usual properties. Let x and y be outcomes with x > y, and 
let 0 denote the outcome of receiving nothing. One often finds humain beings mak- 
ing choices in which 

x > y O/f 0 and x0,0< yo.0. 

Assuming the bisymmetric model with S= P, we see that these statements are 
equivalent to: 

and 

W-u(O)> CQ- VO)l P(A) 

[W) - U(O)] P(B) < CULv) - W)l f’(C) 

= [WY)- W)l P(A) P(B). 

Dividing the latter by P(B) > 0 reveals an inconsistency. The failure of the model is 
clear. This failure is easily remedied by assuming a subjective model in which 
independence does not hold. So we turn to the more taxing Ellsberg paradox. 

The Ellsberg paradox (Ellsberg, 1961; also see Fishburn, 1983) is simply that for 
a substantial fraction of people and for some choices of s, y in X and A, B, and C 
in 8, with AnC=BnC=@ and AuC and BuC in 8, the property of 
monotonicity of events in JZ (Definition 7.2 (7)) is violated. As we have seen in 
Theorem 7.2, this property is equivalent in the dual bilinear utility model to 
Eq. (7.8). In the special case of SEU, where S= S+ = S- is a probability measure, 
the monotonicity property is met because 

S(AuC)-S(BuC)=S(A)+S(C)-S(B)-S(C) 

= S(A) - S(B). 

Of course, if we admit weights that are not probability measures, which is con- 
sistent with an interval scale representation, the property of monotonicity of events 
is not forced and so the dual bilinear utility model can accommodate the Ellsberg 
paradox. It is important to recognize that the event monotonicity violated in 
Ellsberg’s example is completely distinct from the monotonicity assumed for the 
concatenation operations of the mixture space. This distinction has not always been 
carefully maintained. 

1.5. Prospect Theory as a Special Case of Dual Bilinearity 

In a widely cited paper, Kahneman and Tversky (1979) have summarized a num- 
ber of empirical studies for which classical expected utility and, in some cases, SEU 
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have been shown to be inadequate. Further, to encompass these data, they 
proposed a variant on the rational SEU model that they called “prospect theory.” 
We review briefly the phenomena cited, evaluate them in the light of the dual 
bilinear utility model, and then show that prospect theory, where it is defned, is a 
special case of dual bilinearity. Moreover, for some of the phenomena which 
Kahneman and Tversky interpret as imposing special constraints on the behavior of 
the utility function above and below the 0 outcome, we will show that they are 
equally well accounted for by the dual bilinear utility model, which branches in a 
relative rather than an absolute fashion. 

The phenomena discussed by Kahneman and Tversky were grouped according to 
the following titles: 

“Certainty, probability, and possibility.” The examples in this category (numbers 
l-8 in their paper) were all like the Allais paradox in that they are inconsistent with 
the strongest version of expected utility, but they are easily accommodated by a 
subjective version of the theory, including classical SEU. 

“Reflection effect.” They pointed out that for monetary outcomes x and y, with 
x > ~1, and appropriate events A and B, a substantial proportion of subjects both 
select y oB 0 over x oA 0 and -x oA 0 over -y uB 0. They remarked that “... the 
reflection effect implies that risk aversion in the positive domain is accompanied by 
risk seeking in the negative domain.” With the dual bilinear model (Eq. (7.6)) no 
such implication follows since for x, y > 0 

and 

uxo.4 O)- W)= [U(x)- VO)l S+(A) 
WV 0s 0) - U(O) [KY) - W)l S+(B) 

U(-x~,O)-U(O)JU(-x)-U(0)]S-(A) 

u(-y~,o)-u(o) [U(-y)-U(O)]S-(B)’ 

The fact that one ratio is larger than 1 while the other is less than 1 can arise as 
much from the fact that S+ is not identical to S- as from special properties of the 
utility function. Of course, Kahneman and Tversky were assuming the SEU model 
in which S+ = S-, and for that case their conclusion was correct. 

