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Abstract

A theory of belief is presented in which uncertainty has two dimensions. The two dimensions have a variety of interpretations. The

article focusses on two of these interpretations.

The first is that one dimension corresponds to probability and the other to ‘‘definiteness,’’ which itself has a variety of

interpretations. One interpretation of definiteness is as the ordinal inverse of an aspect of uncertainty called ‘‘ambiguity’’ that is

often considered important in the decision theory literature. (Greater ambiguity produces less definiteness and vice versa.) Another

interpretation of definiteness is as a factor that measures the distortion of an individual’s probability judgments that is due to specific

factors involved in the cognitive processing leading to judgments. This interpretation is used to provide a new foundation for

support theories of probability judgments and a new formulation of the ‘‘Unpacking Principle’’ of Tversky and Koehler.

The second interpretation of the two dimensions of uncertainty is that one dimension of an event A corresponds to a function that

measures the probabilistic strength of A as the focal event in conditional events of the form AjB; and the other dimension
corresponds to a function that measures the probabilistic strength of A as the context or conditioning event in conditional events of

the form CjA: The second interpretation is used to provide an account of experimental results in which for disjoint events A and B;
the judge probabilities of AjðA,BÞ and BjðA,BÞ do not sum to 1.
The theory of belief is axiomatized qualitatively in terms of a primitive binary relation h on conditional events. (AjBhCjD is

interpreted as ‘‘the degree of belief of AjB is greater than the degree of belief of CjD:’’) It is shown that the axiomatization is a
generalization of conditional probability in which a principle of conditional probability that has been repeatedly criticized on

normative grounds may fail.

Representation and uniqueness theorems for the axiomatization demonstrate that the resulting generalization is comparable in

mathematical richness to finitely additive probability theory.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

1.1. Introduction

That beliefs can be compared in terms of strength is
intuitively compelling. The validity of such comparisons
underlie the justifications of many practical methods of
decision, for example, ‘‘beyond a reasonable doubt’’
decisions by juries, selecting treatments for medical
patients, etc. de Finetti (1931, 1937) proposed that
strengths of belief could be measured and compared
through subjective probabilities. However, many
thought this proposal unwarrantably restrictive, because
it excluded important belief situations such as normative
theories evidence (e.g., Shafer, 1976) or descriptive
theories of how individuals evaluate uncertain proposi-
tions (e.g., Tversky & Koehler, 1994; Rottenstreich &

Tversky, 1997). Various alternatives to subjective
probability for measuring belief have been proposed in
the literature. A major drawback to most of them was
that they lacked interesting mathematical structure and
effective means of calculation for understanding and
manipulating degrees of belief.
Traditionally the probability calculus, as encom-

passed by the axioms proposed by Kolmogorov
(1933), has been taken as the normative calculus for
manipulating degrees of uncertainty. While the Kolmo-
gorov calculus is arguably a very good idea for
situations like casino gambling in which long random
sequences exist and are easily observable, it is much
more controversial for cases of uncertainty in which
random sequences are either difficult to observe or are
impossible by the nature of the events involved.
This article investigates an alternative to the prob-

ability calculus that is based on the idea that uncertainty
is measured by probability and an additional dimension.E-mail address: lnarens@uci.edu.
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This alternative is viewed as a very modest general-
ization of the probability calculus. As such, it allows for
a focussed discussion about its acceptability as a
generalization of various concepts based on the prob-
ability calculus.
In the literature, there are several different founda-

tional approaches to probability that produce calculi
satisfying the Kolmogorov axioms. (Various examples
can be found in Fine, 1973; van Lambalgen, 1987.) In
particular, de Finetti (1937) and Savage (1954) pio-
neered approaches designed to capture personal or
subjective probability functions, and the theory of
conditional belief developed here extends these and
related approaches to a more general class of personal
measuring functions that takes into account not only
uncertainty but also possibly information about the
nature of the uncertainty, and in certain psychological
settings information about the processing of uncertain-
ties. Like de Finetti and Savage, the theories of
conditional belief developed in the article are axiomatic
and based on a primitive qualitative preference ordering.
Several axiomatizations of increasing complexity are
presented. They are all motivated in part by the fact that
they can be viewed as specific weakenings of corre-
sponding axiomatic systems for related versions of
conditional probability.
For events e and f ; let ðeje; f Þ stand for ‘‘likelihood of

e occurring if either e or f occurs.’’ The key axiom of
conditional probability that is deleted in all the general-
izations presented in this article asserts that for all
distinct states of the world a; b; c; and d; if

ðaja; bÞBðbja; bÞ and ðcjc; dÞBðdjc; dÞ; ð1Þ
then

ðaja; bÞBðcjc; dÞ ð2Þ
and

ðaja; cÞBðbjb; dÞ: ð3Þ
The intuition for the desirability of the above deletion

is the following: Assume

ðaja; bÞ ¼ ðbja; bÞ and ðcjc; dÞ ¼ ðdjc; dÞ: ð4Þ
In the context of the other axioms for conditional
probability, the above asserts that if a and b have
equal likelihood of occurring and c and d have
equal likelihood of occurring, then the conditional
probabilities of ðaja; bÞ and ðcjc; dÞ are 1

2
; and the

conditional probabilities of ðaja; cÞ and ðbjb; dÞ are the
same.
Suppose Eq. (1) and the judgment of equal likelihood

of the occurrences of a and b; given either a or b occurs,
is based on much information about a and b and a good
understanding of the nature of the uncertainty involved,
and the judgment of equal likelihood of the occurrences
of c and d; given either b or d occurs, is due to the lack
of knowledge of b and d; for example, due to complete

ignorance of c and d: Then, because of the differences in
the understanding of the nature of the probabilities
involve, a lower degree of belief may be assigned to
ðcjc; dÞ than to ðaja; bÞ; thus invalidating Eq. (2).
Suppose Eq. (1) and the judgements of the likelihoods

of the occurrences of a and c; given either a or c occurs,
are based on much information about a and c and the
nature of the uncertainty involved, and the judgment the
likelihoods of the occurrences of b and d given either b

or d occurs is due to the lack of knowledge of b and d:
This may result in different degrees of belief being
assigned to ðaja; cÞ and ðbjb; dÞ; and such an assignment
would invalidate Eq. (3).
The primary goal of this article is to examine

axiomatic theories of belief that result by making the
above deletion. These theories will be evaluated in terms
of their mathematical power, philosophical acceptabil-
ity, and applicability.
Such axiomatic theories provide generalizations of

subjective conditional probability. The generalizations,
which are called theories of subjective conditional belief

or conditional belief for short, will have similar levels of
calculative power and mathematical richness as sub-
jective conditional (finitely additive) probability. In
addition, they will also provide for nonprobabilistic
dimensions of belief, for example, a dimension of
‘‘ambiguity.’’

Convention 1.1. Let A be a subset of the nonempty set
B: In this article, when discussing ðAjBÞ; A will often be
referred to as the choice set, choice, or focus (of ðAjBÞ)
and B as the context (of ðAjBÞ).

In some belief situations, we have for each choice A in
context B very good evidence for the strength of ðAjBÞ—
and in other belief situations, we have only poor
evidence for evaluating the strength of ðCjDÞ for choices
C in context D: In cases with good evidence for all
choice and context sets, I believe it is reasonable to
measure the strength of beliefs as probabilities; and in
cases where there is poor evidence for some choice sets, I
agree with Shafer (1976) and others that on normative
grounds it is unreasonable to demand that strengths of
belief be measured as probabilities. In this article,
strengths of belief will be measured as ‘‘degrees of
belief,’’ which like probabilities are nonnegative real
numbers, but unlike probabilities, (i) need not be less
than or equal to 1, and (ii) need not be additive for
beliefs of unions of disjoint events.

1.2. Belief functions

Definition 1.1. Let D be a nonempty set. Then kD is said
to be a belief function on D if and only if kD is a function
on the set of subsets of D such that for each EDD; (i)
0pkDðEÞ; and (ii) kDðEÞ ¼ 0 iff E ¼ |:
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Let kD be a belief function. Then the following
definitions hold:

(i) The value of kD on a subset E of D; kDðEÞ; is called
E’s degree of belief (under kD).

(ii) kD is additive if and only if and for all subsets E

and F of D; if E-F ¼ |; then kDðE,FÞ ¼
kDðEÞ þ kDðFÞ:

(iii) kD is monotonic if and only if for all subsets E and
F of D; if ECF then kDðEÞokDðFÞ:

(iv) kD is modest if and only if it is monotonic and for
all subsets E of D;
0pkDðEÞp1:

(v) kD has norm 1 if and only if kDðDÞ ¼ 1:
(vi) kD is a subjective probability function if and only if

it has norm 1 and is modest and additive.

Lemma 1.1. Let kD be a belief function. Then the

following two statements are true:

1. If kD is additive, then it is monotonic.
2. If kD has norm 1 and is additive, then it is a subjective

probability function.

Proof. Immediate from Definition 1.1. &

The values of a belief function are called degrees of

belief, and when the belief function is a subjective
probability function, they are often called subjective

probabilities or simply probabilities. Under one inter-
pretation, degrees of belief are distortions of subjective
probabilities that take into account nonprobabilistic
aspects present in the choice situation, for example,
‘‘ambiguity.’’ Under this interpretation, it may be the
case that some degrees of belief of elements of D distort
probability by producing an increase and others by
producing a decrease so that over D the effects of the
distortions cancel and kDðDÞ ¼ 1:
In Sections 2 and 3 axiomatic, qualitative character-

izations of belief functions of the form

kBðAÞ ¼ PBðAÞvðAÞ

are presented, where PB is a finitely additive probability
function on B and v is from a ratio scale of functions
into the positive reals. For each family of subsets D on
which v is constant, kB acts on D like a finitely additive
probability function in the sense that for all E and F in
D such that E-F ¼ |;

kBðE,FÞ ¼ kBðEÞ þ kBðFÞ:

This form of additivity need not hold for events with
different v-values. These features of kB are use in this
article to account for various empirical phenomena in
observed in human probability estimation. In particular
phenomena described by the Ellsberg Paradox, Tvers-

ky’s and Koehler’s support theory, Rottenstreich’s and
Tversky’s generalization of support theory, and Bren-
ner’s and Rottenstreich’s asymmetric support theory are
accounted for.
The belief theories presented in this article may

interpreted as either descriptive or normative theories.
As descriptive theories, they may be useful as alter-
natives for existing theories and as a means for
suggesting new experimentation. A separate article will
argue for their acceptability as normative theories for
certain kinds of probabilistic situations.

2. Basic axioms for conditional belief

In this section qualitative characterizations of various
systems of conditional belief are presented and quanti-
tative representation and uniqueness theorems are
shown for them.
For purposes of presentation, the proofs of the

theorems stated in this section are given in Section 7.

Definition 2.1. Throughout this articleD will denote the
subset relation, C the proper subset relation, R the real
numbers, Rþ the positive real numbers, I the integers,
and Iþ the positive integers.
Throughout the article, h will denote a binary

relation that is transitive, reflexive, and connected
(either xhy or yhx for all x; y in the domain of h).
Such transitive, reflexive, and connected relations on
nonempty sets are called weak orderings. The symmetric
part of h is denoted by B; and is defined by,

xBy iff xhy and yhx;

for all x and y in the domain ofh; and the asymmetric
part of h is denoted by g and is defined by,

xgy iff xhy and not yhx:

Throughout this article X will denote an infinite set of
objects. By definition, a context is a finite subset of X

that has at least two elements. C will denote the set of
contexts. The notation ðajCÞ will denote C is a context
and aAC: ‘‘ðajCÞ’’ will often be read as ‘‘strength of
a in the context C:’’ When C ¼ fa; a1;y; ang; ðajCÞ
will often be written as ðaja; a1;y; anÞ: By convention,
the notation ðaja; a1;y; anÞ assumes the elements
a; a1;y; an are distinct.
A nonempty set S of functions from a nonempty set

Y into Rþ is said to be a ratio scale if and only if (i) for
each rARþ and each fAS; rfAS; and (ii) for all f and g

in S there exists s in Rþ such that f ¼ sg:
A nonempty set S of functions from a nonempty set

Y into Rþ is said to be an interval scale if and only if (i)
for each rARþ; each s in R; and each fAS; rf þ sAS;
and (ii) for all f and g inS there exist r in Rþ and s in R
such that f ¼ rg þ s:
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2.1. Basic belief axioms

The Basic Belief Axioms consist of the following 12
axioms. They provide the mathematical core of the
axiom systems for this article.

Axiom 1. h is a weak ordering on the set

fða;CÞjCAC and aACg:

Axiom 2. Suppose AAC; aAA; and B is a nonempty

finite subset of X such that B-A ¼ |: Then

ðajAÞgðajA,BÞ:

Axiom 3. Suppose A;B are in C and C is a nonempty

finite subset of X such that A-C ¼ B-C ¼ |; and

suppose a and b are elements of X. Then

(i) if aAA and aAB; then

ðajAÞhðajBÞ iff ðajA,CÞhðajB,CÞ;

(ii) if aAA and bAA; then

ðajAÞhðbjAÞ iff ðajA,CÞhðbjA,CÞ;
and

(iii) if aAA; aAB; bAA; and bAB; then

ðajAÞhðajBÞ iff ðbjAÞhðbjBÞ:

Through the use of Axiom 3, h induces natural
orderings on X and C as follows:

Definition 2.2. Define hX on X by: for all a; b in X ;
ahX b if and only if there exists a finite set C such that

CDX � fa; bg and ðajfa; bg,CÞhðbjfa; bg,CÞ:
Note that it follows from Axiom 3 and the definition

of hX on X above that ahX b if and only if for all C

if C is finite and CDX � fa; bg;
then ðajfa; bg,CÞhðbjfa; bg,CÞ:
Similarly define hC on C by: for all C;D in C;

DhCC if and only if

ðajfag,CÞhðajfag,DÞ
for some a in X such that a is not in C,D: Note that it
follows from Axiom 3 and the definition of h on C
above that DhCC if and only if

ðajfag,CÞhðajfag,DÞ
for all a in X such that a is not in C,D:

Note that Definition 2.2 says that ChCD if and
only if for some a in X � ðC,DÞ the strength of a in
context fag,C is less than or equivalent to its strength in
context fag,D: Also note it immediately follows

from the fact that h is a weak ordering that the
induced orderings on X and C described above are also
weak orderings.

Definition 2.3. An ordered pair of functions /u; vS is
said to be a basic belief representation for h if and only
if the following three conditions hold:

1. u and v are functions from X into Rþ:
2. For all C;D in C; ChCD iffX

eAC

uðeÞX
X
eAD

uðeÞ:

3. For all distinct a; a1;y; an and all distinct
b; b1;y; bm;

ðaja; a1;y; anÞhðbjb; b1;y; bmÞ

if and only if

vðaÞ uðaÞ
uðaÞ þ uða1Þ þ?þ uðanÞ

XvðbÞ uðbÞ
uðbÞ þ uðb1Þ þ?þ uðbmÞ

:

Axioms 2 and 3 are necessary conditions for the
existence of a basic belief representation for h—as is
easy to verify directly through Definition 2.3. Similarly,
direct verification shows that the following three axioms
are also necessary for the existence of a basic belief
representation for h:

Axiom 4. For all a; b; c; e; and f in X ; if

aab; aac; ðeje; aÞBðeje; bÞ; and ðf jf ; aÞBðf jf ; cÞ;

then fa; bgBCfa; cg:

Axiom 5. For all a; a0; b; b0 in X and all A;A0;B;B0 in C; if

aBX a0; bBX b0; and A-A0 ¼ B-B0 ¼ |; then the

following two statements are true:

1. If ðajAÞhðbjBÞ and ða0jA0Þhðb0jB0Þ; then ðajA,
A0ÞhðbjB,B0Þ:

2. If ðajAÞgðbjBÞ and ða0jA0Þhðb0jB0Þ; then ðajA,
A0ÞgðbjB,B0Þ:

Axiom 6. Suppose a; b are arbitrary elements of X and

A;B are arbitrary elements of C and aAA and bAB: Then

the following two statements are true:

1. If ABCB then

ahX b iff ðajAÞhðbjBÞ:

2. If aBX b then

AhCB iff ðbjBÞhðajAÞ:
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Axiom 5 in the presence of the other axioms
corresponds to a well-investigated axiom of measure-
ment theory known as ‘‘distributivity.’’ Axiom 6
corresponds to another well–investigated axiom of
measurement theory known as ‘‘monotonicity.’’
To obtain strong results about basic belief representa-

tions for h; other axioms are needed. The following
ones imply that the situation under consideration is rich
in objects and contexts.

