Available online at www.sciencedirect.com

SCIENCE@DIRECT° ]ournal Of.
Mathematical
ACADEMIC Psychology
PRESS Journal of Mathematical Psychology 47 (2003) 1-31

http://www.elsevier.com/locate/jmp

A theory of belief

Louis Narens
Department of Cognitive Sciences, University of California, Irvine, (UCI), 3151 Social Science Plaza, Irvine, CA 92697-5100, USA
Received 9 August 1999; revised 8 January 2002

Abstract

A theory of belief is presented in which uncertainty has two dimensions. The two dimensions have a variety of interpretations. The
article focusses on two of these interpretations.

The first is that one dimension corresponds to probability and the other to ‘“‘definiteness,” which itself has a variety of
interpretations. One interpretation of definiteness is as the ordinal inverse of an aspect of uncertainty called “ambiguity” that is
often considered important in the decision theory literature. (Greater ambiguity produces less definiteness and vice versa.) Another
interpretation of definiteness is as a factor that measures the distortion of an individual’s probability judgments that is due to specific
factors involved in the cognitive processing leading to judgments. This interpretation is used to provide a new foundation for
support theories of probability judgments and a new formulation of the “Unpacking Principle” of Tversky and Koehler.

The second interpretation of the two dimensions of uncertainty is that one dimension of an event A4 corresponds to a function that
measures the probabilistic strength of A as the focal event in conditional events of the form A|B, and the other dimension
corresponds to a function that measures the probabilistic strength of 4 as the context or conditioning event in conditional events of
the form C|A4. The second interpretation is used to provide an account of experimental results in which for disjoint events 4 and B,
the judge probabilities of A|(4 v B) and B|(Av B) do not sum to 1.

The theory of belief is axiomatized qualitatively in terms of a primitive binary relation > on conditional events. (4|B> C|D is
interpreted as “the degree of belief of A|B is greater than the degree of belief of C|D.”) It is shown that the axiomatization is a
generalization of conditional probability in which a principle of conditional probability that has been repeatedly criticized on
normative grounds may fail.

Representation and uniqueness theorems for the axiomatization demonstrate that the resulting generalization is comparable in

mathematical richness to finitely additive probability theory.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction
1.1. Introduction

That beliefs can be compared in terms of strength is
intuitively compelling. The validity of such comparisons
underlie the justifications of many practical methods of
decision, for example, “beyond a reasonable doubt”
decisions by juries, selecting treatments for medical
patients, etc. de Finetti (1931, 1937) proposed that
strengths of belief could be measured and compared
through subjective probabilities. However, many
thought this proposal unwarrantably restrictive, because
it excluded important belief situations such as normative
theories evidence (e.g., Shafer, 1976) or descriptive
theories of how individuals evaluate uncertain proposi-
tions (e.g., Tversky & Koehler, 1994; Rottenstreich &
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Tversky, 1997). Various alternatives to subjective
probability for measuring belief have been proposed in
the literature. A major drawback to most of them was
that they lacked interesting mathematical structure and
effective means of calculation for understanding and
manipulating degrees of belief.

Traditionally the probability calculus, as encom-
passed by the axioms proposed by Kolmogorov
(1933), has been taken as the normative calculus for
manipulating degrees of uncertainty. While the Kolmo-
gorov calculus is arguably a very good idea for
situations like casino gambling in which long random
sequences exist and are easily observable, it is much
more controversial for cases of uncertainty in which
random sequences are either difficult to observe or are
impossible by the nature of the events involved.

This article investigates an alternative to the prob-
ability calculus that is based on the idea that uncertainty
is measured by probability and an additional dimension.

0022-2496/03/$ - see front matter © 2003 Elsevier Science (USA). All rights reserved.
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This alternative is viewed as a very modest general-
ization of the probability calculus. As such, it allows for
a focussed discussion about its acceptability as a
generalization of various concepts based on the prob-
ability calculus.

In the literature, there are several different founda-
tional approaches to probability that produce calculi
satisfying the Kolmogorov axioms. (Various examples
can be found in Fine, 1973; van Lambalgen, 1987.) In
particular, de Finetti (1937) and Savage (1954) pio-
neered approaches designed to capture personal or
subjective probability functions, and the theory of
conditional belief developed here extends these and
related approaches to a more general class of personal
measuring functions that takes into account not only
uncertainty but also possibly information about the
nature of the uncertainty, and in certain psychological
settings information about the processing of uncertain-
ties. Like de Finetti and Savage, the theories of
conditional belief developed in the article are axiomatic
and based on a primitive qualitative preference ordering.
Several axiomatizations of increasing complexity are
presented. They are all motivated in part by the fact that
they can be viewed as specific weakenings of corre-
sponding axiomatic systems for related versions of
conditional probability.

For events e and f, let (e|e,f) stand for “likelihood of
e occurring if either e or f occurs.” The key axiom of
conditional probability that is deleted in all the general-
izations presented in this article asserts that for all
distinct states of the world a, b, ¢, and d, if

(ala,b) ~ (bla,b) and (c|c,d)~(d|c,d), (1)
then
(ala,b) ~(clc,d) 2)
and
(ala,c)~ (blb.d). 3)

The intuition for the desirability of the above deletion
is the following: Assume

(ala,b) = (bla,b) and (c[c,d) = (d|¢,d). )

In the context of the other axioms for conditional
probability, the above asserts that if ¢« and b have
equal likelihood of occurring and ¢ and d have
equal likelihood of occurring, then the conditional
probabilities of (ala,b) and (c|c,d) are 3, and the
conditional probabilities of (a|a,c) and (b|b,d) are the
same.

Suppose Eq. (1) and the judgment of equal likelihood
of the occurrences of a and b, given either a or b occurs,
is based on much information about ¢ and » and a good
understanding of the nature of the uncertainty involved,
and the judgment of equal likelihood of the occurrences
of ¢ and d, given either b or d occurs, is due to the lack
of knowledge of b and d, for example, due to complete

ignorance of ¢ and d. Then, because of the differences in
the understanding of the nature of the probabilities
involve, a lower degree of belief may be assigned to
(c|c,d) than to (ala,b), thus invalidating Eq. (2).

Suppose Eq. (1) and the judgements of the likelihoods
of the occurrences of a and ¢, given either a or ¢ occurs,
are based on much information about a and ¢ and the
nature of the uncertainty involved, and the judgment the
likelihoods of the occurrences of » and d given either b
or d occurs is due to the lack of knowledge of b and d.
This may result in different degrees of belief being
assigned to (ala, ¢) and (b|b,d), and such an assignment
would invalidate Eq. (3).

The primary goal of this article is to examine
axiomatic theories of belief that result by making the
above deletion. These theories will be evaluated in terms
of their mathematical power, philosophical acceptabil-
ity, and applicability.

Such axiomatic theories provide generalizations of
subjective conditional probability. The generalizations,
which are called theories of subjective conditional belief
or conditional belief for short, will have similar levels of
calculative power and mathematical richness as sub-
jective conditional (finitely additive) probability. In
addition, they will also provide for nonprobabilistic
dimensions of belief, for example, a dimension of
“ambiguity.”

Convention 1.1. Let 4 be a subset of the nonempty set
B. In this article, when discussing (A|B), A will often be
referred to as the choice set, choice, or focus (of (A|B))
and B as the context (of (A|B)).

In some belief situations, we have for each choice 4 in
context B very good evidence for the strength of (4|B)—
and in other belief situations, we have only poor
evidence for evaluating the strength of (C|D) for choices
C in context D. In cases with good evidence for all
choice and context sets, I believe it is reasonable to
measure the strength of beliefs as probabilities; and in
cases where there is poor evidence for some choice sets, I
agree with Shafer (1976) and others that on normative
grounds it is unreasonable to demand that strengths of
belief be measured as probabilities. In this article,
strengths of belief will be measured as ‘“‘degrees of
belief,” which like probabilities are nonnegative real
numbers, but unlike probabilities, (i) need not be less
than or equal to 1, and (ii) need not be additive for
beliefs of unions of disjoint events.

1.2. Belief functions

Definition 1.1. Let D be a nonempty set. Then xp is said
to be a belief function on D if and only if kp is a function
on the set of subsets of D such that for each E< D, (i)
0<xp(E), and (ii) kp(E) = 0 iff E = 0.
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Let xp be a belief function. Then the following
definitions hold:

(i) The value of xp on a subset E of D, kp(E), is called
E’s degree of belief (under kp).

(i1) xp is additive if and only if and for all subsets E
and F of D, if EnF=0, then xp(EUF)=
kp(E) +xp(F).

(iii) xp is monotonic if and only if for all subsets £ and
F of D, if EcF then kp(E)<kp(F).

(iv) xp is modest if and only if it is monotonic and for

all subsets E of D,
OSKD(E)S 1.

(V) kp has norm 1 if and only if xp(D) = 1.
(vi) kp is a subjective probability function if and only if
it has norm 1 and is modest and additive.

Lemma 1.1. Let kp be a belief function. Then the
following two statements are true:

1. If kp is additive, then it is monotonic.
2. If kp has norm 1 and is additive, then it is a subjective
probability function.

Proof. Immediate from Definition 1.1. O

The values of a belief function are called degrees of

belief, and when the belief function is a subjective
probability function, they are often called subjective
probabilities or simply probabilities. Under one inter-
pretation, degrees of belief are distortions of subjective
probabilities that take into account nonprobabilistic
aspects present in the choice situation, for example,
“ambiguity.” Under this interpretation, it may be the
case that some degrees of belief of elements of D distort
probability by producing an increase and others by
producing a decrease so that over D the effects of the
distortions cancel and xp(D) = 1.

In Sections 2 and 3 axiomatic, qualitative character-
izations of belief functions of the form

kp(A) = Pp(A)v(A)

are presented, where Pg is a finitely additive probability
function on B and v is from a ratio scale of functions
into the positive reals. For each family of subsets & on
which v is constant, xp acts on & like a finitely additive
probability function in the sense that for all £ and F in
% such that EnF = (),

KB(EUF) = KB(E) + KB(F).

This form of additivity need not hold for events with
different v-values. These features of xp are use in this
article to account for various empirical phenomena in
observed in human probability estimation. In particular
phenomena described by the Ellsberg Paradox, Tvers-

ky’s and Koehler’s support theory, Rottenstreich’s and
Tversky’s generalization of support theory, and Bren-
ner’s and Rottenstreich’s asymmetric support theory are
accounted for.

The belief theories presented in this article may
interpreted as either descriptive or normative theories.
As descriptive theories, they may be useful as alter-
natives for existing theories and as a means for
suggesting new experimentation. A separate article will
argue for their acceptability as normative theories for
certain kinds of probabilistic situations.

2. Basic axioms for conditional belief

In this section qualitative characterizations of various
systems of conditional belief are presented and quanti-
tative representation and uniqueness theorems are
shown for them.

For purposes of presentation, the proofs of the
theorems stated in this section are given in Section 7.

Definition 2.1. Throughout this article = will denote the
subset relation, = the proper subset relation, R the real
numbers, R* the positive real numbers, [ the integers,
and [ the positive integers.

Throughout the article, >~ will denote a binary
relation that is transitive, reflexive, and connected
(either x>y or y=x for all x,y in the domain of ).
Such transitive, reflexive, and connected relations on
nonempty sets are called weak orderings. The symmetric
part of = is denoted by ~, and is defined by,

x~y iff xzy and y = x,

for all x and y in the domain of =, and the asymmetric
part of = is denoted by > and is defined by,

x>y iff x>y and not y = x.

Throughout this article X will denote an infinite set of
objects. By definition, a context is a finite subset of X
that has at least two elements. ¥ will denote the set of
contexts. The notation (a|C) will denote C is a context
and aeC. “(a|C)” will often be read as “strength of
a in the context C.” When C = {qa,ay, ...,a,}, (a|C)

will often be written as (a|a, ai, ...,a,). By convention,
the notation (ala,ai,...,a,) assumes the elements
a,ai, ...,a, are distinct.

A nonempty set . of functions from a nonempty set
Y into R" is said to be a ratio scale if and only if (i) for
each reR" and each f € %, rf € %, and (ii) for all f and ¢
in % there exists s in R such that /' = sg.

A nonempty set & of functions from a nonempty set
Y into R is said to be an interval scale if and only if (i)
for each reR™, each s in R, and each f €%, rf +s€ ¥,
and (ii) for all f and g in & there exist 7 in R" and s in R
such that f =rg +s.
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2.1. Basic belief axioms

The Basic Belief Axioms consist of the following 12
axioms. They provide the mathematical core of the
axiom systems for this article.

Axiom 1. > is a weak ordering on the set

~

{(a,C)|Ce¥ and ae C}.

Axiom 2. Suppose A€¥, ac A, and B is a nonempty
finite subset of X such that BnA=0. Then
(al4) > (a|A v B).

Axiom 3. Suppose A, B are in € and C is a nonempty
finite subset of X such that AnC=BnC=0, and
suppose a and b are elements of X. Then

(1) if aec A and ae B, then

(al4) Z (alB) iff (|40 C)z(alBUC),

(1) if ae A and be A, then
(ald) Z (b]4) iff (a|l40C)z (b|AwC),
and

(i) if ae A, ae B, be A, and be B, then
(alA) Z (alB) iff (b|4)Z (b|B).

Through the use of Axiom 3, > induces natural
orderings on X and % as follows:

Definition 2.2. Define =, on X by: for all ,b in X,
az b if and only if there exists a finite set C such that

CcX —{a,b} and (al{a,b}uC)z(b|{a,b}u ).
Note that it follows from Axiom 3 and the definition
of =, on X above that a2z b if and only if for all C
if C is finite and C<=X — {qa, b},
then (al{a,b}v C) = (b|{a,b}u C).
Similarly define 2=, on % by: for all C,D in %,
Dz, C if and only if
(al{a}u C) x (al{a} U D)
for some ¢ in X such that @ is not in Cu D. Note that it

follows from Axiom 3 and the definition of > on &
above that Dz, C if and only if

(al{a}v C) z (al{a} v D)
for all a in X such that a is not in CuUD.

Note that Definition 2.2 says that Cx.,D if and
only if for some a in X — (CuD) the strength of a in
context {a}u Cis less than or equivalent to its strength in
context {a}uD. Also note it immediately follows

from the fact that > is a weak ordering that the

induced orderings on X and % described above are also
weak orderings.

Definition 2.3. An ordered pair of functions <{u,v) is
said to be a basic belief representation for 2= if and only
if the following three conditions hold:

1. u and v are functions from X into R™.
2. Forall C,Din ¥, Cx,D iff

Z u(e)= Z u(e).

eeC eeD

3. For all distinct a,ay,...,a, and all distinct
b,by,....bm,
(ala,ay, ...,a,) Z (blb, by, ..., by)

if and only if

<
—~

a)
u(a) +u(ar) + - +u(ay)

u(b)
>Ry utb) + by

v(a)

Axioms 2 and 3 are necessary conditions for the
existence of a basic belief representation for >>—as is
easy to verify directly through Definition 2.3. Similarly,
direct verification shows that the following three axioms
are also necessary for the existence of a basic belief

representation for =:

Axiom 4. For all a, b, ¢, e, and f in X, if

a#b, a#c, (ele,a)~(ele,b), and (f|f,a)~(fIf,c),
then {a,b} ~¢{a,c}.