“Probabilistic insurance.” Without going into the details, they presented an 
expected utility argument showing that many people’s response to a version of 
probabilistic insurance is inconsistent with the usual assumption that utility is a 
concave function of money (u” ~0). They argued that this too has special 
implications for the form of the utility function, namely, that it should be concave 
on one side of zero and convex on the other. This conclusion does not follow if one 
uses a subjective model in which S(A) + S( “A) = 1 is violated. 

“Isolation effect.” Kahneman and Tversky noted that some gambling choices can 
be converted to equivalent ones by use of monotonicity arguments. They discussed 
in detail an example of the following type. Suppose x > y. The choice between 
x oA 0 and y oB 0 is equivalent, by monotonicity of the operations, to a choice 
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between x 0 =O and y provided that (x oc 0) oB O-x oA 0, i.e., x(C, B) = A. In their 
example, the events were assumed to have objective probabilities satisfying the 
definition of independence, i.e., P(A) = P(B) Z’(C). At a theoretical level, using the 
dual bilinear utility model, the equivalence of the gambles is easily shown to be 
equivalent to: S’(A) = S’(B) Y(C), i= +, -, which can be thought of as subjective 
independence of the events. The fact that subjects are often inconsistent in these 
choices suggests that objective independence of events does not necessarily force 
their subjective independence. 

We turn now to prospect theory. A prospect is taken to be a monetary gamble of 
the form 

,’ = t-u, p; y, q; 0, 1 - p - 4). 

which means that one obtain x with probability p, y with probability q, and 
nothing with probability 1 - p-q. We identify this prospect with the mixture 

== (x 0.4 .v) OBO, 

where A and B are independent realizations of events with objective probabilities 
chosen so that 

fYA I= P/b + 4) and P(B)=p+q. 

A prospect is called regular iff either x > 0 > y or x < 0 < y. The theory has three 
components. First, the value function for a regular prospect is of the form 

V(z) = V(x) 4p) + Uy) n(q), (7.14) 

where V(0) = 0, z(O) = 0, and z( 1) = 1. For nonregular prospects with p + q = 1 and 
either x> y>O or x< y<O, 

V,-) = U.v) + c V(.u) - V(Y)1 4P). (7.15) 

Third, they impose assumptions on the form of V dictated by the data mentioned 
above. We do not go into these here since within the framework of the dual bilinear 
utility model the data do not necessarily imply anything about the form of the 
utility function. 

Consider how Eqs. (7.14) and (7.15) relate to (7.6). For a regular prospect 
2 = (x o,,, y) oB 0, we obtain from Eq. (7.6) for U with U(0) = 0, 

where 
u(z) = U-x) nn,(A, B) + WV) x,(4 B), (7.16) 

zl(A, B)=S+(A) S+(B) if x>y,xo, y>O, 

=,S+(A) S-(B) if x>y,xo, y<O, 

= S-(A) S+(B) if x<JJ,xoA y>O, 
(7.17a) 

=S-(A) S-(B) if x<y,xo, yio, 



66 LUCE AND NARENS 

n,(A, B)= [I -S’(A)] SC(B) if x>y, x0* y>O 

= [l -S+(A)] S-(B) if x> y, xoA y-X0 

= [l-S(A)] S+(B) if x<.v,xnA y>O 
(7.17b) 

= [l-S-(A)] S-(B) if x<y,xoa y<O. 

If S+ = S-, then pi and n2 are independent of the relations among the outcomes 
and Eq. (7.16) reduces to exactly the same form as Eq. (7.14). 