Axiom 7. For all aAX and BAC; if BhCA for some A in

C such that aAA; then there exist cAX and CAC such

that aBX c; BBCC; and cAC:

Axiom 8. For all a; b in X and all A in C; if aAA and

ahX b; then there exists c in X and C in C such that

bBX c; ABCC; and cAC:

Axiom 9. For all A;B in C and all bAB; there exist cAX

and C in C such that bBX c; BBCC; A-C ¼ | and

ðbjBÞBðcjCÞ:

Axiom 10. For each A ¼ fa1;y; ang in C there exist

A0 ¼ fa0
1;y; a0

ng in C and e in X such that A-A0 ¼ |;
feg-ðA,A0Þ ¼ |; and for i ¼ 1;y; n;

ðeje; aiÞBðeje; a0
iÞ:

Axiom 11. For all A;B in C; if AgCB then there exists C

in C such that B-C ¼ | and AgCB,C:

Axiom 12. The following two statements are true:

1. For all a; b in X and all A in C; if aAA and bhX a; then

there exist c and C such that

cBX b and ðcjCÞBðajAÞ:

2. For all a in X and all A;B in C; if aAA; then there exist

c and C such that

CBCB and ðcjCÞBðajAÞ:

Axiom 13 (Archimedean axiom). For all A;B;B1;y;
Bi;y in C; if for all distinct i; j in Iþ Bi-Bj ¼ | and

BiBCB; then for some nAIþ[n

k¼1
BkhCA:

Definition 2.4. Axioms 1–13 are called the Basic Belief

Axioms.

Theorem 2.1. Assume the basic belief axioms (Definition

2.4) are true. Then the following two statements hold:

1. (Representation theorem) There exists a basic belief

representation for h (Definition 2.3).

2. (Uniqueness theorem) Let

U ¼ fujthere exists v such that /u; vS is a basic belief

representation for hg

3. and

V ¼ fvjthere exists u such that /u; vS is a basic belief

representation for hg:

4. Then U and V are ratio scales.

Proof. Similar to Theorem 8.2. &

2.2. Basic belief axioms with binary symmetry

Axiom 14 (Binary symmetry). Let a; b; c; and d be

arbitrary, distinct elements of X such that

ðaja; bÞBðbja; bÞ and ðcjc; dÞBðdjc; dÞ:
Then

ðaja; bÞBðcjc; dÞ
and

ðaja; cÞBðbjb; dÞ:

Definition 2.5. The basic belief axioms with binary

symmetry consists of the basic belief axioms together
with the axiom of binary symmetry (Axiom 14).

Definition 2.6. A function u is said to be a basic choice

representation for h if and only if the following four
conditions hold:

1. u is a function from X into Rþ:
2. For all a; b in X ; ahX b iff uðaÞXuðbÞ:
3. For all C;D in C;

ChCD iff
X
eAC

uðeÞX
X
eAD

uðeÞ:

4. For all distinct a; a1;y; an and all distinct
b; b1;y; bm;

ðaja; a1;y; anÞhðbjb; b1;y; bmÞ

5. if and only if

uðaÞ
uðaÞ þ uða1Þ þ?þ uðanÞ

X
uðbÞ

uðbÞ þ uðb1Þ þ?þ uðbmÞ
:

Theorem 2.2. Assume the basic belief axioms with binary

symmetry (Definition 2.5). Then the following two

statements hold:

1. (Representation theorem) There exists a basic choice

representation for h (Definition 2.6).
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2. (Uniqueness theorem) The set of basic choice repre-

sentations for h forms a ratio scale.

Proof. Similar to Theorem 8.3. &

2.3. Comments

For intuitive purposes, the axioms presented through-
out this article may be divided into three rough
categories: (i) substantive axioms that reveal important
structural relationships about conditional probability
and belief; (ii) richness axioms that guarantee that we are
dealing with rich probabilistic and belief situations; and
other axioms that belong to neither categories (i) nor (ii).
The role of the substantive axioms is to describe what
conditional probability and belief are in rich settings;
and the role of the richness and other axioms is to
guarantee that such a description can be made easily and
will work. Examples of richness axioms are Axioms 7–
12 that state the existence of certain kinds of solvability
relations in terms ofB andg: The Archimedean axiom
(Axiom 13) is an example of an ‘‘other axiom.’’
Throughout this article, richness axioms are freely
employed to simplify exposition. In some instances this
results in redundancy in the axioms. However, having
nonnecessary and sometimes redundant or unneeded
axioms does not impede the main objectives of the
article—to formulate and evaluate generalizations of
conditional probability in terms of normativeness,
mathematical power, and applicability. The substantive
axioms thus far are Axioms 1–6 and binary symmetry
(Axiom 14).
As Theorem 2.2 shows, the basic belief axioms with

binary symmetry qualitatively describes a situation of
conditional probability. Taking the perspective that
conditional belief may differ from conditional prob-
ability, it then follows that there may be situations in
which one or more of the basic belief axioms with binary
symmetry may fail to adequately characterize condi-
tional belief. The basic belief axioms assume such a
possible failure, namely the failure of binary symmetry
(Axiom 14). That binary symmetry should be invalid in
certain kinds of belief and choice situations has been
repeatedly suggested in the literature.
The objective of this article is to give and evaluate

extensions of the basic belief axioms as theoretical
alternatives to conditional probability. Of course, such
extensions are likely at best to produce only partial
theories of conditional belief, because only binary
symmetry (Axiom 14) is deleted. To obtain general
theories of belief, other axioms will likely have to be
changed as well. Thus, the theories of conditional belief
of this paper should be viewed and evaluated as
particular generalizations of conditional probability
which apply to a restricted set of belief situations.

Because in many ways these theories can be viewed as
minimal generalizations that result from elimination of
an obvious questionable principle for conditional belief
(binary symmetry), they are ideal candidates for
preliminary investigation.

2.4. The BTL model of choice

The basic belief axioms with binary symmetry
(Definition 2.5) provide (via Theorem 2.2) a qualitative
description of a widely used, important quantitative
model in the behavioral sciences called the ‘‘BTL
Model:’’
Much behavioral science research involves the model-

ing of the probabilistic choice of objects from a set of
alternatives. A particularly important model is one in
which objects are assigned positive numbers by a
function u so that the probability p that object a is
chosen from the set of alternatives faja1;y; ang is given
by the equation,

p ¼ uðaÞ
uðaÞ þ uða1Þ þ?þ uðanÞ

: ð5Þ

In the literature, this model is often called the Bradley–

Terry–Luce model, which is often abbreviated to the
BTL model.1

There are many ways in which the ordering h on
choice strengths of objects in contexts can be established
empirically. In particular, by letting ‘‘ðajAÞhðbjBÞ’’
stand for ‘‘The conditional probability of a being chosen
from A is at least as great as the conditional probability
of b being chosen from B;’’ a model of the basic belief
axioms with binary symmetry results. However, other
interpretations can be given to h that also yield the
basic belief axioms with binary symmetry. The added
flexibility of multiple interpretations of primitives is one
of the great strengths of the qualitative approach to
axiomatization. This extends to the basic belief axioms.
For example, the characteristic property of the BTL
model of choice is that context plays no role in
determining the odds of alternatives (Luce’s Choice
Axiom). Smith and Yu (1982) formulate a quantitative
generalization where the odds of alternatives may vary
with the contexts in which they occur. In this general-
ization, the function

PðxjCÞ
ZðxÞ ;

1A special case of the BLT model,

p ¼ uðaÞ
uðaÞ þ uða1Þ

: ð6Þ

was used by the famous set-theorist E. Zermelo to describe the power

of chess players (Zermelo, 1929). The choice models implicit in Eqs. (5)

and (6) have been used by Bradley and Terry (1952), Luce (1959), and

many others in behavioral applications.
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which is mathematically equivalent to PðxjCÞvðxÞ; is
used as a measure of the ‘‘context sensitivity’’ of x in
context C: ðPðxjCÞ denotes the probability of x given
C:) Thus, by Theorem 2.1, the basic belief axioms
provide a qualitative account of ‘‘context sensitivity.’’
Smith and Yu apply their theory to choice situa-
tions in which there is a similarity structure on the
alternatives.

3. Belief axioms

Definition 3.1. Let

F ¼ fF jF is a finite subset of Xg:
Elements ofF are called finite events (of X ). Elements of
F� f|g are called context events (of X ). In the notation
‘‘ðAjBÞ;’’ where A is inF; B is inF� f|g; and ADB; A

is called the focal event of ðAjBÞ and B is called
the context event of ðAjBÞ: By definition, the finite

conditional events (of X ) consists of all ðAjBÞ where
AAF; B inF� f|g; and ADB: (In terms of the earlier
notation, in ‘‘ðaja; bÞ;’’ a is focal event fag and a; b is the
context event fa; bg; and thus ðaja; bÞ is the same as
ðfagjfa; bgÞ:

The basic belief axioms and basic belief axioms with
binary symmetry are concerned with finite conditional
events ðAjBÞ; where B has at least two elements and A

has the special form A ¼ fbg for some b in B: This
section extends these axiom systems to all finite
conditional events. To accomplish this, a new primitive
relation hE is introduced and additional axioms
involving hE are assumed.

Axiom 15. The following two statements are true:

(1) hE is a weak order on the set of finite conditional

events of X.
(2) hE is an extension of h (where h is as in Axiom 1).

Finite conditional events of the forms ð|jBÞ; ðAjBÞ
with A having at least two elements, and ðBjBÞ are
not involved in the h-ordering. The following four
axioms specify, with respect to the h-ordering, the
placement within the hE-ordering of these three kinds
of events.

Axiom 16. The following two statements are true for all

finite conditional events ðAjBÞ of X and all context events

C of X:

(1) ðAjBÞBEð|jCÞ iff A ¼ |:

(2) if Aa| Then ðAjBÞgEð|jCÞ:

Axiom 17. For each nonempty finite event A of X there

exists e in X � A such that

(1) for each finite event B of X, if |CACB (and

therefore B has at least two elements), then there

exists E in C such that BBCE (Definition 2.2) and

ðAjBÞBEðejEÞ; and

(2) there exists f in X such that fae; feA; and

ðf je; f ÞBEðf jA,ff gÞ:

Axiom 18. Suppose |CACB; |CACB0; eAE; e0AE0;
BBCE; B0BCE0; and

ðAjBÞBEðejEÞ and ðAjB0ÞBEðe0jE0Þ:
Then

ðeje; e0ÞBðe0je; e0Þ:

Axiom 17 associates with each finite conditional event
ðAjBÞ; with Aa| and B having at least two elements, a
finite conditional event of the form ðejEÞ; where eAX

and EAC; such that

ðAjBÞBEðejEÞ:
Since BE is an extension of h; this allows the
placement of ðAjBÞ in thehE-ordering to be determined
by the placement of ðejEÞ in the h-ordering.
Axioms 17 and 18 play a critical role in extending a

basic belief representation /u; vS for h to elements of
the domain ofhE: (uðAÞ is defined to be uðeÞ and vðAÞ
is defined to be vðeÞ; where e is as in condition (1) of
Axiom 17.)

Axiom 19. The following two statements are true:

1. For each a in X there exists E in C such that

ðfagjfagÞBEðEjEÞ:

2. Let ðAjBÞ and ðCjDÞ be arbitrary finite conditional

events such that B and D are in C: Then there exist

finite events B0 and D0 such that B-B0 ¼ |; BBCB0;
D-D0 ¼ |; DBCD0; and

ðAjBÞhEðCjDÞ iff ðAjB,B0ÞhEðCjD,D0Þ:

Definition 3.2. The belief axioms consist of the basic
belief axioms (Definition 2.4) together with Axioms
15–19.

Definition 3.3. B is said to be a belief representation for

hE with context function u and definiteness function v if
and only if the following three conditions hold:
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(i) u and v are functions from F into, respectively,
Rþ,f0g and Rþ:

(ii) For each C in F;

C ¼ | iff uðCÞ ¼ 0;
and

if Ca|; then uðCÞ ¼
X
cAC

uðfcgÞ:

(iii) B is a function on the finite conditional events of X

such that for all finite conditional events ðAjBÞ and
ðCjDÞ of X ;

ðAjBÞhEðCjDÞ iff BðAjBÞXBðCjDÞ
and

BðAjBÞ ¼ vðAÞuðAÞ
uðBÞ:

Belief representations forhE with context function u

and definiteness function v are useful in applications
where one wants to characterize events in terms of a
probabilistic dimension and another dimension. For the
purposes of this article, the other dimension is called
‘‘definiteness.’’ Definiteness may split into additional
dimensions. In the intended interpretations, u measures
the probabilistic dimension and v measures definiteness.
One naturally encounters various kinds of ‘‘definite-
ness,’’ and the intended interpretations of v may vary
with the kinds of definiteness.
Consider the example of evaluating evidence in

criminal cases. Here we assume that ‘‘guilty beyond a
reasonable doubt’’ is determined by having a sufficiently
high ‘‘degree of belief.’’ Consider the following two
situations: (1) where the evidence is purely circumstan-
tial, and (2) where the evidence is almost entirely
physical. Suppose the subjective probabilities for the
two situations are the same, e.g., 0:998: I believe it is
reasonable in this case to assign (2) a higher degree of
belief than (1). This reflects the idea that degree of belief
depends not only on probabilities, but also on the kinds
of evidence that the probabilities are based on. A
particular version of this idea is presented in the concept
of ‘‘belief representation ofhE with context function u

and definiteness function v:’’
Definiteness may also be viewed as an ordinal

opposite of the following ‘‘ambiguity’’ concept of
Ellsberg (1961, pp. 659–660):

Let us assume, for purposes of discussion, that an
individual can always assign relative weights to
alternative probability distributions reflecting the
relative support given by his information, experience
and intuition to these rival hypotheses. This implies

that he can always assign relative likelihoods to the
states of nature. But how does he act in the presence
of his uncertainty? The answer to that may depend on
another sort of judgment, about the reliability,
credibility, or adequacy of his information (including
his relevant experience, advice and intuition) as a
whole: not about the relative support it may give to
one hypothesis as opposed to another, but about its
ability to lend support to any hypothesis at all.
If all the information about the events in a set of

gambles were in the form of sample-distributions, the
ambiguity might be closely related, inversely to the
size of the sample. But sample-size is not a universally
useful index of this factor. Information about many
events cannot be conveniently described in terms of a
sample distribution; moreover, sample-size seems to
focus mainly on the quantity of information.
‘‘Ambiguity’’ may be high (and the confidence in
any particular estimate of probabilities low) even
where there is ample quantity of information, when
there questions of reliability and relevance of
information, and particularly where there is conflict-

ing opinion and evidence.
This judgment of the ambiguity of one’s informa-

tion, of the over-all credibility of one’s composite
estimates, of one’s confidence in them, cannot be
expressed in terms of relative likelihoods or events (if
it could, it would simply affect the final, compound
probabilities). Any scrap of evidence bearing on
relative likelihood should already be represented in
those estimates. But having exploited knowledge,
guess, rumor, assumption, advice to arrive at a final
judgment that one event is more likely than another
or that they are equally likely, one can still stand back
from this process and ask: ‘‘How much, in the end, is
all this worth? How much do I really know about the
problem? How firm a basis for choice, for appro-
priate decision and action, do I have?’’ The answer,
‘‘I don’t know very much, and I can’t rely on that,’’
may sound familiar, even in connection with mark-
edly unequal estimates of relative likelihood. If
‘‘complete ignorance’’ is rare or nonexistent, ‘‘con-
siderable’’ ignorance is surely not.

The next theorem, which extends Theorem 2.1 from
singleton focal events to finite events, provides existence
and uniqueness results concerning belief representations
for hE:

Theorem 3.1. Assume the belief axioms (Definition 3.2).
Then the following two statements are true:

1. There exists a belief representation for hE with

context function u and definiteness function v.
2. Let B be a belief representation for hE with context

function u and definiteness function v. Then the
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following two statements are true:
(i) For all positive reals r and s there exists a belief

representation for hE with context function ru

and definiteness function sv.
(ii) Let B1 be a belief representation for hE with

context function u1 and definiteness function v1:
Then for some positive real numbers r and s,

u1 ¼ ru and v1 ¼ sv:

Proof. Similar to Theorem 8.4. &

Let u be as in statement 1 of Theorem 3.1, and for
finite events E and F of X with ECF let

PF ðEÞ ¼ uðEÞ
uðFÞ:

Then the following theorem, which is a restatement of
Theorem 3.1 in terms of belief functions (Definition 1.1),
is an immediate consequence of Theorem 3.1.