Axiom 5. Foralla,d' ,b,b' in Xand all A,A",B,B" in %, if

a~yd, b~x b, and AnA =BnB =0, then the
following two statements are true:

1. If (a|4)z= (b|B) and (d'|A")Zz (V'|B), then (alAv
A"z (b|BUB).

2. If (a|lA)>(b|B) and (d'|A")z(V'|B'), then (alAv
A" > (b|BUB).

Axiom 6. Suppose a,b are arbitrary elements of X and
A, B are arbitrary elements of € and a€ A and be B. Then
the following two statements are true:

1. If A~4B then
azxb iff (a|l4)zZ(b|B).

2. If a~ xb then
Az B i (b|B)z(a|4).
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Axiom 5 in the presence of the other axioms
corresponds to a well-investigated axiom of measure-
ment theory known as “distributivity.” Axiom 6
corresponds to another well-investigated axiom of
measurement theory known as ‘“monotonicity.”

To obtain strong results about basic belief representa-
tions for 2=, other axioms are needed. The following

ones imply that the situation under consideration is rich
in objects and contexts.

Axiom 7. For allae X and Be %, if Bz ,A for some A in
€ such that ac A, then there exist ce X and Ce%€ such
that a~ yc, B~4C, and ceC.

Axiom 8. For all a,b in X and all A in €, if ac A and
az yb, then there exists ¢ in X and C in € such that
b~yc, A~4C, and ceC.

Axiom 9. For all A, B in € and all be B, there exist ce X
and C in € such that b~ yc, B~4C, AnC =0 and
(b|B) ~ (c|C).

Axiom 10. For each A ={ay, ...,a,} in € there exist
A ={d,,....,d,} in € and e in X such that AnA' =0,
{e}n(Aud) =0, and fori=1,...n,

(ele, ar) ~ (ele, ).

Axiom 11. For all A, Bin €, if A > 4B then there exists C
in € such that BnC =0 and A>4BuUC.

Axiom 12. The following two statements are true:

1. Foralla,bin X andall Ain%,if ac A and b= ya, then
there exist ¢ and C such that
c~xb and (c|C)~(alAd).

2. Forallain X and all A, Bin €, if ac A, then there exist
¢ and C such that

C~¢B and (c|C)~(alA).
Axiom 13 (Archimedean axiom). For all A,B, By, ...,

Bi, ... in €, if for all distinct i,j in 1" B;nB; =0 and
Bi~ 4B, then for some nel™

LHJ Bz oA
k=1

Definition 2.4. Axioms 1-13 are called the Basic Belief
Axioms.

Theorem 2.1. Assume the basic belief axioms (Definition
2.4) are true. Then the following two statements hold.

1. (Representation theorem) There exists a basic belief
representation for > (Definition 2.3).

2. (Uniqueness theorem) Let
U = {u|there exists v such that {u,v) is a basic belief

representation for =}

3. and
" = {v|there exists u such that {u,v) is a basic belief

representation for X }.
4. Then U and V" are ratio scales.

Proof. Similar to Theorem 8.2. [
2.2. Basic belief axioms with binary symmetry

Axiom 14 (Binary symmetry). Let a, b, ¢, and d be
arbitrary, distinct elements of X such that

(ala,b) ~(bla,b) and (c|c,d)~(d|c,d).
Then

(ala,b)~(clc,d)

and

(ala,c)~(b|b,d).

Definition 2.5. The basic belief axioms with binary
symmetry consists of the basic belief axioms together
with the axiom of binary symmetry (Axiom 14).

Definition 2.6. A function u is said to be a basic choice
representation for > if and only if the following four
conditions hold:

1. u is a function from X into R™.
2. Forall a,bin X, az b iff u(a) >u(b).
3. Forall C,Din %,

Cxz,D iff Z u(e)= Z u(e).

eeC eeD
4. For all distinct a,aq,...,a, and all distinct
b7bla"'7bma
(ala,ay, ...,an) Z (blb, by, ... by)

5. if and only if
u(a) . u(b)
u(a) +u(ar) + - +u(a,)” u(b) +u(by) + - +u(b,)

Theorem 2.2. Assume the basic belief axioms with binary
symmetry (Definition 2.5). Then the following two
statements hold:

1. (Representation theorem) There exists a basic choice
representation for > (Definition 2.6).
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2. (Uniqueness theorem) The set of basic choice repre-
sentations for = forms a ratio scale.

Proof. Similar to Theorem 8.3. O

2.3. Comments

For intuitive purposes, the axioms presented through-
out this article may be divided into three rough
categories: (i) substantive axioms that reveal important
structural relationships about conditional probability
and belief; (i1) richness axioms that guarantee that we are
dealing with rich probabilistic and belief situations; and
other axioms that belong to neither categories (i) nor (ii).
The role of the substantive axioms is to describe what
conditional probability and belief are in rich settings;
and the role of the richness and other axioms is to
guarantee that such a description can be made easily and
will work. Examples of richness axioms are Axioms 7—
12 that state the existence of certain kinds of solvability
relations in terms of ~ and >. The Archimedean axiom
(Axiom 13) is an example of an “other axiom.”
Throughout this article, richness axioms are freely
employed to simplify exposition. In some instances this
results in redundancy in the axioms. However, having
nonnecessary and sometimes redundant or unneeded
axioms does not impede the main objectives of the
article—to formulate and evaluate generalizations of
conditional probability in terms of normativeness,
mathematical power, and applicability. The substantive
axioms thus far are Axioms 1-6 and binary symmetry
(Axiom 14).

As Theorem 2.2 shows, the basic belief axioms with
binary symmetry qualitatively describes a situation of
conditional probability. Taking the perspective that
conditional belief may differ from conditional prob-
ability, it then follows that there may be situations in
which one or more of the basic belief axioms with binary
symmetry may fail to adequately characterize condi-
tional belief. The basic belief axioms assume such a
possible failure, namely the failure of binary symmetry
(Axiom 14). That binary symmetry should be invalid in
certain kinds of belief and choice situations has been
repeatedly suggested in the literature.

The objective of this article is to give and evaluate
extensions of the basic belief axioms as theoretical
alternatives to conditional probability. Of course, such
extensions are likely at best to produce only partial
theories of conditional belief, because only binary
symmetry (Axiom 14) is deleted. To obtain general
theories of belief, other axioms will likely have to be
changed as well. Thus, the theories of conditional belief
of this paper should be viewed and evaluated as
particular generalizations of conditional probability
which apply to a restricted set of belief situations.

Because in many ways these theories can be viewed as
minimal generalizations that result from elimination of
an obvious questionable principle for conditional belief
(binary symmetry), they are ideal candidates for
preliminary investigation.

2.4. The BTL model of choice

The basic belief axioms with binary symmetry
(Definition 2.5) provide (via Theorem 2.2) a qualitative
description of a widely used, important quantitative
model in the behavioral sciences called the “BTL
Model:”

Much behavioral science research involves the model-
ing of the probabilistic choice of objects from a set of
alternatives. A particularly important model is one in
which objects are assigned positive numbers by a
function u so that the probability p that object a is

chosen from the set of alternatives {a|ay, ...,a,} is given
by the equation,

u(a)
p= (5)

u(a) +u(ay) + - +ula,)

In the literature, this model is often called the Bradley—
Terry—Luce model, which is often abbreviated to the
BTL model."

There are many ways in which the ordering >~ on
choice strengths of objects in contexts can be established
empirically. In particular, by letting “(a|4) 2z (b|B)”
stand for ““The conditional probability of a being chosen
from A is at least as great as the conditional probability
of b being chosen from B,” a model of the basic belief
axioms with binary symmetry results. However, other
interpretations can be given to = that also yield the
basic belief axioms with binary symmetry. The added
flexibility of multiple interpretations of primitives is one
of the great strengths of the qualitative approach to
axiomatization. This extends to the basic belief axioms.
For example, the characteristic property of the BTL
model of choice is that context plays no role in
determining the odds of alternatives (Luce’s Choice
Axiom). Smith and Yu (1982) formulate a quantitative
generalization where the odds of alternatives may vary
with the contexts in which they occur. In this general-
ization, the function

P(x[C)
n(x)

)

YA special case of the BLT model,

u(a)
u(a) +u(ay) ©)
was used by the famous set-theorist E. Zermelo to describe the power
of chess players (Zermelo, 1929). The choice models implicit in Egs. (5)
and (6) have been used by Bradley and Terry (1952), Luce (1959), and
many others in behavioral applications.

p=
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which is mathematically equivalent to P(x|C)v(x), is
used as a measure of the “‘context sensitivity”” of x in
context C. (P(x|C) denotes the probability of x given
C.) Thus, by Theorem 2.1, the basic belief axioms
provide a qualitative account of “context sensitivity.”
Smith and Yu apply their theory to choice situa-
tions in which there is a similarity structure on the
alternatives.

3. Belief axioms

Definition 3.1. Let
ZF = {F|F is a finite subset of X}.

Elements of # are called finite events (of X). Elements of
F — {0} are called context events (of X). In the notation
“(A4|B),” where Aisin #, Bisin # — {0}, and A<B, 4
is called the focal event of (A|B) and B is called
the context event of (A|B). By definition, the finite
conditional events (of X) consists of all (4|B) where
AeZ,Bin # — {0}, and A< B. (In terms of the earlier
notation, in “(ala, b),” a is focal event {a} and a, b is the
context event {a,b}, and thus (a|a,b) is the same as

({a}|{a,b}).

The basic belief axioms and basic belief axioms with
binary symmetry are concerned with finite conditional
events (A4|B), where B has at least two elements and 4
has the special form A4 = {b} for some b in B. This
section extends these axiom systems to all finite
conditional events. To accomplish this, a new primitive
relation 2, is introduced and additional axioms
involving = , are assumed.

Axiom 15. The following two statements are true:

(1) Z 4 is a weak order on the set of finite conditional
events of X.
(2) Zz, is an extension of Z (where Z is as in Axiom 1).

Finite conditional events of the forms (0|B), (4|B)
with 4 having at least two elements, and (B|B) are
not involved in the > -ordering. The following four
axioms specify, with respect to the >>-ordering, the
placement within the 2z ,-ordering of these three kinds
of events.

Axiom 16. The following two statements are true for all
finite conditional events (A|B) of X and all context events

Cof X:
) 4By ~s0/C) iff 4=09.

@) if 40 Then (4|B)>4+(0|C).

Axiom 17. For each nonempty finite event A of X there
exists e in X — A such that

(1) for each finite event B of X, if 0cAcB (and
therefore B has at least two elements), then there
exists E in € such that B~ 4 E (Definition 2.2) and

(A1B)~ ¢(e|E); and

(2) there exists fin X such that f #e, f ¢ A, and
(fle.f)~s(flAV{f}).

Axiom 18. Suppose )c AcB, 0c Ac B, ecE, ¢cE',
B’\'Qg/‘E, B,~(¢/‘E/, and

(4|B)~s(e|lE) and (A|B)~s(€'|E).
Then

(ele,e' )~ (¢|e,€).

Axiom 17 associates with each finite conditional event
(A|B), with A#( and B having at least two elements, a
finite conditional event of the form (e|E), where ec X
and E€%, such that

(4|B) ~ s (e|E).

Since ~, is an extension of >, this allows the
placement of (A4|B) in the = z-ordering to be determined
by the placement of (e|E) in the > -ordering.

Axioms 17 and 18 play a critical role in extending a
basic belief representation {u,v) for = to elements of
the domain of = ,. (u(A4) is defined to be u(e) and v(A)
is defined to be v(e), where e is as in condition (1) of

Axiom 17.)

Axiom 19. The following two statements are true:

1. For each a in X there exists E in € such that

({a}{a}) ~6(E|E).

2. Let (A|B) and (C|D) be arbitrary finite conditional
events such that B and D are in €. Then there exist
finite events B' and D' such that BAnB' =0, B~4B',
DnD =0, D~yD', and

(41B)z s(CID) iff (A|BUB)x s(C|DULD).

Definition 3.2. The belief axioms consist of the basic
belief axioms (Definition 2.4) together with Axioms
15-19.

Definition 3.3. B is said to be a belief representation for
Z ¢ With context function u and definiteness function v if
and only if the following three conditions hold:
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(1) u and v are functions from % into, respectively,
R*U{0} and R".
(i1) For each C in #,

C=0 iff u(C)=0,
and

if C#£0, then u(C) = Z u({c}).

ceC

(iii) B is a function on the finite conditional events of X
such that for all finite conditional events (4|B) and
(C|D) of X,

(A|B) z (C|D) iff B(A|B)=B(C|D)

and

B(A|B) = U(A)y.

Belief representations for = , with context function u
and definiteness function v are useful in applications
where one wants to characterize events in terms of a
probabilistic dimension and another dimension. For the
purposes of this article, the other dimension is called
“definiteness.”” Definiteness may split into additional
dimensions. In the intended interpretations, u measures
the probabilistic dimension and v measures definiteness.
One naturally encounters various kinds of ‘“‘definite-
ness,” and the intended interpretations of v may vary
with the kinds of definiteness.

Consider the example of evaluating evidence in
criminal cases. Here we assume that “guilty beyond a
reasonable doubt” is determined by having a sufficiently
high ‘““degree of belief.” Consider the following two
situations: (1) where the evidence is purely circumstan-
tial, and (2) where the evidence is almost entirely
physical. Suppose the subjective probabilities for the
two situations are the same, e.g., 0.998. I believe it is
reasonable in this case to assign (2) a higher degree of
belief than (1). This reflects the idea that degree of belief
depends not only on probabilities, but also on the kinds
of evidence that the probabilities are based on. A
particular version of this idea is presented in the concept
of “belief representation of = , with context function u
and definiteness function v.”

Definiteness may also be viewed as an ordinal
opposite of the following ‘“ambiguity” concept of
Ellsberg (1961, pp. 659-660):

Let us assume, for purposes of discussion, that an
individual can always assign relative weights to
alternative probability distributions reflecting the
relative support given by his information, experience
and intuition to these rival hypotheses. This implies

that he can always assign relative likelihoods to the
states of nature. But how does he act in the presence
of his uncertainty? The answer to that may depend on
another sort of judgment, about the reliability,
credibility, or adequacy of his information (including
his relevant experience, advice and intuition) as a
whole: not about the relative support it may give to
one hypothesis as opposed to another, but about its
ability to lend support to any hypothesis at all.

If all the information about the events in a set of
gambles were in the form of sample-distributions, the
ambiguity might be closely related, inversely to the
size of the sample. But sample-size is not a universally
useful index of this factor. Information about many
events cannot be conveniently described in terms of a
sample distribution; moreover, sample-size seems to
focus mainly on the quantity of information.
“Ambiguity” may be high (and the confidence in
any particular estimate of probabilities low) even
where there is ample quantity of information, when
there questions of reliability and relevance of
information, and particularly where there is conflict-
ing opinion and evidence.

