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ON SUBJECTIVE INTENSITY AND ITS MEASUREMENT
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ABSTRACT. Threshold functions and subjective estimations of ratios and dif-
ferences are a few examples from a class of psychological functions that can
be conceptualized as functions from a set of stimuli onto itself. This paper
analyzes axiomatically the structural properties of a broad subset of such func-
tions, with an emphasis on general properties of their psychological processing.
Measurement-theoretic representation and uniqueness results are derived for
Weber’s Law, ratio magnitude estimation, and a version of Luce’s Possible
Psychophysical Laws. An explanation is also provided for the experimental
findings of W. Torgerson and others that indicates a qualitative identity be-
tween subjective estimation of ratios and subjective estimation of differences.

1. INTRODUCTION

In many paradigms in psychophysics and other areas of psychology, a subject’s
behavior can often be idealized as sets of functions from a set of stimuli onto itself.
Two examples from psychophysics are (i) threshold functions F, on X, where
1> p> .5 and for each z in X, F,(z) is the stimulus such that if y has more of the
physical attribute than Fy,(z), then the proportion of time y is judged subjectively
more intense than z is > p; and (i) ratio estimation functions G, on X such that
for each z and y in X, y = G,(z) if and only if the subject judges y as being r times
as intense as x. Functions from X onto itself that result from subjects’ responses to
instructions are called behavioral, and this chapter presents an axiomatic treatment
of behavioral functions that result from responses involving a subject’s evaluation of
subjective intensities of stimuli. One main result is a characterization of situations
where for a nonempty set 3 of behavioral functions there exists a mapping of
the stimuli into the positive reals such that each element of B is represented as a
multiplication by a positive real. This result is used to characterize axiomatically
a generalization of the psychophysical power law. Another result provides a new
perspective for Luce’s (1959b) seminal research on possible psychophysical laws.

As a motivation for the kind of modeling and theory developed in this chapter,
consider the following important and puzzling empirical finding of Torgerson (1961).
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The situation turns out to be much the same in the quantita-
tive judgment domain. Again, we have both distance methods,
where the subject is instructed to judge subjective differences be-
tween stimuli, and ratio methods, where the subject is instructed to
judge subjective ratios. Equisection and equal appearing intervals
are examples of distance methods. Fractionation and magnitude
estimation are examples of ratio methods.

In both classes of methods, the subject is supposed to tell us
directly what the differences and ratios are. We thus have the pos-
sibility of settling things once and for all. Judgments of differences
take care of the requirements of the addition commutative group.
Judgments of ratios take care of the multiplication commutative
group. All we need to show is that the two scales combine in the
manner required by the number system. This amounts to showing
that scales based on direct judgments of subjective differences are
linearly related to those based on subjective ratios.

Unfortunately, they are not. While both procedures are sub-
ject to internal consistency checks, and both often fit their own
data, the two scales are not linearly related. But when we plot
the logarithm of the ratio scale against the difference scale spaced
off in arithmetic units, we usually do get something very close to
a straight line. Thus, according to the subject’s own judgments,
stimuli separated by equal subjective intervals are also separated
by approximately equal subjective ratios.

This result suggests that the subject perceives or appreciates
but a single quantitative relation between a pair of stimuli. This
relation to begin with is neither a quantitative ratio or difference,
of course — ratios and differences belong only to the formal number
system. It appears that the subject simply interprets this single
relation in whatever way the experimenter requires. When the
experimenter tells him to equate differences or to rate on an equal
interval scale, he interprets the relation as a distance. When he is
told to assign numbers according to subjective ratios, he interprets
the same relation as a ratio. Experiments on context and anchoring
show that he is also able to compromise between the two. (pp.
202-203)

For the purposes of this chapter, Torgerson’s conclusion may be restated as
follows: There is a function ¥ that maps stimuli in X into sensations of a subject.
When asked for kinds of difference judgments the subject responds in accordance
with a subjective difference function on the set of sensations ¥(X); and when asked
for kinds of ratio judgments the subject responds in accordance with a subjective
ratio function on the same set of sensations ¥(X). Torgerson’s empirical studies
indicate that each difference function is a ratio function and visa versa. But, why
should this be the case? That is, under what kinds of general conditions about
subjective processing of stimuli should we expect a result like this?
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By “general conditions” I mean conditions or principles that apply to many
different kinds of phenomena, and not conditions specific to particular experimental
paradigms or the data they generate. They should be construed as conditions or
principles like the laws of physics. Einstein’s Principle of Relativity is a particularly
good example of what I call a “general condition.”

A general condition that drives many of the mathematical results of this paper is
that the sensations in ¥(X) are processed “homogeneously”: that is, the sensations
in ¥(X) are processed in a manner that does not distinguish individual elements of
P(X). A precise statement of “homogeneity” is given later in the chapter. It is often
a consequence of concepts used routinely in science. For example, whenever one is
in a situation where there is a set of isomorphisms from an underlying qualitative
structure into a numerical one that forms a ratio, interval, or ordinal scale, the
underlying qualitative structure is homogeneous.