For nonregular prospects with p + q = 1, the event B must be the universal one Q 
and if we add the plausible assumption that x no y-x, the prospect reduces to 
x oc y, where C= x(A, Q), and so by Eq. (7.6) we have 

where 

U(z) = WY) + [U(x) - WI1 4CL (7.18) 

n(C)= s+(c) if x > v > 0, 

= S-(C) if x < v < 0. 
(7.19) 

Equation (7.18) has the same form as Eq. (7.15) when S+ =S-. 
There are two important differences in the theories. First, the dual bilinear utility 

theory applies to more gambles than does prospect theory, which is restricted to 
regular prospects and nonregular ones with p + q = 1. Second, the same n-function 
appears in both Eqs. (7.14) and (7.15) whereas that is not necessarily the case in 
Eqs. (7.16) and (7.18). Assume Sf = S-. Suppose the events are such that in their 
objective probabilities P(C) = P(A) P(B). Since x,(A, B) = S(A) S(B) and 
rr( C) = S(C), we see that the same n-function arises iff S(C) = S(A ) S(B). This is not 
a property one would anticipate unless for some constant fl> 0, S = PD. Were this 
to hold, then the dual bilinear utility model would fail to account for the isolation 
effect (see discussion above). 

In summary, the dual bilinear model of Eq. (7.6), which encompasses prospect 
theory where that theory is explicit, appears to be quite flexible, and we believe that 
it deserves close scrutiny as a generalization of SEU. Assuming this is correct, it is 
highly desirable to devise an axiomatization of it comparable to those that have 
been given for SEU (Krantz et al., 1971, Chap. 8; Savage, 1954). At this time we do 
not have any. 

7.6. Ratio Scale Utility Representations 

By analogy to what we have just carried out for the interval scale case, we work 
out the ratio scale possibilities for a regular mixture space. The primary change is 
to replace the restrictive Eq. (7.6) of the dual bilinear representation by the general 
ratio expression: 

U(x n,4 Y) = ~(Y)fAcwx)lwY)l. (7.20) 
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As before, the question is to understand the limitations that are imosed by the 
several conditions formulated in Definition 7.2. The following result, which says in 
essence that under plausible smoothness conditions on fA there are no ratio scale 
representations beyond those of the interval scale case, is due in major part to M. 
A. Cohen. We proved a version of parts (1) and (2), and after correcting an error, 
Cohen solved the functional equation of part (2). 

Without difficulty, we can extend the concept of a regular mixture space to 
situations where 8 includes the sure event Q. Throughout this section we will sup- 
pose that this has been done. 

THEOREM 7.3. Suppose that J& is a regular mixture space that can be represented 
by a family of ratio scales satisfying Eq. (7.20) for all A in 6; that there exists Q in 8 
such that for all x, y in X, x ~a y-x; that the function fA satisfies restricted 
solvability in terms of the events; and that, for all A, B in d such that fA and fs, 
B#Q, are distinct, the sequence {x,} defined by x, =x and x,+, = f ;‘fA(x,,) is 
either increasing and unbounded or decreasing with g.1.b. 0. 

(1) If commutativity and outcome independence hold in JZ, then there exists a 
strictly increasing function h from Re+ to Re and two functions S+ and S from & 
onto [0, l] such that for all x in Re+ and A in I, 

(i) h(l)=0 and S’(Q)= 1, i= +,-, 

(ii) f(x)=h-‘[h(x)S+(A)] if x> 1, 

= 1 if x = I) (7.21) 

=h’[h(x) S-(A)] if x < 1. 

(2) Suppose, in addition, complementation holds in JV, and the functions 0’, 
i= +,-,aredefinedon[O,l]by8’[S’(“A)]=S’(A),whereAisincB.Thenforx>l 
and c( in [0, 11, h satisfies the functional equation 

h{xh-‘[h(l/x) cz]} = h(x) e+(cc) if x > 1, 

= 1 if X=1, (7.22) 

= h(x) F(a) if x < 1. 

(3) (Cohen). If, in addition, h satisfies the following conditions: 

(i) h is continuously differentiable on Re + except possibly at x = 1, and 

(ii) there exist positive constants u and 6 such that the limits lim., i , 
d[h(x)p]/d.x and lim,, , d[h(x)“]/dx exist and are nonzero, 

then the structure is dual bilinear. 