This judgment of the ambiguity of one’s informa-
tion, of the over-all credibility of one’s composite
estimates, of one’s confidence in them, cannot be
expressed in terms of relative likelihoods or events (if
it could, it would simply affect the final, compound
probabilities). Any scrap of evidence bearing on
relative likelihood should already be represented in
those estimates. But having exploited knowledge,
guess, rumor, assumption, advice to arrive at a final
judgment that one event is more likely than another
or that they are equally likely, one can still stand back
from this process and ask: “How much, in the end, is
all this worth? How much do I really know about the
problem? How firm a basis for choice, for appro-
priate decision and action, do I have?” The answer,
“I don’t know very much, and I can’t rely on that,”
may sound familiar, even in connection with mark-
edly unequal estimates of relative likelihood. If
“complete ignorance” is rare or nonexistent, “con-
siderable” ignorance is surely not.

The next theorem, which extends Theorem 2.1 from
singleton focal events to finite events, provides existence
and uniqueness results concerning belief representations
for = ,.

Theorem 3.1. Assume the belief axioms (Definition 3.2).
Then the following two statements are true:

1. There exists a belief representation for 2z, with
context function u and definiteness function v.

2. Let B be a belief representation for = , with context
function u and definiteness function v. Then the
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following two statements are true:

(1) For all positive reals r and s there exists a belief
representation for 2z , with context function ru
and definiteness function sv.

(ii) Let By be a belief representation for z , with
context function u; and definiteness function v, .
Then for some positive real numbers r and s,

uy=ru and v = sv.

Proof. Similar to Theorem 8.4. O

Let u be as in statement 1 of Theorem 3.1, and for
finite events E and F of X with EcF let

Then the following theorem, which is a restatement of
Theorem 3.1 in terms of belief functions (Definition 1.1),
is an immediate consequence of Theorem 3.1.

Definition 3.4. Suppose B is a belief representation for
Z o with context function u and definiteness function v
(Definition 3.3). Then for all finite conditional events
(4]B),
u(A)

B(A1B) = o) ™)
In the definiteness interpretation of Eq.(7), u is
interpreted as a measure of probabilistic strength, and
v is interpreted as a measure of something that is the
opposite of ambiguity or vagueness, which is called
definiteness. With these interpretations in mind, the
right-hand side of Eq. (7) is interpreted as a subjective
probability P(4|B) of 4 occurring when B is presented,
where

u(A)
P(4|B) = =——~,
S )
weighted by the definiteness factor v(4), i.e.,
B(A4|B) = v(A)P(A|B). (8)

Then when Eq. (8) is used to interpret B, B is called a
definiteness representation for 2=, with probability
Sfunction P and definiteness function v.

4. Belief axioms with binary symmetry

Definition 4.1. B is said to be a choice representation for
= e (with support u) if and only if B is a belief
representation for =, with context function u and
definiteness function v and for all finite events (A4|B)
of X,

u(A

B(41B) = 5

~—

Note that by Definition 4.1, each choice representa-
tion for 2=, is a conditional probability function on the
finite conditional events of X.

Definition 4.2. The belief axioms with binary symmetry
consist of the belief axioms together with the axiom of
binary symmetry (Axiom 14).

Theorem 4.1. Assume the belief axioms with binary
symmetry (Definition 4.2). Then there exists a choice
representation for 2z ..

Proof. Let {u,v) be a belief representation for >,
with context function u and definiteness function v. It
needs to be only shown that for all nonempty finite
events 4 and B of X, v(4) =v(B). Let 4 and B be
arbitrary finite events. If 4 has at least two elements,
then it follows from Axiom 17 that e, in X can be found
so that

u(A) =uey) and v(A4) =wv(eq).

If A ={a}, let ¢4 = a and thus again,

u(A) =u(eq) and v(4) =uv(ey).

Similarly an element ez of X can be found so that
u(B) =u(eg) and ov(B) = v(ep).

Thus to show wv(A4) =v(B), it is sufficient to show
v(eq) = v(ep). But because the belief axioms with binary
symmetry include the basic belief axioms with binary
symmetry, it follows from Theorem 1.2 that v(x) = v(y)
for all x and y in X, and thus that v(e4) = v(ep).

Definition 4.3. Let B be a belief representation for =,
with context and definiteness functions. Then B is said
to be additive if and only if for all finite conditional
events (A|C) and (B|C) of X, if AnB =0, then

B(AuB|C) = B(4|C) + B(B|C).

Additive belief representations provide a quantitative
theory of belief that is very close in mathematical form
to that of the probability calculus. However, in several
applications involving uncertainty, additivity is often
difficult to justify, and often in such applications
normative or intuitive arguments can be given for
nonadditivity.

There are interesting cases of additive belief repre-
sentations that are not trivial variants of choice
representations. Examples of these can be constructed
using the following idea: Let u and w be functions from
X into RT. Extend u and w to nonempty finite subsets 4
of X as follows:

u(4) = Zu(a) and w(A4) = Z w(a).

aeA aeA
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Then in terms of u and w, the functions v and B are
defined so that u, v, and B have the algebraic
characteristics of a belief representation: For nonempty
finite subsets 4 of X and conditional events (A|B)
of X, let

~ w(A)
U(a) - @7

and by the above equation, let

A A
W) )
u(B) u(B)

It is easy to show that B is additive.

When B is additive, the above process can be
reversed: Let B be an additive belief representation for
Z o with context function » and definiteness function v.
For each 4 in &, let
w(A) = u(A)v(A4).

Then for all finite conditional events (A4|B) of X,

w(A)

— )
u(B)

and (because B is additive) for all finite conditional
events (C|E) and (D|E) of X such that CnD = 0,

w(CuD) =w(C)+ w(D).

B(A|B) =

B(A|B) =

An intended interpretation of Eq.(9) (when B is
additive or nonadditive) is that for conditional beliefs
(A|B), w is a measure of the probabilistic strength of the
focal event A4, u is a measure of the probabilistic strength
of the context event B, and B is the measure of the
strength of belief of (A4|B). This interpretation is
employed later in the article.

5. Belief support probability

Many probabilists and decision analysts believe
that the degree of belief of event E is properly mea-
sured by a probability p, and that the same probability,
p, 1s the proper weight to assign to E in normative
models of utility under uncertainty. In the theory of
belief developed here, the two different kinds of
measurements of E—as (i) a degree of belief and as (ii)
a weight in a model of utility under uncertainty—
are kept separate, and in general, assign different values
to E.

Definition 5.1. Let 4 and B be disjoint finite events of X
such that B#0, and let B be a belief representation
for =, with context and definiteness functions. By
definition, let

_ B(4]4UB)
Ou(4,B) = 5 5105y

Op (4, B) is called the belief support odds (induced by B)
of A over B. By definition, let Pg be a function on finite
conditional events of X such that for each finite
conditional event (E|F) of X,

B(E|F)
(E|F) + B(F — E|F)

Pg(E|F) = B

Pg is called the belief support probability function
(induced by B). Pg(E|F) is called the belief support
probability of (E|F).

Note by part (ii) of statement 2 of Theorem 3.1, that
the definitions of Og and Pg in Definition 5.1 are
independent of the choice of B, i.e., if B’ is another belief
representation with context and definiteness functions,
then O = O and Pg = Ppy.

Also note that Pg behaves like a probability function
in that for AnB = 0,

Pg(A|AUB) + Pg(BlAuB) = 1.

However, unlike a probability function, Pg may not be
additive, i.e., situations with finite events C, D, and E
can be found such that CnD = @ and

Pa(CUD|E)#Ps(C|E) + Pg(DI|E).

The notion of a ““fair bet” relates the strengths of
beliefs of the events in the bet to the value of the
outcomes of the event. The following is one reasonable
notion of “fair bet:”

Definition 5.2. Let B be an individual’s belief represen-
tation for > with context and definiteness functions,
and 4 and B be nonempty finite events such that
AnB=0. Consider the gamble of gaining something
that has value a>0 to the individual if 4 occurs and
losing something that has value b>0 to the individual if
B occurs. Call this gamble a belief odds fair bet for this
individual if and only if
b

Op(4,B) =~

Note that in terms of the belief support probability
function, the above gamble is a belief odds fair bet if and
only if

aPg(A|A U B) — bPg(B|AUB) = 0.

The formulation of ““belief odds fair bet” starts with
degrees of belief for conditional events. When these
conditional events occur in evaluation of gambles, other
notions based on degrees of belief are needed to capture
key concepts inherent in gambling such as a “‘belief odds
fair bet.” For “belief odds fair bet” this is accomplished
very naturally in terms of belief odds. But it is also
accomplished in a logically equivalent and natural
manner through belief support probabilities. For a task
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where an individual is asked to judge numerically the
probabilities of conditional events, both B and Ppg are
natural candidates for modeling the judgments. Empiri-
cal results discussed in Section 6 suggest that Pg is better
in this regard.

Assume B is a belief representation for > with

context function u and definiteness function v. Let A4, B,
C, and D be nonempty finite events such that

(A|AUB)~¢(BlAUB) and
(C|CUD)~4(D|CUD). (10)

Assume that a high definiteness value, say 1, is assigned
to A and B because much is known about them; and
assume a low definiteness value, o<1, is assigned to C
and D, because little is known about them. Then by
Eq. (10),

u(A) =u(B) and u(C)=u(D).
Thus,

B(4|AuB) =B(B|AuB) =1 and
B(C|CuD) =B(D|CuD) = .

Therefore,
Pp(A|AuB) = Pg(C|CuD) = %

Thus, although the conditional events (4|B) and (C|D)
differ in degree of belief and definiteness, they are given
the same value by the belief support probability function
Pg. This value is the same as P(4|4 U B) = P(C|Cu D),
when B is interpreted as a definiteness representation for
Z o Wwith probability function P and definiteness
function v (Definition 3.4).

In general for conditional events (E|F) with v(E) =
o(F),

Pu(E|F) = P(E|F).

Thus, to interestingly differentiate Py from [P (and
therefore, from B), one needs to consider situations
where the definitenesses of the focal events differ from
the definitenesses of their context events.

Such a situation is suggested in Ellsberg (1961).
Suppose an urn has 90 balls that have been thoroughly
mixed. Each ball is of one of the three colors, red, blue,
or yellow. There are thirty red balls, but the number of
blue balls and the number of yellow balls are unknown
except that together they total 60. A ball is to be
randomly chosen from the urn. Let R be the event that a
red ball is chosen, B the event a blue ball is chosen, and
Y the event a yellow ball is chosen. Let U = RUBUY.
Assume that this situation is part of the domain of a
definiteness representation B with probability function
P and definiteness function v (Definition 3.4). For this
situation I consider the following to be reasonable

probability and definiteness assignments:

P(RIU) = P(BIU) = P(¥|U) =1,

P(RUY|U) =P(BUY|U)=P(RUB|U) =3,

and

v(B) =v(Y)<v(RuY)=v(RuB)<v(BuY)=ruv(R).

Then it is easy to verify that the following three
statements are true:

1. B#P,
2. B(B|U)<B(R|U) and B(BU Y)|U)>B(RU Y|U).
3. Pg(B|U)<Pg(R|U) and Pg(BUY)|U)<

Ps(RU Y|U).

Note that by statement 2, B is not additive (Definition
4.3). Similarly, by statement 3 Pg is not additive.

The second inequality of statement 3 vyields the
following conclusion for belief odds fair bets: Suppose
U is presented. Consider the gamble

g1 =(a,BuY;—-b,R)

of gaining something that has value ¢>0 to an
individual if BuY occurs and losing something that
has value 5>0 to the individual if R occurs. Then for
this individual this gamble is a belief odds fair bet if and
only if

b =2a.
Similarly, consider the gamble
g2 = (a,RUY;—c, B)

of gaining something that has value ¢>0 to the
individual if RuY occurs and losing something that
has value ¢>0 to the individual if B occurs. Then the
latter gamble is a fair bet if and only if

2v(Ru Y)

v(B)

This result makes intuitive sense for ‘‘ambiguity
adverse” individuals: If B had less ambiguity (and
therefore more definiteness) to the extent that v(B) =
v(RU Y), then intuitively, ¢ would equal 2a. Therefore,
to the extent that v(B) <v(Ru Y), c is greater than 2a. It
is reasonable to suppose that ambiguity adverse
individuals would prefer g; to ¢».

The upshot of the above is that even though ¢, and g,
are belief odds fair bets, g; is preferable to g, by
ambiguity adverse individuals. This implies that in
general, the values of ¢g; and g, should not be computed
by the formulas,

aPg(Bu Y|U) — bPg(R|U) and
aPg(RU Y|U) — bPg(B|U),

c= a>2a.

because the first formula would then yield g; as having
value 0 and the second formula g, as having value 0,
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thus implying that the individual would be indifferent
between g; and ¢».

6. Support theory
6.1. Tversky’s and Koehler’s theory

Belief support probability provides a theory of
subjective probability judgment that is similar in many
respects to the ‘‘support theory” of Tversky and
Koehler (1994).

Support theory is a descriptive theory in which
probability judgments are assigned to descriptions of
events, called hypotheses, instead of to events. It is
assumed that there is a finite set 7 with at least two
elements that generates an event space and a set of
hypotheses # such that each hypothesis 4 in #
describes an event, called the extension of A and denoted
by A’, that is a subset of 7. It is allowed that different
hypotheses describe the same event, e.g., for a roll of a
pair of dice, the hypotheses “‘the sum is 3” and “the
product is 2 describe the same event, namely one die
shows 1 and the other 2.

Hypotheses that describe an event {¢}, where te T, are
called elementary; those that describe () are called null;
and nonnull hypotheses 4 and B in # such that the
conjunction of A and B describe @ are called exclusive
(with respect to #). C in # is said to be an explicit
disjunction (with respect to #)—or for short, an explicit
hypotheses (of #)—if and only if there are exclusive 4
and B in & such that C = Av B, where v’ stands for
the logical disjunction of 4 and B, “A4 or B.” D in J is
said to be implicit (with respect to #') if and only if D is
not 0, is not elementary, and is not explicit with respect
to .

A may have implicit and explicit hypotheses that
describe the same event, e.g., C: “Ann majors in a
natural science,” A: “Ann majors in a biological
science,” and B: “Ann majors in a physical science.”
Then C and A4 v B describe the same event, i.e., have the
same extension, or letting H' stand for the extension of a
hypothesis H,

C'=(AvB) =4 UB.

It is assumed that whenever exclusive 4 and B belong
to o, then their disjunction 4 v B also belong to .

Tversky and Koehler (1994) provide empirical data
for many situations in which subjects judge explicit
hypotheses E to be more likely than implicit ones I with
same extensions (E’'=1I'). They suggest that this
empirical result reflects a basic principle of human
judgment. They explain it in terms of an intuitive theory
of information processing involving (i) the formation of
a “‘global impression that is based primarily on the most
representative or available cases” and modulated by

factors such as memory and attention, and (ii) the
making of judgments that are mediated by heuristics
such as representativeness, availability, and anchoring
and adjusting.