The axiomatizations presented in this chapter are designed to explain why
we observe what we observe; they are not constructed to be slick descriptions of
what is observed. Because of this, when there are axioms about both observables
and mental phenomena, the axioms about observables are by design very weak.
Great care is taken throughout the chapter to separate what is being assumed to
be observed about the stimulus, what is being assumed to be observed about the
subject’s responses, and what is theoretically taking place in the mental processing
of the subject in producing his or her responses to instructions and stimuli.

The intent of the chapter is to show how fairly simple and plausible assumptions
about the production of psychophysical functions combine to produce powerful
results about observable relationships. Discussions of these results in terms of the
empirical literature are brief and generally limited to issues raised by the above
quotation of Torgerson.

2. PRELIMINARIES

The following definitions and conventions are observed throughout this chapter:

Definition 1. 9 = (Y, U,,Us,...) is said to be a structure if and only if Y is
a nonempty set, called the domain of ), and each U; is either an element of Y, a
set of elements of Y, a relation on Y, a set of relations on Y, a set of sets of relations
on Y, etc. Y, Uy, Us,... are called the primitives of 9.

R denotes the set of reals and R the set of positive reals.

A scale on a nonempty set Y is a nonempty set of functions F onto a subset
R of R.

F is said to be a ratio scale if and only if (1) F is a scale and the range of each
element of F is a subset of R, and (2) for any f in F,

F={rflre R"}.

F is said to be an interval scale if and only if (1) F is a scale, and (2) for any

fin F,
F={rf+slr ¢ R and s € R}.
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F is said to be an ordinal scale if and only if (1) F is a scale and the range of
each element of F is a subset of R*, and (2) for any f in F,

F ={g* f|g is a strictly increasing function from R¥ onto R*},
where x is the operation of function composition.

Note that the definitions of ratio and ordinal scales in Definition 1 are more
restrictive than usually given in the literature; in particular, the ranges of the
elements of ratio and ordinal scales are required to be subsets of RT.

Definition 2. A theory of measurement consists of a precise specification of
how a scale F of functions is formed. The theory of measurement used throughout
this chapter is a variant of the representational theory of measurement. This variant
says that a scale F on a set Y results by providing a structure of primitives ) with
domain Y and a numerical structure 9t with domain either R* or R such that F
is a set of isomorphisms of ) onto N.

In the representational theory, elements of a scale F are often called represen-
tations.

Note that the variant of the “representational theory” given in Definition 2 is
more restricted than the theory of measurement presented in Krantz, Luce, Suppes,
& Tversky (1971) in that it requires (1) elements of F to be isomorphisms (instead
of homomorphisms), and (2) the range of elements of F to be onto (instead of into)
either R* or R.

Definition 3. A structure 2) is said to be ratio (respectively, interval, ordi-
nal) scalable if and only if it has a ratio (respectively, interval, ordinal) scale of
isomorphisms onto some numerical structure.

Definition 4. A structure (X, ) is said to be a continuum if and only if it is
isomorphic to (R*, >).

The definition of “continuum” given in Definition 4 is not qualitative. A famous
qualitative characterization of “continuum” was given by Cantor (1895).(See pp. 31-
35 of Narens, 1985).

Definition 5. (X, -, ®) is said to be a continuous extensive structure if and
only if (X, >, @) is isomorphic to (R*, >, +).

1A

The definition of “continuous extensive structure” given in Definition 4 is not
qualitative. Qualitative axiomatizations of it can be given (e.g., combining qualita-
tive axiomatization of “continuum” with an axiomatization of “extensive structure,”
for example, the axiomatization of “closed extensive structure” given in Chapter 3
of Krantz et al., 1971).

Definition 6. Isomorphisms of a continuous extensive structure (X, 7, &) onto
(R*, >, +) are often called additive representations.

The following is a well-known theorem of representational measurement theory:

Theorem 1. The set of additive representations of a continuous extensive
structure forms a ratio scale.
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3. BASIC AXIOMS

The primitives for the basic axioms consist of physical primitives and behavioral
primitives. The physical primitives capture some of the physical relationships in-
herent in the stimuli used in the experiment. The behavioral primitives capture, in
terms of the stimuli, some of the important psychological structure inherent in the
subject’s responses to instructions and stimuli. Both the physical and behavioral
primitives are assumed to be observable.

The physical primitives in this chapter will consist of a nonempty set of stimuli,
X, a total ordering 7~ on this set of stimuli, and occasionally a binary operation &
on X called a concatenation operation. Most of the results of the chapter rely on
the primitives X and . (Because many sets of stimuli considered in psychology
have natural behaviorally induced total orderings on them, the results of this paper
that do not use the concatenation operation & often extend to behavioral situations
based on stimulus sets with such orderings.)

The behavioral primitives in this chapter consist of the set of stimuli, X, and

one or more functions, By, Ba, ..., on X. (Cases of infinitely many B; are allowed.)
Note that the set of stimuli X is considered both a physical and a behavioral
entity.

The physical and behavioral primitives are assumed to be observable. They
make up the behavioral-physical structure, which has the form

(X z BlaBQa"'>

I ~?

or if the physical concatenation operation & is relevant, the form
()&7 > @,Bl,BQ,...>.

The following are two examples of behavioral functions:

(1) Direct Ratio Estimation: The subject is given stimuli from X and is asked
for each such stimulus z to select a stimulus y from X such that “y is s
times as intense as z.” A function y = Ry(z) on X results.