Proof For x, y in ( 1, co) and A, B in 8, define 2’ by 

(x, A) 2’ (Y, B) iff fA(x) >fAA. 
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We show that (( 1, co) x 8, 2’) is an additive conjoint structure (Definition 6.7, 
Krantz et al., 1971). The relation 2’ satisfies independence because, for each A, fA 
is strictly monotonic, and for each x > 1, monotonicity holds over d by outcome 
independence. To show double cancellation, suppose (x, B) k’ (y, C) and 
(v, A) 2’ (z, B), i.e.,fs(x) >fc(y) andf,(y)>fs(z). Apply& to the first inequality 
and fc to the second and use the commutativity assumption, 

So, by the monotonicity off,, (x, A) k’ (z, C). Restricted solvability holds because 
f., is onto (Theorem 5.1) and by the assumption that it satisfies restricted 
solvability for events. Each component is essential by the strict monotonicity off 
and by the existence of events other than Q. A nontrivial standard sequence (xn} 
corresponds to some A, B, B # Q, in &’ such that fA and fs are distinct and 
(x,3 A) -’ (x,+ Ir B), which in turn corresponds to x,+, = f; ‘fa(x,). Thus, by 
assumption, the Archimedean property holds. So by the representation theorem for 
such structures (Theorem 6.2 of Krantz et al., 1971), there exist functions h, S+, 
and k such that 

kC.Lb)l = h(x) S+(A 1. 

Since for all X, y in X, x on Y-X, we have 

U(Y) fnc~(xw(Y)l= U(x), 
whence 

k(z) = k[f&)] = h(z) S+(Q). 

If we choose S+ so that S+ (Q) = 1, which by the uniqueness of additive conjoint 
structures is possible, then k = h. Setting z = 1 and noting that, for each A in 
8, fA(l)= 1, we see that, 

Nl)=~Cf,(l)l =Nl) S’(A), 

and so h(l)=O. 
In a completely analogue fashion, we define an additive conjoint structure for 

x, y in (0, 1 ), which permits us to extend h onto that interval and introduces S- on 
F. Thus, Eq. (7.21) holds. 

Note that becausef, is onto and solvability holds for the events, the functions S’ 
map onto a continuum, which by choice of 52 is [0, 11. 

(2) Define 9+ as in the statement of the theorem. Observe, for U(x), 
U(Y) > 12 

xoA Y-Y 9 x iff ~(y)fACW-WJ(~)l = WW-AI:U(~W(x)l 
iff for all z > 0, 

h-‘[h(z) S’(A)] =zh-‘[/2(1/z) s+( -A)]. 
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Setting S+( “A) = a, we see that h must satisfy the upper part of Eq. (7.22). The 
proof is similar for the bottom part. 

(3) Define the function H on Re + by 

H(x) = h”(x) if x>l, 

=o if x= 1, 

= h”(x) if x< 1. 

Observe that by part (2), H must satisfy the functional equation: 

H{xHp’[H(l/x) cP]}/H(x) = tI+(cc)” if x>l, 

H{xH~‘[H(l/x)cc”]}/H(x)=8~(a)p if xy< 1. 
(7.23) 

Note that if H satisfies Eq. (7.23) and r, s > 0, then 

H,&) = rH(x) if s>l, 

=o if x=1, 

= sH(x) if x<l, 

also satisfies Eq. (7.23). Therefore, by an appropriate choice of r and s, there is no 
loss of generality in assuming that H has equal right and left derivatives at x = 1 
and that they equal 1. Hence, H is continuously differentiable everywhere. 

In Eq. (7.23), take the limits as x + 1, which we may do by using I’Hospital’s 
rule, and it yields 

e+(cq= 1 -a@(, 

F(c()P= 1 -c8. 

Substituting this into Eq. (7.23) yields 

H(x) = H{xH~‘[H(l/x) cP]}/( 1 - ~9’) if x>l, 

=o if x= 1, 

= H{xH~‘[H(l/x)cx”]}/(l -ct”) if x< 1. 