Formally, support theory is formulated in terms of
“evaluation frames” and “‘support functions:”

An evaluation frame (A,B) consists of a pair of
exclusive hypotheses: the first element A is the focal
hypothesis that the judge evaluates, and the second
element B is the alternative hypothesis. We assume
that when 4 and B are exclusive the judge perceives
them as such, but we do not assume that the judge
can list all the constituents of an implicit disjunction.
Thus, the judge recognizes the fact that “biological
sciences” and “‘physical sciences” are disjoint cate-
gories, but he or she may be unable to list all their
disciplines. This is a form of bounded rationality; we
assume recognition of exclusivity, but not perfect
recall.

We interpret a person’s probability judgment as a
mapping P from an evaluation frame to the unit
interval. To simplify matters we assume that P(A, B)
equals 0 if and only if 4 is null and it equals 1 if and
only if B is null; we assume that 4 and B are not both
null. Thus, P(4, B) is the judged probability that 4
rather than B holds, assuming that one and only one
of them is valid. ...

Support theory assumes that there is a ratio scale s
(interpreted as degree of support) that assigns to each
hypothesis in ## a nonnegative real number such that
for any pair of exclusive hypotheses A4, B in J#,

s(4)
—_— 11
4) + s(B) =
[and] for all hypotheses A, B, and Cin &, if Band C
are exclusive, 4 is implicit, and 4’ = (Bv C)’, then
s(A)<s(BvC) =s(B) + s(C). (12)

P(A,B) =

(Quoted from preprint of Tversky and Koehler,
1994).

Tversky and Koehler show that conditions 11 and 12

above imply the following four principles for all
A, B, C,and D in .

1. Binary complementarity. P(A,B) + P(B,4) = 1.
2. Proportionality. If A, B, and C are mutually ex-
clusive and B is not null, then

P(4,B) P(A,BvC)

P(B,A) P(B,AvC)

3. Product rule. Let R(A, B) be the odds of A against B,
Le, let

P(4,B)

P(B,A)

R(A,B) =
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Then
R(A,B)R(C,D) = R(A,D)R(C, B), (13)

provided A, B, C, D are not null, and the four pairs
of hypotheses in Eq. (13) are pairwise exclusive.

4. Unpacking principle. Suppose B, C, and D are
mutually exclusive, 4 is implicit, and 4’ = (Bv C)'.
Then

P(4,D)<P(Bv C,D) = P(B,Cv D)+ P(C,BvD).

Tversky and Koehler show the following theorem:

Theorem 6.1. Suppose P(A, B) is defined for all exclusive
A, Be A, and that it vanishes if and only if A is null. Then
binary complementarity, proportionality, the product rule,
and the unpacking principle hold if and only if there exists
a ratio scale s on H that satisfies Egs. (11) and (12).

Proof. Theorem 1 of Tversky and Koehler (1994). [

Belief-support probabilities can account for phenom-
ena that are the basis of Kochler’s and Tversky’s
support theory. The key idea for this is to interpret
“definiteness” as a measure of unpackedness. To carry
this out, a few minor modifications are needed.

Instead of the set T of elementary hypotheses, an
infinite set X of elementary hypotheses will be assumed.
It will also be assume that each hypothesis 4 in 2 has
an extension A’ that is a finite subset of X. To avoid
extra notation and extra conditions, it will be assumed
that each element of # is nonnull. Also instead of the
evaluation frame notation (A4,B), the conditional
hypothesis notation (A4|4v B) (where, of course, Av B
is explicit) will be employed to describe the kinds of
situations that support theory is concerned with. The
purpose of these changes is to make the discussion
coordinate to the discussions and results given earlier in
the article. They are not essential for the points made
throughout this section.

Let u be a function from X into the positive reals.
Extend u to # as follows: For each nonempty finite
subset 4 of X, let

u(4) = Z u(a). (14)
aeA

For each H in #, let u(H) = u(H') (where, of course,

H' is the extension of H). u is to be interpreted as a

measure of probabilistic strength.

Let v be a function from J# into the positive reals such
that for all 4 and B in J, if A is implicit, B is explicit,
and A’ = B/, then
v(A4)<v(B). (15)

v is to be interpreted as a “‘distortion factor” due to
specific kinds of cognitive processing, and Eq. (15)

captures the important characteristic of the distortion
that is due to “unpacking.”

Let B be a function from conditional hypotheses to
the positive reals such that for each conditional
hypothesis (4|4 v B),

u(4)
B(A4|4Av B) = v(A) WAV B) (16)

Eqgs. (14) and (16) give B the same algebraic form as
the belief representations considered in Section 3.
B(A4|4 v B) is intended to be interpreted as a distortion
(by a factor of v(A4)) of the probabilistic strength,

u(A4)

u(Av B)
of (4|4 v B). The distortion of interest for the kinds of
situations covered by Koehler—Tversky theory is due to
the unpacking principle, which is captured in large part
by Eq. (15).

Let Pg be the belief-support probability function
determined by B, i.c., let

B(A|Av B)
(A[Av B) + B(B|[AvB)

Py(A|AVB) = &

Then it is easy to verify that Ppg satisfies Binary
complementarity, proportionality, and the product rule.
The following theorem is also immediate:

Theorem 6.2. Suppose A and D are exclusive and B, C,
and D are mutually exclusive, A is implicit, and A’ =
(Bv C)'. Then the following three statements are true:

1. (Ordinal

Bv CvD).
2. (Definiteness unpacking) If v(B) = v(C), then

Pg(A|Av D)< Pg(BvC|BvCvD)
= Pg(B|BvCv D)+ Pg(C|CvBvD,).

unpacking)  Pg(A4|Av D)< Pg(BvC|

3. The following two statements are equivalent:
(i) B is additive, i.e.,

B(Bv C|BvCvD)
=B(B|BvCvD)+B(C)|BvCvD).

(1) The unpacking principle holds, i.e.,
Py(A|Av D)< Pg(BvC|BvCvD)
= Pg(B|BvCv D)+ Pg(C|CvBvD,).

Observe that the inequalities in Theorem 6.2 become
strict if the inequality in Eq. (15) becomes strict.

The above shows that belief-support probabilities,
when generated by an additive B, is a form of support
theory. This form of support theory generalizes phe-
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nomena outside of support theory when generated by a
nonadditive B. The nonadditive case still retains much
of the flavor of support theory, particularly its empirical
basis, because ordinal unpacking and definiteness
unpacking hold. Of possible empirical importance is
the consideration that it may be possible to find many
natural situations in which definiteness unpacking holds
but the unpacking principle fails.

Let (4|4 v B) be a conditional hypothesis. Then in the
formula,

u(4)
B(A4|Av B) =v(A4) WAV B)
may be viewed as “distorting” the fraction,
u(A)
u(AvB)
By the definition of u,
u4)  uwd)  u(d)

u(AvB) u((AvB)) u(A'UB)
However, by Eq. (14),

W) Sen u(a)
M(A/UB,) ZceA’uB’ H(C),
may be interpreted as a subjective conditional prob-
ability of the conditional, extensional hypothesis
(A'|A’ U B'). With this interpretation in mind, v(4) is
the amount that the subjective conditional probability of
the extension of (A|4vB) needs to be distorted to
achieve B(A4|A4 v B).

Tversky and Koehler (1994) provided many examples
of their theory. However, latter empirical studies
showed their theory to be inadequate. To accomodate
these additional studies, generalizations of Tversky’s
and Koehler’s theory were developed, and two of these
are discussed next.

6.2. Rottenstreich’s and Tversky’s support theory

Rottenstreich and Tversky (1997) noted empirical
examples in which probabilities for explicit disjunctions
G v H were subadditive, i.e., empirical situations where

P(Gv H)<P(G) + P(H).

To accommodate such subadditive situations, they
provided the following generalization of Tversky and
Koehler (1994): For all hypotheses £ and F, where F is
nonnull, let

P(E, F)

P(F,E)

Then the following three assumptions hold for all
hypotheses 4, 4y, A>, B, C, and D:

1. (Binary complementarity) P(A,B) + P(B,A4) = 1.
2. (Product rule)y (i) If (4,B), (B,D), (4,C), and
(C, D) are exclusive, then

R(E,F) =

R(A,B)R(B,D) = R(4,C)R(C, D), and
(i) if (4, B), (B, D), and (4, D) are exclusive, then
R(A, B)R(B,D) = R(A, D).

3. (Odds inequality) Suppose A;, A,, and B are mu-
tually exclusive, 4 is implicit, and the judge
recognizes A;v A, as a partition of 4. That is,
(4, vAz)’ = A’ and the judge recognizes that 4, v A4,
has the same extension as A. Then

R(A, B)<R(A v Ay, B)<R(A1, B) + R(A, B).

Rottenstreich and Tversky (1997) show the following
theorem:

Theorem 6.3. Suppose P(A, B) is defined for all exclusive
hypotheses A and B and that it vanishes if and only if A is
null. Then the above three assumptions hold if and only if
there exists a nomnegative function s on the set of
hypotheses such that for all exclusive hypotheses C and D,
s(€)

s(C)+s(D)

Furthermore, if A\ and A, are exclusive, A is implicit, and
(A1 v Ay) is recognized as a partition of A, then

S(A)<s(A1v Ay)<s(A41) + s(42).

P(C,D) =

Binary complementarity is the same as in Tversky’s
and Koehler’s theory. Rottenstreich’s and Tversky’s
product rule is slightly stronger than the product rule of
Tversky and Koehler, since it contains the additional
product condition R(4,B)R(B,D)= R(A,D). Odds
inequality is a replacement for the unpacking condition.
Tversky and Rottenstreich (1997) note that in Odds
inequality, “The recognition requirement, which re-
stricts the assumption of implicit subadditivity, was not
explicitly stated in the original (Tversky & Koehler,
1994) version of the theory, although it was assumed in
its applications.”

In Section 6.1 it is shown that belief support
probabilities, when generated by an additive B, is a
form of Tversky’s and Koehler’s support theory. When
the belief support probabilities are generated by a
subadditive B, this form of support theory naturally
generalizes to a form of Rottenstreich’s and Tversky’s
support theory, with the product rule and odds inequal-
ity holding. For nonadditive B, much of the flavor of
Tversky and Koehler’s original support theory is still
maintained, particularly its empirical basis, because
ordinal unpacking and definiteness unpacking hold. Of
possible empirical importance for Tversky’s and Koeh-
ler’s theory is the consideration that it may be possible
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to find many natural situations in which definiteness
unpacking holds but the unpacking principle fails.

For subaddtive B, the belief support probabilities add
for hypotheses of the same definiteness, and thus the
support form corresponding to Tversky’s and Koehler’s
theory apply to hypotheses that have the same v-value.
This suggests the following for the form of support
corresponding to Rottenstreich’s and Tversky’s theory
(i.e., for subaddtive B): (1) The hypotheses naturally
partition into families, with the hypotheses in each
family having the same definiteness and hypotheses from
different families having different definitenesses. (2) For
each family, the support form of Tversky’s and
Koehler’s theory holds for hypotheses from the family.
And (3) the support form of Rottenstreich’s and
Tversky’s theory holds for hypotheses from different
families.

6.3. Asymmetric support theory

Recently, Brenner and Rottenstreich (manuscript)
developed a version of support theory in which binary
complementarity may fail. They call their theory
asymmetric support theory, and this section presents
their model and some of the examples and results
contained in their manuscript.

The empirical bases for support theory are experi-
mental studies of probability judgments that consis-
tently find sums of probabilities greater than 1 for
partitions consisting of more than two elements and
sums equal to 1 for binary partitions. For example, Fox,
Rogers, and Tversky (1996) asked professional option
traders to judge the probability that the closing price of
Microsoft stock would fall within a particular interval
on a specific future date. When four disjoint intervals
that spanned the set of possible prices were presented for
evaluation, the sums of the assigned probabilities were
typically about 1.50. However, when binary partitions
were presented, the sums of the assigned probabilities
were very close to 1, e.g., 0.98. Tversky and Fox also
observed in probability judgments involving future
temperature in San Francisco, the point-spread of
selected NBA and NFL professional sports games, and
many other quantities, sums of assigned probabilities
greater than 1 for partitions consisting of more than two
elements and sums nearly equal 1 for binary partitions.
This pattern of results were also replicated by Re-
delmeier, Koehler, Liberman, and Tversky (1995) in a
study of practicing physicians making judgments of
patient longevity. Other researchers, e.g., Wallsten,
Budescu, and Zwick (1992) have also observed binary
complementarity in experimental settings.

Asymmetric support theory is based on judgments of
probability P(A4,B) of propositions of the form “A
holds rather than B,” where A and B are exclusive
hypotheses. In the above, A4 is called the focal hypothesis

and B the alternative hypothesis. The theory assumes
two support functions are used in evaluating P(4, B), sy
for focal hypotheses s for alternative hypotheses.
P(A4, B) is then determined by the formula

sy (A4)
PAB =5+ sy
The special case sy = s yields support theory. Accord-
ing to Brenner and Rottenstreich this special case arose
in the above mentioned studies because “all earlier
studies involved hypotheses that were especially well-
defined and left no room for variation in their
representation ...:”

Fox et al. (1996), for example, studied hypotheses
such as “‘the price of Microsoft stock will be above
seventy dollars.” There is little ambiguity in such
hypotheses and consequently little room for varia-
bility or asymmetry in their representations. We
suggest that earlier researchers failed to observe
[failures of Binary Complementarity] because they
investigated only such especially well-defined hypoth-
eses which essentially left on room for representa-
tional asymmetry [i.e., sy #s]. (p. 16)

Macchi, Osherson, and Krantz (1999) conducted
studies involving ultra-difficult general information
questions. For example subjects were presented one of
the following:

The freezing point of gasoline is not equal to that
of alcohol. What is the probability that the
freezing point of gasoline is greater than that of
alcohol?

The freezing point of alcohol is not equal to that
of gasoline. What is the probability that the
freezing point of alcohol is greater than that of
gasoline?

The typical sum of probabilities over all such binary
partition was about 0.90, relatively far from 1, indicat-
ing a failure of binary complementarity. Macchi et al.
reasoned that given the ultra-difficulty of the questions
there is relatively little evidence in favor of the focal
hypothesis. If the subjects attended relatively more to
the focal rather than the alternative hypothesis, then
they might not appreciate the fact that the alternative
hypothesis also has little support, leading to having a
sum of judged probabilities less than 1.

In a follow-up study, Macchi et al. attempted to
equalize the amounts of attention paid to focal and
alternative hypotheses by explicit mention of both
hypotheses. Subjects were presented one of the follow-
ing:

The freezing point of gasoline is not equal to that of
alcohol. Thus, either the freezing point of gasoline is
greater than that of alcohol, or the freezing point of
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alcohol is greater than that of gasoline. What is the
probability that the freezing point of gasoline is
greater than that of alcohol?