(2) Direct Difference Estimation: The subject is given stimuli from X and is
asked for each such stimulus to select a stimulus y from X such that “the
difference of y and z in intensity is s.” A function y = D,(z) on X results.

The usual numerical representation of the behavioral function R, is the function
that is multiplication by the number s. I find this practice strange, unfounded, and
non-rigorous. Unfortunately, it is a widely used practice in the behavioral and social
sciences, and many important findings depend on it. In this chapter, a much weaker
version of representing R, by a multiplication (not necessarily multiplication by s)
is pursued. (This issue is also discussed in Narens, 1996a.)

Definition 7. Let X be the behavioral physical structure
(X,z,B1,Bs,...).

Then a function 3 from ¥ onto R is said to be a multiplicative representation for
X if and only if the following two statements are true:

(a) For each z and y in X,
x 7y iff B(z) > B(y).
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(b) For each B; there exists a positive real r; such that for all z and y in X,
y = Bi(z) iff B(y) =ri - B(x) .

Note that in Definition 7, no mention is made about how the behavioral prim-
itives were obtained; in particular, the real number r; in Statement 2 does not
depend on whether B; was obtained through direct ratio estimation or direct dif-
ference estimation.

Definition 8. Let X be the behavioral-physical structure
(X,7,B1,Ba,...).

Y~

Then two multiplicative representations 8 and - for X are said to be equivalent if
and only if for each B; there exists a positive real r; such that for all x and y in X,

y = B(z) iff 8(y) =ri- B(z) iff y(y) =ri - y(z).

In particular, note that by Definition 8, if 4 is a multiplicative representation of
X, then r3 is an equivalent multiplicative representation of X for each positive real
r. As is indicated in the discussion following Theorem 2 below, there are examples
of behavioral-structures that have equivalent multiplicative representations 8 and
~ such that for all positive reals r, 3 # r.

Similar definitions hold for a difference representation for X and equivalent
difference representations for X.

The Basic Azioms, which are about the behavioral-physical structure

(X z B17B2"">7

1~

consist of the following three axioms:
Axiom 1 (Physical Axiom). (X, >) is a continuum (Definition 4).
Axiom 2 (Behavioral Axiom). Each B; is a function from X onto X.
Axiom 3 (Behavioral-Physical Axiom). For each B; and each  and y in X,
¢ Zy iff Bi(z) Z Bi(y)-

Axioms 1 to 3 are indeed very basic, saying very little of mathematical or
psychological substance.

4. WEBER’S LAW AND THE GENERALIZED POWER LAW

The Basic Axioms are not sufficient for establishing the existence of a multi-
plicative representation for the behavioral-physical structure. This section considers
a particularly simple, observable, behavioral-physical condition that together with
the Basic Axioms implies the existence of multiplicative representations. The ad-
ditional behavioral-physical condition uses the physical concatenation operation 6.
(Narens, 1996a, provides observable behavioral conditions that implies the exis-
tence of multiplicative representations without using any physical structure beyond
the ordering .)
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Definition 9. Assume (X,Z) is a continuum (Definition 4). A function B
from X onto X is said to be a threshold function on X if and only if (1) for all z
and y in X,

z zZy iff B(z) Z B(y),
and (2) for all z in X,
B(z) = z.

The “threshold interpretation” of B in Definition 9 is that for each z in X,
B(z) is the element of X such that for all elements y of X, if y > B(x), then the
subject according to some behavioral criteria is able to discriminate y as being more
intense than z, and for all elements z of X, if B(z) > z, then the subject is not able
according to the behavioral criteria to discriminate 2 as being more intense than z.

Threshold functions are often represented by Weber representations:

Definition 10. Assume B is a threshold function on the continuum (X, )
and c is a positive real number. Then ¢ is said to be a Weber representation for
(X, Z, B) with Weber constant c if and only if ¢ is an isomorphism of (X, ) onto

I~

(R™,>) such that for all z and y in X,

y = B(z) iff py) —el@)
o(z)

Suppose ¢ is a Weber representation for (X,, B) with Weber constant c.
Then it easily follows that 1 + ¢ is a multiplicative representation for (X, =, B).
Conversely suppose (X, 2, F') has a multiplicative representation as a multiplication
k > 1. Then it easily follows that (X, =, F') has a Weber representation with Weber
constant k — 1.

The following theorem shows that each threshold function has a Weber repre-
sentation, and therefore by the above observation, each threshold function has a

multiplicative representation.

Theorem 2. (Existence Theorem). Suppose B is a threshold function on the
continuum(X, 7,). Then for some ¢ > 0, (X,=, B) has a Weber representation
with Weber constant c.

Proof. Theorem 5.3 of Narens (1994). O

The corresponding uniqueness theorem for Theorem 2 is a consequence of The-
orem 4.1 of Narens (1994). The latter also shows that (X, >, B) has Weber rep-
resentations v and 6 with the same Weber constant ¢ such that for all r € RT,
~v # 8. Thus (X, >, B) also has multiplicative representations 3 and 4 such that
B#réforallreRT.