Definition 3.4. Suppose B is a belief representation for
hE with context function u and definiteness function v

(Definition 3.3). Then for all finite conditional events
ðAjBÞ;

BðAjBÞ ¼ vðAÞ uðAÞP
bAB uðbÞ: ð7Þ

In the definiteness interpretation of Eq. (7), u is
interpreted as a measure of probabilistic strength, and
v is interpreted as a measure of something that is the
opposite of ambiguity or vagueness, which is called
definiteness. With these interpretations in mind, the
right-hand side of Eq. (7) is interpreted as a subjective
probability PðAjBÞ of A occurring when B is presented,
where

PðAjBÞ ¼ uðAÞP
bAB uðbÞ;

weighted by the definiteness factor vðAÞ; i.e.,
BðAjBÞ ¼ vðAÞPðAjBÞ: ð8Þ
Then when Eq. (8) is used to interpret B;B is called a
definiteness representation for hE with probability

function P and definiteness function v:

4. Belief axioms with binary symmetry

Definition 4.1. B is said to be a choice representation for

hE (with support u) if and only if B is a belief
representation for hE with context function u and
definiteness function v and for all finite events ðAjBÞ
of X ;

BðAjBÞ ¼ uðAÞ
uðBÞ:

Note that by Definition 4.1, each choice representa-
tion forhE is a conditional probability function on the
finite conditional events of X :

Definition 4.2. The belief axioms with binary symmetry

consist of the belief axioms together with the axiom of
binary symmetry (Axiom 14).

Theorem 4.1. Assume the belief axioms with binary

symmetry (Definition 4.2). Then there exists a choice

representation for hE:

Proof. Let /u; vS be a belief representation for hE

with context function u and definiteness function v: It
needs to be only shown that for all nonempty finite
events A and B of X ; vðAÞ ¼ vðBÞ: Let A and B be
arbitrary finite events. If A has at least two elements,
then it follows from Axiom 17 that eA in X can be found
so that

uðAÞ ¼ uðeAÞ and vðAÞ ¼ vðeAÞ:

If A ¼ fag; let eA ¼ a and thus again,

uðAÞ ¼ uðeAÞ and vðAÞ ¼ vðeAÞ:

Similarly an element eB of X can be found so that

uðBÞ ¼ uðeBÞ and vðBÞ ¼ vðeBÞ:

Thus to show vðAÞ ¼ vðBÞ; it is sufficient to show
vðeAÞ ¼ vðeBÞ: But because the belief axioms with binary
symmetry include the basic belief axioms with binary
symmetry, it follows from Theorem 1.2 that vðxÞ ¼ vðyÞ
for all x and y in X ; and thus that vðeAÞ ¼ vðeBÞ:

Definition 4.3. Let B be a belief representation for hE

with context and definiteness functions. Then B is said
to be additive if and only if for all finite conditional
events ðAjCÞ and ðBjCÞ of X ; if A-B ¼ |; then

BðA,BjCÞ ¼ BðAjCÞ þ BðBjCÞ:

Additive belief representations provide a quantitative
theory of belief that is very close in mathematical form
to that of the probability calculus. However, in several
applications involving uncertainty, additivity is often
difficult to justify, and often in such applications
normative or intuitive arguments can be given for
nonadditivity.
There are interesting cases of additive belief repre-

sentations that are not trivial variants of choice
representations. Examples of these can be constructed
using the following idea: Let u and w be functions from
X into Rþ: Extend u and w to nonempty finite subsets A

of X as follows:

uðAÞ ¼
X
aAA

uðaÞ and wðAÞ ¼
X
aAA

wðaÞ:
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Then in terms of u and w; the functions v and B are
defined so that u; v; and B have the algebraic
characteristics of a belief representation: For nonempty
finite subsets A of X and conditional events ðAjBÞ
of X ; let

vðaÞ ¼ wðAÞ
uðAÞ ;

and by the above equation, let

BðAjBÞ ¼ wðAÞ
uðBÞ ¼ vðAÞuðAÞ

uðBÞ:

It is easy to show that B is additive.
When B is additive, the above process can be

reversed: Let B be an additive belief representation for
hE with context function u and definiteness function v:
For each A in F; let

wðAÞ ¼ uðAÞvðAÞ:
Then for all finite conditional events ðAjBÞ of X ;

BðAjBÞ ¼ wðAÞ
uðBÞ ; ð9Þ

and (because B is additive) for all finite conditional
events ðCjEÞ and ðDjEÞ of X such that C-D ¼ |;

wðC,DÞ ¼ wðCÞ þ wðDÞ:
An intended interpretation of Eq. (9) (when B is

additive or nonadditive) is that for conditional beliefs
ðAjBÞ; w is a measure of the probabilistic strength of the
focal event A; u is a measure of the probabilistic strength
of the context event B; and B is the measure of the
strength of belief of ðAjBÞ: This interpretation is
employed later in the article.

5. Belief support probability

Many probabilists and decision analysts believe
that the degree of belief of event E is properly mea-
sured by a probability p; and that the same probability,
p; is the proper weight to assign to E in normative
models of utility under uncertainty. In the theory of
belief developed here, the two different kinds of
measurements of E—as (i) a degree of belief and as (ii)
a weight in a model of utility under uncertainty—
are kept separate, and in general, assign different values
to E:

Definition 5.1. Let A and B be disjoint finite events of X

such that Ba|; and let B be a belief representation
for hE with context and definiteness functions. By
definition, let

OBðA;BÞ ¼ BðAjA,BÞ
BðBjA,BÞ:

OBðA;BÞ is called the belief support odds (induced by B)
of A over B: By definition, let PB be a function on finite
conditional events of X such that for each finite
conditional event ðEjFÞ of X ;

PBðEjFÞ ¼ BðEjFÞ
BðEjFÞ þ BðF � EjFÞ:

PB is called the belief support probability function

(induced by B). PBðEjFÞ is called the belief support

probability of ðEjFÞ:

Note by part (ii) of statement 2 of Theorem 3.1, that
the definitions of OB and PB in Definition 5.1 are
independent of the choice of B; i.e., if B0 is another belief
representation with context and definiteness functions,
then OB ¼ OB0 and PB ¼ PB0 :
Also note that PB behaves like a probability function

in that for A-B ¼ |;

PBðAjA,BÞ þ PBðBjA,BÞ ¼ 1:

However, unlike a probability function, PB may not be
additive, i.e., situations with finite events C; D; and E

can be found such that C-D ¼ | and

PBðC,DjEÞaPBðCjEÞ þ PBðDjEÞ:

The notion of a ‘‘fair bet’’ relates the strengths of
beliefs of the events in the bet to the value of the
outcomes of the event. The following is one reasonable
notion of ‘‘fair bet:’’

Definition 5.2. Let B be an individual’s belief represen-
tation for h with context and definiteness functions,
and A and B be nonempty finite events such that
A-B ¼ |: Consider the gamble of gaining something
that has value a40 to the individual if A occurs and
losing something that has value b40 to the individual if
B occurs. Call this gamble a belief odds fair bet for this
individual if and only if

OBðA;BÞ ¼ b

a
:

Note that in terms of the belief support probability
function, the above gamble is a belief odds fair bet if and
only if

aPBðAjA,BÞ � bPBðBjA,BÞ ¼ 0:

The formulation of ‘‘belief odds fair bet’’ starts with
degrees of belief for conditional events. When these
conditional events occur in evaluation of gambles, other
notions based on degrees of belief are needed to capture
key concepts inherent in gambling such as a ‘‘belief odds
fair bet.’’ For ‘‘belief odds fair bet’’ this is accomplished
very naturally in terms of belief odds. But it is also
accomplished in a logically equivalent and natural
manner through belief support probabilities. For a task
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where an individual is asked to judge numerically the
probabilities of conditional events, both B and PB are
natural candidates for modeling the judgments. Empiri-
cal results discussed in Section 6 suggest that PB is better
in this regard.
Assume B is a belief representation for h with

context function u and definiteness function v: Let A; B;
C; and D be nonempty finite events such that

ðAjA,BÞBEðBjA,BÞ and

ðCjC,DÞBEðDjC,DÞ: ð10Þ

Assume that a high definiteness value, say 1, is assigned
to A and B because much is known about them; and
assume a low definiteness value, ao1; is assigned to C

and D; because little is known about them. Then by
Eq. (10),

uðAÞ ¼ uðBÞ and uðCÞ ¼ uðDÞ:

Thus,

BðAjA,BÞ ¼ BðBjA,BÞ ¼ 1
2
and

BðCjC,DÞ ¼ BðDjC,DÞ ¼ 1
2
a:

Therefore,

PBðAjA,BÞ ¼ PBðCjC,DÞ ¼ 1
2
:

Thus, although the conditional events ðAjBÞ and ðCjDÞ
differ in degree of belief and definiteness, they are given
the same value by the belief support probability function
PB: This value is the same as PðAjA,BÞ ¼ PðCjC,DÞ;
when B is interpreted as a definiteness representation for
hE with probability function P and definiteness
function v (Definition 3.4).
In general for conditional events ðEjFÞ with vðEÞ ¼

vðFÞ;

PBðEjFÞ ¼ PðEjFÞ:

Thus, to interestingly differentiate PB from P (and
therefore, from B), one needs to consider situations
where the definitenesses of the focal events differ from
the definitenesses of their context events.
Such a situation is suggested in Ellsberg (1961).

Suppose an urn has 90 balls that have been thoroughly
mixed. Each ball is of one of the three colors, red, blue,
or yellow. There are thirty red balls, but the number of
blue balls and the number of yellow balls are unknown
except that together they total 60. A ball is to be
randomly chosen from the urn. Let R be the event that a
red ball is chosen, B the event a blue ball is chosen, and
Y the event a yellow ball is chosen. Let U ¼ R,B,Y :
Assume that this situation is part of the domain of a
definiteness representation B with probability function
P and definiteness function v (Definition 3.4). For this
situation I consider the following to be reasonable

probability and definiteness assignments:

PðRjUÞ ¼ PðBjUÞ ¼ PðY jUÞ ¼ 1
3
;

PðR,Y jUÞ ¼ PðB,Y jUÞ ¼ PðR,BjUÞ ¼ 2
3
;

and

vðBÞ ¼ vðY ÞovðR,YÞ ¼ vðR,BÞovðB,YÞ ¼ vðRÞ:

Then it is easy to verify that the following three
statements are true:

1. BaP;
2. BðBjUÞoBðRjUÞ and BðB,Y ÞjUÞ4BðR,Y jUÞ:
3. PBðBjUÞoPBðRjUÞ and PBðB,YÞjUÞo

PBðR,Y jUÞ:

Note that by statement 2, B is not additive (Definition
4.3). Similarly, by statement 3 PB is not additive.
The second inequality of statement 3 yields the

following conclusion for belief odds fair bets: Suppose
U is presented. Consider the gamble

g1 ¼ ða;B,Y ;�b;RÞ

of gaining something that has value a40 to an
individual if B,Y occurs and losing something that
has value b40 to the individual if R occurs. Then for
this individual this gamble is a belief odds fair bet if and
only if

b ¼ 2a:

Similarly, consider the gamble

g2 ¼ ða;R,Y ;�c;BÞ

of gaining something that has value a40 to the
individual if R,Y occurs and losing something that
has value c40 to the individual if B occurs. Then the
latter gamble is a fair bet if and only if

c ¼ 2vðR,Y Þ
vðBÞ a42a:

This result makes intuitive sense for ‘‘ambiguity
adverse’’ individuals: If B had less ambiguity (and
therefore more definiteness) to the extent that vðBÞ ¼
vðR,YÞ; then intuitively, c would equal 2a: Therefore,
to the extent that vðBÞovðR,YÞ; c is greater than 2a: It
is reasonable to suppose that ambiguity adverse
individuals would prefer g1 to g2:
The upshot of the above is that even though g1 and g2

are belief odds fair bets, g1 is preferable to g2 by
ambiguity adverse individuals. This implies that in
general, the values of g1 and g2 should not be computed
by the formulas,

aPBðB,Y jUÞ � bPBðRjUÞ and

aPBðR,Y jUÞ � bPBðBjUÞ;

because the first formula would then yield g1 as having
value 0 and the second formula g2 as having value 0,
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thus implying that the individual would be indifferent
between g1 and g2:

6. Support theory

6.1. Tversky’s and Koehler’s theory

Belief support probability provides a theory of
subjective probability judgment that is similar in many
respects to the ‘‘support theory’’ of Tversky and
Koehler (1994).

Support theory is a descriptive theory in which
probability judgments are assigned to descriptions of
events, called hypotheses, instead of to events. It is
assumed that there is a finite set T with at least two
elements that generates an event space and a set of
hypotheses H such that each hypothesis A in H
describes an event, called the extension of A and denoted
by A0; that is a subset of T : It is allowed that different
hypotheses describe the same event, e.g., for a roll of a
pair of dice, the hypotheses ‘‘the sum is 3’’ and ‘‘the
product is 2’’ describe the same event, namely one die
shows 1 and the other 2.
Hypotheses that describe an event ftg; where tAT ; are

called elementary; those that describe | are called null;
and nonnull hypotheses A and B in H such that the
conjunction of A and B describe | are called exclusive

(with respect to H). C in H is said to be an explicit

disjunction (with respect to H)—or for short, an explicit

hypotheses (of H)—if and only if there are exclusive A

and B inH such that C ¼ A3B; where ‘‘3’’ stands for
the logical disjunction of A and B; ‘‘A or B:’’ D inH is
said to be implicit (with respect to H) if and only if D is
not |; is not elementary, and is not explicit with respect
to H:

H may have implicit and explicit hypotheses that
describe the same event, e.g., C: ‘‘Ann majors in a
natural science,’’ A: ‘‘Ann majors in a biological
science,’’ and B: ‘‘Ann majors in a physical science.’’
Then C and A3B describe the same event, i.e., have the
same extension, or letting H 0 stand for the extension of a
hypothesis H;

C0 ¼ ðA3BÞ0 ¼ A0,B0:

It is assumed that whenever exclusive A and B belong
to H; then their disjunction A3B also belong to H:
Tversky and Koehler (1994) provide empirical data

for many situations in which subjects judge explicit
hypotheses E to be more likely than implicit ones I with
same extensions (E0 ¼ I 0). They suggest that this
empirical result reflects a basic principle of human
judgment. They explain it in terms of an intuitive theory
of information processing involving (i) the formation of
a ‘‘global impression that is based primarily on the most
representative or available cases’’ and modulated by

factors such as memory and attention, and (ii) the
making of judgments that are mediated by heuristics
such as representativeness, availability, and anchoring
and adjusting.
Formally, support theory is formulated in terms of

‘‘evaluation frames’’ and ‘‘support functions:’’

An evaluation frame ðA;BÞ consists of a pair of
exclusive hypotheses: the first element A is the focal
hypothesis that the judge evaluates, and the second
element B is the alternative hypothesis. We assume
that when A and B are exclusive the judge perceives
them as such, but we do not assume that the judge
can list all the constituents of an implicit disjunction.
Thus, the judge recognizes the fact that ‘‘biological
sciences’’ and ‘‘physical sciences’’ are disjoint cate-
gories, but he or she may be unable to list all their
disciplines. This is a form of bounded rationality; we
assume recognition of exclusivity, but not perfect
recall.
We interpret a person’s probability judgment as a

mapping P from an evaluation frame to the unit
interval. To simplify matters we assume that PðA;BÞ
equals 0 if and only if A is null and it equals 1 if and
only if B is null; we assume that A and B are not both
null. Thus, PðA;BÞ is the judged probability that A

rather than B holds, assuming that one and only one
of them is valid. y
Support theory assumes that there is a ratio scale s

(interpreted as degree of support) that assigns to each
hypothesis inH a nonnegative real number such that
for any pair of exclusive hypotheses A;B in H;

PðA;BÞ ¼ sðAÞ
sðAÞ þ sðBÞ; ð11Þ

[and] for all hypotheses A; B; and C inH; if B and C

are exclusive, A is implicit, and A0 ¼ ðB3CÞ0; then
sðAÞpsðB3CÞ ¼ sðBÞ þ sðCÞ: ð12Þ

(Quoted from preprint of Tversky and Koehler,
1994).