The freezing point of alcohol is not equal to that of
gasoline. Thus, either the freezing point of alcohol is
greater than that of gasoline, or the freezing point of
gasoline is greater than that of alcohol. What is the
probability that the freezing point of alcohol is
greater than that of gasoline?

In this study, the typical sum of judged probabilities
was about 1.01. Apparently, mentioning both the focal
and alternate hypotheses made it natural for subjects to
evaluate them in similar ways.

Brenner and Rottenstreich (manuscript) conducted
empirical studies where evaluations of category size
underlay the likelihood judgment and consistently found
that the sums of percentage judgments for binary
partitions were less than 1. They also conducted
empirical studies where evaluations of similarity under-
lay the likelihood judgment and consistently found that
the sums of probability judgments for binary partitions
were greater than 1.

Brenner and Rottenstreich presents the following
axiomatization and theorem for the representation

s7(A4)
sy(4) + s(B)

for partitions (4,B) in terms of the probability or
percentage function P:

Definition 6.1. Let

P(4,B)
AB)=———""——
(4, B) 1 — P(A,B)
where B is nonnull. Then the following two definitions
obtain:

1. The asymmetric product rule is said to hold if and
only if
0(4,B)Q(C, D) = Q(4,D)Q(C, B),
whenever the arguments of Q are exclusive.

2. The asymmetric triple product rule is said to hold if
and only if

Q(A7B)Q(B7 C)Q(C7A) = Q(Ca B)Q(B,A)Q(A, C),

whenever the arguments of Q are exclusive.

Note that whenever there exists a hypothesis exclusive
of A, B, and C, the asymmetric triple product rule
for A, B, and C, follows from the asymmetric product
rule.

Theorem 6.4. Assume the notation and concepts of
support theory of the previous section. Let # be a set
of hypotheses. Suppose P(A, B) is defined for all exclusive

A and B in # and it vanishes if and only if A is null. Then
the following two statements are equivalent:

1. The asymmetric product rule and the asymmetric triple
product rule.

2. There exist functions sy and s on H such that for all
exclusive A and B in A,

s7(A)

PAB) = S0y + 0By

6.4. A few comments about support theories

1. Judging probabilities degrees of belief: Let u, v, and
B be as in Egs. (14), (15), and (16). In particular,
u(4) u(4)

B(d|4v B) = o) ;7T = o) o

Letting w(A4) = u(A4)v(A4), we then obtain the formula

w(A)
u(A) + u(B) (17)

which is similar in many ways to Brenner and
Rottenstreich formula,

P B) = — A

sy(4) + s(B)

In Eq. (17), w is interpreted as a measure the probabil-
istic strength of the focal hypothesis, u as a measure of
the probabilistic strength of the alternative hypothesis,
and B(A4|4 v B) is the probability judgment given by the
subject. Using this interpretation, explanations can be
provided for the qualitative shifts in probabilistic
judgments occurring in the empirical examples of the
previous subsection. Brenner and Rottenstreich (manu-
script) also show that their formula quantitatively fits
the data. My guess is that it would be difficult to
distinguish the two formulas in terms of goodness of fit
using the kind of data collected by Brenner and
Rottenstreich.

2. Dual belief support representations: In the previous
subsection it was shown that belief support probabilities
provided an adequate theory for support theory. There,
the definiteness function v(A4) was interpreted as a factor
that accounted for the amount that a hypothesis 4 was
distorted with respect to its extension through cognitive
processing. In particular, distortion to due unpacking
(as well as other distortions) could be incorporated in v.
However, the kinds of distortions considered in asym-
metrical support theory cannot be included in v, because
v(A) depends only on the hypothesis A4 and thus not on
whether A is a appearing as a focal or an alternative
hypothesis. Thus to extend the belief support develop-
ment to the kinds of empirical situations considered by
Brenner and Rottenstreich, two belief support functions
are needed: one, B, for focal hypotheses, and the other,
B, for alternative hypotheses. The following is a natural

B(A|Av B) =
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way of accomplishing this: Let u, ur, v, and v, be
functions from nonnull hypotheses into the positive
reals and P be such that for each conditional hypothesis
(4|4 v B),

Bs(A|Av B)

Bs(4|Av B)+ B(B|Av B)
ur(A

Uf(A)U(A)u/»(gv>B)
= ) B (18)
v (A)o( )z + v(B)aa o

Note that in Eq. (18) vy is not the definiteness function
for By; rather the product vs(A4)v(A4) gives the definite-
ness of 4 in B for By.

In the second equality in Eq. (18), uy(A) is interpreted
as the probabilistic strength of the extension of 4 when
A is the focal hypothesis, and similarly, u(A4) is
interpreted as the probabilistic strength of the extension
of A when A is the alternative hypothesis. The following
assumption is within the spirit of support theory:

Ur = u. (19)

P(A|Av B) =

Also, because By and B are intended to be belief support
functions, it is assumed that

u(A) =u(A’) and wu(AvB)=u(A)+ u(B), (20)
where as usual, A’ is the extension of 4 and (4vB) =
A'VB.

v(A) is intended as a factor accounting for the
probabilistic distortion of A with respect to the
probabilistic strength, u(A4’) (= u(A4)), of its extension
A'. vs(A) is intended as a factor that accounts for the
additional distortion resulting from A4 being a focal
rather than alternative hypothesis.

Applying Eqgs. (19) and (20) to Eq. (18) then yields,

u(A
o (A)o(A)rs

() u(B)
or(A)o(A) ey umy + Y By ram)

(A Au(4)
= o (A)o(A)u(A) + o(Byu(B) 2

Note that by letting for each hypothesis H in J#,
7 (H) = vy (H)o(H)u(H) and  s(H) = o(H)u(H),
Eq. (21) becomes

P(A|Av B) =

sy(4)

MY =S4y + 5By

which is Brenner’s and Rottenstreich’s asymmetric
support representation. The representation given by
Eq. (21) differs from Brenner’s and Rottenstreich’s in
that the correspondents to sy and s have an inner
structure to them. This “inner structure” allows for the
formulation of unpacking principles.

3. Extending the dual belief support representation to
include unpacking: Although Brenner and Rottenstreich
allude to unpacking studies and use the same formal
setup involving implicit and explicit hypotheses and

their extensions as Tversky and Koehler (1994), they do
not extend their axiomatization or mathematical model
to include a version of the unpacking principle. In
Section 6.1 unpacking was characterized in terms of the
belief support probabilities representation. This char-
acterization generalizes easily to the dual belief support
representation:

Let 4 and B be arbitrary elements of 2 such that 4 is

implicit, B is explicit, and A’ = B’. Assume

v(A4)<v(B) (22)
and

oy (4) <y (B). (23)

The the following generalizes Theorem 6.2.

Theorem 6.5. Suppose the above assumptions, notation,
and conventions. Suppose A and D are exclusive, B, C,
and D are mutually exclusive, A is implicit, and A’ =
(Bv C)'. Then the following two statements are true:

1. (Ordinal  unpacking)  Pg(A4|4v D)< Pgp(BvC|
BvCvD).

2. Suppose By is additive, i.e.,
B/ (Bv C|BvCvD)=Br(BBvCvD)+B(C|BvCvD).

Then the unpacking principle holds, i.e.,

Pu(A|4v D)< Pg(Bv C|Bv Cv D) = Pg(B|Bv Cv D)+ Pg(C|Cv BvD).

Proof. By the hypothesis 4’ = (Bv C)" and Eq. (20),
u(A) =u(Bv C) =u(B) +u(C). (24)
By Eq. (21),

P(A]Av D) =

Similarly, by Eq. (21), the hypothesis 4’ =
Eq. (20),
P(BvC|BvCvD)
vr(Bv C)v(Bv C)u(Bv C)
vr(Bv C)v(Bv C)u(Bv C) + v(D)u(D)
1

(Bv C)', and

v(D)u(D)
1+v/(Bv C)v(Bv C)u(Bv C)

Then statement 1 follows from Egs. (22) and (23).

To show statement 2, suppose B, is additive. Then the
unpacking principle follows from statement 1 and the
first equality in Eq. (18).
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Observe that all the inequalities in statements 1 and 2
of Theorem 6.5 become strict if the inequality in Eq. (22)
becomes strict; and the inequality in statement 1
becomes strict if the inequality in Eq. (23) becomes
strict.

7. Conclusions

The belief axioms (Definition 3.2) yield the existence
of a definiteness representation B with probability
function P and definiteness function v (Definition 3.4).
When the value of v is constant, B may be looked at as a
ratio-scaled version of P, ie., B is essentially a
conditional probability function. Thus the notion of a
definiteness representation generalizes the notion of a
probability function. More importantly, in the multi-
farious uses of probability in mathematical modeling, B
or other probabilistic concepts generated by it are often
substitutable for probability functions, yielding new and
more general models.

As an example consider utility theory. Let U be an
individual’s function from objects of value (both
positive and negative) into the real numbers, and let 4
and B be nonempty, disjoint finite events. Let g =
(x, 4;y, B) be the gamble of receiving object of value x if
A occurs and receiving y if B occurs. In the behavioral
sciences, models of utility have the form

Ulg) = U(x) W1 + U(y) W2,
where W and W, are weights satisfying the conditions,
oswi<l, 0<W,yr<l, and W)+ W,=1.

Then theories of utility result by specifying W; and W,.

One of the most important of these theories is
subjective expected utility (SEU), which assumes that
the individual has a conditional probability function P
such that

W, = P(4|AUB) and W, = P(B|AUB).

Thus, SEU assumes that only one dimension of
uncertainty is relevant for specifying W, and W,—the
dimension that is measured by probability. The belief
representation B can be interpreted as the combined
measurement of two dimensions—a dimension of
probability measured by [P, and a dimension of
definiteness of focal events measured by v. Let Fp,
denote a function from the set conditional events into
the real interval [0, 1] that is determined by P and v.
Then consideration of

W] = FP$U(A|AUB) and Wz = FPAE(B|AUB)

provides a starting point for generating utility theories
that generalizes SEU. (Current utility theories would
also have W, and W, depend on features of U(x) and
U(y), e.g., rank-dependent theories on whether
U(x) =U(y) or whether U(y) >U(x), and sign-dependent

theories on whether U(x)>0 or whether U(y)=>0 or
whether both U(x) and U(y) are <0.)

In Section 6, B was used as a structured support
function to produce generalizations of support theories
of probability judgment. The structured nature of B
allowed for a different kind of formulation of the
unpacking principle of Tversky and Koehler (1994) as
well as for generalizations of it. Then with insights
gained from theses formulations to unpacking for
support theory, it was easy to extend the unpacking
principle to the more general and complicated versions
of support theory.

Traditional probability theory has two components to
it: A probability function that is a finitely additive
measure and an independence relation on events. While
the development of the analog of independence for belief
theory is outside the scope of this article, a few
observations will be made about it.

In the Kolmogorov theory of probability, indepen-
dence is a concept defined in terms of probabilities, i.e.,
the events A and B are by definition “independent” if
and only if P(4nB) = P(A)P(B). I and others find this
notion of independence problematic: In the most
important applications of probabilistic independence,
one has a very good idea of which key events are
independent of one another without resort to calculation
or often even without knowing their probabilities and
the probability of their intersections. Also in most
applications where probabilities are used, they are
admittedly inexact; but the Kolmogorov definition of
independence require the probabilities be exact. In
foundations of probability founded on relative frequen-
cies, independence of trials are assumed before the
probability of events are defined.

Because of these considerations, I find it preferable to
introduce a primitive binary relation L on events
representing probabilistic independence and have it
linked to probability by the following:

if AL B then P(4nB)=P(A4)P(B).

In intended interpretations, L is often known indepen-
dently of the underlying probability function, often
through intuition or theory about the nature of reality
being modeled, e.g., that “red” coming up on a future
turn of a particular roulette wheel is independent of the
sum of points scored being even by the teams involve in
a particular future football game.

Let B be a belief representation for > with
probability function [P and definiteness function v
(Definition 3.4). Let L be the relation of causal
independence between two events. Interpreting P as
conditional probability then reasonably yields

if AL B then P(4nB)=P(4)P(B)

as a desirable condition for belief. However, the
specification of v(AnB) is difficult and may depend
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on the kind of definiteness one is considering. For
example, even though A is causally independent of B,
the definiteness of 4 need not be causally independent of
the definiteness of B. An extreme example of this is
where the definiteness of 4 and B (4~ B#0) is due to
the same kind of lack of information or unreliability of
information, and thus the definiteness 4 and B (and
therefore 4N B) are the same and completely causally
dependent. The other extreme is when the definiteness of
A is causally independent of the definiteness of B. What
is needed to advance further the theories of belief
considered in this article is a means of sensibly
classifying different kinds of definiteness. Notions of
“independence” may prove to be useful in such an
effort.

The theory of belief developed in this article arose out
of generalizing probability theory to apply to situations
where the axiom of binary symmetry (Axiom 14) may
fail. These generalizations, which are captured by the
belief axioms, use belief representations instead of
probability functions. When the belief representations
are additive, they provide a theory that is very close
to that of probability theory. But for many kinds of
belief situations additivity is unwarranted and un-
wanted. Nevertheless, belief representations without
additivity are still rich in mathematical structure and
provide fertile ground for generating probabilistic-like
concepts.

8. Additional lemmas, theorems, and proofs
8.1. Preliminary lemmas and theorems

Convention 8.1. Throughout this subsection the Basic
Belief Axioms (Definition 2.4) will be assumed.

Lemma 8.1. ~, ~¢, and ~ x are equivalence relations.
Proof. Since =, >, and z, are weak orderings, it

easily follows that ~, ~¢, and ~y are equivalence
relations. [

Definition 8.1. Let C be the set of ~-equivalence
classes of ¥ and X be the set of ~ y-equivalence classes
of X. Let ¢ be =,/~« on C; that is, let = be the
binary relation on C such that for all o, f in C, a’=cf if
and only if there exist 4 in « and B in f such that
A% ,B. Similarly let =x be = ,/~x on X; that is, let
=x be the binary relation on X such that for all x,y in
X, x=xy if and only if there exist ¢ in x and b in y such
that a2z yb.

Lemma 8.2. = and =x are total orderings.

Proof. Left to reader. O

Definition 8.2. 9 =Y, =, O > is said to be an
extensive structure if and only if the following seven
conditions hold:

1. Y#0, O is a binary operation on Y, and =’ is a
total ordering on Y.

2. O is commutative, i.e., x Oy = y O x for all x and y in
Y.

3. O is associative, i.e., (xOy)Oz=x0O(yOz) for all
x, y,and zin Y.

4. 9) is positive, i.e., xOy>='x for all x and y in Y.

5.9 is monotonic, i.e., for all x, y, and z in
Y, xx='yiff xOz='yOz.

6. 9 is restrictedly solvable, i.e., for all x and y in Y, if
x>'y then for some zin Y, x>"yOz.