Weber’s Law consists of much more than having a Weber representation: We-
ber’s Law results when the stimuli have been measured priory in terms of a standard
physical representation ¢, and then with respect to , a Weber representation re-
sults. Thus for Weber’s Law to hold for a threshold function B, a particular kind
of compatibility between B and the physical structure is needed for ¢ to also be a
multiplicative representation of the behavioral-physical structure. Theorem 4 be-

low is one method of formulating the needed compatibility in terms of observables.
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Note that Theorem 4 also provides for simultaneous Weber Law representations for
several threshold functions.

Theorem 3. (Generalized Power Law Theorem). Assume Azioms 1 to 3. Sup-
pose & 1is a physical operation and ¢ is an additive representation for (X,7,®).

Suppose the following (observable) psychophysical aziom: For all B; and all z and
yin X,

Bi(z ®©y) = Bi(z) © Bi(y) .
Then the following two statements are true:

(a) (Existence) @ is @ multiplicative representation for behavioral-physical struc-
ture

(X,=.B1,Bs,...).

(b) (Uniqueness) Let 8 be a multiplicative representation for
%z <X - Bl,BQ,...).

Then there exists a multiplicative representation v of X that is equivalent to
B and a positive real number t such that for each x in X,

v(@) = p(z). (1)
Furthermore, if X is ratio scalable, then v in Fquation 1 is r8 for some
positive real r.

The following is an immediate consequence of Theorem 3 and the above dis-
cussion about the relationship of multiplicative representations and Weber repre-
sentations:

Theorem 4. (Existence Theorem). Assume the hypotheses of Theorem 8.
Suppose that for each B; and each x in X, B;(x) » x. Then for each B;, there
ezists o positive real ¢; such that ¢ is a Weber representation for B; with Weber
constant ¢;.

5. COGNITIVE AXIOMS

The cognitive primitives consist of a subset S of sensations, a binary relation =’
on S, and additional primitives, Ty, Ts, . .. , which may be first-order (e.g., subsets of
S, relations on S) or higher-order (sets of relations on S, relations between relations
on S and elements of S, etc.) The cognitive primitives are theoretical in nature and
presumed to be unobservable to the experimenter. Also, it is not assumed that all
these primitives are observable to the subject in the sense that he or she is capable
of becoming aware of each of them. & = (5,7, T}, T5,...) is called the structure
of cognitive primitives. Axioms about & will provide a theory that is used to relate
the observable behavioral functions B; to non-observable processing of instructions
presented to the subject.

Definition 11. Throughout this paper ¥ will denote a primitive relation. Ax-
iom 4 below will establish that ¥ is a function from X onto S. Since X is both
physical and behavioral, ¥ is considered to be both a cognitive-physical and a
cognitive-behavioral primitive.
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Axiom 4 (Cognitive-Physical Axiom). ¥ is a function from X onto S.
Axiom 5 (Cognitive-Physical Axiom). For all x and y in X,

ey iff Olz) 2 O(y).

It is an immediate consequence of Axioms 1, 4, and 5 that the function ¥—!
exists.

' is intended to be an ordering consistent with subjective intensity. It is not
assumed that for all z and y in X with = > y, ¥(z) >’ ¥(y) is phenomenologi-
cally observable by the subject. Indeed, for different z and y sufficiently close in
terms of the - ordering, one might want as a theoretical axiom that they are not
distinguished phenomenologically in terms of subjective intensity.

The following cognitive-behavioral axiom describes how a stimulus item is pro-
cessed in terms of an instruction to the subject and the structure &. For purposes
of exposition, the instruction is specialized to a form of a direct ratio or difference
estimation. The axiom and the results that depend on it extend to a wide variety
of instructions.

Axiom 6 (Cognitive-Behavioral Axiom). Let I be an instruction given to the
subject. It is assumed that I is of one of the following two forms: (1) the ratio in-
struction, “Findy in X such thaty is p times as intense as the stimulus presented;”
or (2) the difference instruction, “Find y in X such that the difference in intensity
between y and the presented stimulus is p.” Then there exists a cognitive function
Fr that is produced by an algorithmic procedure using only S and primitives of &
such that for each stimulus x in X, if x is presented to the subject, then the subject
responds by selecting y in X, where

y =¥ F(¥(2))].
Furthermore, it is assumed that each primitive behavioral function B of behavioral-

physical structure results from such a cognitive function, i.e., there exists an in-
struction J such that for all x and y in X,

y = B(z) iff ¥(y) = Fy(¥(z)).

The intuition for Axiom 6 is as follows: When given instruction I and presented
with stimulus z, the subject responds with y. The subject does this by implementing
I as a function Fy on S, which he or she applies to ¥(z) to yield Fp(¥(z)),
which happens to be ¥(y). The implementation of I as Fy is carried out by
an algorithmic procedure that involves some of the primitives {S, =", T1,Ts,... }.
Different instructions J may give rise to different algorithmic procedures, which
may involve different primitives of {S, 7', 71,75, ...}. It is explicitly assumed that
each such implemented function is algorithmic in terms of primitives of &.

The notion of “algorithm” intended here is much more general than the ones
ordinarily encountered in computer science - the latter being usually a form of

Turing computability or some equivalent. (Turing computability is too restrictive,

1An example of this is to have one of the cognitive primitives, say Ty, a semiorder (Luce,
1956) that is phenomnenologically observable by the subject, and have =/ be the total ordering
that is induced by T7.
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since it can only apply to situations that are encodable into arithmetic, and ¥(X)
cannot be appropriately so encoded, because ¥(X) has greater cardinality than
that of the set of natural numbers.)

