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This article presents a theory of the relationship of the psychological and the physical and uses it to
formulate a new kind of meaningfulness principle for psychophysical application. This new princi-
ple calls into question the psychological relevance of many kinds of quantitative psychophysical
relationships. As an illustration, it is used to study comparisons of sensitivity involving Weber
fractions, particularly comparisons across sensory modalities. The methods of the illustration
extend easily to other psychophysical situations.

Fechner was the first to present a comprehensive psychophy-
sical theory and methodology. He carefully formulated how the
psychological and physical were to be treated differently, pro-
vided a theory of the psychophysical relationship based in part
on this difference in treatments, and used the different treat-
ments as part of a methodology to test his theory. Since his
time, the differences in treatment of the psychological and the
physical have become less sharp and psychophysical methodol-
ogy much more eclectic and not particularly focused on unique
properties of the psychophysical relationship.

In this article, a sharp theoretical distinction between the
psychological and physical is reestablished. The distinction is
used to formulate a new theoretical principle that restricts the
kinds of concepts and analyses that can be applied to the psy-
chological component of the psychophysical situation. The
principle is based on concepts of modern logic and measure-
ment theory and asserts that the manner in which the physical
is formulated should not influence conclusions drawn about
the psychological. Like Fechner, we use Weber's law as a proto-
typical psychophysical situation to illustrate our theory, and
like Fechner, our methods extend easily beyond this highly con-
strained situation. Unlike Fechner our goal is to only clarify a
specific theoretical relationship between the psychological and
the physical and to understand its implications rather than to
provide a general theory and foundation for psychophysics.

Because psychophysical theory relies heavily on mathemati-
cal formulations of psychological and psychophysical concepts,
it is particularly important for psychophysics that the relation-
ship between mathematical formulations and the qualitative
situations they describe is made clear. The understanding of
this relationship between the quantitative and the qualitative is
a generic and important foundational problem in science.
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One of the most obvious and powerful uses of mathematics
in science lies in the description of subtle properties of substan-
tive, empirical domains. However, with this power comes the
potential for the generation of meaningless quantitative con-
cepts—that is, for generating quantitative concepts that have
neither empirical nor qualitative interpretations in the substan-
tive domain. The following provides a simple illustration:

Suppose Monday's temperature were 10 °C, Tuesday's 20 °C,
Wednesday's 15 °C, and Thursday's 30 °C. Then it would be an
empirically true statement that the ratio of Monday's to Tues-
day's temperature is the same as the ratio of Wednesday's to
Thursday's temperature (all temperatures being measured in
centigrade), the ratio being 1 /2. It is also a logically (and empiri-
cally) true fact that the binary relation ~ c defined on ordered
pairs (x, y) of temperatures measured in centigrade by

(x, y) ~c(u, t>)iff ̂  = ̂

is an equivalence relation. However, according to physical
theory, ~c cannot correspond to a "physically relevant" equiva-
lence relation on ordered pairs of qualitative, physical tempera-
tures; that is, it cannot correspond to an equivalence relation
within physical theory. The reason for this is that physical
theory demands that all qualitative equivalence relations within
it, "when appropriately measured," must be equivalence rela-
tions under measurement. Because clearly the ratio of Mon-
day's to Tuesday's temperature is not in the same equivalence
class as the ratio of Wednesday's to Thursday's temperature
when measured in terms of Fahrenheit (i.e., that these ratios,
when the temperatures are measured in Fahrenheit, are not
equal), it follows that in any physical theory in which centi-
grade and Fahrenheit are appropriate ways of quantitatively rep-
resenting temperature, ~c is not a physically relevant equiva-
lence relation on ordered pairs of temperatures.

Ruling out from consideration relationships that are not in-
variant under appropriate changes of scale has been a much
used practice in physics, and a subarea of physics known as
dimensional analysis has evolved around its development and
application. Stevens (1946,1951) introduced similar ideas into
psychology, which were refined by use of measurement-theo-
retic concepts by Suppes and Zinnes (1963). Luce (1959,1964)
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developed related ideas using concepts of dimensional analysis
to provide for a theory of "possible psychophysical laws." The
ideas of Suppes and Zinnes and Luce were extended by Fal-
magne and Narens (1983), and psychophysical applications of
these extensions were given by Falmagne and Narens (1983)
and Falmagne (1985). Roberts and Rosenbaum (1986) also in-
tegrated the approaches of Suppes and Zinnes and Luce, and
substantive applications of this to behavioral sciences can be
found in Roberts (1985). Recently, Luce (1990) has used the
invariance under change of scale idea to update his 1959 theory
of "possible psychophysical laws" to cross modality-matching
situations.

(Some of Stevens's, 1946, original ideas, particularly invar-
iance under change of scale as a criterion for "appropriate"
statistics, have generated much controversy-e.g., see the recent
series of Psychological Bulletin articles by Townsend & Ashby,
1984, Michell, 1986, and Stine, 1989. The statistical issues
about invariance under change of scale are related to but are
different from the psychophysical issues raised in this article.)

Stevens (1946,1951) called relationships that were invariant
under change of scale meaningful and those that were not mean-
ingless. In this article this usage is adhered to. Essentially, mean-
ingless quantitative relationships can be looked on as those that
depend on particular conventions of measurement for their def-
inition (e.g., the equivalence relation —c noted earlier depends
on the centrigrade representation), whereas meaningful ones
do not depend on such conventions.

In psychophysics there are both underlying qualitative physi-
cal and psychological structures to measure. One usually pro-
ceeds by measuring the physical variables in terms of some
standard system of physical units and then represents the psy-
chological relationships quantitatively in terms of the measured
physical variables. Psychophysical laws usually have the charac-
teristic that the form of the representing quantitative relation is
invariant under change of physical units, and some (e.g., Luce,
1959; Falmagne & Narens, 1983; Roberts & Rosenbaum, 1986)
have suggested this as a necessary condition for a psychophysi-
cal law. Thus, in psychophysics there has been a strong ten-
dency to consider only quantitative psychological relationships
that are physically meaningful in the sense that their mathemati-
cal forms are invariant under changes of physical units.

In this article, an additional invariance condition on quanti-
tative psychological relationships is proposed. It is based on the
facts that (a) from the point of view of theoretical physics the
stimulus can be characterized in many different but physically
equivalent ways, and (b) the physical theory does not depend on
which of these equivalent ways are used in the formulation. Thus,
from this point of view, it is only a matter of convention which
equivalent way is used to characterize the stimulus in psychophys-
ics, and psychological conclusions in psychophysical settings
should be invariant under equivalent physical formulations; that
is, one should reach the same conclusion no matter which equiva-
lent formulation of the physical stimulus is used. Implications of
this new invariance condition for the comparison of physically
meaningful measures of sensitivity are investigated in this arti-
cle, with particular emphasis on comparisons of Weber frac-
tions. It is argued that this new invariance principle gives
correct insights about the psychological relevance of certain
kinds of quantitative psychophysical relationships.

Although the ideas in the article are highly mathematical, a
deliberate effort has been made to keep mathematical concepts
and notation to a minimum. For clarity, a mathematical formu-
lation of some basic concepts and results discussed in the text is
given in the Appendix. A formal presentation that incorporates
the main ideas of the article can be found in Narens (1991).