7. 9 is Archimedean, i.e., for all x and y in Y, there
exists a positive integer n such that nx>'y, where
Ix =x, and for all positive integer k, (k+ 1)x =
(kx) O x.

Definition 8.3. Define @ on C as follows: For all o, 8,y
in C, o @ p = y if and only if there exist Aea, Bef}, and
Cey such that AnB=0 and AUB = C.

Theorem 8.1. @ is an operation on C and €=
(C,=c, ® ) is an extensive structure (Definition 8.2).

Proof. Note thatif E), ..., E;, ... are elements of %, then
by repeated use of axiom 9 elements Fy, ..., F;, ... of €
can be found so that E;~«F; and for all distinct 7,/ in
I", E;nE; =0. From this and the fact that U is
commutative and associative, it easily follows that @
is a commutative and associative operation on C. From
the commutativity of @ and Axiom 2 it follows that € is
positive. From the commutativity and Axioms 3 and 9 it
follows that € is monotonic. From Axiom 11 it follows
that € is restrictedly solvable, and from Axioms 9 and 13
that € is Archimedean. By Lemma 8.2 ¢ is a total
ordering on ¢.

Definition 8.4. Define the binary relation =, on X x C
as follows: For all xo,yf in X x C, xaz ,yp if and
only if there exist aex, A€o, bey, Bef, such that

(a|4) Z (b| B).

Lemma 8.3. The following five statements are true:

1. Zz 4 is a weak ordering.

2. For all x,y in X and all o in C, if xa is in the domain of
Z » and X'=xy, then yo is in the domain of 2z , and
X022 4 VoL

3. Foralla,f in Cand all x in X, if xa is in the domain of
Z x and Bi=co, then xf is in the domain of = , and
X0z 4 xP.

4. For all x,y in X, the following two propositions are
true: (i) if xoz 4 ya for some o in C, then x'=xy and
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XBZ 4 ¥Pb for all p in C such that p=co; and (ii) if
x> g you for some o in C, then x> yy and x> xyf
for all B in C such that p=co.

5. For all o, in C, the following two propositions are
true: (i) if xa 2z 4 xp for some x in X, then B=co and
yaz o ¥B for all y in X such that x=xy; and (ii) if
x> % Xp for some x in X, then > co and yo> 4 yf
for all y in X such that x=xy.

Proof. 1. It is immediate that >, is a transitive
relation on X x C. To show reflexivity, let xo be an
arbitrary element of the domain of % , , and let a be in
X and A4 be in o. Then by Axiom 7, let ce X and Ce% be
such that a~yc, A~4C, and ceC. Then from
(c|C)~(c|C), it follows that xo~ 4 xa. It will next be
shown that > , is connected. Because = , is reflexive,
the domain of > , = the range of %~ , . Let xa and yf
be arbitrary elements of the domain of 2 ,. Let
a, A, y, and B be such that ae A, A%, yeB, Be%.
Then because = is a weak ordering,

either (a|4) = (b|B) or (b|B) = (alA),
which by Definition 8.4 yields,
either xa 2z , yp or yfz , xo.

Because 2z , is transitive, reflexive, and connected, it is
a weak ordering.

2. Suppose x and y are in X, a is in C, xo is in the
domain of 2 , , and x’=xy. By Axiom 8 and Definitions
8.1 and 8.4, yu is in the domain of 2 ,. Then by
Definitions 8.1 and 8.4 and statement 1 of Axiom 6,
X0 4 yo.

3. Suppose  and f are in C, x is in X, and xa is in the
domain of 2 , , and 3= ca. Then by Definitions 8.1 and
8.4 and Axiom 7, xf is in the domain of % , . Then by
Definitions 8.1 and 8.4 and statement 2 of Axiom 6,
X0z 4 XxP.

4. (1) Suppose x,y in X and o in C are such that
xo.Z 4 yo. It then follows from Definitions 8.4 and 8.1
and Statement 2 of Axiom 12 that aex, Aea, bey,
and Beo can be found such that (a|4)> (b|B) and
A~¢B. Thus by statement 1 of Axiom 6, aX yb.
Therefore by Definition 8.1, x3=xy. Let f in C be such
that %= co. Then it follows from Definition 8.1 that C
and D in f can be found such that C~¢D, Cxz,A4, and
D= B. It then follows from Axiom 7 that e and f in X
and E and F in % can be found such that
a~ye, bNXf, CN%/DN(gENng, €€E7 and fEF.
Then since e~ yaz b~ xf, it follows by statement 1
of Axiom 6, that (e|E) = (f|F). Thus by Definition 8.4,
xBZ 4 yP. Proposition (ii) follows by a similar argu-
ment.

5. (1) Suppose o, in C and x in X are such that
xo.z 4 xp. Then it follows from Definitions 8.4 and 8.1
that aex, A€o, bex, and Bef can be found such that

(a|4)z (b|B) and a~ xyb. Therefore by statement 2
of Axiom 6, B>~ ,A. Thus by Definition 8.1, f=co.
Let y in X be such that x>xy. Then it follows
from Definition 8.1 that ¢ and d in y can be found such
that a= ¢, bz yd, and ¢~ yd. Since (a|4) and (b|B)
and az yc and bz ,d, it easily follows that elements /
and k in X can be found so that 4> .,{c,h} and
B>, {d. k}. It then follows from Axiom 7 that e and f
in X and £ and F in % can be found such that
c~ye, d~xf, A~4E, and B~4F, ecE, and feF.
Since ¢~ ye and d~ xf, it follows that eey and fey.
From Bxz,A it follows that F>>, E. Therefore by
statement 2 of Axiom 6, (e|E)z (f|F). Thus, by
Definition 8.4, yoz , yf. (ii) Proposition (ii) follows
by a similar argument. [

Lemma 8.4. The following five statements are true:

1. Forall x,y in X and all o in C, if y=xx and xo is in the
domain of 2z 4, then there exists f in C such that

xo~ % YP.
2. For all x in X and all o, § in C, if xa is in the domain of
Z x> then there exists y in X such that xo~ yx yp.

~

3. The following two propositions are true for all x,y in X
and all o, B, o, B’ in €: (i) if xa 2z 4 yp and xo! = , yf,
then
x(a@o)Z wy(BOB), and
(ii) if xo>= % yP and xo' 2z 4y, then
x(@@d) = %y (BOB).

4. For all x,y in X and all o, in €, if

X~ Y

then
x=xy i o=ch

5. For all x,y in X and all o, in C, if
xa~xyp and y=cp,

then there exists o' and such that

/
X0~ % VY-

Proof. Statements 1 and 2 follow from Definitions 8.1
and 8.4 and Axiom 12.

To show statement 3, note that by Theorem 8.1 and
its proof that a@o =ca and B® B =cfh, which by
statement 3 of Lemma 8.3 yields that x(a@®o') and
y(B@®p') are in the domain of % , . Statement 3 then
follows from Axioms 9 and 5 and Definitions 8.1, 8.3,
and 8.4.

To show statement 4, we need only show (i) that
x»=xy and f>co leads to a contradiction and (ii) that
y>xx and o= cf leads to a contradiction.
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(1) x>>xy and f> cao. By statement 2 of Lemma 8.3,
X0UZ 4 VoL,

and thus by statement 4 of Lemma 8.3,
xpz *yﬂ .

Since by hypothesis xo~ xyf, it then follows from
statement 1 of Lemma 8.3 that

XP2Z 4 X0,

which by statement 5 of Lemma 8.3 yields a%cf,
contradicting the hypothesis o= cpf.
(i1)) y > yx and f=co. By statement 3 of Lemma 8.3,

yﬁz *J’“v
and thus by statement 5 of Lemma 8.3,
X0UZ 4 X0

Since by hypothesis, xx~ 4 yf, it then follows from
statement 1 of Lemma 8.3,

XPZ wIb,

which by statement 4 of Lemma 8.3 yields x>=xy,
contradicting the hypothesis y > xx.

Statement 5 is immediate from Axiom 12 and
Definition 8.4. [

Definition 8.5. Suppose x;o; is in the domain of = , and
f, and y are arbitrary elements of €, f53=co;, and y 5= ca;.
Then by statement 3 of Lemma 8.3, x;f is in the domain
of z 4. By statement 2 of Lemma 8.4, let 7;(f) be such
that

Ti(B)oi ~ % xiP. (27)
By statement 4 of Lemma 8.4,
‘C,‘(ﬁ) <xx,~. (28)

Since by Eq. (27) t;(f)a; is in the domain of =, it
follows from statement 3 of Lemma 8.3 that 7;(f)y is in
the domain of = , . By statement 1 of Lemma 8.4, let
4;,(p) be such that

Xidiy(B) ~ % ti(B)7- (29)

Lemma 8.5. Suppose x; is an arbitrary element of X, and
o;, P, andy are arbitrary elements of € such that x;o; is in
the domain of 2= , and B'=co;, and yi=co;. Then the
following two statements are true:

1. Ti(ﬂ)ﬁxxi.
2. 4iy(B) = cyiE e

Proof. Statement 1 follows from Eq.(28). To show
statement 2, note that by hypothesis 7%= co; and from
Eq. (29), statement 1 of this lemma, and statement 4 of
Lemma 8.4 that 4;,(f)=¢y. O

Lemma 8.6. Suppose x;o; is in the domain of
Z x> PEcdi, vi=coi, and 0%=co;. Then the following
three statements are true:

L Bi=cd if and only if 4;,(B)=c4:,(9),

2. At}v(ﬁ@é) = Ai,v’(ﬁ)@Ai’)’(‘S)-

3. For all { in C, if {3=cy then there exists 0 such that
G%COCZ‘ and A”(G) = C

Proof. 1. (i) Suppose f3=cd. Then by statement 3 of
Lemma 8.3, x;0 and x; are in the domain of 2= , , and
by statement 3 of Lemma 8.3,

xiéz *xiﬂa

which by Definition 8.5 yields
7i(0)o Z 5 Ti(B)ots,

which by statement 4 of Lemma 8.3 yields
()7 Z % Ti(B)7,

which by Definition 8.5 yields,
xidiy(0) Z % Xidiy(B),

and which by statement 5 of Lemma 8.3 yields
Aiy(B) 7 iy (9).
(i) Suppose 4;,(B)=c4diy(6). By Definition 8.5,

xidi,(p) and x;4;,(5) are in the domain of % ,, and
thus by statement 3 of Lemma 8.3,

Xidi5(0) Z x xidiy(B),

~

which by Definition 8.5 yields
Ti(1)0Z % Ti(7)B,

which by statement 5 of Lemma 8.3 yields
Bz co.

2. Since f=co; and 0 5= co, it follows from Theorem
8.1 that @ is positive (Definition 8.2), and thus that
P @ 0> cf=co;. By Definition 8.5,

Xidiy(B)~ xti(7)B

and

Xidi;(0) ~ % Ti(7)0.

Thus by statement 3 of Lemma 8.4,
Xi(4iy(B) @ 4i5(0)) ~ % () (F D). (30)

But by Definition 8.5,
() (BDO) ~ % xidi (BB I).
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Thus by Eq. (30),
Xi(4iy(B) @ 4i(0)) ~ % xidi, (BD ),

which by statement 5 of Lemma 8.3 yields
Aiy(B)®45(0)) = i, (BDI).

3. Suppose = ¢y. Then by statement 3 of Lemma 8.3,
xivi*xii- (31)

By statement 2 of Lemma 8.4, let y in X be such that
Yy~ weXil. (32)

Then by statement 4 of Lemma 8.4,

Xjr= cy. (33)
Thus by statement 2 of Lemma 8.3, yo; is in the domain
of 2z , . By statement 1 of Lemma 8.4, let 6 be such that
Xi0~ 5 yo;. (34)

Then by Definition 8.5,
Y= Ti(0)7 (35)

and by Eq. (32), { = 4,,(0). Thus to complete the proof
of statement 3, we need to only show that 0= co;. This
follows from Egs. (33), (34), and statement 4 of Lemma
84. O

Definition 8.6. A function L from C into R™ is said to be
an additive representation for (C, =¢, @ > if and only if
all « and o in C,

as=o iff L(o)>L(o) (36)
and
Lo@o) = L(«) + L(). (37)

Lemma 8.7. The following two statements are true:

1. There exists an additive representation for <{C,
o, @ ).

2. For all additive representations ¢ and ¢ of
(C,=c, @, there exists r in RT such that ¢ = r¢’.

Proof. Theorem 2.8.1 of Narens (1985) [I.

Definition 8.7. x;o;, i =1, ..., 1is said to be an unbounded
X-C sequence if and only if the following three
statements are true:

1. xjo; is in the domain of % , for all iel™.
2. For all o in C, there exists j in /" such that o> co;.
3. For all x in X, there exists k in [1 such that x; > yx.

Lemma 8.8. There exists an unbounded X—C sequence.

Proof. By Lemma 8.7, let ¢ be an additive representa-
tion for

C=<(C>c;®>.

It then easily follows from the fact that € is an extensive
structure (Definition 8.2) and ¢ is an additive repre-
sentation for € that ¢(C) has an infinite sequence of
elements, aj,o3,0s,..., such that for all o« in C,
o> cogr—1 for some positive integer k. For each positive
integer k, let Ao be an element of oy and ax;_; be
an element of A,;_; and x,_; be the element of X such
that ap;_; is in xp;_1. Then, it follows from Definitions
8.1 and 8.4 that xy;_jop—; is in the domain of 2, for
each positive integer k.

It easily follows from the fact that € is a concatena-
tion structure and ¢ is an additive representation for €
that ¢(C) has an infinite sequence of elements,
oo, 04, 0, ..., such that for all & in C, ay > co for some
positive integer k. For each positive integer k, let Ay, be
an element of ay;. Let a; be an element of 4,. By Axiom
12 let for each positive integer k, by, and By, be
elements of respectively X and % such that

(a2 A2) ~ (bak | Bax).-

We will show by contradiction that for each b in X there
exists a positive integer k such that by > yb. For
suppose not. Let b in X be such that bz by for all
positive integers k. By Axiom 12, let Bin % and b’ in X
be such that b~ xb' and (a2|42) ~ (b'|B). By the choice
of ap,04,06, let k be a positive integer such that
Ao > ¢B. Then By, >4 B. Thus since

Ay ~gBy and

(bak|Bak) ~ (az]42) ~ (b'| B),

it follows from statement 4 of Lemma 8.4 that by, > yb'.
Thus, because b~ yb', it follows that by > yxb, a
contradiction. For each positive integer k, let xp; be
the element of X of which by is an element, and let oy
be the element of C of which B, is an element. Then for
each positive integer k, xox0 is in the domain of = ,
and for each x in X, there exists an integer n such that
Xop > XX.

