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ABSTRACT. Threshold functions and subjective estimations of ratios and dif- 
ferences are a few examples from a class of psychological functions that can 
be conceptualized as functions from a set of stimuli onto itself. This paper 
analyzes axiomatically the structural properties of a broad subset of such func- 
tions, with an emphasis on general properties of their psychological processing. 
Measurement-theoretic representation and uniqueness results are derived for 
Weber's Law, ratio magnitude estimation, and a version of Luce's Possible 
Psychophysical Laws. An explanation is also provided for the experimental 
findings of W.  Torgerson and others that indicates a qualitative identity be- 
tween subjective estimation of ratios and subjective estimation of differences. 

In many paradigms in psychophysics and other areas of psychology, a subject's 
behavior can often be idealized as sets of functions from a set of stimuli onto itself. 
Two examples from psychophysics are ( i )  threshold functions Fp on X ,  where 
1 > p > .5 and for each x in X ,  Fp(x) is the stimulus such that if y has more of the 
physical attribute than Fp(x), then the proportion of time y is judged subjectively 
more intense than x is > p; and (ii) ratio estimation functions G, on X such that 
for each x and y in X,  y = G,(x) if and only if the subject judges y as being r times 
as intense as x. Functions from X onto itself that result from subjects' responses to 
instructions are called behavioral, and this chapter presents an axiomatic treatment 
of behavioral functions that result from responses involving a subject's evaluation of 
subjective intensities of stimuli. One main result is a characterization of situations 
where for a nonempty set B of behavioral functions there exists a mapping of 
the stimuli into the positive reals such that each element of B is represented as a 
nlliltiplication by a positive real. This result is used to characterize axiomatically 
a generalization of the psychophysical power law. Another result provides a new 
perspective for Luce's (1959b) seminal research on possible psychophysical laws. 

As a motivation for the kind of modeling and theory developed in this chapter, 
consider the following important and puzzling empirical finding of Torgerson (1961). 
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The situation turns out to be much the same in the quantita- 
tive judgment domain. Again, we have both distance methods, 
where the subject is instructed to judge subjective differences be- 
tween stimuli, and ratio methods, where the subject is instructed to 
judge subjective ratios. Equisection and equal appearing intervals 
are examples of distance methods. Fractionation and magnitude 
estimation are examples of ratio methods. 

In both classes of methods, the subject is supposed to tell us 
directly what the differences and ratios are. We thus have the pos- 
sibility of settling things once and for all. Judgments of differences 
take care of the requirements of the addition commutative group. 
Judgments of ratios take care of the multiplication commutative 
group. All we need to show is that the two scales combine in the 
manner required by the number system. This amounts to showing 
that scales based on direct judgments of subjective differences are 
linearly related to those based on subjective ratios. 

Unfortunately, they are not. While both procedures are sub- 
ject to internal consistency checks, and both often fit their own 
data, the two scales are not linearly related. But when we plot 
the logarithm of the ratio scale against the difference scale spaced 
off in arithmetic units, we usually do get something very close to 
a straight line. Thus, according to the subject's own judgments, 
stimuli separated by equal subjective intervals are also separated 
by approximately equal subjective ratios. 

This result suggests that the subject perceives or appreciates 
but a single quantitative relation between a pair of stimuli. This 
relation to begin with is neither a quantitative ratio or difference, 
of course - ratios and differences belong only to the formal number 
system. It appears that the subject simply interprets this single 
relation in whatever way the experimenter requires. When the 
experimenter tells him to equate differences or to rate on an equal 
interval scale, he interprets the relation as a distance. When he is 
told to assign numbers according to subjective ratios, he interprets 
the same relation as a ratio. Experiments on context and anchoring 
show that he is also able to compromise between the two. (pp. 
202-203) 

For the purposes of this chapter, Torgerson's conclusion may be restated as 
follows: There is a function q that maps stimuli in X into sensations of a subject. 
When asked for kinds of difference judgments the subject responds in accordance 
with a subjective difference function on the set of sensations q(X) ;  and when asked 
for kinds of ratio judgments the subject responds in accordance with a subjective 
ratio function on the same set of sensations q(X).  Torgerson's empirical studies 
indicate that each difference function is a ratio function and visa versa. But, why 
should this be the case? That is, under what kinds of general conditions about 
subjective processing of stimuli should we expect a result like this? 
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By "general conditions" I mean conditions or principles that apply to many 
different kinds of phenomena, and not conditions specific to particular experimental 
paradigms or the data they generate. They should be construed as conditions or 
principles like the laws of physics. Einstein's Principle of Relativity is a particularly 
good example of what I call a "general condition." 

A general condition that drives many oft he mat hematical results of this paper is 
that the sensations in Q(X) are processed "homogeneously" : that is, the sensations 
in Q(X) are processed in a manner that does not distinguish individual elements of 
Q(X).  A precise statement of "homogeneity7' is given later in the chapter. It is often 
a consequence of concepts used routinely in science. For example, whenever one is 
in a situation where there is a set of isomorphisms from an underlying qualitative 
structure into a numerical one that forms a ratio, interval, or ordinal scale, the 
underlying qualitative structure is homogeneous. 