It should be noted that the proofs of results employing Axiom 6 use much
weaker conditions than those needed for this general concept of “algorithm”—namely,
that the functions Fy in Axiom 6 have precise mathematical descriptions in terms
of the primitives of &. Thus, in particular, the results of this chapter that depend
on Axiom 6 are valid for any formal concept of “algorithm” appropriate to the
situation described in Axiom 6.

Definition 12. Let 9 = (Y, Wy,... ,W,) be a structure. Isomorphisms of 9
onto itself are called automorphisms. ) is said to be homogeneous if and only if
for each r and y in Y there exists an automorphism « of 9) such that a(z) = y.

Axiom 7. G is homogeneous.

I admit that because of the abstract nature of the above definition of “homo-
geneity,” Axiom 7 looks more like arcane mathematics than substantive psychol-
ogy. However, homogeneity is a logical consequence of concepts and hypotheses
used routinely throughout psychophysics, and more generally throughout science.
For example, many important cases in science involve ratio, interval, or ordinal
scales. When such scales can be justified through the representational theory of
measurement, homogeneity is a consequence:

Suppose 9) is a qualitative structure with domain Y, 91 is a numerical structure
with domain N, and M is the scale of isomorphisms of ) onto 9 (Definition 2).
The following is a necessary condition for M to be a ratio, interval, or ordinal scale:

For each z in Y and r in N there exists § in M such that g(z) =r. (2)

Assume Equation 2. It immediately follows from the definition of “automorphism”
that for all v and § in M, §~1 %~ is an automorphism of 9. Let z and y be arbitrary
elements of ¥, and let v be an element of M. By Equation 2, let § in M be such
that

5(y) =(z).

Then y = 67! * y(z), where § ! % is an automorphism of 9. Since r and y are
arbitrary elements of Y, it has been shown that 9) is homogeneous.

By arguments similar to the above, it is easy to establish that ) is homogeneous
if and only if Equation 2 holds. In most scientific applications, the primitives of )
would correspond to observable relations and Equation 2 would be a consequence of
generalizations and idealizations of observed facts about the primitives. However,
because of principled lack of knowledge about the cognitive relations T;,7»... , a
corresponding strategy cannot be adopted for the cognitive structure &. Instead,
general assumptions about & are needed. In psychology this is often done by mak-
ing scale type assumptions about numerical interpretations of subjects’ responses
without direct reference to the structure &. For example, a subject’s ratings of in-
tensities of items are often assumed to be a portion of a function from a ratio scale
(or interval scale) without giving any indication of what is being assumed about
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the psychological system and how that is related to the numerical interpretations
of responses that justifies this feat of measurement.

Intuitively, the condition of homogeneity is saying that from the point of view of
the primitives of a structure, individually each element of the domain looks like each
other element. This does not mean that for a pair of elements (or triple, etc.) that
one element of the pair (triple, etc.) must look like the other element of the pair,
(triple, etc.); for example, for the pair {¥(z), ¥(y)} of &, ¥(x) may be >’ ¥(y),
but if this is the case, then certainly ¥(y) is not >’ ¥(z). In Chapter 4 of Narens
(1996b), the following result is shown: If 9) is homogeneous, then for each predicate
P(z) that is defined in terms of the primitives of ) and pure mathematics, if P(a)
holds for some element a in the domain of ), then P(b) holds for all elements b
in the domain of ). This result shows that clearly in terms of “predicates defined
in terms of the primitives of ) and pure mathematics” that each element of the
domain looks like each other element. Narens (1996b) also shows that when the
primitives of ) are finite in number, this condition of all elements of the domain
looking like each other for predicates defined in terms of the primitives of ) and
pure mathematics is logically equivalent to ) being homogeneous.

Axioms 1 to 7 yield the following existence theorem:

Theorem 5. Assume Azxioms 1 to 7. Then there exists a multiplicative repre-
sentation for (X,”,B1,Bs,...).

)~

6. EMPIRICAL CONSIDERATIONS

Assume Axioms 1 to 7. Suppose {By,Ba,...} = {Ri,Ra,... }U{D1, Da,...},
where Ry, Rs,... are direct ratio judgments and D;, D,,... are direct difference
judgments. Then by Theorem 5, a multiplicative representation p for

(X, Ry,Ra,...)

? )

exists that is also a multiplicative representation for

(X,>,D1,Ds,...).

)~

This is consistent with the empirical findings of Torgerson (1961) discussed earlier.
Recall that Torgerson (1961) made the following observation about his findings:

This result suggests that the subject perceives or appreciates but a
single quantitative relation between a pair of stimuli. ... It appears
that the subject simply interprets this single relation in whatever way
the experimenter requires. (p. 203)

It appears to me that this observation is little more than a restatement of the
empirical findings in cognitive terms, and therefore it should not be taken as an
“explanation,” because it lacks reason as to why “the subject simply interprets this
single relation in whatever way the experimenter requires.” In contrast Axioms 1 to
7 supply a reason: The subject uses a single homogeneous structure for forming his
or her responses to instruction and stimulus inputs. The singleness of the structure
is always achievable, e.g., if the subject employed (¥(X), >’ Uy, Us,...) for direct

Y~

ratio estimations and (¥(X), ', Vi, Vs, ...} for direct difference estimations, then

Yo )



200 LOUIS NARENS

he or she could employ the single structure
U(X), =" U, Us,... , V1, Vo,...)

for both. Thus it is the homogeneity of the (resulting) single structure that is the
important consideration.