The sequence defined above by xjo;, i a positive
integer, is an unbounded X-C sequence. [

Lemma 8.9. Suppose x;0; is an unbounded X—C sequence,
Jj and k are positive integers, o; > coy, and f§, y, and o are
elements of C such that

B=cok, VEcw, and 0= c,

and Aixp(0) = 4;,(5). Then for all ( such that
=y, Arkp(l) and A;,(0) are defined and

A p(0) = 4;,(0).
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Proof. Suppose ( is an arbitrary element of C such that
(= coy. Since o > cay, it follows that (= cax. Thus by
statement 2 of Lemma 8.5, Arg({) and 4;,({) are
defined. Suppose A () #4;,({). A contradiction will
be shown. There are two cases to consider.

Case 1: A;,(0) > cdkp({). By Lemma 8.7, let L be an
additive representation for {C, =¢, @ >. Then

L(4;5(0)>L(4;4(0))-

By properties of the real number system, let m in [T be
such that

L(4;,(0) = L(4;,5()) > 27" L(4;,(9))-

Then, again by using properties of the real number
system, let p in I™ be such that

L(4;,(©)>p27"L(4;,(0)) = L(Ak 5 (0))- (38)

Since L is an additive representation, it follows from a
hypothesis of the lemma that L(4;,(5)) = L(4xp(0)),
which by Eq. (38) yields

L(4;,(0))>p27"L(4;,(5)) (39)
and
P27 L(Akp(0)) = L( Ak p(0)). (40)

By statement 2 of Lemma 8.6 and by the property of
additive representations expressed in Eq. (37), it easily
follows from Egs. (39) and (40) that

L(4;,(2"0)) > L(4;,(pd))
and
L(Akp(po)) = L(Akp(2"0)),

which by the property of additive representations
expressed in Eq. (37) and statement 1 of Lemma 8.6
yields

2" > cpo
and
P5 >F szCa

which contradicts that = is a total ordering.
Case 2: Axp(0) >c4;,((), follows by a similar argu-
ment. O

Lemma 8.10. Let x;0; be an unbounded X—C sequence.
Then
Ajy (o) = 7.

Proof. By Definition 8.5,
A7 (%) ~ % T ()7 ~ % X7,
and thus by statement 4 of Lemma 8.4, 4; (%) =y. O

Definition 8.8. Let x;0; be an unbounded X—C sequence.
Then a set & of elements of the form 4;,, where jel*

and yi=co;, is said to be a A-set (dependent on the
sequence x;o;) if and only if the following four
statements are true:

1. 7 #0.

2. For all 4;, and 45 in &, if 4;,(5) = Arp(d) for
some deC, then 4;,(c) = 4xp(0) for all ¢ common
to the domains of the functions 4;, and A g.

3. For all jel™ and all y3=co;, if there exist A5 in &
and ¢ in C such that 4,,(5) = 4, 43(5), then 4;, is in
.

4. For all 4;, and 4 3 in &, there exits ¢ in C such that

A; () = Ak p(9).

Definition 8.9. 1 is said to be a C-function if and only if
for some A4-set &,

=l

Lemma 8.11. Let x;o; be an unbounded X—C sequence, m
be a positive integer, and 1.’z co,. Then for all § in C,
there exist a positive integer p and an element 7y, of C such
that

o=y, and  Tp(0m)y,~ * Xph-

Proof. Since € = {C, =¢, @ ) is an extensive structure
(Theorem 8.1), it is easy to show that a positive integer k
can be found so that

kotmk(j/{.

Let 0 be an arbitrary element of C. Since € is an
extensive structure and x;o; is an unbounded X-C
sequence, it easily follows from Lemma 8.7 and
Definition 8.6 that a positive integer p can be found
such that o, = ca, and

3= cka. (41)

Since by hypothesis A/ co,, and by Definition 8.5

Ty (Ol ) 0y ~ 3¢ XpOlps,

it follows from statement 5 of Lemma 8.4 that y, can be
found such that

TP(O‘m)Vp ~ % Xph. (42)
By Definition 8.5,

Ty (Ol ) 0y ~ e X Oty (43)

Thus by applying statement 3 of Lemma 8.4 to Eq. (43)
k — 1 times,

Ty (otm) (kotp) ~ g Xp (Kot

which together with ko, = ¢/ implies
XpA2Z 4 Tp(om) (kotp),
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which by Eq. (42) yields

Tp (O‘m)'yp E * Tp (O(m) (kOCp) )

which yields

kup 7 CVp>

which by Eq. (41) yields
0 = C'))p. ]

Lemma 8.12. Let x;0; be an unbounded X—C sequence.
Then for each m in 1" and each )= co,, there exists a A-
set & dependent on x;o; such that A,,; is in & .

Proof. Let m be an arbitrary element of [*, and A be
an arbitrary element of C such that 13=co,. Let & be
the largest set of elements of the form A g, where k
isin [T and B3= cox, such that A is in 4 and for all 4y 4
in A4, if Ay g(0) = A,,,1(0) for some 6 in C, then 4y p(0) =
Am,i(o) for all ¢ common to the domains of Ay
and 4,,,. & exists by theorems of set theory. It
will be shown that % satisfies statements 1-4 of
Definition 8.8.

1. ##0 since 4,,; is in &.

2. Suppose 4;, and 4y g are in . Let o, be the largest
element of {a;, 0,0} and 6 be an element of C such
that é > co,. Then § is in the domains of 4;,, 4, and
Ay ;. By the definition of &,

Aj5(0) = A i (0) = Ak p(9).

Thus by Lemma 8.9, 4;,(g) = 4 (o) for all ¢ common
to the domains of 4, and A4 g.

3. Suppose Axp isin &, jisin I*, y=co;, §isin C,
and 4;,(0) = A p(0). Let o, be the largest element of
{, ok, 2, } and n be an element of C such that 1> co,,.
Then 5 is in the domains of 4;,,4,p, and 4,,;. By
Lemma 8.9, 4;,(n) =A4dip(n). Since Adxp is in
S, Arp(n) = Api(n). Thus

A;5(n) = Amsi(n).

Therefore by Lemma 8.9, 4;,(c) = 4,,,(c) for all ¢
common to the domains of 4;, and 4,,;. Thus 4;, is
in &.

4. Suppose 4;, and Aip are in . Then by the
argument presented in the numbered 2 paragraph
above, 4;,(0) = Axp(d) for some 6 in C. [

Lemma 8.13. Suppose f is a C-function. Then [ is an
automorphism of {<C,>=¢, ® >.

Proof. Throughout this proof let, by Definitions 8.8 and
8.9, & be a 4-set dependent on the sequence x;o; such
that

r=Us

It will first be shown that f is a function on C. Since f
is a union of binary relations, f is a binary relation.
Suppose (J,a) and (0, f) are arbitrary elements of /. By
Definitions 8.8 and 8.9 let 4;,, and 4, , in & be such that
4;,(0) = ooand 4y ;(0) = f. By statement 2 of Definition
8.7, « = . Since (4,a) and (9, ) are arbitrary elements
of f, it follows that f is a function.

It will now be shown that f is onto C. Let 6 be an
arbitrary eclement of C. Since by statement 1 of
Definition 8.8 & #0, let 4,,, be an element of . By
Lemma 8.10,

Am’/‘L(OCm) = A
By Lemma 8.11, let p in [ and y in C be such that

o0=cy and  T,(m)yZ g Xph-

Then by Definition 8.5,
Ap (o) = A

Thus by statement 3 of Definition 8.8, 4, , is in . Since
d%=c7, it follows from statement 3 of Lemma 8.6 that
Ay, (0) = 0 for some 0= ca,. Thus /" is onto C.

It will next be shown that f is defined on all of C. Let
0 be an arbitrary element of C. Since f is onto C, it
follows from Definitions 8.8 and 8.9 that «,, «, and 7
can be found so that 4,,,(«) = . Then by Definition 8.5
it follows that ¢3=co, and therefore by Definition 8.5
that 4,,(0) exists. Thus by Definitions 8.8 and8.9, f(J)
is defined.

Statements 1 and 2 of Lemma 8.6 together with
Definitions 8.8 and 8.9 show that f preserves =c¢
and @. Therefore f is an automorphism of {C,
7 @ > O

Lemma 8.14. Let x;0; be an unbounded X—C sequence,
and let ¢ be an additive representation for € =
(C,=c,®>. Then for each i in It there exists a
Sunction ; from {x|xeX and x;=xx} into R" such that
for all x, y, o, and B, if x;i=xX, Xi=xy, o>=cdi, and

P = o, then
o i LIS0)

e(@) " @)

Proof. Since ¢ is an additive representation for €, it
immediately follows that A = {(p(€),>=,+) is an
extensive structure that is isomorphic to €. It is well-
known that each automorphism 2 is a multiplication by
a positive real number.

For each i in [ and each x in X, if x;=xx, then for
some J, Xx;0~ xxo; and (by statement 4 of Lemma 8.4)
8= co;. Therefore, by Definition 8.5, for each i in [™ and
each x in X such that x;>=xx, let

1
S e )
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Leti, x, y, a,and f5, be arbitrary elements such that i is
in 1", x;=xx, xi%=xp, @=cw, and f=co. Then by
Definition 8.5,

xez W yB i T () w1t (0)B
i xidig[e (X)) 22w xidiglt ()]
iff Aiolt; ()] < cdiplt; ()]
iff @(disle; ! (%)) <@(diglz; ' ().

Since by Lemmas 8.12 and 8.13 4;, is part of an
automorphism of € and ¢ is an isomorphism of € onto
oA
o(4ialti' (¥)]) = oldia](o (77 (x)),
where @[4;,] is part of an automorphism of 2. Since by
Lemma 8.10 4;,(x;) = o, it then follows that ¢[4;,]

must be multiplication by ¢(a)/¢(o;). Therefore, by the
above sequence of logical equivalences,

i

Xz W ¥B i @(Aiale (D)) <o (diglr ' (v)])
iff o[4i.)(o(t; ' (x)) <oldip)(o(t; (1))
o) oB)
ff ((xl_)(p(i ()qu(ai) (t; " (»)
500 1 o)
@ (o) Yi(x) ~ (o) i (y)
e V() _W(p)
oo "

Lemma 8.15. Let x;0;, ¢;, and \; be as in Lemma 8.14.
For each positive integer i let z; be x| if x;>=xX|, and z; be
x; if x1%=xx;. (Thus in particular, z| =xz; for all positive
integers i.) Let

v=UGe.

Then  is a function from X into R™.

Proof. Since  is a union of functions,  is a set of
ordered pairs.
Let k be an arbitrary positive integer. Let

WI(ZA)
e )wk( k) =1 (z)-

Then the ordered pair (zx, r) is in . Suppose z is in the
domain of ;. Then (z, ') is in , where

lﬁ](Zj) 7)) — }’/
lﬁj(zf)l/jj( W=r (44)

By statement 1 of Lemma 8.4, let 6 and y be such that

Zj0 ~ ¥ Zk)-

Since zi=xz; and zi=xz, it follows by Lemma 8.14
that

Vi(z)  ed) ()

¥i(ze) o)

Thus
~ Y(zx) .
‘/’j(zk) = v (z) lrbj( 7)s

which by Eq. (44) yields

Wi (zx)
Y= vz Wy (zk) =7 45
w ( ) /( ) 1( k) ( )
To show ¥ is a function, suppose (x,s) and (x,s’) are
elements of . By the definition of , let j and k be such
that

¥ (z) —
W/(Zj) l//j(X)

and

lpl(zk) —
lpk(zk)l//k(X)

Without loss of generality, suppose that z;=xzr. Then
Zx is in the domain of ;. By statement 1 of Lemma 8.4,
let 4 and v be such that

XU~ 3 Zk V.
Then by Lemma 8.14,
V) el _ (v
Uilz)  o(v)  Wilzr)
and thus
Wy (zk)

b = Lo ). (46)
From

_hi(z) '

- w/(zj) ‘//j(x)a
it follows by Eq. (46) that

l/’l(zj)lp( ) ¥ (z) 1

:wmmmﬁﬁ>[¢um<ﬂbAjmm,
which by Eqs. (44) and (45) yields

lpl(zk> /

l//k(Zk)wk(X) s

To show that  is defined on all of X, let x be

an arbitrary element of X. Since x;o; is and unboun-

ded X-C sequence, let p be such that x,=cx. Then

x is in the domain of ¥, and thus is in the domain
ofy. O

Lemma 8.16. Let ¢ be an additive representation for
C=<C,%=c,®)>. Then there exists a function
from X into R such that for all xo and yp in the domain

Of,\./*a

xaz yypiff I'M;C;ZZEJ};.
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Proof. Let x;0; be an unbounded X-C sequence
and ¥ and ; as in Lemmas 8.15 and 8.14, and let xo
and yp be arbitrary elements of the domain of 2 ,
Since x;o; is an unbounded X-C sequence, let j be
such that

Xj%cx and Xjkcy.

By use of Lemma 8.4 it is easy to show that we can find 6
and y in C such that

d=ct, 7VFc%, and X~ x)y.

It will first be shown that

xoZ w¥Biff x(2@0) Z 4 y(BDY). (47)

First suppose xo ,yB. Since € is an extensive
structure, a @03 co and @y = cf. Thus x(a®J) and
y(B®7y) are in the domain of =, . Therefore, since
x0 ~ %y, it follows that from statement 3 of Lemma 8.4
that x(a @) Z , ¥(f@7y). Now suppose not xoz , yp.
Then yf > 4 xo. Thus, since xd ~ 4 yy, by statement 3 of
Lemma 8.4, y(f®7y)> xx(a@®J), and thus not
(2@ 0) 2 4 V(D).
Lemma 8.14 applied to xo ~ 4 yy yields

‘//j(x) ‘//j(J’)

00) o)’
and thus
(X)) = ¥;(»)e(d). (48)

Therefore by Eq.(47), Lemma 8.14, Definition 8.6,
Eq. (48), and Lemma 8.15,

xoz 4 yf iff x(e@)z L y(fDYy)
e Vi) %0)
iff w(a@fs) P(fD7Y)

¥;(x) . ()
o) + ¢(8)” o(B) + o(y)
iff wj(x)@(ﬁ) +lﬁ,~( x)o(y)
2;(0)e () + ;)9 (0)

iff () (B) = (v) ()

V)
(P)
)

iff

)
()
(u) @
Y(x)_w(

iff

o)~ o(B)
8.2. Proofs for Section 2

Lemma 8.17. Let {u,v) be a basic belief representation
for = and a and b be in X. Then

a~xb iff u(a)v(a) = u(b)v(b).

Proof.
a~yxb iff (ala,b)~ (bla,b)
@@ u(b)o(h)
u(a) +u(b) — u(a) +u(b)

iff u(a)v(a) = u(byo(b). O

Definition 8.10. For all @ and b in X, a~b if and only if
there exists e in X such that e#a, e#b and

(ele, b).

(ele;a)~

Theorem 8.2 (Theorem 2.1). Assume the basic belief
axioms (Definition 2.4) are true. Then the following two
statements hold:

1. (Representation theorem) There exists a basic belief
representation for 2 (Definition 2.3).
2. (Uniqueness theorem) Let

U = {u|{u,v) uis a basic belief representation for =},

and}

" ={v|<u,v) v is a basic belief representation for 2 }.
Then 9 and V" are ratio scales.