The axiomatizations presented in this chapter are designed to explain why 
we observe what we observe; they are not constructed to be slick descriptions of 
what is observed. Because of this, when there are axioms about both observables 
and mental phenomena, the axioms about observables are by design very weak. 
Great care is taken throughout the chapter to separate what is being assumed to 
be observed about the stimulus, what is being assumed to be observed about the 
subject's responses, and what is theoretically taking place in the mental processing 
of the subject in producing his or her responses to instructions and stimuli. 

The intent of the chapter is to show how fairly simple and plausible assumptions 
about the production of psychophysical functions combine to produce powerful 
results about observable relationships. Discussions of these results in terms of the 
empirical literature are brief and generally limited to issues raised by the above 
quotation of Torgerson. 

The following definitions and conventions are observed throughout this chapter: 

Definition 1. 2J = (Y, U1, U2,. . . ) is said to be a structure if and only if Y is 
a nonempty set, called the domain of 2J, and each Ui is either an element of Y, a 
set of elements of 1; a relation on Y, a set of relations on Y, a set of sets of relations 
on Y, etc. Y, U1, U2, . . . are called the primitives of 2J. 
R denotes the set of reals and IR+ the set of positive reals. 
A scale on a nonempty set Y is a nonempty set of functions 3 onto a subset 

R of IR. 
3 is said to be a ratio scale if and only if (1) 3 is a scale and the range of each 

element of 3 is a subset of IR', and (2) for any f in 3 ,  

3 is said to be an interval scale if and only if (1) 3 is a scale, and (2) for any 
f in 3, 

3= { r f  +sir EIR'and s E R). 
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3 is said to be an ordinal scale if and only if (1) 3 is a scale and the range of 
each element of 3 is a subset of R+, and (2) for any f in 3, 

3 = { g  * f lg is a strictly increasing function from lRf onto IEtf) , 
where * is the operation of function composition. 

Note that the definitions of ratio and ordinal scales in Definition 1 are more 
restrictive than usually given in the literature; in particular, the ranges of the 
elements of ratio and ordinal scales are required to  be subsets of IEtf. 

Definition 2. A theory of measurement  consists of a precise specification of 
how a scale 3 of functions is formed. The theory of measurement used throughout 
this chapter is a variant of the representational theory of  measurement .  This variant 
says that a scale 3 on a set Y results by providing a structure of primitives ZJ with 
domain Y and a numerical structure T with domain either lRf or lR such that 3 
is a set of isomorphisms of ZJ onto T. 

In the representational theory, elements of a scale 3 are often called represen- 
tat ions.  

Note that the variant of the "representational theory" given in Definition 2 is 
more restricted than the theory of measurement presented in Krantz, Luce, Suppes, 
& Tversky (1971) in that it requires (1) elements of 3 to  be isomorphisms (instead 
of homomorphisms), and (2) the range of elements of 3 to be onto  (instead of i n t o )  
either lRf or lR. 

Definition 3. A structure ZJ is said to be ratio (respectively, interval,  ordi- 
n a l )  scalable if and only if it has a ratio (respectively, interval, ordinal) scale of 
isomorphisms onto some numerical structure. 

Definition 4. A structure (X, k) is said to  be a cont inuum if and only if it is 
isomorphic to (lR+ , 2). 

The definition of "continuum" given in Definition 4 is not qualitative. A famous 
qualitative characterization of "continuum" was given by Cantor (1895).(See pp. 31- 
35 of Narens, 1985). 

Definition 5.  (X, k ,  @) is said to  be a continuous extensive structure if and 
only if (,Y, k, $) is isomorphic to  (lRf , > ,  +). 

The definition of "continuous extensive structure" given in Definition 4 is not 
qualitative. Qualitative axiomatizations of it can be given (e.g., combining qualita- 
tive axiomatization of "continuum" with an axiomatization of "extensive structure," 
for example, the axiomatization of "closed extensive structure" given in Chapter 3 
of Krantz et al., 1971). 

Definition 6. Isomorphisms of a continuous extensive structure (X, k, $) onto 
(lRf, >, +) are often called additive representations. 

The following is a well-known theorem of representational measurement theory: 

Theorem 1. T h e  set of additive representations o f  a continuous extensive 
structure forms a ratio scale. 
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3. BASIC AXIOMS 

The primitives for the basic axioms consist of physical primitives and behavioral 
primitives. The physical primitives capture some of the physical relationships in- 
herent in the stimuli used in the experiment. The behavioral primitives capture, in 
terms of the stimuli, some of the important psychological structure inherent in the 
subject's responses to  instructions and stimuli. Both the physical and behavioral 
primitives are assumed to  be observable. 

The physical primitives in this chapter will consist of a nonempty set of stimuli, 
,Y, a total ordering k on this set of stimuli, and occasionally a binary operation @ 

on X called a concatenation operation. Most of the results of the chapter rely on 
the primitives X and k .  (Because many sets of stimuli considered in psychology 
have natural behaviorally induced total orderings on them, the results of this paper 
that do not use the concatenation operation @ often extend to behavioral situations 
based on stimulus sets with such orderings.) 