Physical Measurement

Physical qualities are often classified into two types: funda-
mental and derived. Fundamental qualities (e.g., length, time,
mass, charge, etc.) can be characterized qualitatively as struc-
tures of the form X = (X, >.,©>, where >. is a total ordering
on the physical quality Jif and © is an associative and monotonic
operation on X that allows elements of X to be combined or
concatenated to form other elements of X. In physics, funda-
mental qualities are also assumed to be continuous in the sense
that (X, >.) is a continuum, that is, isomorphic to the ordered
structure of positive real numbers, < R+, >). In this article, struc-
tures like 36 are called continuous extensive structures, and their
exact qualitative description is given in the Appendix. All of
these fundamental qualities—that is, all of these continuous
extensive structures—are structurally identical in the sense that
they are isomorphic. The fundamental quality 3c is measured
by a ratio scale of isomorphisms onto < M + , >, +). Derived
physical qualities (e.g., density, energy, etc.) are measured in
terms of certain products of powers of measurements of funda-
mental qualities. Exactly why this is the case is too complicated
to present here, but the theory has been worked out in detail in
Chapter 10 of Krantz, Luce, Suppes, and Tversky (1971) and
Chapter 22 of Luce, Krantz, Suppes, and Tversky (1990).

A curious feature of physical measurement is that a funda-
mental physical quality can be captured qualitatively by different
continuous extensive physical qualities. This odd fact is demon-
strated in the following example involving the physical measure-
ment of length:

A measuring rod is an infinitely thin, straight physical rod.
Measuring rods x and y are said to be equivalent if and only if
when placed side by side in the same direction with left end-
points corresponding, their right endpoints also correspond
(see Figure la), and x is said to be longer than y if and only if
when placed side by side in the same direction with left end-
points corresponding, the right end point of x goes beyond y
(see Figure Ib).

In physics it is assumed that the aforementioned concept of
equivalence is an equivalence relation (that is, is a reflexive,
symmetric, and transitive relation). Let Xbe the set of equiva-
lence classes of equivalent rods. Define the relation >. on A'as
follows: for all elements A and B ofX,

(a) (b) (c)

Figure 1. Extensive measurement of length.
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A >» B if and only if there exist a e A and b e B such that a is
longer than or equivalent to b.

Elements of Xare called (physical) length.
Let Xbe the set of lengths. Classical physics assumes that (X,

>.) is a continuum (see Appendix for a precise definition of
continuum). To appropriately measure length, more structure
is needed on X. In the theory of physical measurement, this
additional structure usually takes the form of adding the follow-
ing concatenation operation to (X, >.): Lengths A and B can
be concatenated to form the length C, in symbols, A ® B = C, as

A ® B = C if and only if for some x, y, and z in A, B, and C,
respectively, z is equivalent to the rod that is formed by abutting x
toy (see Figure Ic).

Classical physics assumes that (X, >„, ©} forms a continuous
extensive structure so that in particular © is an associative and
monotonic operation. Physical length then can be measured by
use of the following result, stated in modern terminology, by
Helmholtz (1887): Suppose X, = ( X { , >., ©,) is a continuous
extensive structure and 9? = ( R+, >, + ). Then the set of isomor-
phisms o/3E! into 3f forms a ratio scale.

In the theory of measurement isomorphisms like those just
mentioned are called representations, and this practice is used
throughout the article. In the general literature they are usually
called "scales," a term we prefer not to use because it is poten-
tially confusable with concepts, such as "ratio scale," that refer
to sets of representations.

In classical physics each fundamental quality (length, time,
mass, etc.) is measured in terms of a ratio scale of representa-
tions of a continuous extensive structure for it. The measure-
ments of other physical qualities (e.g., density, momentum, en-
ergy, and so on) are derived from the measurements of the
fundamental ones, and their representations also form ratio
scales. For example, the ratio scale customarily used to mea-
sure energy is the one that has representations of the form
k¥WD2<PT~2'< where A: is a positive real constant and <pM, <pD, and
if>T are representations for the fundamental qualities of mass,
distance, and time, respectively. (The measurement-theoretic
foundations for classical physical measurement have been sys-
tematically and comprehensively worked out in Chapter 10 of
Krantz et al., 1971, and Chapter 22 of Luce et al., 1990; see these
sources for a detailed presentation of many of the physical mea-
surement concepts used in this article.)

It turns out that for classical physics, fundamental qualities
can be appropriately measured in terms of different continuous
extensive structures on the same attribute. Although this pro-
duces different ratio scales on the same physical attribute, it
does not in any serious way affect the quantitative aspects of
physics. Krantz, et al. (1971) wrote the following about this
situation:

As Ellis (1966) pointed out, at least one other totally different
interpretation of concatenation also satisfies the axioms [ for a
continuous extensive structure on lengths ] and so leads to an addi-
tive representation; this measure of length is not linearly related to
the usual one. Campbell (pp. 290-294 of 1957 edition) discussed
other examples of a similar nature.

To present Ellis's interpretation we begin with a collection of
rods. Let [the concatenation] a* b be the hypotenuse of the right
triangle whose sides are a and b. The comparison relation >; is

determined by placing two rods side by side, with one end coincid-
ing, and observing which one extends at the other end. Using
properties of right triangles it is easy to verify that [the axioms of a
continuous extensive structure] are satisfied. The only property
that might present a slight difficulty is associativity. It is explained
in Figure 2 where the lines are labeled by their lengths in the usual
measure.

Since [the axioms of a continuous extensive structure are] satis-
fied, [Helmholtz' result obtains], hence there is a measure ̂  that
is order preserving and additive over this new concatenation.
Since the usual measure <p is also order preserving, \l/ and <p must
be monotonically related, and by the properties of triangles it is
easy to see that ^ is proportional to <p2. To most people, the new
interpretation seems much more artificial than the original one.
In spite of this strong feeling, neither Ellis nor the authors know of
any argument for favoring the first interpretation except familiar-
ity, convention, and, perhaps, convenience. We are used to length
being measured along straight lines, not along the hypotenuses of
right triangles, but no empirical reasons appear to force that
choice. Indeed, we could easily reconstruct the whole of physics in
terms of $ by replacing all occurrences of <p by ^ft. This would
make some equations appear slightly more complicated; others
would be simpler. In fact, when <p2 happens to be the more conve-
nient measure, it is common to assign it a name and to treat it as
the fundamental measure. Examples are the moment of inertia
and the variance of a random variable. In the present case, if a and
b are rods, the squares with side a and with side b can be concaten-
ated by forming the square on the hypotenuse; <p2 will be an addi-
tive (area) measure for such concatenation of squares (Krantz et
al., 1971, pp. 87-88).

Let X be the set of lengths and © be the operation of conca-
tenating lengths by abutting rods, and let ©2 be the operation of
concatenating lengths by the right triangle method described
earlier. Let SL. be the total ordering of lengths described earlier.
Then by the aforementioned discussion, both 3£ = /(X, >., ©)
and 3£' = (X, S:., ©2) are continuous extensive structures. Let
<f be a representation from X onto ( R+, SL, + ). Hence, it is easy
to show that <p2 is a representation from X' onto ( R+, >, +)
and that for all x, y in X,

From the point of view of qualitative concepts of meaningful-
ness (Luce, 1978; Luce et al., 1990; Narens, 1981,1985,1988,
1990,1991), 3E and X ' yield the same theories of meaningful-
ness because their automorphism groups (i.e., their groups of
isomorphisms onto themselves) are identical; that is, they are
equally adequate for describing lawful physical phenomena. The
same can be said for the structures of the form 3E r = ( X, >r, ©r),
where r is a positive real and ©r is denned by the following: for
all x, y in X,

(a2 + 62 + c2)

a

W (b)

Figure 2. Orthogonal concatenation for length measurement illus-
trating left term (a) and right term (b) of the associative property.
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In other words, for the theory of physics all the structures 3f, are
equally adequate for the qualitative description of length. Fur-
thermore, theoretically each of these structures is equally accept-
able for the measurement of length through representations
onto (R+ , >, +). (Although from the practical standpoint,
some of these, for example, 3c,, may be preferable.) The same
observation holds for other fundamental physical qualities. A
similar observation obtains for derived physical variables (e.g.,
see the discussion of density in Krantz et al., 1971; Narens,
1991), but we do not go into it here.