It is worthwhile to note that Torgerson’s findings and his “observation” are
also consistent with Axioms 1 to 6 and the assumption that the subject is employ-
ing a non-homogeneous structure for forming his or her responses to instruction
and stimulus inputs. Because of these considerations, I take Axioms 1 to 7 to be
substantively different from his “observation.” Also, Axioms 1 to 7 are consistent
with a wider range of direct estimation results than are obtainable by the kinds of
analysis employed by Torgerson: Torgerson’s method of representing direct estima-
tion functions rely on representing them numerically in terms of the numbers and
the kinds of estimation referred to in the instructions; e.g., the behavioral function
that results from the instruction, “Estimate twice the stimulus presented,” as the
numerical function that is multiplication by 2. Theorem 5 does not require a strict
relationship between numerical representations and the instructions that generated
them; e.g., the above behavioral function that is multiplication by 2 may equally
well be represented by the numerical function that is multiplication by 3.

Torgerson’s empirically based conclusion that “The subject perceives or appre-
ciates but a single quantitative relation between a pair of stimuli,” is consistent
with a number of empirical studies. In a review of the topic, Birnbaum (1982)
writes,

In summary, for a number of social and psychophysical continua,
judgments of “ratios” and “differences” can be represented by the
same comparison operation. If it is assumed that this operation is
subtraction, the Jg function (for magnitude estimation of “ratios”)
can be approximated by the exponential, and the Jp function (for
ratings of “differences”) is approximately linear. ... In other words,
judgments of “ratios” and “differences” are consistent with the propo-
sition that the same operation underlies both tasks, but they do not
permit specification of what that operation might be. (p. {13)

An important consideration in Axiom 6 is that the algorithms can be math-
ematically specified entirely in terms of primitives of & and instructions. Thus if
the mathematical specification of an algorithm depends in an essential way on in-
dividual elements of ¥'(X), then, by the way Axiom 6 is formulated, these elements
must be primitives of &. Axiom 7 keeps this from happening, for if an element a
of ¥(X) is a primitive of &, then for each automorphism 7 of G, v(a) = a, and
therefore & cannot be homogeneous. Thus keeping the above relationship between
Axioms 6 and 7 intact, it could happen that for paradigms that produce behavioral
functions (of one input variable), Axioms 1 to 7 are valid, but for more complicated
paradigms producing behavioral functions of several input variables, Axioms 1 to 5
and the appropriate modification of Axiom 6 to functions of several variables may
be valid, but Axiom 7 fails because some of the algorithms in the modified version
of Axiom 6 use inputed stimuli in essential ways in their mathematical specifica-
tions, i.e., the cognitive system uses “context” (the imputed stimuli) as well as the
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structure & to produce algorithms for the more complicated behavioral functions
of several variables.

Although Axioms 4 to 7 cannot be tested directly, the axiom system consisting
of Axioms 1 to 7 is potentially falsifiable through tests of its consequence, the
conclusion of Theorem 5. Because one would ordinarily be involved in situations
where one believed Axioms 1 to 3 to be reasonable generalizations and idealizations,
the empirical failure of the conclusion of Theorem 5 could be taken as a refutation
of the conjunction of Axioms 4 to 7. The conclusion of Theorem 5 is testable by
both quantitative and qualitative means: quantitatively by testing whether there
is a multiplicative representation for X, and qualitatively by testing one of the
following two qualitative consequences of it:

(1) For all primitive behavioral functions B; and B; of X and all stimuli z in X,
B; x Bj(z) = B; x Bi(z),

where * denotes function composition.
(2) For all primitive behavioral functions B; and B; of X if B;(z) > Bj(z) for
some z in X, then B;(y) » B;(y) for all y in X.

7. THE POSSIBLE PSYCHOPHYSICAL POWER LAW

Luce (1959b) presented a theory that related hypotheses involving the scale
types of the independent and dependent variables of a quantitative psychophysical
function with its the mathematical form. The following is an application of one of
his results:

Theorem 6. Assume Azioms 1 to 6. Suppose the physical structure (X, -, ®)
has a ratio scale U of isomorphisms onto (RY,>, +) and the cognitive structure &
has a ratio scale of isomorphisms V onto a numerical structure with domain R,

Suppose for each ¢ in U there exists 8 in V such that for all x in X,
Y(p(z)) = 6(¥(z)) . (3)

Then there ezists 1 € R such that for all p € U and 0 € V there exists s € R
such that for all x in X,

6(¥(x)) = sp(x)" . (4)

The conclusion of Theorem 6 describes a power relation between an observable
representation ¢ of the physical dimension of stimuli and a non-observable repre-
sentation 8 of a psychological dimension of sensations. The representation # and the
scale U are theoretical in nature; they are not assumed to be cognitive constructs
of the subject.