The behavioral prinzitives in this chapter consist of the set of stimuli, X ,  and 
one or more functions, B1, B2, . . ., on X .  (Cases of infinitely many Bi are allowed.) 

Note that the set of stimuli X is considered both a physical and a behavioral 
entity. 

The physical and behavioral primitives are assumed to be observable. They 
make up the behavioral-physical structure, which has the form 

( X , k , B l , B 2 , . . . )  

or if the physical concatenation operation CE is relevant, the form 

(S,k,CE, B l ,  Bz, .  . . ) .  

The following are two examples of behavioral functions: 

( I )  Direct Ratio Estimation: The subject is given stimuli from X and is asked 
for each such stimulus x to select a stimulus y from X such that " y  is s 
times as intense as x." A function y = R,(x) on X results. 

(2) Direct Difference Estimation: The subject is given stimuli from X and is 
asked for each such stimulus to select a stimulus y from ,Y such that "the 
difference of y and x in intensity is s." A function y = D,(x) on X results. 

The usual numerical representation of the behavioral function R, is the function 
that is multiplication by the number s. I find this practice strange, unfounded, and 
non-rigorous. Unfortunately, it is a widely used practice in the behavioral and social 
sciences, and many important findings depend on it. In this chapter, a much weaker 
version of representing R, by a multiplication (not necessarily multiplication by s )  
is pursued. (This issue is also discussed in Narens, 1996a.) 

Definition 7. Let E be the behavioral physical structure 

( X , k 1 B 1 , B z 1 . . . ) .  

Then a function P from E onto R+ is said to be a multiplicative representation for 
E if and only if the following two statements are true: 

(a) For each x and y in X ,  

x k Y iff P(x) 2 P ( Y ) .  
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(b) For each Bi there exists a positive real ri such that for all x and y in X,  

y = Bi(x)  iff P(y) = ri . P ( Z )  . 

Note that in Definition 7, no mention is made about how the behavioral prim- 
itives were obtained; in particular, the real number ri in Statement 2 does not 
depend on whether Bi was obtained through direct ratio estimation or direct dif- 
ference estimation. 

Definition 8. Let X be the behavioral-physical structure 

Then two multiplicative representations /3 and y for X are said to  be equivalent if 
and only if for each Bi there exists a positive real ri such that for all x and y in X ,  

y = B(x)  iff P(y) = ri . P(x) iff y(y) = T i  . y ( x ) .  

In particular, note that by Definition 8, if P is a multiplicative representation of 
X, then r/3 is an equivalent multiplicative representation of X for each positive real 
r. As is indicated in the discussion following Theorem 2 below, there are examples 
of behavioral-structures that  have equivalent multiplicative representations 0 and 
y such that for all positive reals r7 /3 # ry .  

Similar definitions hold for a difference representation for X and equivalent 
difference representations for X. 

The Basic Axioms, which are about the behavioral-physical structure 

consist of the following three axioms: 

Axiom 1 (Physical Axiom). (X,  k )  is a continuum (Definition 4). 

Axiom 2 (Behavioral Axiom). Each Bi is a function from X onto X 

Axiom 3 (Behavioral-Physical Axiom). For each Bi and each x and y in X, 

Axioms I to  3 are indeed very basic, saying very little of mathematical or 
psychological substance. 

4. WEBER'S LAW AND THE GENERALIZED POWER LAW 

The Basic Axioms are not sufficient for establishing the existence of a multi- 
plicative representation for the behavioral-physical structure. This section considers 
a particularly simple, observable, behavioral-physical condition that together with 
the Basic Axioms implies the existence of multiplicative representations. The ad- 
ditional behavioral-physical condition uses the physical concatenation operation @. 

(Narens, 1996a, provides observable behavioral conditions that  implies the exis- 
tence of multiplicative representations without using any physical structure beyond 
the ordering k . )  
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Definition 9. Assume (X, k) is a continuum (Definition 4). A function B 
from X onto X is said to be a threshold function on X if and only if (1) for all x 
and y in X ,  

k 9 iff B(x) k B ( ~ )  1 

and (2) for all x in X ,  

B(x)  > x .  

The "threshold interpretation" of B in Definition 9 is that for each x in ,Y, 
B(x) is the element of X such that for all elements y of X ,  if y > B(x), then the 
subject according to some behavioral criteria is able to discriminate y as being more 
intense than 2, and for all elements z of X ,  if B(x)  > z,  then the subject is not able 
according to the behavioral criteria to discriminate z as being more intense than x. 

Threshold functions are often represented by Weber representations: 

Definition 10. Assume B is a threshold function on the continuum (X, k) 
and c is a positive real number. Then cp is said to be a Weber representation for 
(X, k, B) with Weber constant c if and only if cp is an isomorphism of (X, k) onto 
(R+, >) such that for all x and y in X ,  

y > B(x) iff $ 4 ~ )  - $ 4 ~ )  > 
cp(x) 

Suppose cp is a Weber representation for (X,  k, B) with Weber constant c. 
Then it easily follows that 1 + c is a multiplicative representation for (X, k, B) .  
Conversely suppose (X, k, F) has a multiplicative representation as a multiplication 
k > 1. Then it easily follows that (X, k ,  F) has a Weber representation with Weber 
constant k - 1. 