Tversky and Koehler show that conditions 11 and 12
above imply the following four principles for all
A; B; C; and D in H:

1. Binary complementarity. PðA;BÞ þ PðB;AÞ ¼ 1:
2. Proportionality. If A; B; and C are mutually ex-
clusive and B is not null, then

PðA;BÞ
PðB;AÞ ¼

PðA;B3CÞ
PðB;A3CÞ:

3. Product rule. Let RðA;BÞ be the odds of A against B;
i.e, let

RðA;BÞ ¼ PðA;BÞ
PðB;AÞ:
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Then

RðA;BÞRðC;DÞ ¼ RðA;DÞRðC;BÞ; ð13Þ

provided A; B; C; D are not null, and the four pairs
of hypotheses in Eq. (13) are pairwise exclusive.

4. Unpacking principle. Suppose B; C; and D are
mutually exclusive, A is implicit, and A0 ¼ ðB3CÞ0:
Then

PðA;DÞpPðB3C;DÞ ¼ PðB;C3DÞ þ PðC;B3DÞ:

Tversky and Koehler show the following theorem:

Theorem 6.1. Suppose PðA;BÞ is defined for all exclusive

A;BAH; and that it vanishes if and only if A is null. Then

binary complementarity, proportionality, the product rule,
and the unpacking principle hold if and only if there exists

a ratio scale s on H that satisfies Eqs. (11) and (12).

Proof. Theorem 1 of Tversky and Koehler (1994). &

Belief-support probabilities can account for phenom-
ena that are the basis of Koehler’s and Tversky’s
support theory. The key idea for this is to interpret
‘‘definiteness’’ as a measure of unpackedness. To carry
this out, a few minor modifications are needed.
Instead of the set T of elementary hypotheses, an

infinite set X of elementary hypotheses will be assumed.
It will also be assume that each hypothesis A in H has
an extension A0 that is a finite subset of X : To avoid
extra notation and extra conditions, it will be assumed
that each element of H is nonnull. Also instead of the
evaluation frame notation ðA;BÞ; the conditional
hypothesis notation ðAjA3BÞ (where, of course, A3B

is explicit) will be employed to describe the kinds of
situations that support theory is concerned with. The
purpose of these changes is to make the discussion
coordinate to the discussions and results given earlier in
the article. They are not essential for the points made
throughout this section.
Let u be a function from X into the positive reals.

Extend u to H as follows: For each nonempty finite
subset A of X ; let

uðAÞ ¼
X
aAA

uðaÞ: ð14Þ

For each H in H; let uðHÞ ¼ uðH 0Þ (where, of course,
H 0 is the extension of H). u is to be interpreted as a
measure of probabilistic strength.
Let v be a function fromH into the positive reals such

that for all A and B in H; if A is implicit, B is explicit,
and A0 ¼ B0; then

vðAÞpvðBÞ: ð15Þ

v is to be interpreted as a ‘‘distortion factor’’ due to
specific kinds of cognitive processing, and Eq. (15)

captures the important characteristic of the distortion
that is due to ‘‘unpacking.’’
Let B be a function from conditional hypotheses to

the positive reals such that for each conditional
hypothesis ðAjA3B),

BðAjA3BÞ ¼ vðAÞ uðAÞ
uðA3BÞ: ð16Þ

Eqs. (14) and (16) give B the same algebraic form as
the belief representations considered in Section 3.
BðAjA3BÞ is intended to be interpreted as a distortion
(by a factor of vðAÞ) of the probabilistic strength,

uðAÞ
uðA3BÞ;

of ðAjA3BÞ: The distortion of interest for the kinds of
situations covered by Koehler–Tversky theory is due to
the unpacking principle, which is captured in large part
by Eq. (15).
Let PB be the belief-support probability function

determined by B; i.e., let

PBðAjA3BÞ ¼ BðAjA3BÞ
BðAjA3BÞ þ BðBjA3BÞ:

Then it is easy to verify that PB satisfies Binary
complementarity, proportionality, and the product rule.
The following theorem is also immediate:

Theorem 6.2. Suppose A and D are exclusive and B; C;
and D are mutually exclusive, A is implicit, and A0 ¼
ðB3CÞ0: Then the following three statements are true:

1. (Ordinal unpacking) PBðAjA3DÞpPBðB3Cj
B3C3DÞ:

2. (Definiteness unpacking) If vðBÞ ¼ vðCÞ; then

PBðAjA3DÞpPBðB3CjB3C3DÞ
¼ PBðBjB3C3DÞ þ PBðCjC3B3DÞ:

3. The following two statements are equivalent:
(i) B is additive, i.e.,

BðB3CjB3C3DÞ
¼ BðBjB3C3DÞ þ BðCÞjB3C3DÞ:

(ii) The unpacking principle holds, i.e.,

PBðAjA3DÞpPBðB3CjB3C3DÞ
¼ PBðBjB3C3DÞ þ PBðCjC3B3DÞ:

Observe that the inequalities in Theorem 6.2 become
strict if the inequality in Eq. (15) becomes strict.
The above shows that belief-support probabilities,

when generated by an additive B; is a form of support
theory. This form of support theory generalizes phe-
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nomena outside of support theory when generated by a
nonadditive B: The nonadditive case still retains much
of the flavor of support theory, particularly its empirical
basis, because ordinal unpacking and definiteness
unpacking hold. Of possible empirical importance is
the consideration that it may be possible to find many
natural situations in which definiteness unpacking holds
but the unpacking principle fails.
Let ðAjA3BÞ be a conditional hypothesis. Then in the

formula,

BðAjA3BÞ ¼ vðAÞ uðAÞ
uðA3BÞ;

may be viewed as ‘‘distorting’’ the fraction,

uðAÞ
uðA3BÞ:

By the definition of u;

uðAÞ
uðA3BÞ ¼

uðA0Þ
uððA3BÞ0Þ

¼ uðA0Þ
uðA0,B0Þ:

However, by Eq. (14),

uðA0Þ
uðA0,B0Þ ¼

P
aAA0 uðaÞP

cAA0,B0 uðcÞ;

may be interpreted as a subjective conditional prob-
ability of the conditional, extensional hypothesis
ðA0jA0,B0Þ: With this interpretation in mind, vðAÞ is
the amount that the subjective conditional probability of
the extension of ðAjA3BÞ needs to be distorted to
achieve BðAjA3BÞ:
Tversky and Koehler (1994) provided many examples

of their theory. However, latter empirical studies
showed their theory to be inadequate. To accomodate
these additional studies, generalizations of Tversky’s
and Koehler’s theory were developed, and two of these
are discussed next.

6.2. Rottenstreich’s and Tversky’s support theory

Rottenstreich and Tversky (1997) noted empirical
examples in which probabilities for explicit disjunctions
G3H were subadditive, i.e., empirical situations where

PðG3HÞpPðGÞ þ PðHÞ:
To accommodate such subadditive situations, they
provided the following generalization of Tversky and
Koehler (1994): For all hypotheses E and F ; where F is
nonnull, let

RðE;FÞ ¼ PðE;FÞ
PðF ;EÞ:

Then the following three assumptions hold for all
hypotheses A; A1; A2; B; C; and D:

1. (Binary complementarity) PðA;BÞ þ PðB;AÞ ¼ 1:
2. (Product rule) (i) If ðA;BÞ; ðB;DÞ; ðA;CÞ; and

ðC;DÞ are exclusive, then

RðA;BÞRðB;DÞ ¼ RðA;CÞRðC;DÞ; and

(ii) if ðA;BÞ; ðB;DÞ; and ðA;DÞ are exclusive, then
RðA;BÞRðB;DÞ ¼ RðA;DÞ:

3. (Odds inequality) Suppose A1; A2; and B are mu-
tually exclusive, A is implicit, and the judge
recognizes A13A2 as a partition of A: That is,
ðA13A2Þ0 ¼ A0 and the judge recognizes that A13A2
has the same extension as A: Then

RðA;BÞpRðA13A2;BÞpRðA1;BÞ þ RðA2;BÞ:

Rottenstreich and Tversky (1997) show the following
theorem:

Theorem 6.3. Suppose PðA;BÞ is defined for all exclusive

hypotheses A and B and that it vanishes if and only if A is

null. Then the above three assumptions hold if and only if

there exists a nonnegative function s on the set of

hypotheses such that for all exclusive hypotheses C and D,

PðC;DÞ ¼ sðCÞ
sðCÞ þ sðDÞ:

Furthermore, if A1 and A2 are exclusive, A is implicit, and

ðA13A2Þ is recognized as a partition of A, then

sðAÞpsðA13A2ÞpsðA1Þ þ sðA2Þ:

Binary complementarity is the same as in Tversky’s
and Koehler’s theory. Rottenstreich’s and Tversky’s
product rule is slightly stronger than the product rule of
Tversky and Koehler, since it contains the additional
product condition RðA;BÞRðB;DÞ ¼ RðA;DÞ: Odds
inequality is a replacement for the unpacking condition.
Tversky and Rottenstreich (1997) note that in Odds
inequality, ‘‘The recognition requirement, which re-
stricts the assumption of implicit subadditivity, was not
explicitly stated in the original (Tversky & Koehler,
1994) version of the theory, although it was assumed in
its applications.’’
In Section 6.1 it is shown that belief support

probabilities, when generated by an additive B; is a
form of Tversky’s and Koehler’s support theory. When
the belief support probabilities are generated by a
subadditive B; this form of support theory naturally
generalizes to a form of Rottenstreich’s and Tversky’s
support theory, with the product rule and odds inequal-
ity holding. For nonadditive B; much of the flavor of
Tversky and Koehler’s original support theory is still
maintained, particularly its empirical basis, because
ordinal unpacking and definiteness unpacking hold. Of
possible empirical importance for Tversky’s and Koeh-
ler’s theory is the consideration that it may be possible
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to find many natural situations in which definiteness
unpacking holds but the unpacking principle fails.
For subaddtive B; the belief support probabilities add

for hypotheses of the same definiteness, and thus the
support form corresponding to Tversky’s and Koehler’s
theory apply to hypotheses that have the same v-value.
This suggests the following for the form of support
corresponding to Rottenstreich’s and Tversky’s theory
(i.e., for subaddtive B): (1) The hypotheses naturally
partition into families, with the hypotheses in each
family having the same definiteness and hypotheses from
different families having different definitenesses. (2) For
each family, the support form of Tversky’s and
Koehler’s theory holds for hypotheses from the family.
And (3) the support form of Rottenstreich’s and
Tversky’s theory holds for hypotheses from different
families.

6.3. Asymmetric support theory

Recently, Brenner and Rottenstreich (manuscript)
developed a version of support theory in which binary
complementarity may fail. They call their theory
asymmetric support theory, and this section presents
their model and some of the examples and results
contained in their manuscript.
The empirical bases for support theory are experi-

mental studies of probability judgments that consis-
tently find sums of probabilities greater than 1 for
partitions consisting of more than two elements and
sums equal to 1 for binary partitions. For example, Fox,
Rogers, and Tversky (1996) asked professional option
traders to judge the probability that the closing price of
Microsoft stock would fall within a particular interval
on a specific future date. When four disjoint intervals
that spanned the set of possible prices were presented for
evaluation, the sums of the assigned probabilities were
typically about 1.50. However, when binary partitions
were presented, the sums of the assigned probabilities
were very close to 1, e.g., 0.98. Tversky and Fox also
observed in probability judgments involving future
temperature in San Francisco, the point-spread of
selected NBA and NFL professional sports games, and
many other quantities, sums of assigned probabilities
greater than 1 for partitions consisting of more than two
elements and sums nearly equal 1 for binary partitions.
This pattern of results were also replicated by Re-
delmeier, Koehler, Liberman, and Tversky (1995) in a
study of practicing physicians making judgments of
patient longevity. Other researchers, e.g., Wallsten,
Budescu, and Zwick (1992) have also observed binary
complementarity in experimental settings.
Asymmetric support theory is based on judgments of

probability PðA;BÞ of propositions of the form ‘‘A
holds rather than B;’’ where A and B are exclusive
hypotheses. In the above, A is called the focal hypothesis

and B the alternative hypothesis. The theory assumes
two support functions are used in evaluating PðA;BÞ; sf

for focal hypotheses s for alternative hypotheses.
PðA;BÞ is then determined by the formula

PðA;BÞ ¼ sf ðAÞ
sf ðAÞ þ sðBÞ:

The special case sf ¼ s yields support theory. Accord-
ing to Brenner and Rottenstreich this special case arose
in the above mentioned studies because ‘‘all earlier
studies involved hypotheses that were especially well-
defined and left no room for variation in their
representation y:’’

Fox et al. (1996), for example, studied hypotheses
such as ‘‘the price of Microsoft stock will be above
seventy dollars.’’ There is little ambiguity in such
hypotheses and consequently little room for varia-
bility or asymmetry in their representations. We
suggest that earlier researchers failed to observe
[failures of Binary Complementarity] because they
investigated only such especially well-defined hypoth-
eses which essentially left on room for representa-
tional asymmetry [i.e., sf as]. (p. 16)

Macchi, Osherson, and Krantz (1999) conducted
studies involving ultra-difficult general information
questions. For example subjects were presented one of
the following:

The freezing point of gasoline is not equal to that
of alcohol. What is the probability that the
freezing point of gasoline is greater than that of
alcohol?

The freezing point of alcohol is not equal to that
of gasoline. What is the probability that the
freezing point of alcohol is greater than that of
gasoline?

The typical sum of probabilities over all such binary
partition was about 0.90, relatively far from 1, indicat-
ing a failure of binary complementarity. Macchi et al.
reasoned that given the ultra-difficulty of the questions
there is relatively little evidence in favor of the focal
hypothesis. If the subjects attended relatively more to
the focal rather than the alternative hypothesis, then
they might not appreciate the fact that the alternative
hypothesis also has little support, leading to having a
sum of judged probabilities less than 1.
In a follow-up study, Macchi et al. attempted to

equalize the amounts of attention paid to focal and
alternative hypotheses by explicit mention of both
hypotheses. Subjects were presented one of the follow-
ing:

The freezing point of gasoline is not equal to that of
alcohol. Thus, either the freezing point of gasoline is
greater than that of alcohol, or the freezing point of
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alcohol is greater than that of gasoline. What is the
probability that the freezing point of gasoline is
greater than that of alcohol?

The freezing point of alcohol is not equal to that of
gasoline. Thus, either the freezing point of alcohol is
greater than that of gasoline, or the freezing point of
gasoline is greater than that of alcohol. What is the
probability that the freezing point of alcohol is
greater than that of gasoline?

In this study, the typical sum of judged probabilities
was about 1.01. Apparently, mentioning both the focal
and alternate hypotheses made it natural for subjects to
evaluate them in similar ways.
Brenner and Rottenstreich (manuscript) conducted

empirical studies where evaluations of category size
underlay the likelihood judgment and consistently found
that the sums of percentage judgments for binary
partitions were less than 1. They also conducted
empirical studies where evaluations of similarity under-
lay the likelihood judgment and consistently found that
the sums of probability judgments for binary partitions
were greater than 1.
Brenner and Rottenstreich presents the following

axiomatization and theorem for the representation

sf ðAÞ
sf ðAÞ þ sðBÞ
for partitions ðA;BÞ in terms of the probability or
percentage function P:

Definition 6.1. Let

QðA;BÞ ¼ PðA;BÞ
1� PðA;BÞ;

where B is nonnull. Then the following two definitions
obtain:

1. The asymmetric product rule is said to hold if and
only if

QðA;BÞQðC;DÞ ¼ QðA;DÞQðC;BÞ;
whenever the arguments of Q are exclusive.

2. The asymmetric triple product rule is said to hold if
and only if

QðA;BÞQðB;CÞQðC;AÞ ¼ QðC;BÞQðB;AÞQðA;CÞ;
whenever the arguments of Q are exclusive.

Note that whenever there exists a hypothesis exclusive
of A; B; and C; the asymmetric triple product rule
for A; B; and C; follows from the asymmetric product
rule.