Proof. By Theorem 8.1 let ¢ be and additive representa-
tion for € = {C, =¢, ® ).

For each A€, let a4 be the element of C such that
Ae oy.

For each cin X, let (by Axiom 10 and Definition 8.10)
¢’ be such that cx ¢ and ¢+# ¢/, and let u be the function
on X defined by

. (P(O‘{c.,c’})
u(c) = —

(To show u is well-defined, let ¢’ be such that ¢~ ¢” and
c#c". It is only necessary to show oy, = ogeen. It
follows from Axiom 4 that {c,c'} ~4{c, "}, and thus
that Ofee} = O‘{c,c”}~)

1. Let A ={a,ay, ...,a,} be an arbitrary element of ¢
such that a,ay, ...,a, are distinct. Then by Axiom 10
and Definition 8.10, let A’ = {d’, d}, ...,d,} be such that
d,d),....d, are distinct, A~gAd', AnA' =0, axd,
and for i =1, ...,n, a;xd}. Because A~4A', it follows
that oy = oy, and thus that

P(oa) = (o).

Therefore, because ¢ is an additive representation for €,
=y Doy)

=@(oaoa)
- go[a{a,u’} @fx{ul,u’l} @ ---

2¢(oq)

LAY
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n

OC{aa’ + Z ® a{a,a}
1=1

Q)+
i=1
and thus

o(oq) =Y ule). (49)

ecA

=

Because ¢ is an additive representation for € and
Eq. (49) holds for all 4 in €, it follows that for all B and
Cin ¥,

Bz 4,C iff agi=couc
iff ¢(ag)=p(ac)

iff > u(b)=> u(c).

beB ceC

Let y be as in Lemma 8.16. Define the function v on
X as follows: for each ¢ in X, let x, be the element of X
such that eex, and let

u(e)
By Lemma 8.16 and Eq. (49) and the above definition
of v,

(ald) =z (b|B) iff Xa0lg 2Z 4 XpoLB
T b
T s
T 0" =0 =

Let A and B be arbitrary elements of . By Definition
8.1 and Eq. (49),

Az B iff aq=cop iff @(oq)=@(ap)

iff Z u(e) = Z u(e).
ecA eeB

2. Let <u,v) be a basic belief representation for =. It
is an immediate verification that for each s in
R, (su,v) is a basic belief representation for .

Suppose < t,v) is also a basic belief representation for
= . Then it follows from Eq. (49) that
u(A)=> ule) and 1(4) = t(e),

ecAd ecA

for A in %. It is easy to verify that i and 7 defined on C
by

U(og) =u(A) and f(oy) =1(A)

are additive representations for € = {(C, ¢, @ >. Since
by Lemma 8.7 the additive representations for € form a

ratio scale, let r be a positive real such that rii = . Then
ru=1t.

The above establishes that
U = {u|{u,v) uis a basic belief representation for =}
is a ratio scale.

Because {u,v), a basic belief representation for =, it
is an immediate verification that for each s in
R*, {u,sv) is a basic belief representation for 2.

Let a be an element of X, {z,v' ) be an arbitrary basic
belief representation for >, and reR™ be such that

v (a) = rv(a). (50)

Let b be an arbitrary element of X. To complete the
proof of statement 2, it is sufficient to show that

v (b) = rv(b).
Because
U = {u|{u,v) uis a basic belief reprsentation for =}

is a ratio scale, {ru,v) is a basic belief representation
for 2. For each Cin ¥, let

u(C) = Z u(c).
ceC
Case 1: az yb. Let Bin € be such that be B. Then by
Axiom 12 let ¢ in X and C in % be such that

c~xa and (c|C)~(b|B). (1)
Then by Eq. (51) and Lemma 8.17,
ru(a)v(a) = ru(c)v(c) and ru(a)v'(a) = ru(c)v'(c).(52)

By Eq. (51),
ru(c)o(c)  ru(b)v(b)

ru(C)  ru(B) (53)
and
ru(e)v'(c)  ru(b)v'(b)

u(C)  ru(B) (54)
Egs. (51)—(53) yield
u(a)v(a)  u(b)v(b)

W(C) ~ ulB) =
and Egs. (51), (52), and (54) yield
u(a)v'(a) _ u(b)v'(b)

u(C)  u(B) (56)
Then by Egs. (50), (55), and (56),
v (b) = rv(b).

Case 2: bz ya. Let A in € be such that ae A. Then by
Axiom 12 let ¢ in X and C in € be such that

c~xb and (c|C)~(alA). (57)
Then by Eq. (57) and Lemma 8.17,
ru(b)v(b) = ru(c)v(c) and ru(b)v'(b) = ru(c)v'(c).(58)
By Eq. (57),

ru(a)v(a)

ru(c)v(c)_
ru(C)  ru(A) (39)
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and
ru(e)v'(c)  ru(a)v'(a)

u(C)  ru(A) (60)
Eqgs. (57)—(59) yield
u(b)u(b) _ u(a)v(a)

u(C)  u(4)’ (61)
and Egs. (57), (58), and (60) yield
u(b)v'(b) _ u(a)v'(a)

u(C)  u(d) (62)

Then by Egs. (50), (61), and (62),
v'(b) = rv(b). O

Theorem 8.3 (Theorem 2.2). Assume the basic belief
axioms with binary symmetry (Definition 2.5). Then the
following two statements hold.

1. (Representation theorem) There exists a basic choice
representation for 2 (Definition 2.6).

2. (Uniqueness theorem) The set of basic choice repre-
sentations for 2 forms a ratio scale.

Proof. 1. Because the basic belief axioms with binary
symmetry imply the basic belief axioms, by Theorem 8.2
let (u,v) be a basic belief representation for 2. Then
by Theorem 8.2, (i) u is a function from X into R*, (ii)
for all 4 and B in &,
Az 4B iff Z u(a)= Z u(b),

aeAd beB
and (iii) for all finite conditional events (a|4) and (b|B)
of X,

. u(a) u(b)

iff v(a) .
ZeeA M(E) ZeeB u(e)

Thus to show statement 1, it is sufficient to show that for

all@and b in X,

v(a) =v(b) and

(al4) = (b|B) >v(b)

[az xb iff u(a)=u(b)].

Let a and b be arbitrary elements of X and 4 and B be
arbitrary elements of %. Suppose ae 4 and beB. By
Axiom 9, let ¢’ and &’ be such that a#d’, b#b', a~ yd',
and b~ yb'. Then by Definition 2.2,

(blb, b") ~ (b'|b, b). (63)

(ala,d)~ (d'|a,d’) and

Applying Theorem 8.2 to Eq. (63) yields,

v(@u(a)  v(d)u(d)
wla) +u(@)  ula) +ui@) 9

obJulb)  ou(t) )
ub) +u()  u(b) +u(d')

and applying Axiom 14 and Theorem 8.2 to Eq. (63)
yields >

ula) u(b)
v(a) u(a) +uld) v(b) u(b) + u(d') (65)
and
v(@u(a) — v(d)uld’)
u(a) +u(b)  u(@)+u(p) (66)

Another application of Axiom 14 and Theorem 8.2 to
Eq. (63) yields

v(@u(a)  o(d)u(d)
ula) + ) uld) +u(by 7
Eq. (64) implies v(a)u(a) = v(a')u(a’). Thus Eq. (66)
implies
u(a) + u(b) = u(d) + u(b), (68)

and Eq. (67) implies

u(a) +u(b') = u(d) + u(b). (69)
Adding Egs. (68) and (69) and reducing then yields,
u(a) = u(d),

which by Eq. (69) yields,

u(b) = u(b’),

and thus by Eq. (65),

v(a) = v(b). (70)

Thus to complete the proof of statement 1 it needs to
only be shown that

az yb iff u(a)=u(d).

By Definition 2.2, Theorem 8.2, and Eq. (70),

azxb iff (ala,b)z (bla,b)
. u(a) u(b)
it o) s ra® > "+ u

iff u(a) = u(b).

2. By Theorem 8.2,

WU = {u|{u,v) is a basic belief representation for =},
forms a ratio scale. Thus statement 2 is true. [
8.3. Proofs for Section 3

Lemma 8.18. Assume the belief axioms. By Theorem 2.1,
let {u,v) be a basic belief representation for Z . Define ii



L. Narens | Journal of Mathematical Psychology 47 (2003) 1-31 29

and © on F as follows: Let A be an arbitrary element of
F.

(i) Suppose A = 0. Define ii(A) =0 and 5(A4) = 1.

(i) Suppose A#Q. Let B be an element of# such that
A< B. By Axiom 17, let e, E, and f be such that
B~yE,

(4|B) ~ s(e|E),

f#e, f¢A, and

(fle.f) ~e(f1A{f}).

Then define ii(A) = u(e) and 5(A) = v(e).

Then the following three statements are true:

1. #(0) =0 and 5(0) = 1.

2. If for some a, A={a}, then u({a}) =u(a) and
o({a}) = v(a).

3. @ and © are well-defined on F: That is, if A#0 and
B, ¢, E and [ are such that B is in
g"., ACB/, B/fv(gE'/7
(A1B)~s(€|E),

J'#e, f¢A, and
(1'le" ") ~ ('l Auif'}),
then @(A) = u(e') and 5(A) = v(¢).

Proof. To simplify notation, for each nonempty C in %,
let

u(C) =" u(c).
ceC

1. Statement 1 immediately follows from condition (i).
2. Suppose A = {a}. Then By condition (ii),

(fle.s)~e(fla.f),

and thus

Ve (+f )u(f) =)@ (+f )u(f)’

yielding

i({a}) = u(e) = u(a). (71)
Also by condition (ii),

B~¢E and ({a}|B)~s(elE),

and thus

uB) =u(E) and U u(tap) = 200t

which together with Eq. (71) yields,
5({a}) = v(e) = v(a).

3. Assume the hypotheses of statement 3. Suppose
A#0. By condition (ii),

(fle.f)~e(f1AV{f}),

and thus

) 4=

yielding

u(e) = u(A). (72)
Similarly, the hypothesis

(F'le' f1) ~ (1 A0{f'})

yields

u(e) =u(A). (73)
Thus by Egs. (72) and (73),

i(A) = u(e) = u(e). (74)

Because by hypothesis,

(A|B)~s(e|E), (A|B)~s(¢'|E"), B~4E,
and B ~4FE,

it follows by Axiom 18 that

(ele, &)~ s(€le, &),

Thus by Theorem 2.1,
u(e)ole) _ u(e)v(e’)

u(e) +u(e) ule) +ule)

which by Eq. (74) yields

o(e) = v(e) = v(¢). O

Lemma 8.19. Assume the hypotheses and notation of
Lemma 8.18. Let A be a nonempty finite event of X, and
let, by definition,

u(A) = u(a).

Then

a(4) = a({a}) = u(a) = u(4).
acA aeA

Proof. Since {u,v) is a basic belief representation for
=, it follows by statement 2 of Lemma 8.18 that for
each x in X,

a({x}) = u(x).

Thus,
> a{ay) =) ula) = u(4),
aeA aeA

and by Egs. (73) and (74),
a(A) =u(4). O

Theorem 8.4 (Theorem 3.1). Assume the belief axioms

(Definition 3.2). Then the following two statements are true:

1. There exists a belief representation for =g with
context function u and definiteness function v.
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2. Let B be a belief representation for 2 o with context
function u and definiteness function v. Then the
following two statements are true:

(1) For all positive reals r and s there exists a belief
representation for Z s with context function ru
and definiteness function sv.

(i1) Let By be a belief representation for Z 5 with
context function u, and definiteness function v,
Then for some positive real numbers r and s,

up =ru and vy = sv.

Proof. 1. Let u, v, @, and ¥ be as in Lemma 8.18. For
each nonempty finite event of X, let, by definition,
u(C) =" u(c).

ceC
And for each finite event (A4|B) of X, let
i(A)
i(B)
Then it will be shown that B is a belief representation for
= g with context function # and definiteness function &
(Definition 3.3). It is immediate that conditions (i), (ii),
and (iv) of Definition 3.3 hold for B, #, and @.
Condition (iii) follows from the definition of # and
Lemma 8.19. To show condition (v), let (4|B) and
(C|D) be arbitrary conditional events.

Case 1: Either A=0 or C=0. Suppose
(A|B)z ¢(C|D). (i) If A =0, then by Axioms 15 and
16, C = 0. Thus by Eq. (75) and statement 1 of Lemma
8.18,

B(A|B) = 5(A) (75)

B(4|B) = 0>0 = B(C|D).

(i) If C =0, then by Eq. (75) and statement 1 of
Lemma 8.18,

B(4|B)>0 = B(C|D).

Suppose B(A|B)=B(C|D). If A =0, then B(C|D) =0,
which by Eq. (75) and the definition of & in Lemma 8.18
yields C =@, which by Axioms 15 and 16 yields
(A|B)z ¢(C|D). If C=0, then (A|B)zs(C|D) by
Axiom 12.

Case 2: A#0, C#0, and both B and D have at least
two elements: By Axiom 17, let e, E, f and g, G, h be
such that the following two conditions hold:

(1) B~4E, D~4G, e¢ A, g¢C, and
(A|B)~s(e|]E) and (C|D)~s(g|G).

(2) f#e, f¢A, h#g, h¢C, and
(fle,f)~s(flAU{f}) and

Then by Lemma 8.18,
ia(A) =u(e) and ©(A) = v(e).

(hlg, h) ~ s (h|C o {h}).

Because B~4FE and <{u,v) is a basic belief representa-
tion for 2, u(B) = u(E). By Lemma 8.19,

a(B) = u(B).
Thus,

_s A o ud) L ule)
Similarly,

e O _ o)

Thus, because {u,v) is a basic belief representation for
= and =, is an extension of >,

(4]B)2 £(C|D) iff (e|E) = (9]G)
, u(e) u(g)
ff >
iff B(4|B)=B(C|D).
Case 3: A= B or C = D. Because of statement 1 of
Axiom 19, we may assume that B and D are in 4. Then

by statement 2 of Axiom 12, let B’ and D’ be such that
BN(gB,, BﬂBl;ﬁ(b, DN(gD/, and DﬂD/?é(b, and

(A|B)2 £(C|D) iff (A|BUB)zs(C|DUD"). (76)

Thus by Case 2 (which has already been shown),
(ABUB) 2 4(CIDUD)

iff B(4|BUB')>B(C|DuD"). (77)
But by conditions (iii) and (iv) of Definition 3.3,
B(4|BuB') =1iB(A|B) and B(C|DuD') =1iB(C|D).

(78)

Thus by Egs. (76)—(78).
(A|B)z ¢(C|D) iff B(4|B)=B(C|D).

2. Part (i), statement 2 of the theorem follows by
direct verification. Because #(0) = 0 and for A#0, i1(A)
and 7(A) are defined to be, respectively, u(e) and v(e) for
an appropriately chosen element e of X, part (ii) follows
from statement 2 of Theorem 2.1, statement 2 of Lemma
8.18, and the definitions of # and 5. O
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