This situation of having different but theoretically equivalent
qualitative structures for measuring physical variables presents
some difficulties for the interpretation of psychological con-
cepts that are partially built out of physical measurements: Be-
cause from the point of view of theory, it is only by convention
that a particular qualitative structure is used for measuring a
physical variable, it should be demanded that substantive psy-
chological conclusions on the basis of such measurements
should remain the same when different but theoretically equiva-
lent qualitative structures are used to measure the variable. In
the following, this theoretical perspective is used to better un-
derstand the kinds of psychophysical sensitivity comparisons
that can be made.

Psychophysical Structures and Weber Fractions

Psychophysical situations are usually characterized qualita-
tively in terms of qualitative primitive relationships that fall
into two classes: (a) qualitative physical relationships and con-
cepts, denoted by />,, ..., P,, ..., Pm, and (b) psychological
relationships and concepts, denoted by /? , , . . . , /? , , . . . , Rn. In
this article, we consider only those psychophysical situations
that allow for such conceptual separations into physical and the
psychological components.

The particular psychophysical situation that characterizes
Weber's law allows for such a separation, and this case is later
examined in some detail. Ideas and results developed for it
extend easily to other psychophysical situations.

In the traditional psychophysical formulation of Weber's law,
a physical continuum under consideration is first measured
physically by some representation <# and then in terms of this
physical measurement a threshold for discriminability \( x) is
computed so that for all physical stimuli y, the subject's behavior
shows y to be more intense psychologically than x (in symbols,
y > x), if and only if <p(y) > <p(x) + &v(x), and finally, it is
verified that there exists a positive real constant c such that for
all x in the physical continuum under consideration,

= c. (1)

Equation 1 is called Weber's law, its left-hand side the Weber
fraction, and the real number c on its right-hand side the Weber
constant. We make no assumptions about how the discrimina-
tion relation > is obtained; in particular, for the purposes of
this article it does not matter whether it is obtained through
deterministic means or through probabilistic means. Weber's
law stands at the very beginning of experimental psychology.

Weber's observation that all the senses, whose physical stim-
uli can be precisely measured on a one-dimensional physical
scale, obeyed a uniform law, constituted the building-block on
which Fechner grounded his well-known formula for the mea-
surement of sensation. Weber's law, however, does not refer to
(nonobservable) sensations, but only to (observable) sensitivi-
ties. Its character is therefore truly psychophysical; that is, it
relates a purely physical entity and an observable psychological
entity, namely, the threshold for discriminability.

In obtaining Weber's law, it is assumed that <p is a representa-
tion of a ratio scale of the physical continuous extensive struc-
ture {X, >, ©) onto < R + , >, +>. (For the purposes of this
article, there is no loss of generality in making this assumption,
because (a) almost all the physical continua used in psycho-
physics—including derived ones such as energy—can be for-
mulated as continuous extensive structures, and (b) arguments
very similar to the ones below can also be made for general
derived physical qualities.)

Narens (1980) characterized Equation 1 qualitatively in
terms of a psychophysical situation. The following axiomatiza-
tion closely resembles the one of Narens (1980; see also Suppes
et al., 1990, Chap. 16) and is easily reducible to it.

The primitives consist of a nonempty set of objects X that is
to be understood both as a set of physical objects and as a set of
psychological stimuli (e.g., the elements of .Yas energy densities
over the visible spectrum and as a set of lights to be presented to
a subject). The other relations consists of a physical binary
relation >. on X(ihat is used to physically order the stimuli), a
physical concatenation operation © on X(that is used to physi-
cally add the stimuli), and a psychological binary relation >• on
A'(that is used to discriminate psychologically the stimuli in
terms of intensity).

The first set of qualitative axioms are about the physical
structure (AT, >, ©) and says that (X, >., ©) is a continuous
extensive structure (see Appendix). These axioms allow the
physical stimuli to be measured by a ratio scale S in such a way
that each representation in $ interprets the qualitative physical
relation >. as > and the qualitative physical operation © as +.

The second set of qualitative axioms are about the psychologi-
cal structure ( X, > ) and says >• is a continuous semiorder on X
(see the Appendix for the formal definition of continuous se-
miorder; an informal definition is given shortly). Semiorders
were introduced in the psychological literature by Luce (1956),
and results about them have generally been confined to finite
domains. In the present case, the semiorder of interest is on an
infinite domain. (A far reaching analysis of semiorders on infi-
nite domains can be found in Manders, 1981, and a systematic
development of continuous semiorders can be found in Narens,
1990.) Intuitively, the expression "x >• y" is to be interpreted as
"the behavior of the subject discriminates the stimulus x as
being (psychologically) more intense than the stimulus y" Em-
pirically, >- may be implemented in a number of ways, for exam-
ple, asking a subject if "x is noticeably brighter than y" or forc-
ing the subject to choose the brighter of two stimuli and defin-
ing x > y if and only if the probability of x as being chosen
brighter than y is greater than r, where r is some specific num-
ber such that 0.5 < r < 1, and so on.

One very important property of semiorders is that they are
transitive (i.e., for all x, y, and z in Y, if x > y and y >- z, then
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x > z). Letting "x ̂  y" stand for "not x > y" one defines the
indifference relation ~ on Yas follows: For all x and y in X, x ~
y if and only if x y- y and y y- x. For semiorders ~ is not in
general a transitive relationship, that is, in general there will
exist elements u, v, and w in Xsuch that u ~ v and v ~ wbut not
u ~ w. Because ~ is defined in terms of the psychological
primitives X and X, it too can be considered a psychological
relationship.

It can be shown (e.g., see Appendix) that the semiorder >-
induces a weak ordering on the set X of psychological stimuli.
That is, it follows from the semiorder axioms that the relation-
ship 2:? defined on X by the following: For all x and y in X,

x>*yiffVz[(ify> zthen;c>- z)and(ifz>- xthenz>- y)]

(where " Vz" is read as "for all z") is a transitive and connected
relation. Because ̂  is defined in terms of the psychological
primitives, it is considered a psychological relationship.

A continuous semiorder (X, >- ) is a semiorder such that the
induced ordered set (X, >,,) is isomorphic to (R+, S:). In
particular, for continuous semiorders, >* is a total ordering.

The next three axioms are about the psychophysicalsituation;
that is, they involve both physical and psychological concepts
and relationships. The first of these axioms is that the induced
psychological ordering >* is the physical ordering >., that is,
that >* = >.. The second is that for all x, y, u, and v in X,

ifx > y and u > v then x © u > y ® v.

The third psychophysical axiom is that for all x, y, u, and v in
X,

ifx y- y and u y- v then x ® u y- y ® v.

Note that in the previous axiomatization, the last three ax-
ioms are about physical and psychological phenomena; that is,
they are formulated in terms of both physical and psychological
concepts. Because of this, they are called psychophysical ax-
ioms.

In the previous axiomatization, the primitive concept X,
corresponding to the set of stimuli, can be given both psycho-
logical and physical interpretations. The primitive relation S:. is
to be interpreted as a physical relationship; however, because by
a psychophysical axiom it is also the relation >^ it follows
that >. is also interpretable as a psychological relationship, and
correspondingly, >v is interpretable as a physical relationship.
However, Narens (1990) showed that (a) © is not qualitatively
definable in terms of the psychological primitives X and >-
even if extremely powerful logical languages are used for the
defining, and (b) >- is definable in terms of the physical primi-
tives X, >., and © in a logical language.