Theorem 6.4. Assume the notation and concepts of

support theory of the previous section. Let H be a set

of hypotheses. Suppose PðA;BÞ is defined for all exclusive

A and B in H and it vanishes if and only if A is null. Then

the following two statements are equivalent:

1. The asymmetric product rule and the asymmetric triple

product rule.
2. There exist functions sf and s on H such that for all

exclusive A and B in H;

PðA;BÞ ¼ sf ðAÞ
sf ðAÞ þ sðBÞ:

6.4. A few comments about support theories

1. Judging probabilities degrees of belief: Let u; v; and
B be as in Eqs. (14), (15), and (16). In particular,

BðAjA3BÞ ¼ vðAÞ uðAÞ
uðA3BÞ ¼ vðAÞ uðAÞ

uðAÞ þ uðBÞ:

Letting wðAÞ ¼ uðAÞvðAÞ; we then obtain the formula

BðAjA3BÞ ¼ wðAÞ
uðAÞ þ uðBÞ; ð17Þ

which is similar in many ways to Brenner and
Rottenstreich formula,

PðA;BÞ ¼ sf ðAÞ
sf ðAÞ þ sðBÞ:

In Eq. (17), w is interpreted as a measure the probabil-
istic strength of the focal hypothesis, u as a measure of
the probabilistic strength of the alternative hypothesis,
and BðAjA3BÞ is the probability judgment given by the
subject. Using this interpretation, explanations can be
provided for the qualitative shifts in probabilistic
judgments occurring in the empirical examples of the
previous subsection. Brenner and Rottenstreich (manu-
script) also show that their formula quantitatively fits
the data. My guess is that it would be difficult to
distinguish the two formulas in terms of goodness of fit
using the kind of data collected by Brenner and
Rottenstreich.
2. Dual belief support representations: In the previous

subsection it was shown that belief support probabilities
provided an adequate theory for support theory. There,
the definiteness function vðAÞ was interpreted as a factor
that accounted for the amount that a hypothesis A was
distorted with respect to its extension through cognitive
processing. In particular, distortion to due unpacking
(as well as other distortions) could be incorporated in v:
However, the kinds of distortions considered in asym-
metrical support theory cannot be included in v; because
vðAÞ depends only on the hypothesis A and thus not on
whether A is a appearing as a focal or an alternative
hypothesis. Thus to extend the belief support develop-
ment to the kinds of empirical situations considered by
Brenner and Rottenstreich, two belief support functions
are needed: one, Bf for focal hypotheses, and the other,
B; for alternative hypotheses. The following is a natural
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way of accomplishing this: Let u; uf ; v; and vf be
functions from nonnull hypotheses into the positive
reals and P be such that for each conditional hypothesis
ðAjA3BÞ;

PðAjA3BÞ ¼ Bf ðAjA3BÞ
Bf ðAjA3BÞ þ BðBjA3BÞ

¼
vf ðAÞvðAÞ uf ðAÞ

uf ðA3BÞ

vf ðAÞvðAÞ uðAÞ
uðA3BÞ þ vðBÞ uðBÞ

uðA3BÞ
: ð18Þ

Note that in Eq. (18) vf is not the definiteness function
for Bf ; rather the product vf ðAÞvðAÞ gives the definite-
ness of A in B for Bf :
In the second equality in Eq. (18), uf ðAÞ is interpreted

as the probabilistic strength of the extension of A when
A is the focal hypothesis, and similarly, uðAÞ is
interpreted as the probabilistic strength of the extension
of A when A is the alternative hypothesis. The following
assumption is within the spirit of support theory:

uf ¼ u: ð19Þ
Also, because Bf and B are intended to be belief support
functions, it is assumed that

uðAÞ ¼ uðA0Þ and uðA3BÞ ¼ uðAÞ þ uðBÞ; ð20Þ
where as usual, A0 is the extension of A and ðA3BÞ0 ¼
A03B0:

vðAÞ is intended as a factor accounting for the
probabilistic distortion of A with respect to the
probabilistic strength, uðA0Þ ð¼ uðAÞÞ; of its extension
A0: vf ðAÞ is intended as a factor that accounts for the
additional distortion resulting from A being a focal
rather than alternative hypothesis.
Applying Eqs. (19) and (20) to Eq. (18) then yields,

PðAjA3BÞ ¼
vf ðAÞvðAÞ uðAÞ

uðAÞþuðBÞ

vf ðAÞvðAÞ uðAÞ
uðAÞþuðBÞ þ vðBÞ uðBÞ

uðAÞþuðBÞ

¼ vf ðAÞvðAÞuðAÞ
vf ðAÞvðAÞuðAÞ þ vðBÞuðBÞ: ð21Þ

Note that by letting for each hypothesis H in H;

sf ðHÞ ¼ vf ðHÞvðHÞuðHÞ and sðHÞ ¼ vðHÞuðHÞ;
Eq. (21) becomes

PðAjA3BÞ ¼ sf ðAÞ
sf ðAÞ þ sðBÞ;

which is Brenner’s and Rottenstreich’s asymmetric
support representation. The representation given by
Eq. (21) differs from Brenner’s and Rottenstreich’s in
that the correspondents to sf and s have an inner
structure to them. This ‘‘inner structure’’ allows for the
formulation of unpacking principles.
3. Extending the dual belief support representation to

include unpacking: Although Brenner and Rottenstreich
allude to unpacking studies and use the same formal
setup involving implicit and explicit hypotheses and

their extensions as Tversky and Koehler (1994), they do
not extend their axiomatization or mathematical model
to include a version of the unpacking principle. In
Section 6.1 unpacking was characterized in terms of the
belief support probabilities representation. This char-
acterization generalizes easily to the dual belief support
representation:
Let A and B be arbitrary elements ofH such that A is

implicit, B is explicit, and A0 ¼ B0: Assume

vðAÞpvðBÞ ð22Þ
and

vf ðAÞpvf ðBÞ: ð23Þ
The the following generalizes Theorem 6.2.

Theorem 6.5. Suppose the above assumptions, notation,
and conventions. Suppose A and D are exclusive, B; C;
and D are mutually exclusive, A is implicit, and A0 ¼
ðB3CÞ0: Then the following two statements are true:

1. (Ordinal unpacking) PBðAjA3DÞpPBðB3Cj
B3C3DÞ:

2. Suppose Bf is additive, i.e.,

Bf ðB3CjB3C3DÞ ¼ Bf ðBjB3C3DÞ þ Bf ðCjB3C3DÞ:

Then the unpacking principle holds, i.e.,

PBðAjA3DÞpPBðB3CjB3C3DÞ ¼ PBðBjB3C3DÞ þ PBðCjC3B3DÞ:

Proof. By the hypothesis A0 ¼ ðB3CÞ0 and Eq. (20),
uðAÞ ¼ uðB3CÞ ¼ uðBÞ þ uðCÞ: ð24Þ
By Eq. (21),

PðAjA3DÞ ¼ vf ðAÞvðAÞuðAÞ
vf ðAÞvðAÞuðAÞ þ vðDÞuðDÞ

¼ 1

1þ vðDÞuðDÞ
vf ðAÞvðAÞuðAÞ

: ð25Þ

Similarly, by Eq. (21), the hypothesis A0 ¼ ðB3CÞ0; and
Eq. (20),

PðB3CjB3C3DÞ

¼ vf ðB3CÞvðB3CÞuðB3CÞ
vf ðB3CÞvðB3CÞuðB3CÞ þ vðDÞuðDÞ

¼ 1

1þ vðDÞuðDÞ
vf ðB3CÞvðB3CÞuðB3CÞ

¼ 1

1þ vðDÞuðDÞ
vf ðB3CÞvðB3CÞuðAÞ

: ð26Þ

Then statement 1 follows from Eqs. (22) and (23).
To show statement 2, suppose Bf is additive. Then the

unpacking principle follows from statement 1 and the
first equality in Eq. (18).
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Observe that all the inequalities in statements 1 and 2
of Theorem 6.5 become strict if the inequality in Eq. (22)
becomes strict; and the inequality in statement 1
becomes strict if the inequality in Eq. (23) becomes
strict.

7. Conclusions

The belief axioms (Definition 3.2) yield the existence
of a definiteness representation B with probability
function P and definiteness function v (Definition 3.4).
When the value of v is constant, B may be looked at as a
ratio-scaled version of P; i.e., B is essentially a
conditional probability function. Thus the notion of a
definiteness representation generalizes the notion of a
probability function. More importantly, in the multi-
farious uses of probability in mathematical modeling, B
or other probabilistic concepts generated by it are often
substitutable for probability functions, yielding new and
more general models.
As an example consider utility theory. Let U be an

individual’s function from objects of value (both
positive and negative) into the real numbers, and let A

and B be nonempty, disjoint finite events. Let g ¼
ðx;A; y;BÞ be the gamble of receiving object of value x if
A occurs and receiving y if B occurs. In the behavioral
sciences, models of utility have the form

UðgÞ ¼ UðxÞW1 þ UðyÞW2;

where W1 and W2 are weights satisfying the conditions,

0pW1p1; 0pW2p1; and W1 þ W2 ¼ 1:
Then theories of utility result by specifying W1 and W2:
One of the most important of these theories is

subjective expected utility (SEU), which assumes that
the individual has a conditional probability function P

such that

W1 ¼ PðAjA,BÞ and W2 ¼ PðBjA,BÞ:
Thus, SEU assumes that only one dimension of
uncertainty is relevant for specifying W1 and W2—the
dimension that is measured by probability. The belief
representation B can be interpreted as the combined
measurement of two dimensions—a dimension of
probability measured by P; and a dimension of
definiteness of focal events measured by v: Let FP;v

denote a function from the set conditional events into
the real interval ½0; 1� that is determined by P and v:
Then consideration of

W1 ¼ FP;vðAjA,BÞ and W2 ¼ FP;vðBjA,BÞ
provides a starting point for generating utility theories
that generalizes SEU. (Current utility theories would
also have W1 and W2 depend on features of UðxÞ and
UðyÞ; e.g., rank-dependent theories on whether
UðxÞXUðyÞ or whether UðyÞXUðxÞ; and sign-dependent

theories on whether UðxÞX0 or whether UðyÞX0 or
whether both UðxÞ and UðyÞ are p0:)
In Section 6, B was used as a structured support

function to produce generalizations of support theories
of probability judgment. The structured nature of B

allowed for a different kind of formulation of the
unpacking principle of Tversky and Koehler (1994) as
well as for generalizations of it. Then with insights
gained from theses formulations to unpacking for
support theory, it was easy to extend the unpacking
principle to the more general and complicated versions
of support theory.
Traditional probability theory has two components to

it: A probability function that is a finitely additive
measure and an independence relation on events. While
the development of the analog of independence for belief
theory is outside the scope of this article, a few
observations will be made about it.
In the Kolmogorov theory of probability, indepen-

dence is a concept defined in terms of probabilities, i.e.,
the events A and B are by definition ‘‘independent’’ if
and only if PðA-BÞ ¼ PðAÞPðBÞ: I and others find this
notion of independence problematic: In the most
important applications of probabilistic independence,
one has a very good idea of which key events are
independent of one another without resort to calculation
or often even without knowing their probabilities and
the probability of their intersections. Also in most
applications where probabilities are used, they are
admittedly inexact; but the Kolmogorov definition of
independence require the probabilities be exact. In
foundations of probability founded on relative frequen-
cies, independence of trials are assumed before the
probability of events are defined.
Because of these considerations, I find it preferable to

introduce a primitive binary relation > on events
representing probabilistic independence and have it
linked to probability by the following:

if A>B then PðA-BÞ ¼ PðAÞPðBÞ:

In intended interpretations, > is often known indepen-
dently of the underlying probability function, often
through intuition or theory about the nature of reality
being modeled, e.g., that ‘‘red’’ coming up on a future
turn of a particular roulette wheel is independent of the
sum of points scored being even by the teams involve in
a particular future football game.
Let B be a belief representation for h with

probability function P and definiteness function v

(Definition 3.4). Let > be the relation of causal
independence between two events. Interpreting P as
conditional probability then reasonably yields

if A>B then PðA-BÞ ¼ PðAÞPðBÞ

as a desirable condition for belief. However, the
specification of vðA-BÞ is difficult and may depend
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on the kind of definiteness one is considering. For
example, even though A is causally independent of B;
the definiteness of A need not be causally independent of
the definiteness of B: An extreme example of this is
where the definiteness of A and B (A-Ba|) is due to
the same kind of lack of information or unreliability of
information, and thus the definiteness A and B (and
therefore A-B) are the same and completely causally
dependent. The other extreme is when the definiteness of
A is causally independent of the definiteness of B:What
is needed to advance further the theories of belief
considered in this article is a means of sensibly
classifying different kinds of definiteness. Notions of
‘‘independence’’ may prove to be useful in such an
effort.
The theory of belief developed in this article arose out

of generalizing probability theory to apply to situations
where the axiom of binary symmetry (Axiom 14) may
fail. These generalizations, which are captured by the
belief axioms, use belief representations instead of
probability functions. When the belief representations
are additive, they provide a theory that is very close
to that of probability theory. But for many kinds of
belief situations additivity is unwarranted and un-
wanted. Nevertheless, belief representations without
additivity are still rich in mathematical structure and
provide fertile ground for generating probabilistic-like
concepts.

8. Additional lemmas, theorems, and proofs

8.1. Preliminary lemmas and theorems

Convention 8.1. Throughout this subsection the Basic
Belief Axioms (Definition 2.4) will be assumed.

Lemma 8.1. B; BC; and BX are equivalence relations.

Proof. Since h; hC; and hX are weak orderings, it
easily follows that B; BC; and BX are equivalence
relations. &

Definition 8.1. Let C be the set of BC-equivalence
classes of C and X be the set of BX -equivalence classes
of X : Let kC be hC=BC on C; that is, let kC be the
binary relation on C such that for all a; b in C, akCb if
and only if there exist A in a and B in b such that
AhCB: Similarly let kX be hX=BX on X; that is, let
kX be the binary relation on X such that for all x; y in
X; xkXy if and only if there exist a in x and b in y such
that ahX b:

Lemma 8.2. kC and kX are total orderings.

Proof. Left to reader. &

Definition 8.2. Y ¼ /Y ;k0;JS is said to be an
extensive structure if and only if the following seven
conditions hold:

1. Ya|; J is a binary operation on Y ; and k
0 is a

total ordering on Y :
2. J is commutative, i.e., xJy ¼ yJx for all x and y in

Y :
3. J is associative, i.e., ðxJyÞJz ¼ xJðyJzÞ for all

x; y; and z in Y :
4. Y is positive, i.e., xJyg0x for all x and y in Y :
5. Y is monotonic, i.e., for all x; y; and z in

Y ; xk0y iff xJzk0yJz:
6. Y is restrictedly solvable, i.e., for all x and y in Y ; if

xg0y then for some z in Y ; xg0yJz:
7. Y is Archimedean, i.e., for all x and y in Y ; there
exists a positive integer n such that nxg0y; where
1x ¼ x; and for all positive integer k; ðk þ 1Þx ¼
ðkxÞJx:

Definition 8.3. Define" on C as follows: For all a; b; g
in C, a"b ¼ g if and only if there exist AAa; BAb; and
CAg such that A-B ¼ | and A,B ¼ C:

Theorem 8.1. " is an operation on C and C ¼
/C;kC;"S is an extensive structure (Definition 8.2).