Now, for x = 1, take the limit as c( + 1, again using 1’Hospital’s rule, yielding 

H(x) = -xH( l/x)/H’( l/x), x# 1. 

Set y = l/x, solve for H’/H, 

H’(YYH(Y) = -llyH(l/y), y# 1. (7.24) 
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Since Z-Z is continuously differentiable, we may take the derivative of Eq. (7.24) to 
obtain 

H”(Y) H’(Y) H’(Y) WllY) + YH’(llYN - l/Y*) --- -= 
H’(Y) 1 H(Y) H(Y) Y*wlY)* 

1 

[ 
1 H’(llY) =- -- 

YWllY) Y Y2WlY) 1 
=--H’(y) [l + l/z-z(y)]. 

YWY) 

Dividing out H’/H and setting H(y) = G(log y), we see that G satisfies the differen- 
tial equation 

G” G’ 1 ---= __. 
G’ G G 

It is easy to verify that this is equivalent to 

;log[G’(y)-I]-$logG(y)=O, 

i.e., 

G’(Y) - l= 
G(Y) 

8, 

whence 
G(y) = aeD>’ - l//I. 

Since H = G log, H is continuous at 1, and H( 1) = 0, we see that (T = l/j?, whence 

Y> 1, 

y= 1, 

y< 1. 

h(y)= [(yp- 1)//3]1’6 if 

=o if 

= [(ya- l)//?]“” if 

Substituting into the unit expression for oA, 

x OA Y = YfAWY) 

YWICWY) S+(A)1 
= Y 

Y(mN4Y) S-U)11 

i 

{xPs+(‘4)~ + yB[l -S’(A)“] 

=Y 

(xw(A)6 + yfl[l - s-(A)6] 

if x > y, 

if x = y, 

if x < y, 

> l/P if x > y, 

if x = y, 

1 
l/B if x < y. 
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Thus, in the transformed variable xp, we see that the structure has a dual bilinear 
representation and so is, necessarily, (2, 2). Q.E.D. 

The upshot of this is quite clear. Suppose that a regular mixture space is an ade- 
quate model of gambling; that the decision maker satisfies the following four con- 
ditions: restricted solvability for events, outcome independence, commutativity, and 
complementation, each of which seems plausible; and that there is a ratio scaling of 
utility that produces a smooth representation. Then the only possible representation 
is the interval scale, dual bilinear one. Clearly, this representation warrants further 
study. 

ACKNOWLEDGMENTS 

We wish to acknowledge, with thanks, the very detailed comments and corrections provided by 
Michael A. Cohen and Fred S. Roberts. They not only detected some errors in an earlier draft, but have 
provided additional results. In particular, we thank Cohen for permitting us to include Theorem 3.10 
and part (3) of Theorem 7.3 and Roberts for Theorem 1.2. 

REFERENCES 

AC&L, J. (1966). Lecrures on functional equations and rheir applications. New York: Academic Press. 
ALLAIS, M. (1953). Le comportement de I’homme rationnel devant le risque: critique des postulats et 

axiomes de l’&cole Amkricaine. Econometrica, 21, 503-546. 
ALLAIS. M. & HAGEN. 0. (Eds.). (1979). Expected Utility Hypothesis and the Allais Paradox. Dordrecht, 

Holland: Reidel. 
ALPER, T. M. (1985). A note on real measurement of scale type (m, m + 1). Journal of Mathematical 

Psychology 29, 73-8 1. 
BROIJWER, L. E. J. (1909). Die Theorie der endlichen kontinuierlichen Gruppen unabhPngig von den 

Axiomen von Lie. Mafhematische Annalen 67, 24b-267. 

CANTOR. G. (1895). Beitrage zur Begriindung der transtiniten Mengenlehre. Mafhematische Annalen 46, 
481-512. 