The following theorem shows that each threshold function has a Weber repre- 
sentation, and therefore by the above observation, each threshold function has a 
multiplicative representation. 

Theorem 2. (Existence Theorem). Suppose B is a threshold function on the 
cor~tir~uum(X, k , ) .  Then for some c > 0 ,  ( S ,  k, B) has a Weber representation 
with Weber constant c. 

Proof. Theorem 5.3 of Narens (1994). 

The corresponding uniqueness theorem for Theorem 2 is a consequence of The- 
orem 4.1 of Narens (1994). The latter also shows that (X,  k, B)  has Weber rep- 
resentations y and 8 with the same Weber constant c such that for all r E R', 
y # re .  Thus ( X ,  k, B) also has multiplicative representations P and b such that 
p # r6 for all r E R+. 

Weber's Law consists of much more than having a Weber representation: We- 
ber's Law results when the stimuli have been measured priory in terms of a standard 
physical representation cp, and then with respect to cp, a Weber representation re- 
sults. Thus for Weber's Law to hold for a threshold function B ,  a particular kind 
of compatibility between B and the physical structure is needed for cp to also be a 
multiplicative representation of the behavioral-physical structure. Theorem 4 be- 
low is one method of formulating the needed compatibility in terms of observables. 
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Axiom 4 (Cognitive-Physical Axiom). !P is a function from X onto S .  

Axiom 5 (Cognitive-Physical Axiom). For all x and y in X ,  

x k Y i f l * (x )  kf *(?/I.  

It is an immediate consequence of Axioms 1, 4, and 5 that the function 
exists. 

tf is intended to  be an ordering consistent with subjective intensity. It is not 
N 

assumed that for all x and y in X with x t y, *(x) t' *(y) is phenomcnologi- 
cally observable by the subject. Indeed, for different x and y sufficiently close in 
terms of the ordering, one might want as a theoretical axiom that they are not 
distinguished phenomenologically in terms of subjective intensity.' 

The following cognitive-behavioral axiom describes how a stimulus item is pro- 
cessed in terms of an instruction to the subject and the structure 6. For purposes 
of exposition, the instruction is specialized to a form of a direct ratio or difference 
estimation. The axiom and the results that depend on it extend to  a wide variety 
of instructions. 

Axiom 6 (Cognitive-Behavioral Axiom). Let I be an instruction given to the 
subject. It is assumed that I is of one of the following two forms: (1) the ratio in- 
struction, "Find y in X such that y i sp  times as intense as the stimulus presented;" 
or (2) the difference instruction, "Find y in X such that the diflerence in intensity 
between y and the presented stimulus is p." Then there exists a cognitive function 
FI that is produced by an algorithmic procedure using only S and primitives of 6 
such that for each stimulus x in X ,  if x is presented to the subject, then the subject 
responds by selecting y in X ,  where 

Y = * - l [ ~ I ( * ( x l ) l .  

Furthermore, it is assumed that each primitive behavioral function B of behavioral- 
physical structure results from such a cognitive function, i.e., there exists an in- 
struction J such that for all x and y in X ,  

Y = B(x)  ifl *(Y) = FJ(*(x)) .  

The intuition for Axiom 6 is as follows: When given instruction I and presented 
with stimulus x ,  the subject responds with y. The subject does this by implementing 
I as a function FI on S ,  which he or she applies to *(x) to  yield FI(*(x)), 
which happens to be Q(y). The implementation of I as FI is carried out by 
an algorithmic procedure that involves some of the primitives {S, kt,  Tl ,T2 , .  . . }. 
Different instructions J may give rise to different algorithmic procedures, which 
may involve different primitives of {S, k', TI, T2,. . . } .  It is explicitly assumed that 
each such implemented function is algorithmic in terms of primitives of 6. 

The notion of "algorithm" intended here is much more general than the ones 
ordinarily encountered in computer science - the latter being usually a form of 
Turing computability or some equivalent. (Turing computability is too restrictive, 

'An example of this is to  have one of the cognitive primitives, say T I ,  a semiorder (Lute, 
1956) that is pt~enorrlerlulogically ubservable by the subject, and have 2' be the total ordering 
that is induced by T I .  
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since it can only apply to situations that are encodable into arithmetic, and Q(X) 
cannot be appropriately so encoded, because Q(X)  has greater cardinality than 
that of the set of natural numbers.) 

It should be noted that the proofs of results employing Axiom 6 use much 
weaker conditions than those needed for this general concept of "algorithmn-namely, 
that the functions FI in Axiom 6 have precise mathematical descriptions in terms 
of the primitives of 6. Thus, in particular, the results of this chapter that depend 
on Axiom 6 are valid for any formal concept of "algorithm" appropriate to the 
situation described in Axiom 6. 

Definition 12. Let !2J = (Y, IVl, .  . . ; W,) be a structure. Isomorphisms of !2J 
onto itself are called automorphisms. !2J is said to be hornogeneous if and only if 
for each x and y in Y there exists an automorphism a of !2J such that a ( x )  = y. 

Axiom 7. 6 is homogeneous. 