In the previous axiomatization, the physical primitives and
axioms are used to measure the physical stimuli—that is, to
represent X numerically; the psychological primitives and ax-
ioms are used to describe the psychological behavior, and the
psychophysical axioms are used to describe how the physical
and psychological primitives interact.

The Weber constant c in Equation 1 is invariant under physi-
cal changes of unit; that is, it is physically meaningful. By re-
sults of Narens (1988) this implies that it is logically equivalent
to an expression formulated in terms of physical primitives, and

thus, it may be interpreted as a physical concept. Results of
Narens (1990) show that c is not interpretable as a purely psy-
chological concept; that is, there is no concept formulable
purely in terms of the psychological primitives that correspond
to the constant c. Other results of Narens (1990) show that the
constant 1 + c is interpretable as a purely psychological concept.
A detailed analysis of this strange result about Weber constants
is beyond the scope of this article. However, the following gives
some intuitive reasons why one might expect the result:

Let T be the function from X into X that is defined as follows:
For all x and y in X,

y> T(x),

where 2:* is the ordering defined earlier. Because ̂  is defined
in terms of psychological primitives, the previous equation
gives a definition of T in terms of psychological primitives.
Because it easily follows from the definition of rand Equation 1
that

T may be viewed as the interpretation of 1 4- c. Thus, 1 + c is
psychologically relevant. We now argue that c is not psychologi-
cally relevant. We first note that T is related to the function A,,
by the following formula:

A^(x) = <f>[T(x)] — <p(x). (2)

The qualitative interpretation of c- <p(x) is a function C(x)
from X into X. (Because to this, we consider the function C to
be the interpretation of c.) Then it follows by Equation 1 that
C(x) is the interpretation of A,,(x). Therefore, because by
Equation 2 \(x) = T*[<f>(x)] - <p(x) where r*[^(x)] =
f[T(x)], it follows that C is the interpretation of the difference
of two functions of physically measured stimuli. Intuitively, the
measurement theory of differences (e.g., see Krantz, et al.,
1971, Chap. 4) should require much stronger properties than
those inherent in continuous semiorders—or put differently,
differences should not be meaningful for continuous se-
miorders. Thus, intuitively, one would not expect all differences
of functions of <p(u) to be meaningful for continuous se-
miorders. Technical results of Narens (1991) show that the par-
ticular difference <p[T(x)] - <p(x) is not meaningful for continu-
ous semiorders. By results discussed in the Appendix relating
meaningfulness and definability, it then follows that the inter-
pretation of the difference T*[<p(x)] - <p(x), that is, the inter-
pretation of c, is not definable in terms of the psychological
primitives.

In summary, the usual definition of the Weber constant uses
both psychological and physical concepts, and there are other
definitions of it in purely physical terms. However, there is no
definition of it in purely psychological terms.

The Equivalence Principle

In the following definition of physically equivalent various
concepts of "definability" may be used. For concreteness, we
assume the one described by Narens (1988). There, qualitative
objects, relations, relations of relations, and so forth may be
defined in terms of finitely many other qualitative objects, rela-
tions, relations of relations, and so forth through formulae of a
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powerful logical language (one of equivalent power to the lan-
guage developed by Whitehead and Russell, 1925, in their Prin-
cipia Mathematica) using finitely many parameters that are
purely mathematical or purely logical objects, relations, and so
forth. (The addition of the purely mathematical and logical
parameters is tantamount to adding individual constant sym-
bols for each purely mathematical and each purely logical ob-
ject.) This definability concept corresponds to the kind of "de-
finability" used in ordinary mathematical science and allows
for the use of mathematical methods in denning a qualitative
concept in terms of other qualitative concepts. For example,
consider a continuous extensive structure X measured in terms
of a ratio scale $ onto ( R+, >, +), and let r be a positive real
number. Then the qualitative binary relation R is properly de-
nned in terms of the primitives of 9£ as follows: for each x and y
in X R(x, y) if and only if for each <p in S, <p(x) = r<p(y). (Note
that the purely mathematical parameters R+ , >, +, and r are
used to define R. ) It is beyond the scope of this article to give
here a formal description of this "definability" concept. The
interested reader should consult Narens(1988, 1991).

Two physical situations on the same domain, 3E = ( X, Pt , . . . ,
Pf,..., Pn) and £ ' = (X, P\, . . . , /> ; , . . . , />'„>, are said to be
physically equivalent if and only if

1. X and X' are isomorphic;
2. each P,,i=\,...,n, is definable in terms of />,, . . . , Pn;
3. each Pl,i=l,...,n,is definable in terms of P\, ..., P'n.

Condition 1 of the previous definition says that K. and 36 ' are
structurally identical; and Conditions 2 and 3 say that from the
point of view of theory, the relationships P{ , . . . , Pn are just as
physically relevant as the relationships P\, . . . , P'n.

The two continuous extensive structures, ( X, > . , © ) and ( X,
>., ©2) discussed earlier for the measurement of length are
physically equivalent. (See discussion at the end of the Appen-
dix.) More generally, if 3 = <Z, >„ ®> and 3 ' = <Z, >., ©') are
physical continuous extensive structures and <p is a representa-
tion of 3 = (Z, >„, ®) onto < R, >, +), then 3 and 3' are
physically equivalent if and only if there exists r in K+ such that
for all x and y in Z,

which is in perfect agreement with the idea of "equally adequate
for describing lawful physical phenomena" discussed in the
Physical Measurement section. (For proofs of this result see
Narens, 1991, and the discussion at the end of the Appendix.)

For the purposes of this article, the critical difference be-
tween physically equivalent and equally adequate for describing
lawful physical phenomena is that the former is a logical con-
cept, whereas the latter is a physical concept that is at the root of
a particular physical theory (dimensional analysis). That these
two concepts describe the same physical situation is a deep
mathematical theorem. Because of its close connection with
logic, physically equivalent is the superior concept for formulat-
ing and justifying the epistemological ideas that form the core
of this article.1

The equivalence principle is a theory about the relationship
of the physical and the psychological in psychophysics. It is
interesting to note that this relationship is asymmetric — equiva-
lent structures can be used for describing the underlying physi-
cal situation but not the underlying psychological situation.

The reason for this is that a primary goal of psychophysics is the
characterization of (purely) psychological phenomena in terms
of quantitative relationships among the measurements of physi-
cal variables. Formally, such psychological phenomena are
viewed as particular qualitative relationships, which in our for-
mulation are either primitives of the psychological structure or
relationships that are definable in terms of the primitives. Be-
cause psychophysics is interested in statements about such par-
ticular psychological relationships, it makes no sense to de-
mand that the truth values of these statements be invariant
under substitution of psychologically equivalent relationships.
Particular physical relationships are not of interest in psycho-
physics; instead they are used as vehicles for characterizing
psychological relationships, and the equivalence principle is a
description of their role as vehicles.

Suppose 3t" = <(X, PI ,..., />„) is a physical structure, '$) = (X,
/?,,..., /?m) is a psychological structure, and X and SJ1 describe
a psychophysical situation. Then the equivalence principle
states that a necessary condition for a qualitative or quantitative
assertion to have psychological relevance is that its truth re-
main invariant under changes of physically equivalent struc-
tures; that is, if a structure 3t'' = (X, P\,..., /*'„,) that is physi-
cally equivalent to 3E were substituted for 3E in the formulation
of the assertion, then the truth value of the assertion would not
change.

The intuitive reasoning behind the equivalence principle is
that psychological relevance should not depend on which of the
physically equivalent structures the experimenter decides to use
in describing the psychophysical situation. A more complete
rationale is given in the Status of the Equivalence Principle
section.