COHEN, M. & NARENS, L. (1979). Fundamental unit structures: A theory of ratio scalability. Journal of 

Malhemarical Psychology 20, 193-232. 
COOMBS. C. H. (1964). A Theory of Data. New York: Wiley. 
ELLSBERG, D. (1961 ). Risk, ambiguity, and the Savage axioms, Quarter& Journal uj. Economics 75, 

643-669. 
FISHBURN, P. C. (1981). Subjective expected utility: A review of normative theories, Theory and Decision 

13, 139-199. 
FISHBURN, P. C. (1982). Nontransitive measurable utility, Journal of Mathematical P.yychology 26, 31-67. 
FISHBURN, P. C. (1983). Ellsberg revisited: A new look at comparative probability, Annals of Statistics 

11, 1047-1059. 
FUCHS, L. (1966). Teilweise geordnete algebraische Structuren. Gottingen: Vandenhoeck & Ruprecht. 
GLASS, A. M. W. (1981). Ordered permufation groups. Cambridge, England: University of Cambridge. 
HOLDER, 0. (1901). Die Axiome der QuantitPt und die Lehre vom Mass. Ber. Verb. Kgl. Siichsis. Ges. 

Wiss. Leipzig, Math.-Phys. Classe 53, l-64. 

KAHNEMANN. D. & TVERSKY, A. (1979). Prospect theory: An analysis of decision under risk. 
Economerrica 47, 263-291. 

KRAN.TZ, D. H., LLJCE. R. D., SUPPES, P. & TVERSKY, A. (1971). Foundations of measuremenr (Vol. I). 
New York: Academic Press. 



72 LUCE AND NARENS 

LUCE, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica 24, 178-191. 
LUCE, R. D. & COHEN, M. (1983). Factorizable automorphisms in solvable conjoint structures I. Journal 

of Pure and Applied Algebra 21, 225-261. 
LUCE, R. D. & NARENS, L. (1983). Symmetry, scale types, and generalizations of classical physical 

measurement. Journal of Mathematical Psychology 27, 44-85. 
LUCE, R. D. & NARENS, L. (1984). Classification of real measurement representations by scale type. In 

Measurement 2, 39-44. 
NARENS, L. (1976). Utility-uncertainty trade-off structure. Journal of Mathematical Psychology 13, 

296322. 
NARENS, L. (198la). A general theory of ratio scalability with remarks about the measurement-theoretic 

concept of meaningfulness. Theory and Decision 13, l-70. 
NARENS, L. (198lb). On the scales of measurement. Journal of Mathematical Psychology 24, 249-275. 

NARENS, L. & LUCE, R. D. (1976). The algebra of measurement. Journal of Pure and Applied Algebra 8, 
197-233. 

F’FANZAGL, J. (1959a). Die axiomatischen Grundlagen einer allgemeinen Theorie des Messens. Schrift. Stat. 
Inst. Univ. Wien, Neue Folge Nr 1. Wurzburg: Physica-Verlag. 

PFANZAGL, J. A. (1959b). A general theory of measurement-Applications to utility. Naval Research 
Logistics Quarterly 6, 283-294. 

ROBERTS, F. S. & ROSENBAUM, Z. (1984). Tight and loose value automorphisms. Manuscript. 
ROBERTS, F. S. & ROSENBAUM, Z. (1985). Some results on automorphisms of valued digraphs and the 

theory of scale type in measurement. In Y. Alavi et al. (Eds.), Graph theory and its applications to 

algorithms and computer science. New York: Wiley. 
ROSENSTEIN, J. G. (1982). Linear orderings. New York: Academic Press. 
SALZMANN, H. (1958). Kompakte zweidimensionale projektive Ebenen. Archiu der Muthemutik 9, 

447459. 
SAVAGE, L. J. (1954). Thefoundations of staristics. New York: Wiley, (1972. 2nd revised ed.). New York: 

Dover. 
STEVENS. S. S. (1957). On the psychophysical law. Psychological Review 64, 153-181. 
STRAMBACH, K. (1969). Homomorphismengruppen der reallen Zahlengeraden mit wenig Fixpunkten. 

Archiv der Mathematik 20, 556-560. 

RECEIVED: December 15, 1983 