I admit that because of the abstract nature of the above definition of "homo- 
geneity," Axiom 7 looks more like arcane mathematics than substantive psychol- 
ogy. However, homogeneity is a logical consequence of concepts and hypotheses 
used routinely throughout psychophysics, and more generally throughout science. 
For example, many important cases in science involve ratio, interval, or ordinal 
scales. When such scales can be justified through the representational theory of 
measurement, homogeneity is a consequence: 

Suppose !2J is a qualitative structure with domain Y, 'J1 is a numerical structure 
with domain N, and M is the scale of isomorphisms of !2J onto 'J1 (Definition 2). 
The following is a necessary condition for M to be a ratio, interval, or ordinal scale: 

For each x in Y and r in N there exists p in M such that P(x) = r . (2) 

Assume Equation 2. It immediately follows from the definition of "automorphism" 
that for all y and 6 in M, 6-'*y is an autornorphism of 9. Let x and y be arbitrary 
elements of T; and let y be an element of M. By Equation 2, let 6 in ,'vl be such 
that 

Then y = 6-' * y(x) ,  where 6-' * y is an automorphism of 3. Since x and y are 
arbitrary elements of Y, it has been shown that !2J is homogeneous. 

By arguments similar to the above, it is easy to establish that !2J is homogeneous 
if and only if Equation 2 holds. In most scientific applications, the primitives of !2J 
would correspond to observable relations and Equation 2 would be a consequence of 
generalizations and idealizations of observed facts about the primitives. However, 
because of principled lack of knowledge about the cognitive relations TI,  T 2 . .  . , a 
corresponding strategy cannot be adopted for the cognitive structure 6. Instead, 
general assumptions about 6 are needed. In psychology this is often done by mak- 
ing scale type assumptions about numerical interpretations of subjects' responses 
without direct reference to the structure 6. For example, a subject's ratings of in- 
tensities of items are often assumed to be a portion of a function from a ratio scale 
(or interval scale) without giving any indication of what is being assumed about 
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the psychological system and how that is related to the numerical interpretations 
of responses that justifies this feat of measurement. 

Intuitively, the condition of homogeneity is saying that from the point of view of 
the primitives of a structure, individually each element of the domain looks like each 
other element. This does not mean that for a pair of elements (or triple, etc.) that 
one element of the pair (triple, etc.) must look like the other element of the pair, 
(triple, etc.); for example, for the pair {k(x) ,  k (y) )  of 6,  k(x )  may be +' k(y) ,  
but if this is the case, then certainly k(y)  is not +' k(x) .  In Chapter 4 of Narens 
(1996b), the following result is shown: If '2) is homogeneous, then for each predicate 
P (x )  that is defined in terms of the primitives of '2) and pure mathematics, if P ( a )  
holds for some element a in the domain of '2), then P(b) holds for all elements b 
in the domain of '2). This result shows that clearly in terms of "predicates defined 
in terms of the primitives of '2) and pure mathematics" that each element of the 
domain looks like each other element. Narens (1996b) also shows that when the 
primitives of '2) are finite in number, this condition of all elements of the domain 
looking like each other for predicates defined in terms of the primitives of '2) and 
pure mathematics is logically equivalent to '2) being homogeneous. 

Axioms 1 to 7 yield the following existence theorem: 

Theorem 5. Assume Axioms 1 to 7. Then there exists a multiplicative repre- 
sentation for (X,  k ,  B1, B2,  . . . ). 

6. EMPIRICAL CONSIDERATIONS 

Assume Axioms 1 to 7. Suppose {B1, B2, . . . ) = {RI, R2, . . . ) U {Dl,  D2, . . . ), 
where R1, R2 , .  . . are direct ratio judgments and D l ,  D 2 , .  . . are direct difference 
judgments. Then by Theorem 5, a multiplicative representation p for 

(X lk ,R1 ,R2 ,  .. . )  

exists that is also a multiplicative representation for 

This is consistent with the empirical findings of Torgerson (1961) discussed earlier. 
Recall that Torgerson (1961) made the following observation about his findings: 

This result suggests that the subject perceives or appreciates but a 
single quantitative relation between a pair of stimuli. . . . It appears 
that the subject simply interprets this single relation in whatever way 
the experimenter requires. (p.  203) 

It appears to me that this observation is little more than a restatement of the 
empirical findings in cognitive terms, and therefore it should not be taken as an 
"explanation," because it lacks reason as to why "the subject simply interprets this 
single relation in whatever way the experimenter requires." In contrast Axioms 1 to 
7 supply a reason: The subject uses a single homogeneous structure for forming his 
or her responses to instruction and stimulus inputs. The singleness of the structure 
is always achievable, e.g., if the subject employed ( k ( X ) ,  kt, U1, U2,. . . ) for direct 
ratio estimations and ( k ( X ) ,  kt,  Vl, V2,. . . ) for direct difference estimations, then 
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he or she could employ the single structure 

for both. Thus it is the homogeneity of the (resulting) single structure that is the 
important consideration. 