Proof. Note that if E1;y;Ei;y are elements of C; then
by repeated use of axiom 9 elements F1;y;Fi;y of C
can be found so that EiBCFi and for all distinct i; j in
Iþ; Ei-Ej ¼ |: From this and the fact that , is
commutative and associative, it easily follows that "
is a commutative and associative operation on C. From
the commutativity of" and Axiom 2 it follows that C is
positive. From the commutativity and Axioms 3 and 9 it
follows that C is monotonic. From Axiom 11 it follows
that C is restrictedly solvable, and from Axioms 9 and 13
that C is Archimedean. By Lemma 8.2 kC is a total
ordering on C:

Definition 8.4. Define the binary relationh% on X� C

as follows: For all xa; yb in X� C; xah%yb if and
only if there exist aAx; AAa; bAy; BAb; such that
ðajAÞhðbjBÞ:

Lemma 8.3. The following five statements are true:

1. h% is a weak ordering.
2. For all x; y in X and all a in C, if xa is in the domain of

h% and xkXy; then ya is in the domain of h% and

xah%ya:
3. For all a; b in C and all x in X, if xa is in the domain of

h% and bkCa; then xb is in the domain of h% and

xah%xb:
4. For all x; y in X, the following two propositions are

true: (i) if xah%ya for some a in C, then xkXy and
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xbh%yb for all b in C such that bkCa; and (ii) if

xag%ya for some a in C, then xgX y and xbg%yb
for all b in C such that bkCa:

5. For all a; b in C, the following two propositions are

true: (i) if xah%xb for some x in X, then bkCa and

yah%yb for all y in X such that xkXy; and (ii) if

xag%xb for some x in X, then bgCa and yag%yb
for all y in X such that xkXy:

Proof. 1. It is immediate that h% is a transitive
relation on X� C: To show reflexivity, let xa be an
arbitrary element of the domain ofh%; and let a be in
X and A be in a: Then by Axiom 7, let cAX and CAC be
such that aBX c; ABCC; and cAC: Then from
ðcjCÞBðcjCÞ; it follows that xaB%xa: It will next be
shown thath% is connected. Becauseh% is reflexive,
the domain ofh% ¼ the range of h%: Let xa and yb
be arbitrary elements of the domain of h%: Let
a; A; y; and B be such that aAA; AAC; yAB; BAC:
Then because h is a weak ordering,

either ðajAÞhðbjBÞ or ðbjBÞhðajAÞ;
which by Definition 8.4 yields,

either xah%yb or ybh%xa:

Becauseh% is transitive, reflexive, and connected, it is
a weak ordering.
2. Suppose x and y are in X, a is in C, xa is in the

domain ofh%; and xkXy: By Axiom 8 and Definitions
8.1 and 8.4, ya is in the domain of h%: Then by
Definitions 8.1 and 8.4 and statement 1 of Axiom 6,
xah%ya:
3. Suppose a and b are in C, x is in X, and xa is in the

domain ofh%; and bkCa: Then by Definitions 8.1 and
8.4 and Axiom 7, xb is in the domain ofh%: Then by
Definitions 8.1 and 8.4 and statement 2 of Axiom 6,
xah%xb:
4. (i) Suppose x; y in X and a in C are such that

xah%ya: It then follows from Definitions 8.4 and 8.1
and Statement 2 of Axiom 12 that aAx; AAa; bAy;
and BAa can be found such that ðajAÞhðbjBÞ and
ABCB: Thus by statement 1 of Axiom 6, ahX b:
Therefore by Definition 8.1, xkXy: Let b in C be such
that bkCa: Then it follows from Definition 8.1 that C

and D in b can be found such that CBCD; ChCA; and
DhCB: It then follows from Axiom 7 that e and f in X

and E and F in C can be found such that
aBX e; bBX f ; CBCDBCEBCF ; eAE; and fAF :
Then since eBX ahX bBX f ; it follows by statement 1
of Axiom 6, that ðejEÞhðf jFÞ: Thus by Definition 8.4,
xbh%yb: Proposition (ii) follows by a similar argu-
ment.
5. (i) Suppose a; b in C and x in X are such that

xah%xb: Then it follows from Definitions 8.4 and 8.1
that aAx; AAa; bAx; and BAb can be found such that

ðajAÞhðbjBÞ and aBX b: Therefore by statement 2
of Axiom 6, BhCA: Thus by Definition 8.1, bkCa:
Let y in X be such that xkXy: Then it follows
from Definition 8.1 that c and d in y can be found such
that ahX c; bhX d; and cBX d: Since ðajAÞ and ðbjBÞ
and ahX c and bhX d; it easily follows that elements h

and k in X can be found so that AhCfc; hg and
BhCfd; kg: It then follows from Axiom 7 that e and f

in X and E and F in C can be found such that
cBX e; dBX f ; ABCE; and BBCF ; eAE; and fAF :
Since cBX e and dBX f ; it follows that eAy and fAy:
From BhCA it follows that FhCE: Therefore by
statement 2 of Axiom 6, ðejEÞhðf jFÞ: Thus, by
Definition 8.4, yah%yb: (ii) Proposition (ii) follows
by a similar argument. &

Lemma 8.4. The following five statements are true:

1. For all x; y in X and all a in C, if ykXx and xa is in the

domain of h%; then there exists b in C such that

xaB%yb:
2. For all x in X and all a; b in C, if xa is in the domain of

h%; then there exists y in X such that xaB%yb:
3. The following two propositions are true for all x; y in X

and all a; b; a0; b0 in C: (i) if xah%yb and xa0h%yb0;
then

xða"a0Þh%yðb"b0Þ; and

(ii) if xag%yb and xa0h%yb0; then

xða"a0Þg%yðb"b0Þ:

4. For all x; y in X and all a; b in C; if

xaB%yb

then

xkXy iff akCb:

5. For all x; y in X and all a; b in C, if

xaB%yb and gkCb;

then there exists a0 and such that

xa0B%yg:

Proof. Statements 1 and 2 follow from Definitions 8.1
and 8.4 and Axiom 12.
To show statement 3, note that by Theorem 8.1 and

its proof that a"a0kCa and b"b0kCb; which by
statement 3 of Lemma 8.3 yields that xða"a0Þ and
yðb"b0Þ are in the domain of h%: Statement 3 then
follows from Axioms 9 and 5 and Definitions 8.1, 8.3,
and 8.4.
To show statement 4, we need only show (i) that

xkXy and bgCa leads to a contradiction and (ii) that
ygXx and akCb leads to a contradiction.
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(i) xkXy and bgCa: By statement 2 of Lemma 8.3,

xah%ya;

and thus by statement 4 of Lemma 8.3,

xbh%yb:

Since by hypothesis xaB%yb; it then follows from
statement 1 of Lemma 8.3 that

xbh%xa;

which by statement 5 of Lemma 8.3 yields akCb;
contradicting the hypothesis akCb:
(ii) ygX x and bkCa: By statement 3 of Lemma 8.3,

ybh%ya;

and thus by statement 5 of Lemma 8.3,

xah%xa:

Since by hypothesis, xaB%yb; it then follows from
statement 1 of Lemma 8.3,

xbh%yb;

which by statement 4 of Lemma 8.3 yields xkXy;
contradicting the hypothesis ygXx:
Statement 5 is immediate from Axiom 12 and

Definition 8.4. &

Definition 8.5. Suppose xiai is in the domain ofh% and
b; and g are arbitrary elements of C; bkCai; and gkCai:
Then by statement 3 of Lemma 8.3, xib is in the domain
ofh%: By statement 2 of Lemma 8.4, let tiðbÞ be such
that

tiðbÞaiB%xib: ð27Þ
By statement 4 of Lemma 8.4,

tiðbÞ%Xxi: ð28Þ
Since by Eq. (27) tiðbÞai is in the domain of h%; it
follows from statement 3 of Lemma 8.3 that tiðbÞg is in
the domain of h%: By statement 1 of Lemma 8.4, let
Di;gðbÞ be such that
xiDi;gðbÞB%tiðbÞg: ð29Þ

Lemma 8.5. Suppose xi is an arbitrary element of X, and

ai; b; and g are arbitrary elements of C such that xiai is in

the domain of h% and bkCai; and gkCai: Then the

following two statements are true:

1. tiðbÞ%Xxi:
2. Di;gðbÞkCgkCai:

Proof. Statement 1 follows from Eq. (28). To show
statement 2, note that by hypothesis gkCai and from
Eq. (29), statement 1 of this lemma, and statement 4 of
Lemma 8.4 that Di;gðbÞkCg: &

Lemma 8.6. Suppose xiai is in the domain of

h%; bkCai; gkCai; and dkCai: Then the following

three statements are true:

1. bkCd if and only if Di;gðbÞkCDi;gðdÞ:
2. Di;gðb"dÞ ¼ Di;gðbÞ"Di;gðdÞ:
3. For all z in C, if zkCg then there exists y such that

ykCai and Di;gðyÞ ¼ z:

Proof. 1. (i) Suppose bkCd: Then by statement 3 of
Lemma 8.3, xid and xib are in the domain ofh%; and
by statement 3 of Lemma 8.3,

xidh%xib;

which by Definition 8.5 yields

tiðdÞaih%tiðbÞai;

which by statement 4 of Lemma 8.3 yields

tiðdÞgh%tiðbÞg;

which by Definition 8.5 yields,

xiDi;gðdÞh%xiDi;gðbÞ;

and which by statement 5 of Lemma 8.3 yields

Di;gðbÞkCDi;gðdÞ:

(ii) Suppose Di;gðbÞkCDi;gðdÞ: By Definition 8.5,
xiDi;gðbÞ and xiDi;gðdÞ are in the domain of h%; and
thus by statement 3 of Lemma 8.3,

xiDi;gðdÞh%xiDi;gðbÞ;

which by Definition 8.5 yields

tiðgÞdh%tiðgÞb;

which by statement 5 of Lemma 8.3 yields

bkCd:

2. Since bkCai and dkCai; it follows from Theorem
8.1 that " is positive (Definition 8.2), and thus that
b"dgCbkCai: By Definition 8.5,

xiDi;gðbÞB%tiðgÞb

and

xiDi;gðdÞB%tiðgÞd:

Thus by statement 3 of Lemma 8.4,

xiðDi;gðbÞ"Di;gðdÞÞB%tiðgÞðb"dÞ: ð30Þ

But by Definition 8.5,

tiðgÞðb"dÞB%xiDi;gðb"dÞ:
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Thus by Eq. (30),

xiðDi;gðbÞ"Di;gðdÞÞB%xiDi;gðb"dÞ;

which by statement 5 of Lemma 8.3 yields

Di;gðbÞ"Di;gðdÞÞ ¼ Di;gðb"dÞ:

3. Suppose zkCg: Then by statement 3 of Lemma 8.3,

xigh%xiz: ð31Þ

By statement 2 of Lemma 8.4, let y in X be such that

ygB%xiz: ð32Þ

Then by statement 4 of Lemma 8.4,

xikCy: ð33Þ

Thus by statement 2 of Lemma 8.3, yai is in the domain
ofh%: By statement 1 of Lemma 8.4, let y be such that

xiyB%yai: ð34Þ

Then by Definition 8.5,

y ¼ tiðyÞ; ð35Þ

and by Eq. (32), z ¼ Di;gðyÞ: Thus to complete the proof
of statement 3, we need to only show that ykCai: This
follows from Eqs. (33), (34), and statement 4 of Lemma
8.4. &

Definition 8.6. A function L from C into Rþ is said to be
an additive representation for /C;kC;"S if and only if
all a and a0 in C,

aka0 iff LðaÞXLða0Þ ð36Þ
and

Lða"a0Þ ¼ LðaÞ þ Lða0Þ: ð37Þ

Lemma 8.7. The following two statements are true:

1. There exists an additive representation for /C;
kC;"S:

2. For all additive representations j and j0 of

/C;kC;"S; there exists r in Rþ such that j ¼ rj0:

Proof. Theorem 2.8.1 of Narens (1985) &.

Definition 8.7. xiai; i ¼ 1;y; is said to be an unbounded

X–C sequence if and only if the following three
statements are true:

1. xiai is in the domain of h% for all iAIþ:
2. For all a in C, there exists j in Iþ such that agCaj:
3. For all x in X, there exists k in Iþ such that xkgX x:

Lemma 8.8. There exists an unbounded X–C sequence.

Proof. By Lemma 8.7, let j be an additive representa-
tion for

C ¼ /C;kC;"S:

It then easily follows from the fact that C is an extensive
structure (Definition 8.2) and j is an additive repre-
sentation for C that jðCÞ has an infinite sequence of
elements, a1; a3; a5;y; such that for all a in C,
agCa2k�1 for some positive integer k: For each positive
integer k; let A2k�1 be an element of a2k�1 and a2k�1 be
an element of A2k�1 and x2k�1 be the element of X such
that a2k�1 is in x2k�1: Then, it follows from Definitions
8.1 and 8.4 that x2k�1a2k�1 is in the domain ofh% for
each positive integer k:
It easily follows from the fact that C is a concatena-

tion structure and j is an additive representation for C

that jðCÞ has an infinite sequence of elements,
a2; a4; a6;y; such that for all a in C, a2kgCa for some
positive integer k: For each positive integer k; let A2k be
an element of a2k: Let a2 be an element of A2: By Axiom
12 let for each positive integer k; b2k and B2k be
elements of respectively X and C such that

A2kBCB2k and ða2jA2ÞBðb2kjB2kÞ:
We will show by contradiction that for each b in X there
exists a positive integer k such that b2kgX b: For
suppose not. Let b in X be such that bhX b2k for all
positive integers k: By Axiom 12, let B in C and b0 in X

be such that bBX b0 and ða2jA2ÞBðb0jBÞ: By the choice
of a2; a4; a6; let k be a positive integer such that
A2kgCB: Then B2kgCB: Thus since

ðb2kjB2kÞBða2jA2ÞBðb0jBÞ;

it follows from statement 4 of Lemma 8.4 that b2kgX b0:
Thus, because bBX b0; it follows that b2kgX b; a
contradiction. For each positive integer k; let x2k be
the element of X of which b2k is an element, and let a2k
be the element of C of which B2k is an element. Then for
each positive integer k; x2ka2k is in the domain ofh%;
and for each x in X, there exists an integer n such that
x2ngXx:
The sequence defined above by xiai; i a positive

integer, is an unbounded X–C sequence. &

Lemma 8.9. Suppose xiai is an unbounded X–C sequence,
j and k are positive integers, ajgCak; and b; g; and d are

elements of C such that

bkCak; gkCaj; and dkCaj ;

and Dk;bðdÞ ¼ Dj;gðdÞ: Then for all z such that

zkCaj; Dk;bðzÞ and Dj;gðzÞ are defined and

Dk;bðzÞ ¼ Dj;gðzÞ:
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Proof. Suppose z is an arbitrary element of C such that
zkCaj: Since ajgCak; it follows that zkCak: Thus by
statement 2 of Lemma 8.5, Dk;bðzÞ and Dj;gðzÞ are
defined. Suppose Dk;bðzÞaDj;gðzÞ: A contradiction will
be shown. There are two cases to consider.

Case 1: Dj;gðzÞgCDk;bðzÞ: By Lemma 8.7, let L be an
additive representation for /C;kC;"S: Then

LðDj;gðzÞÞ4LðDj;bðzÞÞ:
By properties of the real number system, let m in Iþ be
such that

LðDj;gðzÞÞ � LðDj;bðzÞÞ42�mLðDj;gðdÞÞ:
Then, again by using properties of the real number
system, let p in Iþ be such that

LðDj;gðzÞÞ4p2�mLðDj;gðdÞÞZLðDk;bðzÞÞ: ð38Þ
Since L is an additive representation, it follows from a
hypothesis of the lemma that LðDj;gðdÞÞ ¼ LðDk;bðdÞÞ;
which by Eq. (38) yields

LðDj;gðzÞÞ4p2�mLðDj;gðdÞÞ ð39Þ
and

p2�mLðDk;bðdÞÞZLðDk;bðzÞÞ: ð40Þ
By statement 2 of Lemma 8.6 and by the property of
additive representations expressed in Eq. (37), it easily
follows from Eqs. (39) and (40) that

LðDj;gð2mzÞÞ4LðDj;gðpdÞÞ
and

LðDk;bðpdÞÞZLðDk;bð2mzÞÞ;
which by the property of additive representations
expressed in Eq. (37) and statement 1 of Lemma 8.6
yields

2mzgCpd

and

pdkC2
mz;

which contradicts that kC is a total ordering.
Case 2: Dk;bðzÞgCDj;gðzÞ; follows by a similar argu-

ment. &

Lemma 8.10. Let xiai be an unbounded X–C sequence.

Then

Dj;gðajÞ ¼ g:

Proof. By Definition 8.5,

xjDj;gðajÞB%tjðajÞgB%xjg;

and thus by statement 4 of Lemma 8.4, Dj;gðajÞ ¼ g: &

Definition 8.8. Let xiai be an unbounded X–C sequence.
Then a set S of elements of the form Dj;g; where jAIþ

and gkCaj ; is said to be a D-set (dependent on the

sequence xiai) if and only if the following four
statements are true:

1. Sa|:
2. For all Dj;g and Dk;b in S; if Dj;gðdÞ ¼ Dk;bðdÞ for
some dAC; then Dj;gðsÞ ¼ Dk;bðsÞ for all s common
to the domains of the functions Dj;g and Dk;b:

3. For all jAIþ and all gkCaj ; if there exist Dk;b in S
and d in C such that Di;gðdÞ ¼ Dk;bðdÞ; then Di;g is in
S:

4. For all Dj;g and Dk;b inS; there exits d in C such that
Di;gðdÞ ¼ Dk;bðdÞ:

Definition 8.9. f is said to be a C-function if and only if
for some D-set S;

f ¼
[

S:

Lemma 8.11. Let xiai be an unbounded X–C sequence, m

be a positive integer, and lkCam: Then for all d in C,
there exist a positive integer p and an element gp of C such

that

dkCgp and tpðamÞgpB%xpl:

Proof. Since C ¼ /C;kC;"S is an extensive structure
(Theorem 8.1), it is easy to show that a positive integer k

can be found so that

kamkCl:

Let d be an arbitrary element of C. Since C is an
extensive structure and xiai is an unbounded X–C
sequence, it easily follows from Lemma 8.7 and
Definition 8.6 that a positive integer p can be found
such that amkCap and

dkCkap: ð41Þ

Since by hypothesis llkCam and by Definition 8.5

tpðamÞapB%xpam;

it follows from statement 5 of Lemma 8.4 that gp can be
found such that

tpðamÞgpB%xpl: ð42Þ

By Definition 8.5,

tpðamÞapB%xpam: ð43Þ

Thus by applying statement 3 of Lemma 8.4 to Eq. (43)
k � 1 times,
tpðamÞðkapÞB%xpðkamÞ;

which together with kamkCl implies

xplh%tpðamÞðkapÞ;
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which by Eq. (42) yields

tpðamÞgph%tpðamÞðkapÞ;

which yields

kapkCgp;

which by Eq. (41) yields

dkCgp: &

Lemma 8.12. Let xiai be an unbounded X–C sequence.