In performing a direct estimation task, say estimating ratios of subjective in-
tensities, one might theorize that the subject is using some cognitively constructed
numerical function £ from a ratio scale on ¥(X) as a basis for his or her responses,
e.g., the subject selects stimulus ¥(y) as twice as intense as ¥(z) if and only if
E(U(y)) = 2¢(¥(z)). Foundationally, there are grave difficulties with this account,
because &, a cognitively constructed function assigns entities of pure mathematics
— numbers - to sensations, which means that the mind mentally represents parts
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of pure mathematics as pure mathematics, a view that is metaphysically at odds
with most current psychological theorizing. This kind of difficulty is avoided by
saying that £ is a function from ¥(X) onto an algebraic system of mental entities
that is isomorphic to a fragment of the real number system. But even with this
modification the problem still persists about the nature of the construction of the
function £.

Axiom 6 provides an alternative to the use of cognitively constructed numerical-
like functions like &: In Axiom 6, the instruction I causes the subject to relate a
response sensation ¥(y) to the sensation ¥(z) of each stimulus x by an algorithmic
process describable in terms of primitives of &. This process is viewed as a func-
tion Cy on ¥(X). An important contrast between the functions £ of the previous
paragraph and C7 is that C is the description in terms of sensations all possible
results of a single instruction I, whereas £ is used to describe in terms of sensations
all possible results of all instructions. Axiom 6 does not assume that the set C of all
cognitive functions resulting from all instructions given to the subject is cognitively
accessible or cognitively organized in a manner such that it can be employed to
mimic the uses of the function £ in the previous paragraph. Because of these con-
siderations, the process described in Axiom 6 appear to me to be a fundamentally
weaker cognitive process than one that uses a numerical-like measurement function
like £ in carrying out instructions.

Axiom 8. The physical structure P = (X,7, @) is a continuous ecrtensive

structure (Definition 5), and for each automorphism « of B there exists an auto-
morphism v of & such that for each x in X,

Axiom 8 states a form of harmony between physics and psychology. It is similar
to the principle of the “invariance of the substantive theory” of Luce (1959b) for
a psychophysical functions with independent and dependent variables from ratio
scales, except that it is qualitative and makes no reference to the scale type of
the dependent variable (i.e., the scale type of &). Luce (1990b) revised his 1959
theory of possible psychophysical functions. The revised theory is formulated qual-
itatively in terms of automorphisms of structures that measure the independent
and dependent variables of a function of a single variable. Axiom 8 is very close in
spirit to principles employed by Luce (1990b), but is technically different in that
the dependent variable may assume scale types not covered in Luce (1990b).

Assume Axiom 8. Then by Theorem 1, P = (X,Z,®) has a ratio scale of
isomorphisms onto (IR*,>,+). From this it is an easy consequence that 9 is
homogeneous. The following lemma is an easy consequence of the homogeneity of

P:
Lemma 1. Assume Azxioms 4 and 5. Then Aziom 8 implies Aziom 7.

Theorem 7. Assume Axioms 1 to 6 and Aziom 8. Then the Generalized
Power Law holds, i.e., the following three statements are true:
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(a) (Qualitative Formulation) For all behavioral primitives B; of X and all
and y in X,

Bi(z ® y) = Bi(z) @ Bi(y).

(b) (Existence: Quantitative Formulation) By Aziom 8 let ¢ be an additive
representation of (X, 72, ®). Then ¢ is a multiplicative representation for

1~

the behavioral structure

X =(X,>,B1,Bs,...).

L)

(c¢) (Uniqueness: Quantitative Formulation) Suppose v s a multiplicative rep-
resentation for the behavioral structure

i‘:(X - Bl,Bg,...).

Y At

By Aziom 8 let ¢ be an additive representation of (X, 7, ®). Then there

exist a multiplicative representation 3 for X that is equivalent to v and there
exists a positive real number t such that for all x in X,

Blz) = p(a) .

Furthermore, if & is ratio scalable, then for some positive real r, 3 = rv.

8. EMPIRICAL CONSIDERATIONS

Because of the non-observable nature of Axioms 4, 5, 6, and 8, they cannot be
tested directly. However, the axiom system consisting of Axioms 1 to 6 and Axiom 8
is potentially falsifiable through tests of various of its consequences. Because one
ordinarily would be involved in situations where one believed Axioms 1 to 3 to
be reasonable generalizations and idealizations, the falsification of a conclusion of
Axioms 1 to 6 and Axiom 8 could be taken as a refutation of the conjunction
of Axioms 4, 5, 6, and 8. Thus, in particular, by Lemma 1 the conjunction of
Axioms 4, 5, 6 and 8 is potentially falsifiable through the tests discussed earlier
of the axiom system consisting of Axioms 1 to 7. The following lemma provides a
basis for additional ways of potentially falsifying the conjunction of Axioms 4, 5, 6,
and 8:

Lemma 2. Assume Azioms I to 6 and Axiom 8. Then each automorphism
of the physical structure (X,”,®) is an automorphism of the behavioral-physical
structure

(X,7,®,B1,Bs,...).