It is worthwhile to  note that Torgerson's findings and his "observation" are 
also consistent with Axioms 1 to  6 and the assumptiori that  the subject is employ- 
ing a non-homogeneous structure for forming his or her responses t o  instruction 
and stimulus inputs. Because of these considerations, I take Axioms 1 t o  7 to  be 
substantively different from his "observation." Also, Axioms 1 t o  7 are consistent 
with a wider range of direct estimation results than are obtainable by the kinds of 
analysis employed by Torgerson: Torgerson's method of representing direct estima- 
tion functions rely on representing them numerically in terms of the numbers and 
the kinds of estimation referred to  in the instructions; e.g., the behavioral function 
that results from the instruction, "Estimate twice the stimulus presented," as the 
numerical function that is ~nultiplication by 2. Theorem 5 does not require a strict 
relationship between numerical representations and the i~istructions that generated 
them; e.g., the above behavioral function that is multiplication by 2 may equally 
well be represented by the numerical function that is multiplication by 3. 

Torgerson's empirically based co~iclusion that "The subject perceives or appre- 
ciates but a single quantitative relation between a pair of stimuli," is co~isisterit 
with a number of empirical studies. In a review of the topic, Birnbaum (1982) 
writes, 

In summary, for a number of social and psychophysical continua, 
judgments of "ratios" and "differences" can be represented by the 
same comparison operation. If it is assumed that this operation is 
subtraction, the JR function (for magnitude estimation of "ratios") 
can be approximated by the exponential, and the JD function (for 
ratings of "differences") is approximately linear. . . . In other words, 
judgments of "ratios" and "differences" are consistent with the propo- 
sition that the same operation underlies both tasks, but they do not 
permit specification of what that operation might be. (p. 413) 

An important consideration in Axiom 6 is that the algorithms can be math- 
ematically specified entirely in terms of primitives of 6 and instructions. Thus if 
the mathematical specification of an  algorithm depends in an essential way on in- 
dividual elements of 3 ( X ) ,  then, by the way Axiom 6 is formulated, these elements 
must be primitives of 6. Axiom 7 keeps this from happening, for if an element a 
of 3 ( X )  is a primitive of 6, then for each automorphism y of 6, ?(a) = a ,  and 
therefore 6 cannot be homogeneous. Thus keeping the above relationship between 
Axioms 6 and 7 intact, it could happen that for paradigms that produce behavioral 
functions (of one input variable), Axioms 1 t o  7 are valid, but for more complicated 
paradigms producing behavioral functions of several input variables, Axioms 1 t o  5 
and the appropriate modification of Axiom 6 to  functions of several variables may 
be valid, but Axiom 7 fails because some of the algorithms in the modified version 
of Axiom 6 use inputed stimuli in essential ways in their mathematical specifica- 
tions, i.e., the cognitive system uses "context" (the imputed stimuli) as well as the 
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structure 6 t o  produce algorithms for the more complicated behavioral functions 
of several variables. 

Although Axioms 4 t o  7 cannot be tested directly, the axiom system consisting 
of Axioms 1 to  7 is potentially falsifiable through tests of its consequence, the 
conclusion of Theorem 5. Because one would ordinarily be involved in situations 
where one believed Axioms 1 to 3 t o  be reasonable generalizations and idealizations, 
the empirical failure of the conclusion of Theorem 5 could be taken as a refutation 
of the conjunction of Axioms 4 to  7. The conclusion of Theorem 5 is testable by 
both quantitative and qualitative means: quantitatively by testing whether there 
is a multiplicative representation for X, and qualitatively by testing one of the 
following two qualitative consequences of it: 

(1) For all primitive behavioral functions B, and Bj of X and all stimuli x in X, 

where * denotes function composition. 
(2) For all primitive behavioral functions Bi and Bj of X if B,(x) + Bj(x) for 

some x in X, then Bi(y) + Bj(y) for all y in X. 

7. THE POSSIBLE PSYCHOPHYSICAL POWER LAW 

Luce (1959b) presented a theory that related hypotheses involving the scale 
types of the independent and dependent variables of a quantitative psychophysical 
function with its the mathematical form. The following is an application of one of 
his results: 

Theorem 6.  Assume Axioms 1 to 6. Suppose the physical structure ( X ,  k ,  @) 
has a ratio scale U of isomorphisms onto (R+, 2, +) and the cognitive structure 6 
h,as a ratio scale of isomorphisms V onto a numerical structure with domain R+. 
Suppose for each cp in U there exists 8 in V such that for all x in X ,  

Then there eziczsts r E R+ such that for all cp E U and 8 E V there ezists s E R+ 
such that for all z in X ,  

The conclusion of Theorem 6 describes a power relation between an observable 
representation cp of the physical dimension of stimuli and a non-observable repre- 
sentation 8 of a psychological dimension of sensations. The representation 0 and the 
scale U are theoretical in nature; they are not assumed t o  be cognitive constructs 
of the subject. 

In performing a direct estimation task, say estimating ratios of subjective in- 
tensities, one might theorize that the subject is using some cognitively constructed 
numerical function 5 from a ratio scale on @(X) as  a basis for his or her responses, 
e.g., the subject selects stimulus @(y) as twice as intense as @(x) if and only if 
[(*(y)) = 25(@(x)). Foundationally, there are grave difficulties with this account, 
because 5, a cognitively constructed function assigns entities of pure mathematics 
- numbers - to  sensations, which means that the mind mentally represents parts 
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of pure mathematics as pure mathematics, a view that is metaphysically a t  odds 
with most current psychological theorizing. This kind of difficulty is avoided by 
saying that [ is a function from *(X) onto an algebraic system of mental entities 
that is isomorphic to a fragment of the real number system. But even with this 
modification the problem still persists about the nature of the construction of the 
function [. 