Then for each m in Iþ and each lkCam; there exists a D-
set S dependent on xiai such that Dm;l is in S:

Proof. Let m be an arbitrary element of Iþ; and l be
an arbitrary element of C such that lkCam: Let S be
the largest set of elements of the form Dk;b; where k

is in Iþ and bkCak; such that Dm;l is in D and for all Dk;b

in D; if Dk;bðdÞ ¼ Dm;lðdÞ for some d in C, then Dk;bðsÞ ¼
Dm;lðsÞ for all s common to the domains of Dk;b

and Dm;l: S exists by theorems of set theory. It
will be shown that S satisfies statements 1–4 of
Definition 8.8.
1. Sa| since Dm;l is in S:
2. Suppose Dj;g and Dk;b are inS: Let ap be the largest

element of faj; ak; amg and d be an element of C such
that dgCap: Then d is in the domains of Dj;g; Dk;b; and
Dm;l: By the definition of S;

Dj;gðdÞ ¼ Dm;lðdÞ ¼ Dk;bðdÞ:
Thus by Lemma 8.9, Dj;gðsÞ ¼ Dk;bðsÞ for all s common
to the domains of Dj;g and Dk;b:
3. Suppose Dk;b is in S; j is in Iþ; gkCaj ; d is in C,

and Dj;gðdÞ ¼ Dk;bðdÞ: Let ap be the largest element of
faj; ak; amg and Z be an element of C such that ZgCap:
Then Z is in the domains of Dj;g;Dk;b; and Dm;l: By
Lemma 8.9, Dj;gðZÞ ¼ Dk;bðZÞ: Since Dk;b is in
S; Dk;bðZÞ ¼ Dm;lðZÞ: Thus
Dj;gðZÞ ¼ Dm;lðZÞ:

Therefore by Lemma 8.9, Dj;gðsÞ ¼ Dm;lðsÞ for all s
common to the domains of Dj;g and Dm;l: Thus Dj;g is
in S:
4. Suppose Di;g and Dk;b are in S: Then by the

argument presented in the numbered 2 paragraph
above, Dj;gðdÞ ¼ Dk;bðdÞ for some d in C. &

Lemma 8.13. Suppose f is a C-function. Then f is an

automorphism of /C;XC ;"S:

Proof. Throughout this proof let, by Definitions 8.8 and
8.9, S be a D-set dependent on the sequence xiai such
that

f ¼
[

S:

It will first be shown that f is a function on C. Since f

is a union of binary relations, f is a binary relation.
Suppose ðd; aÞ and ðd; bÞ are arbitrary elements of f : By
Definitions 8.8 and 8.9 let Dj;g and Dk;s inS be such that
Dj;gðdÞ ¼ a and Dk;sðdÞ ¼ b: By statement 2 of Definition
8.7, a ¼ b: Since ðd; aÞ and ðd; bÞ are arbitrary elements
of f ; it follows that f is a function.
It will now be shown that f is onto C. Let d be an

arbitrary element of C. Since by statement 1 of
Definition 8.8 Sa|; let Dm;l be an element of S: By
Lemma 8.10,

Dm;lðamÞ ¼ l:

By Lemma 8.11, let p in Iþ and g in C be such that

dkCg and tpðamÞgh%xpl:

Then by Definition 8.5,

Dp;gðamÞ ¼ l:

Thus by statement 3 of Definition 8.8, Dp;g is inS: Since
dkCg; it follows from statement 3 of Lemma 8.6 that
Dp;gðyÞ ¼ d for some ykCap: Thus f is onto C.
It will next be shown that f is defined on all of C. Let

d be an arbitrary element of C. Since f is onto C, it
follows from Definitions 8.8 and 8.9 that ap; a; and g
can be found so that Dp;gðaÞ ¼ d: Then by Definition 8.5
it follows that dkCap and therefore by Definition 8.5
that Dp;gðdÞ exists. Thus by Definitions 8.8 and8.9, f ðdÞ
is defined.
Statements 1 and 2 of Lemma 8.6 together with

Definitions 8.8 and 8.9 show that f preserves kC

and ": Therefore f is an automorphism of /C;
kC;"S: &

Lemma 8.14. Let xiai be an unbounded X–C sequence,
and let j be an additive representation for C ¼
/C;kC;"S: Then for each i in Iþ there exists a

function ci from fxjxAX and xikXxg into Rþ such that

for all x; y; a; and b; if xikXx; xikXy; akCai; and

bkCai; then

xah%yb iff
ciðxÞ
jðaÞX

ciðyÞ
jðbÞ :

Proof. Since j is an additive representation for C; it
immediately follows that A ¼ /jðCÞ;X;þS is an
extensive structure that is isomorphic to C: It is well-
known that each automorphism A is a multiplication by
a positive real number.
For each i in Iþ and each x in X, if xikXx; then for

some d; xidB%xai and (by statement 4 of Lemma 8.4)
dkCai: Therefore, by Definition 8.5, for each i in Iþ and
each x in X such that xikXx; let

ciðxÞ ¼
1

jðt�1i ðxÞÞ:
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Let i; x; y; a; and b; be arbitrary elements such that i is
in Iþ; xikXx; xikXy; akCai; and bkCai: Then by
Definition 8.5,

xah%yb iff tit�1i ðxÞah%tit�1i ðyÞb
iff xiDi;a½t�1i ðxÞ�h%xiDi;b½t�1i ðyÞ�
iff Di;a½t�1i ðxÞ�%CDi;b½t�1i ðyÞ�
iff jðDi;a½t�1i ðxÞ�ÞpjðDi;b½t�1i ðyÞ�Þ:

Since by Lemmas 8.12 and 8.13 Di;a is part of an
automorphism of C and j is an isomorphism of C onto
A;

jðDi;a½t�1i ðxÞ�Þ ¼ j½Di;a�ðjðt�1i ðxÞÞ;
where j½Di;a� is part of an automorphism of A: Since by
Lemma 8.10 Di;aðaiÞ ¼ a; it then follows that j½Di;a�
must be multiplication by jðaÞ=jðai). Therefore, by the
above sequence of logical equivalences,

xah%yb iff jðDi;a½t�1i ðxÞ�ÞpjðDi;b½t�1i ðyÞ�Þ
iff j½Di;a�ðjðt�1i ðxÞÞpj½Di;b�ðjðt�1i ðyÞÞ

iff
jðaÞ
jðaiÞ

jðt�1i ðxÞÞpjðbÞ
jðaiÞ

jðt�1i ðyÞÞ

iff
jðaÞ
jðaiÞ

1

ciðxÞ
p

jðbÞ
jðaiÞ

1

ciðyÞ

iff
ciðxÞ
jðaÞX

ciðyÞ
jðbÞ : &

Lemma 8.15. Let xiai; ji; and ci be as in Lemma 8.14.
For each positive integer i let zi be x1 if xikXx1; and zi be

xi if x1kXxi: (Thus in particular, z1kXzi for all positive

integers i:) Let

c ¼
[N
i¼1

c1ðziÞ
ciðziÞ

ci:

Then c is a function from X into Rþ:

Proof. Since c is a union of functions, c is a set of
ordered pairs.
Let k be an arbitrary positive integer. Let

r ¼ c1ðzkÞ
ckðzkÞ

ckðzkÞ ¼ c1ðzkÞ:

Then the ordered pair ðzk; rÞ is in c: Suppose zk is in the
domain of cj : Then ðzk; r0Þ is in c; where
c1ðzjÞ
cjðzjÞ

cjðzkÞ ¼ r0: ð44Þ

By statement 1 of Lemma 8.4, let d and g be such that

zjdB%zkg:

Since z1kXzj and z1kXzk; it follows by Lemma 8.14
that

cjðzjÞ
cjðzkÞ

¼ jðdÞ
jðgÞ ¼

c1ðzjÞ
c1ðzkÞ

:

Thus

cjðzkÞ ¼
c1ðzkÞ
c1ðzjÞ

cjðzjÞ;

which by Eq. (44) yields

r0 ¼ c1ðzkÞ
cjðzjÞ

cjðzjÞ ¼ c1ðzkÞ ¼ r: ð45Þ

To show c is a function, suppose ðx; sÞ and ðx; s0Þ are
elements of c: By the definition of c; let j and k be such
that

c1ðzjÞ
cjðzjÞ

cjðxÞ ¼ s

and

c1ðzkÞ
ckðzkÞ

ckðxÞ ¼ s0:

Without loss of generality, suppose that zjkXzk: Then
zk is in the domain of cj: By statement 1 of Lemma 8.4,
let m and n be such that

xmB%zkn:

Then by Lemma 8.14,

cjðxÞ
cjðzkÞ

¼ jðmÞ
jðnÞ ¼

ckðxÞ
ckðzkÞ

;

and thus

cjðxÞ ¼
cjðzkÞ
ckðzkÞ

ckðxÞ: ð46Þ

From

s ¼ c1ðzjÞ
cjðzjÞ

cjðxÞ;

it follows by Eq. (46) that

s ¼ c1ðzjÞ
cjðzjÞ

cjðzkÞ
ckðzkÞ

ckðxÞ ¼
c1ðzjÞ
cjðzjÞ

cjðzkÞ
" #

1

ckðzkÞ

� �
ckðxÞ;

which by Eqs. (44) and (45) yields

s ¼ c1ðzkÞ
ckðzkÞ

ckðxÞ ¼ s0:

To show that c is defined on all of X, let x be
an arbitrary element of X. Since xiai is and unboun-
ded X–C sequence, let p be such that xpkCx: Then
x is in the domain of cp and thus is in the domain
of c: &

Lemma 8.16. Let j be an additive representation for

C ¼ /C;kC;"S: Then there exists a function c
from X into Rþ such that for all xa and yb in the domain

of h%;

xah%yb iff
cðxÞ
jðaÞX

cðyÞ
jðbÞ:
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Proof. Let xiai be an unbounded X–C sequence
and c and ci as in Lemmas 8.15 and 8.14, and let xa
and yb be arbitrary elements of the domain of h%:
Since xiai is an unbounded X–C sequence, let j be
such that

xjkCx and xjkCy:

By use of Lemma 8.4 it is easy to show that we can find d
and g in C such that

dkCaj; gkCaj; and xdB%yg:

It will first be shown that

xah%yb iff xða"dÞh%yðb"gÞ: ð47Þ

First suppose xah%yb: Since C is an extensive
structure, a"dkCa and b"gkCb: Thus xða"dÞ and
yðb"gÞ are in the domain of h%: Therefore, since
xdB%yg; it follows that from statement 3 of Lemma 8.4
that xða"dÞh%yðb"gÞ: Now suppose not xah%yb:
Then ybg%xa: Thus, since xdB%yg; by statement 3 of
Lemma 8.4, yðb"gÞg%xða"dÞ; and thus not
xða"dÞh%yðb"gÞ:
Lemma 8.14 applied to xdB%yg yields

cjðxÞ
jðdÞ ¼

cjðyÞ
jðgÞ ;

and thus

cjðxÞjðgÞ ¼ cjðyÞjðdÞ: ð48Þ
Therefore by Eq. (47), Lemma 8.14, Definition 8.6,
Eq. (48), and Lemma 8.15,

xah%yb iff xða"dÞh%yðb"gÞ

iff
cjðxÞ

jða"dÞX
cjðyÞ

jðb"gÞ

iff
cjðxÞ

jðaÞ þ jðdÞX
cjðyÞ

jðbÞ þ jðgÞ
iff cjðxÞjðbÞ þ cjðxÞjðgÞ
XcjðyÞjðaÞ þ cjðyÞjðdÞ

iff cjðxÞjðbÞXcjðyÞjðaÞ

iff
cjðxÞ
jðaÞX

cjðyÞ
jðbÞ

iff
cðxÞ
jðaÞX

cðyÞ
jðbÞ:

8.2. Proofs for Section 2

Lemma 8.17. Let /u; vS be a basic belief representation

for \ and a and b be in X : Then

aBX b iff uðaÞvðaÞ ¼ uðbÞvðbÞ:

Proof.

aBX b iff ðaja; bÞBðbja; bÞ

iff
uðaÞvðaÞ

uðaÞ þ uðbÞ ¼
uðbÞvðbÞ

uðaÞ þ uðbÞ
iff uðaÞvðaÞ ¼ uðbÞvðbÞ: &

Definition 8.10. For all a and b in X ; aEb if and only if
there exists e in X such that eaa; eab and

ðeje; aÞBðeje; bÞ:

Theorem 8.2 (Theorem 2.1). Assume the basic belief

axioms (Definition 2.4) are true. Then the following two

statements hold:

1. (Representation theorem) There exists a basic belief

representation for \ (Definition 2.3).
2. (Uniqueness theorem) Let

U ¼ fuj/u; vS u is a basic belief representation for \g;

and}

V ¼ fvj/u; vS v is a basic belief representation for \g:

Then U and V are ratio scales.

Proof. By Theorem 8.1 let j be and additive representa-
tion for C ¼ /C;kC;"S:
For each AAC; let aA be the element of C such that

AAaA:
For each c in X ; let (by Axiom 10 and Definition 8.10)

c0 be such that cEc0 and cac0; and let u be the function
on X defined by

uðcÞ ¼
jðafc;c0gÞ
2

:

(To show u is well-defined, let c00 be such that cEc00 and
cac00: It is only necessary to show afc;c0g ¼ afc;c00g: It
follows from Axiom 4 that fc; c0gBCfc; c00g; and thus
that afc;c0g ¼ afc;c00g:)
1. Let A ¼ fa; a1;y; ang be an arbitrary element of C

such that a; a1;y; an are distinct. Then by Axiom 10
and Definition 8.10, let A0 ¼ fa0; a0

1;y; a0
ng be such that

a0; a0
1;y; a0

n are distinct, ABCA0; A-A0 ¼ |; aEa0;
and for i ¼ 1;y; n; aiEa0

i: Because ABCA0; it follows
that aA ¼ aA0 ; and thus that

jðaAÞ ¼ jðaA0 Þ:

Therefore, because j is an additive representation for C;

2jðaAÞ ¼jðaA"aA0 Þ
¼jðaA,A0 Þ
¼j½afa;a0g"afa1;a

0
1
g"?"afan;a0ng�
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¼jðafa;a0gÞ þ
Xn

1¼1
jðafai ;a

0
i
gÞ

¼ 2uðaÞ þ
Xn

i¼1
2uðaiÞ;

and thus

jðaAÞ ¼
X
eAA

uðeÞ: ð49Þ

Because j is an additive representation for C and
Eq. (49) holds for all A in C; it follows that for all B and
C in C,

B\CC iff aBkCaC

iff jðaBÞXjðaCÞ
iff

X
bAB

uðbÞX
X
cAC

uðcÞ:

Let c be as in Lemma 8.16. Define the function v on
X as follows: for each e in X ; let xe be the element of X
such that eAxe and let

vðeÞ ¼ cðxeÞ
uðeÞ :

By Lemma 8.16 and Eq. (49) and the above definition
of v;

ðajAÞhðbjBÞ iff xaaAh%xbaB

iff
cðxaÞ
jðaAÞ

X
cðxbÞ
jðaBÞ

iff
vðaÞuðaÞP

eAA uðeÞX
vðbÞuðbÞP

eAB uðeÞ

iff vðaÞ uðaÞP
eAA uðeÞXvðbÞ uðbÞP

eAB uðeÞ:

Let A and B be arbitrary elements of C: By Definition
8.1 and Eq. (49),

AhCB iff aAkCaB iff jðaAÞXjðaBÞ
iff

X
eAA

uðeÞX
X
eAB

uðeÞ:

2. Let /u; vS be a basic belief representation for\: It
is an immediate verification that for each s in
Rþ; /su; vS is a basic belief representation for \:
Suppose /t; vS is also a basic belief representation for

\: Then it follows from Eq. (49) that

uðAÞ ¼
X
eAA

uðeÞ and tðAÞ ¼
X
eAA

tðeÞ;

for A in C: It is easy to verify that û and t̂ defined on C

by

ûðaAÞ ¼ uðAÞ and t̂ðaAÞ ¼ tðAÞ

are additive representations for C ¼ /C;kC;"S: Since
by Lemma 8.7 the additive representations for C form a
ratio scale, let r be a positive real such that rû ¼ t̂: Then
ru ¼ t:

The above establishes that

U ¼ fuj/u; vS u is a basic belief representation for \g
is a ratio scale.
Because /u; vS; a basic belief representation for\; it

is an immediate verification that for each s in
Rþ; /u; svS is a basic belief representation for \:
Let a be an element of X ; /t; v0S be an arbitrary basic

belief representation for h; and rARþ be such that

v0ðaÞ ¼ rvðaÞ: ð50Þ
Let b be an arbitrary element of X : To complete the
proof of statement 2, it is sufficient to show that

v0ðbÞ ¼ rvðbÞ:
Because

U ¼ fuj/u; vS u is a basic belief reprsentation for \g
is a ratio scale, /ru; vS is a basic belief representation
for \: For each C in C; let

uðCÞ ¼
X
cAC

uðcÞ:

Case 1: a\X b: Let B in C be such that bAB: Then by
Axiom 12 let c in X and C in C be such that

cBX a and ðcjCÞBðbjBÞ: ð51Þ
Then by Eq. (51) and Lemma 8.17,

ruðaÞvðaÞ ¼ ruðcÞvðcÞ and ruðaÞv0ðaÞ ¼ ruðcÞv0ðcÞ:ð52Þ
By Eq. (51),

ruðcÞvðcÞ
ruðCÞ ¼ ruðbÞvðbÞ

ruðBÞ ð53Þ

and

ruðcÞv0ðcÞ
ruðCÞ ¼ ruðbÞv0ðbÞ

ruðBÞ : ð54Þ

Eqs. (51)–(53) yield

uðaÞvðaÞ
uðCÞ ¼ uðbÞvðbÞ

uðBÞ ; ð55Þ

and Eqs. (51), (52), and (54) yield

uðaÞv0ðaÞ
uðCÞ ¼ uðbÞv0ðbÞ

uðBÞ : ð56Þ

Then by Eqs. (50), (55), and (56),

v0ðbÞ ¼ rvðbÞ:
Case 2: b\X a: Let A in C be such that aAA: Then by

Axiom 12 let c in X and C in C be such that

cBX b and ðcjCÞBðajAÞ: ð57Þ
Then by Eq. (57) and Lemma 8.17,

ruðbÞvðbÞ ¼ ruðcÞvðcÞ and ruðbÞv0ðbÞ ¼ ruðcÞv0ðcÞ:ð58Þ
By Eq. (57),

ruðcÞvðcÞ
ruðCÞ ¼ ruðaÞvðaÞ

ruðAÞ ð59Þ
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and

ruðcÞv0ðcÞ
ruðCÞ ¼ ruðaÞv0ðaÞ

ruðAÞ : ð60Þ

Eqs. (57)–(59) yield

uðbÞvðbÞ
uðCÞ ¼ uðaÞvðaÞ

uðAÞ ; ð61Þ

and Eqs. (57), (58), and (60) yield

uðbÞv0ðbÞ
uðCÞ ¼ uðaÞv0ðaÞ

uðAÞ : ð62Þ

Then by Eqs. (50), (61), and (62),

v0ðbÞ ¼ rvðbÞ: &

Theorem 8.3 (Theorem 2.2). Assume the basic belief

axioms with binary symmetry (Definition 2.5). Then the

following two statements hold:

1. (Representation theorem) There exists a basic choice

representation for \ (Definition 2.6).
2. (Uniqueness theorem) The set of basic choice repre-

sentations for \ forms a ratio scale.

Proof. 1. Because the basic belief axioms with binary
symmetry imply the basic belief axioms, by Theorem 8.2
let /u; vS be a basic belief representation for \: Then
by Theorem 8.2, (i) u is a function from X into Rþ; (ii)
for all A and B in C;

A\CB iff
X
aAA

uðaÞX
X
bAB

uðbÞ;

and (iii) for all finite conditional events ðajAÞ and ðbjBÞ
of X ;

ðajAÞ\ðbjBÞ iff vðaÞ uðaÞP
eAA uðeÞXvðbÞ uðbÞP

eAB uðeÞ:

Thus to show statement 1, it is sufficient to show that for
all a and b in X ;

vðaÞ ¼ vðbÞ and ½a\X b iff uðaÞXuðbÞ�:

Let a and b be arbitrary elements of X and A and B be
arbitrary elements of C. Suppose aAA and bAB: By
Axiom 9, let a0 and b0 be such that aaa0; bab0; aBX a0;
and bBX b0: Then by Definition 2.2,

ðaja; a0ÞBða0ja; a0Þ and ðbjb; b0ÞBðb0jb; b0Þ: ð63Þ

Applying Theorem 8.2 to Eq. (63) yields,

vðaÞuðaÞ
uðaÞ þ uða0Þ ¼

vða0Þuða0Þ
uðaÞ þ uða0Þ and

vðbÞuðbÞ
uðbÞ þ uðb0Þ ¼

vðb0Þuðb0Þ
uðbÞ þ uðb0Þ; ð64Þ

and applying Axiom 14 and Theorem 8.2 to Eq. (63)
yields>

vðaÞ uðaÞ
uðaÞ þ uða0Þ ¼ vðbÞ uðbÞ

uðbÞ þ uðb0Þ ð65Þ

and

vðaÞuðaÞ
uðaÞ þ uðbÞ ¼

vða0Þuða0Þ
uða0Þ þ uðb0Þ: ð66Þ

Another application of Axiom 14 and Theorem 8.2 to
Eq. (63) yields

vðaÞuðaÞ
uðaÞ þ uðb0Þ ¼

vða0Þuða0Þ
uða0Þ þ uðbÞ: ð67Þ

Eq. (64) implies vðaÞuðaÞ ¼ vða0Þuða0Þ: Thus Eq. (66)
implies

uðaÞ þ uðbÞ ¼ uða0Þ þ uðb0Þ; ð68Þ

and Eq. (67) implies

uðaÞ þ uðb0Þ ¼ uða0Þ þ uðbÞ: ð69Þ

Adding Eqs. (68) and (69) and reducing then yields,

uðaÞ ¼ uða0Þ;

which by Eq. (69) yields,

uðbÞ ¼ uðb0Þ;

and thus by Eq. (65),

vðaÞ ¼ vðbÞ: ð70Þ

Thus to complete the proof of statement 1 it needs to
only be shown that

a\X b iff uðaÞXuðbÞ:

By Definition 2.2, Theorem 8.2, and Eq. (70),

a\X b iff ðaja; bÞ\ðbja; bÞ

iff vðaÞ uðaÞ
uðaÞ þ uðbÞXvðbÞ uðbÞ

uðaÞ þ uðbÞ
iff uðaÞXuðbÞ:

2. By Theorem 8.2,

U ¼ fuj/u; vS is a basic belief representation for \g;

forms a ratio scale. Thus statement 2 is true. &

8.3. Proofs for Section 3

Lemma 8.18. Assume the belief axioms. By Theorem 2.1,
let /u; vS be a basic belief representation for \: Define %u
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and %v on F as follows: Let A be an arbitrary element of

F:

(i) Suppose A ¼ |: Define %uðAÞ ¼ 0 and %vðAÞ ¼ 1:
(ii) Suppose Aa|: Let B be an element ofF such that

ACB: By Axiom 17, let e; E; and f be such that

BBCE;

ðAjBÞBEðejEÞ;
fae; feA; and

ðf je; f ÞBEðf jA,ff gÞ:
Then define %uðAÞ ¼ uðeÞ and %vðAÞ ¼ vðeÞ:

Then the following three statements are true:

1. %uð|Þ ¼ 0 and %vð|Þ ¼ 1:
2. If for some a; A ¼ fag; then %uðfagÞ ¼ uðaÞ and

%vðfagÞ ¼ vðaÞ:
3. %u and %v are well-defined on F: That is, if Aa| and

B0; e0; E0 and f 0 are such that B0 is in

F; ACB0; B0BCE0;

ðAjB0ÞBEðe0jE0Þ;
f 0ae0; f 0eA; and

ðf 0je0; f 0ÞBEðf 0jA,ff 0gÞ;
then %uðAÞ ¼ uðe0Þ and %vðAÞ ¼ vðe0Þ:

Proof. To simplify notation, for each nonempty C in C,
let

uðCÞ ¼
X
cAC

uðcÞ:

1. Statement 1 immediately follows from condition (i).
2. Suppose A ¼ fag: Then By condition (ii),

ðf je; f ÞBEðf ja; f Þ;
and thus

vðf Þ uðf Þ
uðeÞ þ uðf Þ ¼ vðf Þ uðf Þ

uðaÞ þ uðf Þ;

yielding

%uðfagÞ ¼ uðeÞ ¼ uðaÞ: ð71Þ
Also by condition (ii),

BBCE and ðfagjBÞBEðejEÞ;
and thus

uðBÞ ¼ uðEÞ and
uðfagÞ
uðBÞ vðfagÞ ¼ uðeÞ

uðEÞvðeÞ;

which together with Eq. (71) yields,

%vðfagÞ ¼ vðeÞ ¼ vðaÞ:
3. Assume the hypotheses of statement 3. Suppose

Aa|: By condition (ii),

ðf je; f ÞBEðf jA,ff gÞ;

and thus

vðf Þ uðf Þ
uðeÞ þ uðf Þ ¼ vðf Þ uðf Þ

uðAÞ þ uðf Þ;

yielding

uðeÞ ¼ uðAÞ: ð72Þ
Similarly, the hypothesis

ðf 0je0; f 0ÞBEðf 0jA,ff 0gÞ
yields

uðe0Þ ¼ uðAÞ: ð73Þ
Thus by Eqs. (72) and (73),

%uðAÞ ¼ uðeÞ ¼ uðe0Þ: ð74Þ
Because by hypothesis,

ðAjBÞBEðejEÞ; ðAjB0ÞBEðe0jE0Þ; BBCE;

and B0BCE0;

it follows by Axiom 18 that

ðeje; e0ÞBEðe0je; e0Þ:
Thus by Theorem 2.1,

uðeÞvðeÞ
uðeÞ þ uðe0Þ ¼

uðe0Þvðe0Þ
uðeÞ þ uðe0Þ;

which by Eq. (74) yields

%vðeÞ ¼ vðeÞ ¼ vðe0Þ: &

Lemma 8.19. Assume the hypotheses and notation of

Lemma 8.18. Let A be a nonempty finite event of X ; and

let, by definition,

uðAÞ ¼
X
aAA

uðaÞ:

Then

%uðAÞ ¼
X
aAA

%uðfagÞ ¼
X
aAA

uðaÞ ¼ uðAÞ:

Proof. Since /u; vS is a basic belief representation for
\; it follows by statement 2 of Lemma 8.18 that for
each x in X ;

%uðfxgÞ ¼ uðxÞ:
Thus,X
aAA

%uðfagÞ ¼
X
aAA

uðaÞ ¼ uðAÞ;

and by Eqs. (73) and (74),

%uðAÞ ¼ uðAÞ: &

Theorem 8.4 (Theorem 3.1). Assume the belief axioms

(Definition 3.2). Then the following two statements are true:

1. There exists a belief representation for \E with

context function u and definiteness function v:

L. Narens / Journal of Mathematical Psychology 47 (2003) 1–31 29



2. Let B be a belief representation for \E with context

function u and definiteness function v: Then the

following two statements are true:
(i) For all positive reals r and s there exists a belief

representation for \E with context function ru

and definiteness function sv:
(ii) Let B1 be a belief representation for \E with

context function u1 and definiteness function v1
Then for some positive real numbers r and s;

u1 ¼ ru and v1 ¼ sv:

Proof. 1. Let u; v; %u; and %v be as in Lemma 8.18. For
each nonempty finite event of X ; let, by definition,

uðCÞ ¼
X
cAC

uðcÞ:

And for each finite event ðAjBÞ of X ; let

BðAjBÞ ¼ %vðAÞ %uðAÞ
%uðBÞ

: ð75Þ

Then it will be shown that B is a belief representation for
\E with context function %u and definiteness function %v

(Definition 3.3). It is immediate that conditions (i), (ii),
and (iv) of Definition 3.3 hold for B; %u; and %v:
Condition (iii) follows from the definition of %u and
Lemma 8.19. To show condition (v), let ðAjBÞ and
ðCjDÞ be arbitrary conditional events.

Case 1: Either A ¼ | or C ¼ |: Suppose
ðAjBÞ\EðCjDÞ: (i) If A ¼ |; then by Axioms 15 and
16, C ¼ |: Thus by Eq. (75) and statement 1 of Lemma
8.18,

BðAjBÞ ¼ 0X0 ¼ BðCjDÞ:
(ii) If C ¼ |; then by Eq. (75) and statement 1 of

Lemma 8.18,

BðAjBÞX0 ¼ BðCjDÞ:
Suppose BðAjBÞXBðCjDÞ: If A ¼ |; then BðCjDÞ ¼ 0;
which by Eq. (75) and the definition of %u in Lemma 8.18
yields C ¼ |; which by Axioms 15 and 16 yields
ðAjBÞ\EðCjDÞ: If C ¼ |; then ðAjBÞ\EðCjDÞ by
Axiom 12.

Case 2: Aa|; Ca|; and both B and D have at least

two elements: By Axiom 17, let e; E; f and g; G; h be
such that the following two conditions hold:

(1) BBCE; DBCG; eeA; geC; and

ðAjBÞBEðejEÞ and ðCjDÞBEðgjGÞ:

(2) fae; feA; hag; heC; and

ðf je; f ÞBEðf jA,ff gÞ and ðhjg; hÞBEðhjC,fhgÞ:

Then by Lemma 8.18,

%uðAÞ ¼ uðeÞ and %vðAÞ ¼ vðeÞ:

Because BBCE and /u; vS is a basic belief representa-
tion for \; uðBÞ ¼ uðEÞ: By Lemma 8.19,
%uðBÞ ¼ uðBÞ:
Thus,

BðAjBÞ ¼ %vðAÞ %uðAÞ
%uðBÞ

¼ %vðAÞ uðAÞ
uðBÞ ¼ vðeÞ uðeÞ

uðEÞ:

Similarly,

BðCjDÞ ¼ %vðCÞ %uðCÞ
%uðDÞ ¼ vðgÞ uðgÞ

uðGÞ:

Thus, because /u; vS is a basic belief representation for
\ and \E is an extension of \;

ðAjBÞ\EðCjDÞ iff ðejEÞ\ðgjGÞ

iff vðeÞuðeÞ
uðEÞXvðgÞuðgÞ

uðGÞ
iff BðAjBÞXBðCjDÞ:

Case 3: A ¼ B or C ¼ D: Because of statement 1 of
Axiom 19, we may assume that B and D are in C. Then
by statement 2 of Axiom 12, let B0 and D0 be such that
BBCB0; B-B0a|; DBCD0; and D-D0a|; and

ðAjBÞ\EðCjDÞ iff ðAjB,B0Þ\EðCjD,D0Þ: ð76Þ
Thus by Case 2 (which has already been shown),

ðAjB,B0Þ\EðCjD,D0Þ
iff BðAjB,B0ÞXBðCjD,D0Þ: ð77Þ

But by conditions (iii) and (iv) of Definition 3.3,

BðAjB,B0Þ ¼ 1
2
BðAjBÞ and BðCjD,D0Þ ¼ 1

2
BðCjDÞ:

ð78Þ
Thus by Eqs. (76)–(78).

ðAjBÞ\EðCjDÞ iff BðAjBÞXBðCjDÞ:
2. Part (i), statement 2 of the theorem follows by

direct verification. Because %uð|Þ ¼ 0 and for Aa|; %uðAÞ
and %vðAÞ are defined to be, respectively, uðeÞ and vðeÞ for
an appropriately chosen element e of X ; part (ii) follows
from statement 2 of Theorem 2.1, statement 2 of Lemma
8.18, and the definitions of %u and %v: &
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