It should be emphasized that the concepts of psychophysical.
(purely) psychological, and psychologically relevant used in this
article are to be understood as technical concepts about state-
ments about a psychophysical situation. In particular, we do not
intend this terminology to imply that scientists engaged in psy-
chophysical research are "not doing psychology," nor do we
intend this terminology to imply that nonpsychologically rele-
vant statements are not of value to the science of psychology.

Next, consequences and illustrations of the equivalence prin-
ciple are presented for the psychophysical situations involving
Weber's law. (Most of the observations made about this special-
ized situation easily extend to other psychophysical situations.)

Weber's Law in Single Modality Situations
Let £ = {X, >., ©> and ?J = < X , > > describe the previous

Weber's law situation with the previous physical, psychological,

1 In addition, equally adequate for describing lawful physical phenom-
ena is a somewhat flawed concept for psychophysical application: In
dimensional analysis, it results from considerations about specific
kinds of interactions between several physical quantities, whereas psy-
chophysical situations generally involve either a single physical quan-
tity or a few physical quantities that do not interact physically in the
psychophysical situation. (Distinct physical quantities in a psychophy-
sical cross modality matching experiment is an example of the latter.)
For equally adequate for describing lawful physical phenomena to be-
come an acceptable concept for psychophysical application, a theorem
like the one above linking it to another concept like physically equiva-
lent is needed.
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and psychophysical axioms. Then, as is shortly discussed, the
Weber constant being a particular size, for example, c = 2, is not
psychologically relevant by the equivalence principle. However,
Weber's law, formulated as,

"There exists a constant c such that - = c,

satisfies the equivalence principle and, as is discussed in Nar-
ens (1990), has a purely psychological interpretation. It is the
identification of c with the number 2 that conflicts with the
equivalence principle. To see why this is the case, the "2-ness" in
the expression "c = 2" needs to be investigated.

Rewriting Weber's law as

\(x) = c>p(x),

it is seen that in this form of Weber's law, c can be viewed as a
function of the values of the physical representation <p, namely,
the function that is multiplication by a real constant, which by
convention is also called c. Qualitatively, this function corre-
sponds to a function 7 from A'onto X. For "c = 2," the "2-ness"
of the qualitative function 7 can be given a simple interpreta-
tion in terms of the physical structure, namely, 7( x) = x ® x for
all x in X (see Narens, 1990, for a detailed discussion). Thus, in
terms of the physical structure, the "2-ness" consists of dou-
bling the size of stimulus items with respect to the concatena-
tion operation ©. (As mentioned before, © cannot be denned
purely in terms of psychological primitives.) Because this con-
cept of 2-ness depends on the particular physical operation ©, it
conflicts with the equivalence principle. Furthermore, as is
shown in Narens (1990, 1991), there are no operations defin-
able in terms of the psychological primitives that could be used
to give the "2-ness" in the expression "c = 2" a psychological
interpretation.

(The same argument shows that the "3-ness" in the expres-
sion "1 + c = 3" has no psychological interpretation—even
though, as mentioned earlier, 1 + c, unlike c, has a purely psy-
chological interpretation.)

Suppose >• * is another psychological discrimination relation
on X, for example, > is one subject's discrimination on X and
>* is a different subject's discrimination on X, where both
subjects are performing the same discrimination task. Let c be
the Weber constant associated with X and > and c* the Weber
constant associated with 3£ and >• *. Then c > c* satisfies the
equivalence principle (see Appendix). It is also psychologically
relevant, because (as is shown in the Appendix)

c> c* iff VxV)>(ifx 6 X a n d y G X ,

then x > y implies that x > * y),

is a true assertion, and the statement on its right-hand side of
the iff is formulated purely in terms of psychological primitives
and captures a theoretically correct comparison of psychologi-
cal sensitivity.

Note that in the first example about an assertion specifying
the magnitude of the Weber constant, the equivalence principle
was used to decide that the assertion had no psychological rele-
vance. This can be done because invariance under physically
equivalent structures is assumed to be a necessary condition for
psychological relevance. In the second example, which com-

pares the magnitudes of Weber constants for two discrimina-
tion relationships, the equivalence principle is satisfied. This
alone is not enough to establish the psychological relevance of
the comparison, because the equivalence principle is only a
necessary condition. One still must understand something of
the psychological situation to see the relevance—for example,
in the second example understand that the comparison im-
plicit in the statement given on the right-hand side of the iff is
one possible way to measure psychological sensitivity.

Let >-, >*, c, and c* be as in the previous equation and con-
sider the following assertion: 1 + c* = (1 + c)2. It can be shown
(Narens, 1991) that this assertion satisfies the equivalence prin-
ciple and that it is logically equivalent to an assertion formu-
lated completely in terms of psychological primitives. However,
unlike the first example where the "2-ness" in "c = 2" could
only be specified by reference to a function defined in physical
terms, the "2-ness" (of the exponent) in the assertion "1 + c* =
(1 + c)2" can be specified purely in psychological terms (see
Narens, 1991, for discussion and proof).

It is not difficult to show that the previous psychophysical
axioms for Weber's law satisfies the equivalence principle in the
following sense: If the physical situation 3E' = < AT, S:., ©') that is
physically equivalent to X was used in place of AT in the axioms,
then the truth values of the physical and psychophysical axioms
in terms of X' would be the same as those of 3£.
Because of this, Weber's law satisfies the equivalence principle,
and this is reflected in the fact that the quantitative formulation
of Weber's law,

c e R and Vxf if x e X, then —~- =
\ ¥>(*)

(where 3 stands for "there exists") satisfies the equivalence prin-
ciple.

Weber's Law in Multiple Modality Situations

A particularly attractive feature of the Weber constant is that
it is dimensionless, and thus makes no reference to the physical
dimension from which it was derived. This suggests using or-
dinal comparisons of Weber constants for intermodal compari-
son of sensitivities. This idea can be traced back to at least
Wundt (1908). Since then it can be found in the majority of
textbooks on psychophysics, where sometimes it is suggested
implicitly by presenting tables of Weber constants for different
modalities according to magnitude, and other times spelled out
explicitly. We quote three typical examples of the latter: Engen
(1971, p. 19) stated that "the smaller the Weber fraction the
keener the sense." Baird and Noma (1978, p. 43) argued that
because the Weber ratio is dimensionless "one can compare
sensitivities for different continua." In the same spirit, Coren
and Ward (1989) said the following:

Note that K( the Weber fraction) has no units (such as grams), so it
does not depend on the physical units to measure /and A/. Thus,
we can compare Weber fractions across different stimulus dimen-
sions without having to worry about how the stimulus values were
measured, (p. 36)

In contrast, it is argued here that such comparisons of Weber
constants do not make psychological sense unless additional
psychological structure and assumptions are present.
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Consider the case of two Weber law structures 3B[ and 2B2

arising from a single subject on two separate modalities, each
involving a different physical dimension. SB, is composed of
the physical structure 3f , = < X{ ,>„,©,) and the psychological
structure (Jf,, >-,} and satisfies the qualitative axioms for
Weber's law given earlier; and 28 2 is composed of the physical
structure 3f 2 = <AT2, >.2, ©2) and the psychological structure
(AT2, ^"2) and satisfies the qualitative axioms for Weber's law
given earlier. Let S;*, be the total ordering induced by >-, , and
<v2 be the total ordering induced by >-2. Also let <pt and <p2,
respectively, be representations from 3£, and 3E2 onto ( R+, >,
+ ) , and let cr be the Weber constant associated with SB , and <PI ,
and c2 be the Weber constant associated with 28 2 and <p2. Then
c, > c2 is a physically meaningful assertion. However, unlike the
single modality case considered earlier, it does not satisfy the
equivalence principle, because the value of the Weber constant
of 28, changes with respect to structures that are physically
equivalent to {.Y, , s „,,©,), and all positive values are realizable
by appropriate choices of physically equivalent structures.