Axiom 6 provides an alternative to the use of cognitively constructed numerical- 
like functions like (: In Axiom 6, the instruction I causes the subject to  relate a 
response sensation *(y) to  the sensation *(x) of each stimulus x by an algorithmic 
process describable in terms of primitives of 6. This process is viewed as  a func- 
tion CI on Q(X) .  An important contrast between the functions I of the previous 
paragraph and CI is that CI is the description in terms of sensations all possible 
results of a single instruction I, whereas [ is used to  describe in terms of sensations 
all possible results of all instructions. Axiom 6 does not assume that the set C of all 
cognitive functions resulting from all instructions given to the subject is cognitively 
accessible or cognitively organized in a manner such that it can be employed to  
mimic the uses of the function [ in the previous paragraph. Because of these con- 
siderations, the process described in Axiom 6 appear to  me t o  be a fundamentally 
weaker cognitive process than one that uses a numerical-like measurement function 
like in carrying out instructions. 

Axiom 8. The physical structure v = (X,  2, @) is a continuous extensive 
structure (Definition 5), and for each automorphism cu of '$ there exists an auto- 
morphism y of 6 such that for each x i n  X ,  

Axiom 8 states a form of harmony between physics and psychology. It is similar 
to the principle of the "invariance of the substantive theory" of Luce (195913) for 
a psychophysical functions with independent and dependent variables from ratio 
scales, except that it is qualitative and makes no reference to  the scale type of 
the dependent variable (i.e., the scale type of 6 ) .  Luce (1990b) revised his 1959 
theory of possible psychophysical functions. The revised theory is formulated qual- 
itatively in terms of automorphisms of structures that measure the independent 
and dependent variables of a function of a single variable. Axiom 8 is very close in 
spirit to  principles employed by Luce (1990b), but is technically different in that 
the dependent variable may assume scale types not covered in Luce (1990b). 

Assume Axiom 8. Then by Theorem 1, !J3 = (X,  k ,  @) has a ratio scale of 
isomorphisms onto (lRi , 2,  +). From this it is an easy consequence that v is 
homogeneous. The following lemma is an easy consequence of the homogeneity of 
v : 

Lemma 1. Assume Axioms 4 and 5. Then Axiom 8 implies Axiom 7. 

Theorem 7. Assume Axioms 1 to 6 and Axiom 8. Then the Generalized 
Power Law holds, i.e., the following three statements are true: 
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(a) (Qualitative Formulation) For all behavioral primitives Bi of X and all x 
and y i n  X ,  

(b) (Existence: Quantitative Formulation) By  Axiom 8 let p be a7t additive 
representation of (X,  k,  @). Then cp is a multiplicative representation for 
the behavioral structure 

(c) (Uniqueness: Quantitative Formulation) Suppose y is a multiplicative rep- 
resentation for the behavioral structure 

By Axiom 8 let p be an additive representation of ( X ,  L, a). Then there 
exist a multiplicative representation /I for X that is equivalent to y and there 
exists a positive real number t such that for all x in  X ,  

Furthermore, if 6 is ratio scalable, then for some positive real r ,  P = r y .  

8. EMPIRICAL CONSIDERATIONS 

Because of t,he non-observable nature of Axioms 4, 5, 6, and 8, they cannot be 
tested directly. However, the axiom system consisting of Axioms 1 t o  6 and Axiom 8 
is potentially falsifiable through tests of various of its consequenres. Because one 
ordinarily would be involved in situations where one believed Axioms 1 t o  3 to  
be reasonable generalizations and idealizations, the falsification of a conclusion of 
Axioms 1 to 6 and Axiom 8 could be taken as a refutation of the conjunction 
of Axioms 4, 5, 6, and 8. Thus, in particular, by Lemma 1 the conjunction of 
Axioms 4, 5, 6 and 8 is potentially falsifiable through the tests discussed earlier 
of the axiom system consisting of Axioms I to  7. The following lemma provides a 
basis for additional ways of potentially falsifying the conjunction of Axioms 4, 5, 6, 
and 8: 

Lemma 2. Assume Axioms 1 to 6 and Axiom 8. Then each automorphism 
of the physical structure ( X ,  k ,  @) is an  automorphism of the behavioral-physical 
structure 

Let p be an additive representation of (X, 2, @). I t  is assumed that the exper- 
imenter has access t,o a highly accurate empirical rendering of p. Let Bi be one of 
the behavioral primitives B1, B 2 , .  . ., and let a and b be distinct elements of X such 
that it is observed t,hat b = Bi(a).  Let 
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Then it is a an  easy consequence of Lemma 2 that for each x and y in X, 

If @d = T ,  then y = Bi(x) . 
P(Y) 

Equation 5 is testable. By the discussion preceding L e ~ n m a  2, tests of Equation 5 
are also tests of the conjunction of Axioms 4, 5, 6, and 8. 