Let ¢ be an additive representation of (X, 77, &). It is assumed that the exper-
imenter has access to a highly accurate empirical rendering of ¢. Let B; be one of
the behavioral primitives By, Bo, . .., and let a and b be distinct elements of X such

that it is observed that b = B;(a). Let

_ #la)
o(b)

r
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Then it is a an easy consequence of Lemma 2 that for each z and y in X,

p(x)
f ——~ =r, then y = B;(x). (5)
p(y) (=)
Equation 5 is testable. By the discussion preceding Lemma 2, tests of Equation 5
are also tests of the conjunction of Axioms 4, 5, 6, and 8.

9. CONCLUSIONS

The observable Axioms 1 to 3 about behavioral functions are very weak mathe-
matically, and from the perspectives of behavioral psychophysics, they can be con-
sidered as minimal. The non-observable cognitive-physical Axioms 4 and 5 linking
the observable ordered structure of stimuli (X, >) to an unobservable structure of
sensations (U(X), ') are also very weak mathematically. On the surface, Axiom 4,
which says a stimulus z from X presented to the subject produces within him or her
a sensation W(z), appears to be obvious and have minimal psychological content.
However, implicit in the axiom is that each time x is presented the same sensation
U(z) is produced within this subject. This is clearly an assumption that has more
than minimal psychological content. For example, for the paradigms discussed in
this chapter, it is implicit in Axiom 4 that the sensation produced in the subject
by stimulus x when the subject is presented z and instruction I is the same sen-
sation produced when the subject is presented x and instruction J. Thus as an
idealization, Axiom 5 is more than “minimal” in psychological content.

The cognitive Axioms 6 and 7 provide considerable mathematical content. Ax-
iom 6 is a general theory about the cognitive processing of instructions, and Axiom 7
is a theoretical hypothesis about the non-observable cognitive structure of sensa-
tions & that the subject uses in his or her responses to instructions. Axiom 7 may
be viewed as a cognitive version of a consequence of many prominent quantitative
psychophysical models.

The ideas behind the axiomatization, Axioms 1 to 7, as well as the ideas behind
the proof of its consequence, Theorem 5, are flexible, and are applicable to a wide
range of psychophysical phenomena. Because other applications may involve dif-
ferent primitives, appropriate changes in the physical, behavioral, and behavioral-
physical axioms may have to be made. Also the cognitive Axiom 6 may have to be
changed to reflect the new behavioral primitives. This could be accomplished by
an appropriate instantiation of the following principle inherent in Axiom 6: “The
cognitive correlates of the behavioral primitives can be viewed as relations that
are algorithmic in terms of the cognitive structure of primitives.” However, the
cognitive-behavioral Axioms 4 and 5 and the cognitive Axiom 7 could remain the
same.

The power of the theorems presented in this chapter is largely due to the be-
havioral primitives being limited to functions of a single variable. Such functions,
if required to remain invariant under rich sets of transformations, necessarily have
highly restricted mathematical forms. As discussed in the following section, Ax-
iom 6 requires a cognitive correlate C of a primitive behavioral function B to be
invariant under the automorphisms of &, and thus, because by Axiom 7 & has a
rich set of automorphisms, it follows (from Axioms 4 and 5) that B must also be
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invariant under a rich set of transformations. In settings with primitives that are
functions of more than two variables, this line of argument is greatly weakened. For
the case of functions of two variables, it still yields interesting results (see, for ex-
ample, the discussion of homogeneous concatenation structures in Luce & Narens,

1985).
10. METHODS OF PROOF

Details of proofs are not presented in this chapter. There are three main theo-
rems: Theorems 3, 5 and 7. Theorem 3 follows by applying the remarks just after
Theorem 5.5 of Narens (1994) to several threshold functions. The proof of Theo-
rem 7 relies on Theorem 5 and the method of proof of Theorem 3. Thus what is
both mathematically and conceptually the most important theorem, and from the
point of view of the proof the most novel, is Theorem 5. The following are the key
ideas of its proof:

Let I be an instruction given to the subject. By Axiom 6, I produces a cognitive
function Cy from ¥(X) onto itself that is algorithmic in terms of primitives of &.
Assume C7p is different from the identity function on ¥(X). By Axiom 7, & is
homogeneous. Because C is algorithmic in terms of the primitives of &, it follows
from results of Chapter 4 of Narens (1996b) that C is invariant under the set A
of automorphisms of &; that is, for all o in A and all v and v in T(X),

v = Cy(u) iff a(v) = Crlafu)). (6)

That Equation 6 holds for all elements of A is used to derive additional algebraic
conditions on 4. (These are described in Chapter 7 of Narens, 1996b). In terms
of the “homogeneity-uniqueness classification” of Narens (1981a, 1981b), & is ho-
mogeneous and either is 1-point unique or satisfies a special variety of co-point
uniqueness. The algebraic conditions on 4 are then used to produce a scale of
isomorphisms S of &, and Equation 6 is used to derive the numerical form of the
representation of C'y for each element of S. Because the instruction I also produces
a behavioral function B (related to Cy by y = B(xz) iff ¥(y) = Cyp(¥(x))), ¢ and
the numerical characterization of C'y by elements of S can be used to represent and
characterize B numerically. Theorem 5 results by repeating the process for each
instruction, using the same scale of isomorphisms S.