The upshot of this is that for psychological purposes, one
should not compare the order of Weber fractions across modali-
ties on the basis of different physical dimensions unless addi-
tional psychological primitives and axioms are assumed. A little
psychological theorizing leads to the same conclusion: One be-
gins by asking what is needed to appropriately compare psycho-
logical sensitivity measures across modalities. In our view there
are two obvious, closely interrelated answers:

The first assumes a model where (a) the subject has a single
mental dimension D of subjective intensity, (b) stimuli from
different physical dimensions have associated with them inten-
sity values on D, and (c) the subject judges stimulus a to be
subjectively less than or equally intense than stimulus b, in
symbols a < . b, if and only if his or her D-value for a is less than
or equal to his or her D-value for b. In the present context this
can be formulated as follows:

The physical structures 3f , and X 2 have been measured appro-
priately by the representations <p, and <p2> psychophysical func-
tions i/', and \l/2 exist that measure the psychological intensity of
stimuli from Xt and X2 such that stimuli from Xt U X2 can be
compared psychologically by comparing their values under the
functions ^,*¥>, and $2*<p2( where* is the operation of function
composition); that is, there is a psychological ordering <. on Xl

U Xz such that for all x and y in X, U X2,

x<.y iff(x <., y or x <,2 y or

or

(\l/t and \l/2 are assumed to be strictly increasing functions into
R+.) Then in terms of the psychophysical functions ,̂ and if/2,
the obvious psychological way of stating that >, is more sensi-
tive than >2 is that for each x in Xt and y in X2, if ̂  [<PI(X)] =
^2\.<Pi(y)} then &[**,(•*)] < &>[\20')]- In terms of the Weber
constants c, and c2 this becomes >, is more sensitive than >2 if
and only for each x in Xt and y in X2, if ^,[^>,(x)] = ^2[<f>2(y)]
then iMWi(*)] < ^Ac2f2(y)]- Thus, in this case, where there
is a definite understanding of psychological sensitivity, and it is
clear that this understanding cannot in general be captured by
ordinal comparisons of Weber fractions.

The second answer assumes that stimuli from Xl and X2 can

be compared by a cross-modality matching relation M. (Hence-
forth, the notation xMy is used for M(x, y), and xMy is to be
read as x matches y.) The proper interpretation of cross-moda-
lity matching is a subtle matter (e.g., see Krantz, 1972; Luce,
1990; Shepard, 1981, for theoretical discussions and Ward,
1990, for empirical results).

Assume that M has been added to the psychophysical situa-
tion as a psychological primitive relationship. Also assume the
following three minimal psychological axioms: (a) for each x in
X, there exists y in X2 such that xMy, (b) for each y in X2 there
exist x in Xl such that xMy, (c) for all x and x' in X, and all y
and y' in X2, ifxMy and x'My', then

x >4,1 x' iffy >y2 y'.

Then the following is the obvious psychological way of compar-
ing sensitivity: >, is more sensitive than >-2 if and only if for all
x and x' in Xt and all y and y' in X2, if xMy and x'My' and
y > 2 y' then x > {x'. Luce (1990) described in detail compatibil-
ity axioms—which in the present case are easily convertible
into psychophysical axioms—that imply the following result:
There exist a positive real number r such that for all x in Xt and
y in X2,

xMyiff<f,(x) = <f>2(y)r. (3)

Assuming these psychophysical axioms, the following is easily
shown: X, is more sensitive than >2 in the sense just described
if and only if 1 + c, < (1 + c2Y, where r is as given in Equa-
tion 3. From this it is clearly seen that in the previous situation
the ordinal comparison of Weber fractions is not what is
wanted, and a slightly more complicated comparison is needed.

Equation 3 satisfies the equivalence principle, and it can be
shown (see Narens, 1990) that the assertion 1 + ct < (1 + c2Y is
logically equivalent to a statement formulated purely in terms
of psychological primitives.

Other Applications

The equivalence principle usually forces new interpretations
to be given to familiar psychophysical results. Two examples of
this are briefly described.

The first is what McGill and Goldberg (1968) call the near
miss to Weber's law for discrimination of intensity of pure tones
of a given frequency, which quantitatively is expressed as

V*) _ ,'-s ' (4)

where A,,, <p, and c have the same meanings as in Weber's law,
and 5 is a small positive real number (hence the use of the
modifier "near miss"), which is independent of frequency.
(Note that c is a dimensional constant; that is, as the positive
real r varies, c varies with r<p) The near-miss version describes
sensory discrimination data better than Weber's law. However,
given only such facts, should any psychological significance be
attached to Equation 4? By the equivalence principle the answer
is no. Without going into details, here are the reasons: Let X =
{X, s., ©) be the physical structure for which ip is an isomor-
phism onto SR = < R+, >, +>, and let g = <AT, ;>', ©') be a
structure that is physically equivalent to but different from X ,
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and n be an isomorphism of ty onto 9? . Then it can be shown
that for all 0 < 7 < 1 and all positive d an element x in X exists
such that

positive real numbers t and p such that for all x in A', and y in

and thus Equation 4 does not satisfy the equivalence principle.
The authors take it as a necessary condition for the psychologi-
cal relevance of Equation 4 that a statement 0, formulated in
some sufficiently powerful logical language in terms of the psy-
chological primitives A' and >, can be added consistently to the
psychological axioms (that say (A', >- ) is a continuous se-
miorder) such that the following assertion is implied by this
expanded system of axioms:

Let 28 = { 3| 3 is physically equivalent to 3£ } . Then there exist 3
in 28 , an isomorph ism T of 3 onto 3? , 0 < er < 1 , and b > 0 such that
for all z in the domain of 3 ,

= b.

However, if the previous assertion were true, then it would fol-
low from results of Narens (1988) that © is definable in terms
of the psychological primitives. However, Narens (1990)
showed that © is not definable in terms of (X, ~> ).

The second example concerns a popular method for making
intermodal comparisons of sensitivity on the basis of magni-
tude estimation data. Stevens and others have carried out
hundreds of experiments on a wide variety of physical continua
that have produced psychophysical power functions that relate
standard physical measurements <f> to subjects' magnitude esti-
mations ^ of a continuum, that is, have produced functions $
such that there exists a positive real number r, called the expo-
nent, and a positive real number a such that for all x of the
continuum,

MX) = artx)'.

In analyzing such experiments (e.g., see Stevens, 1971,1974),
the following index of sensitivity is often used:

A subject is more sensitive to Continuum 1 than Continuum 2 if
and only if the exponent of his or her psychophysical power func-
tion associated with Continuum 1 is less than the exponent of his
or her psychophysical function associated with Continuum 2.

Because the choice of the physically equivalent structure used
for measuring a continuum does not influence the subjects'
magnitude estimations of that continuum but does influence
the size of the exponent of the resulting psychophysical power
function, it follows by the equivalence principle that the pre-
vious index of sensitivity does not have psychological relevance.

Both the method of magnitude estimation and the previous
index of sensitivity have generated much criticism. To counter
the criticism, Stevens and others used cross-modality matching
techniques as an independent check of the validity of the expo-
nents. This check is called "the method of transitivity of scales."