9. CONCLUSIONS 

The observable Axioms 1 to  3 about behavioral functions are very weak mathe- 
matically, and from the perspectives of behavioral psychophysics, they can be con- 
sidered as minimal. The non-observable cognitive-physical Axioms 4 and 5 linking 
the  observable ordered structure of stimuli (,Y, 2)  t o  an unobservable structure of 
sensations (Q(X) ,  k') are also very weak mathematically. On the  surface, Axiom 4, 
which says a stimulus x from X presented to  the subject produces within him or her 
a sensation q ( x ) ,  appears to be obvious and have minimal psychological content. 
However, implicit in the axiom is that each time x is presented the  same sensation 
Q(x) is produced within this subject. This is clearly an assumption that has more 
than minimal psychological content. For example, for the paradigms discussed in 
this chapter, it is implicit in Axiom 4 that the sensation produced in the subject 
by stimulus x when the  subject is presented x and instruction I is the  same sen- 
sation produced when the subject is presented x and instruction J. Thus as an 
idealization, Axiom 5 is more than "minimal" in psychological content. 

The cognitive Axioms 6 and 7 provide considerable mathematical content. Ax- 
iom 6 is a general theory about the  cognitive processing of instructions, and Axiom 7 
is a theoretical hypothesis about the non-observable cognitive structure of sensa- 
tions 6 that  the  subject uses in his or her responses to  instructions. Axiom 7 may 
be viewed as a cognitive version of a consequence of many prominent quantitative 
psychophysical models. 

The ideas behind t,he axiomatization, Axioms 1 to  7, as well as the ideas behind 
the proof of its consequence, Theorem 5, are flexible, and are applicable to  a wide 
range of psychophysical phenomena. Because other applications may involve dif- 
ferent primitives, appropriate changes in the physical, behavioral, and behavioral- 
physical axioms may have to  be made. Also the cognitive Axiom 6 may have to  be 
changed t o  reflect the new behavioral primitives. This could be accomplished by 
an appropriate instantiation of the following principle inherent in Axiom 6: "The 
cognitive correlates of the behavioral pri~nitives can be viewed as relations that 
are algorithmic in terms of the cognitive structure of primitives.'' However, the 
cognitive-behavioral Axioms 4 and 5 and the cognitive Axiom 7 could remain the 
same. 

The power of the theorems presented in this chapter is largely due to  the be- 
havioral primitives being limited t,o functions of a single variable. Such functions, 
if required to  remain invariant under rich sets of transfor~nations, necessarily have 
highly restricted mathematical forms. As discussed in the following section, Ax- 
iom 6 requires a cognitive correlate C of a primitive behavioral function B to be 
invariant under the automorphisms of 6 ,  and thus, because by Axiom 7 6 has a 
rich set of automorphisms, it follows (from Axioms 4 and 5) that B must also be 
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invariant under a rich set of transformations. In settings with primitives that are 
functions of more than two variables, this line of argument is greatly weakened. For 
the case of functions of two variables, it still yields interesting results (see, for ex- 
ample, the discussion of homogeneous concatenation structures in Luce & Narens, 
1985). 

10. METHODS OF PROOF 

Details of proofs are not presented in this chapter. There are three main theo- 
rems: Theorems 3, 5 and 7. Theorem 3 follows by applying the remarks just after 
Theorem 5.5 of Narens (1994) to several threshold functions. The proof of Theo- 
rem 7 relies on Theorem 5 and the method of proof of Theorem 3. Thus what is 
both mathematically and conceptually the most important theorem, and from the 
point of view of the proof the most novel, is Theorem 5. The following are the key 
ideas of its proof: 

Let I be an instruction given to the subject. By Axiom 6, I produces a cognitive 
function CI from 9 ( X )  onto itself that is algorithmic in terms of primitives of 6. 
Assume CI is different from the identity function on 9 ( X ) .  By Axiom 7, 6 is 
homogeneous. Because CI is algorithmic in terms of the primitives of 6, it follows 
from results of Chapter 4 of Narens (1996b) that CI is invariant under the set A 
of automorphisms of 6; that is, for all a in A and all u and v in 9 ( X ) ,  

,U = CI (u) iff a (u)  = CI ( ~ ( u ) )  . (6) 

That Equation 6 holds for all elements of A is used to derive additional algebraic 
conditions on A. (These are described in Chapter 7 of Narens, 1996b). In terms 
of the "homogeneity-uniqueness classification" of Narens (1981a, 1981b), 6 is ho- 
mogeneous and either is 1-point unique or satisfies a special variety of rn-point 
uniqueness. The algebraic conditions on A are then used to produce a scale of 
isomorphisms S of 6, and Equation 6 is used to derive the numerical form of the 
representation of CI for each element of S. Because the instruction I also produces 
a behavioral function B (related to CI by y = B ( z )  iff 9 ( ~ )  = CI(9(x))) ,  p and 
the numerical characterization of CI by elements of S can be used to represent and 
characterize B numerically. Theorem 5 results by repeating the process for each 
instruction, using the same scale of isomorphisms S. 