As before, assume M is a psychological matching relation-
ship on two different physical continua (A",, 21,) and (X 2 , S:2),
and assume psychophysical axioms so that for standard physi-
cal measurements <p and -y on Xt and X2, respectively, there exist

Also assume that magnitude estimations have been made on
both continua, and these result in psychophysical power func-
tions associated with Xl and X2 that have, respectively, expo-
nents r and 5. Then transitivity of scales is said to hold if and
only if

t =

It is not difficult to show that transitivity of scales is consistent
with the equivalence principle. However, even if it holds, the
ordinal comparison of exponents of psychophysical power
functions associated with different continua is still by the equiv-
alence principle not a valid psychological index of sensitivity.

(It should be noted that although most psychophysical re-
searchers have ignored the potential problems involved in the
choice of scale of the physical variable in determining psycho-
physical power functions, a few (e.g., Krueger, 1991; Myers,
1982; Weiss, 1981, 1989), have directly commented on this
issue and noted that because of it, many kinds of psychophysi-
cal comparisons across modalities are not properly founded.
Our methods for reaching similar conclusions are different, are
more rigorously founded in theory, and are based exclusively on
how the psychological and the physical are related using the
equivalence principle.)

Status of the Equivalence Principle

The equivalence principle is a theory about the relationship
of the psychological and the physical. In our opinion, it is not
about empirical matters, and in particular, it cannot be refuted
by experiment. Nevertheless, as is argued here, it is a very useful
principle.

Let y = (X, P^..., Pn} be a physical structure, g = {X, R},
..., Rmy be a psychological structure, A{ the psychological
axioms about f) , A2 the physical axioms about 3E, A} the psy-
chophysical axioms about

<*, />„. . . , />„ ,*„ . . . , Rm),

and 3f' = { X, .P', ,...,/"'„) be a structure that is physically equiva-
lent to £. Suppose 3f' is substituted for X . Then, because none
of the psychological axioms o4, involve P{,..., Pn, they remain
true under this substitution. The physical axioms remain true
under this substitution because 3f and 3£' are isomorphic. The
psychophysical axioms o43 need not remain true under this
substitution. However, because Pt, ..., Pn are definable in
terms of X, P\,..., Pa through a logical language £., psycho-
physical axioms u43 can be formulated in £. in terms of the
primitives X, P\ ,...,P'n that impose exactly the same substan-
tive restrictions as ^43 by using the definitions of P,,..., Pn,
and axioms ^43. Thus, axioms A\, A2, and A3 make the same
assertions about
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as (with appropriate substitutions) axioms ^4,, A2, and A'3 do
about

Thus, every proper conclusion about the state of affairs described
by

and axioms A. ( , A2, and A-,, must be a proper conclusion about

and AI, A2 (with appropriate substitutions), andA'3, and vice
versa. In particular, the equivalence principle must be true.

At first sight, the previous use of physically equivalent struc-
tures appears to be quite general and therefore imposes very
little in the way of restrictions. However, this is not the case:

First, the earlier argument only applies to a special kind of
psychophysical situation: one in which the psychology and phys-
ics have a common domain and can be divided into separate
structures. This kind of limitation excludes from consideration
psychophysical structures that have primitive relationships that
are neither completely psychological nor completely physical.

Second, as previous examples have shown, the powerful uses
of the equivalence principle concern quantitative psychophysi-
cal statements. For various reasons, psychophysics has found it
desirable to form quantitative models by first representing the
physical structure numerically, and then basing quantitative psy-
chological and psychophysical concepts on these physical mea-
surements. (Logically, one could have preceded by first repre-
senting the psychological structure numerically and basing
quantitative physical and psychophysical concepts on psycho-
logical measurements.) Because of this practice, the equivalence
principle has bite, because each pure number different from 1 ,
that is, each ratio of physically measured stimuli different from
1 , has a psychological meaning that depends on the physically
equivalent structure used to measure the stimulus, and in gen-
eral, this meaning changes with the physically equivalent struc-
ture. The implication of this for psychophysics is that one has to
be very careful in using pure numbers in formulating theoreti-
cal concepts, particularly comparing pure numbers that arose
from different physical dimensions (a practice that is neither
needed nor engaged in classical physics).

Situations where the truth of the psychophysical axioms A}

remains invariant under substitution of physically equivalent
structures deserve special note. (The psychophysical axioms of
Weber's law as given earlier is an example of such an A3) In
such situations the psychophysical axioms may be said to de-
scribe a psychophysical law. This kind of "law" is more general
than the kinds of laws described in the measurement literature
(e.g., Falmagne & Narens, 1983; Luce, 1959, 1964, 1990; Roberts
& Rosenbaum, 1 986 ), but it is beyond the scope of this article to
go deeply into this issue here. A discussion of it is given in
Narens (1991).

Conclusion

Many psychophysical concepts and relationships can be for-
mulated qualitatively in terms of psychophysical structures.
The quantification of these concepts then proceeds by measur-
ing the physical variables by usual methods and representing
the psychological concepts and relationships in terms of the
physical measurements. In such situations the sorting out of the
quantitative formulas and statements that have psychological
significance is often problematic. Although the measurement-
theoretic concept of meaningfulness provides some help in ac-
complishing this, additional methods are needed. The equiva-
lence principle, which is based on a theory of how the physical
and psychological are related in psychophysics, is proposed as
such a method. In cases involving comparing psychological sen-
sitivities on the basis of Weber fractions, it appears to be a useful
tool for the elimination of various meaningful concepts and
relationships as having psychological relevance. Although the
examples in this article focused on psychophysical situations
involving Weber fractions, the basic concepts and methods used
can be applied to a variety of other psychophysical situations
(e.g., see Roskam, 1989, where ideas similar in spirit to the
equivalence principle have been applied to various kinds of
psychological phenomena.)
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Appendix

Definitions and Theorems

Definition 1: {X, >') is said to be totally ordered if and only if X is a
nonempty set and >' is a transitive, connected, and antisymmetric
relation on X.

Definition 2: Let ( X, >') be a totally ordered structure.
(AT, >') is said to be rfmse if and only if for each jc and z in*, ifx>'

z, then for some y in X, x >' y >' z.
(X, >') is said to satisfy denumerable density if and only if there is

a denumerable subset 7of A' such that for all x and zinX,ifx>'z, then
for some y'mY,x>'y>'z.

(X, >') is said to be Dedekind complete if and only if each non-
empty subset of X that is bounded above has a least upper bound in X.

Definition 3: { X, >') is said to be a continuum if and only if the follow-
ing six statements are true:

2. >' is a total ordering on X.
3. (X, >'\ has neither greatest nor least element.
4. ?X, > '> is dense."
5. (X, >') is denumerably dense.
6. {X, >') is Dedekind complete.

Definition 4: 3f = (X, >,, ©) is said to be a continuous extensive
structure if and only if the following five statements are true:

1 . Continuous ordering: (X, >.) is a continuum.
2. Associativity: © is a binary operation that is associative; that is,

for all x, y, and z in X.
3. Monotonicity: For all x, y, and z in A",

jc>. yiffx® z >„ y © ziff z © ;c >„ z ©y.

4. Solvability: For all x and y in A", if x >. y, then for some z in X,
x = y © z.

5. Positivity: x® y>.x and x © y >, y, for all x and y in A".

In essence Helmholtz (1887) showed the following theorem:

Theorem 1: Suppose 36 = (X, >., ©) is a continuous extensive struc-
ture. Then the following two statements are true:

1 . The set cf of isomorphisms of X into 37 = { R+ , a, + ) is a ratio
scale, that is, (a).£ ¥= 0, (b) for each v in <£ and each rin R+, rp is
in $ and for each <p and ^ in S, there exists .$ in R+ such that \l/ =
Sift

2. Each element of £ is onto 3f

Proofs of generalizations of Theorem 1 can be found in Krantz et al.
(1971, Chap. 3) and in Narens (1985, Chap. 4, Sec. 9). (To obtain a
proof of Theorem 1 from these generalizations, one merely uses solva-
bility and continuous ordering to show that A" satisfies the "Archime-
dean axiom," and continuous ordering to show that all elements of ̂
are onto R+.)

Definition 5: >• is said to be a semiorder on X if and only if X is a
nonempty set, > is a binary relation on X, and the following three
statements are true for all w, x, y, and z in X:

1 . Not x > x.
1. If w > x and y > z, then w > z or y > x.
3. If w > x and x > y, then w > z or z > y.

Definition 6: Let > be a semiorder on X. Define a ' on A' as follows: For
all x and y in X,

x>' y iff Vz[(ify >- z thenx > z) and ( i fz > jcthen z > y)].

>' is called the order induced by >.
It easily follows from Definition 6 that >' is a transitive and con-

nected relation, that is, is a weak ordering on X.

Definition 7: Let ( A", > ) be a semiorder and > ' be the order induced
by >. Then < X, > > is said lobe continuous if and only if (a) ( Jf, >') isa
continuum, and ( b) for each x in A' there exists y in A' such that for all z

: ~>- x iff z >' y.

Theorem 2: Let X = (A", >.,©> be a continuous extensive structure, 8
be the set of isomorphisms of X onto ( R+ , >, +} (which exists by
Theorem 1 ), (A", > ) be a continuous semiorder, and >' be the order
induced by X Suppose the following five statements are true for all x,
y, z, and w in X:

1. >. = >'.
2. If x >. y and y © z ̂  y, then x © z y- x.
3. If x > z and z © w y z, then x a, w.
4. If.x>- yand z> w, then x© z> y© w.
5.

Then there exists a positive real number c such that for each if in ̂  and
each u in A',

A,(M)

¥>(«)
• = c,

where A,,(w) = V(M*) - tp(u) where w* is the unique element of A'such
thatjc> M for each .x in A"suchthatjc>'w'andyy wforeachyin A" such
that u" >' y.

Theorem 2 is a reformulation of Narens (1980) using concepts of this
article. (For a proof of Theorem 2, see Suppes et al. (1990), Chap. 16,
Theorem 26).

Lemma 1: Let X be a physical structure that is a continuous extensive
structure, X ' be physically equivalent to X , <p an isomorphism of X
onto < R+, >, +>, and <p' an isomorphism of X ' onto < R+ , >, +). Then
for some r and s in R+ ,

Proof: The theorem follows by results of Narens (1988) and Narens
(1981, Theorem 2.7).

Theorem 3: Suppose the following five statements:

1 . <p is a measurement of the physical continuous extensive struc-
ture X onto(R*, >, +>.

2. > and > ' are continuous semiorders on the domain of X .
3. X and > and X and >~*, when measured by if, give Weber repre-

sentations for >- and >* with, respectively, Weber constants c
and c".

4. X | is physically equivalent to X and <p, is an isomorphism of X ,

5. c, and c{ ", respectively, are the Weber constants for > and >• *
when X, is measured in terms of <pt.

Then

c> c' iffc, > c\.

Proof: For each x in X, let T(x) be the element y of A"such that for all
z i n A T ,
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z > x iff z >i,y,

where a» is the ordering induced by X In a similar manner, T"(x) is
defined for X*. Then it easily follows from Theorem 2 that

with similar equations holding for <pl. By Lemma 1, let r and 5 be
positive reals such that

<Pt = s<pr.

Then for each x in X,

oc'itfl+ol+c'

i f f ( l

iff 1 + c, > 1 + c\

iff c, > c* .

Discussion of Definability and Invariance

We now discuss the principle result of Narens (1991) used in this
article, namely, the relationship of invariance under automorphisms
and definability:

Let X = (X, B,, . . . , Bn> and g = <y, C,, . . . , Q) be isomorphic
structures, where the BI, . . . , Bn are elements of X, relations on X,
relationships of relationships on X, and so forth etc. X and B,,... ,Bn

are called the primitives of X , and Y and Ci, . . . , Q, are called the
primitives of® . A widely used principle in mathematics is that isomor-
phisms preserve the truth of statements and preserve the definability
of concepts formulated in terms of the primitives of X and ?) . In terms
of automorphisms of X — that is, isomorphisms of X onto itself — this
says that automorphisms preserve the truth of statements appropri-
ately formulated in terms of the primitives of X and preserve the defin-
ability of concepts appropriately formulated in terms of the primitives
of X . Another way of saying the latter is that concepts definable in
terms of the primitives of X are invariant under the automorphisms of
3E , where definable means "definable in terms of any higher order
logical language." From this it follows that concepts that are not invari-
ant under the automorphisms ofX can never be defined in terms of the
primitives o/X . This result is the principal method used in the article
for showing that certain concepts have no purely psychological inter-
pretation.

Narens ( 1 99 1 ) constructs a powerful logical language JL for X such
that each concept that is invariant under the automorphisms of X is
definable in terms of the primitives of X through £.. (For a formal
statement of this language and result see Narens, 1988.) For the results
of this article, only a much weaker result is needed: Namely, for the

case where X is the continuous extensive structure (X, >.,©), each
automorphism invariant operation ©' such that < X, a., ©') is isomor-
phic to X is definable in terms of the primitives of X . We give the basic
ideas of the proof of this for the continuous extensive structure 31 =
{ R+, >, +) that is isomorphic to X . (The general case will then follow
by isomorphism.)

We first note that the automorphisms of ft are multiplications by
positive reals. (This is a well-known result.) Results of Narens (1981)
shows that the operations ©' that are invariant under the automor-
phisms of ft and such that { R+, >, ©') is isomorphic to ft are of the
form ©' = ©„ where

and r is a positive real number. It is an easy verification that for each
positive real r, ®, is invariant under the automorphisms of ft and that
{X, >, ©,) is isomorphic to ft.

We next note that it is obvious that concept of automorphism of ft is
definable in terms of the primitives of ft, and thus, the set of automor-
phisms A of ft is definable in terms of the primitives of ft. It is also
obvious that the composition operation * of elements of A is definable
in terms of A and therefore of the primitives of ft. From this it is
obvious that the function 02 defined on A by

Q2(a) = ata for each a G A

is definable in terms of the primitives of ft. Define the binary relation
a' and the binary operation + ' on A as follows: For all a, ft and 7 in A,
a a- /3 if and only if for all s in №+, a(s) >0(s), and a + '/3 = y if and only
if for all s in R+, a(s) + (l(s) = y(s). It is not difficult to show (e.g., see
Cohen & Narens, 1979) that (/!,£', + ') is a continuous extensive struc-
ture. Clearly, > ' and + ' are definable in terms of the primitives of ft. Let
T be the set of isomorphisms of ft onto {A, >', +'). Then T is defin-
able in terms of the primitives of ft. Then it is not difficult to show that
the operation ©2 has the following definition: For all x, y, and z in R+,
x ©2 y = z if and only if for all /in T,

Q2t(Q2(f(x)]+'Q1[f(y)])=f(z).

Thus, ©2 is definable in terms of the primitives of ft.
By using the same ideas, it is easy to formulate the concept of Qk

(composing elements of A k times with themselves) and show that ©* is
definable from the primitives of ft for each positive integer k. ©,,
where q is the ratio of positive integer k to the positive integer m, is
similarly definable in terms of the primitives of ft by considering

To obtain the definability of ©r from the primitives of ft for all positive
real numbers r, the language JL' for ft used in the "defining" must
include at least a continuum of constant symbols for purely mathemati-
cal concepts. Constructing such a language for the definability of ®,
from the primitives of ft is straightforward but is not given here.
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