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Abstract

Two forms of direct measurement are considered in the article: a strong form in which ratio productions named by number words are

interpreted veridically as the numerical ratios they name; and a weak form in which the ratio productions named by number words may

have interpretations as ratios that are different from numerical ratios they name. Both forms assume that the responses to instructions to

produce ratios are represented numerically by ratios, and thus the word ‘‘ratio’’—and supposedly the participants concept associated

with it—is being ‘‘directly’’ represented. The strong form additionally ‘‘directly represents’’ the number mentioned in the instruction by

itself. The article provides an axiomatic theory for the numerical representations produced by both forms. This theory eliminates the

need for assuming anything is being ‘‘directly represented,’’ allowing for a purely behavioral approach to ratio production data. It

isolates two critical axioms for empirical testing. An measurement-theoretic explanation is provided for the puzzling empirical

phenomenon that subjects do not distinguish between ratios and differences in a variety of direct measurement tasks.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Falmagne’s Elements of Psychophysical Theory appeared
in 1985. While covering much of the theory about the
measurement of sensation, it only touched briefly on the
topic of the direct measurement of sensation—a topic with
a long and controversial history and enormous methodo-
logical, theoretical, and experimental literatures. I would
guess that part of the reason for direct measurement’s light
treatment in Elements was that in 1985 there was very little
mathematical theory concerning it that matched high level
of scientific and mathematical rigor characteristic of
Falmagne’s Elements.

In 1985 many of us interested in axiomatic approaches to
measurement believed that direct measurement methods
were founded on unsound methodologies and theories.
Researchers using direct measurement techniques did not
appear aware of—or at least did not acknowledge—the
strong structural assumptions implicit in their measure-
ment techniques. Some of these assumptions had empirical
import about the objects being measured that could, in
e front matter r 2006 Elsevier Inc. All rights reserved.
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principle, conflict with the numerical assignments produced
by direct measurement. Some of these structural assump-
tions were empirically investigated at the time (e.g.,
Birnbaum & Elmasian, 1977; Mellers, Davis, & Birnbaum,
1984), and modeled axiomatically (Miyamoto, 1983).
Within the last dozen years, Narens (1994, 1996) and

Luce (2002, 2004) developed axiomatic theories that make
explicit some of the structural assumptions inherent in
representing direct measurement data, and have worked
with colleagues to test the most important of these. This
article explores two classical issues in psychophysics, the
presumed ratio scalability of subjective intensity and
Togerson’s conjecture, in light of the above axiomatic
theories and some of the empirical results they generated.

2. Representational theory of measurement

The principal method of measurement used throughout
the article is the representational theory. To state the
representational theory, some preliminary concepts and
notation are needed.

Definition 1. Throughout the article R stands for the real
numbers, I for the integers, Rþ for the positive real
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numbers, Iþ for the positive integers, and � for the
operation of function composition.

A measurement scale S is a nonempty set of functions
from a nonempty set of object X into R. Throughout the
article it is assumed that X is a set of physical objects that is
totally ordered by % and that each measuring function
j in S is a strictly %-increasing function from X onto
either R or Rþ; that is, j is an isomorphism of hX ;%i onto
either hR;pi or hRþpi. (In the literature, measuring
functions in S are often called ‘‘scales.’’) S is said to be a:
�

1

cha
2

cha
3

pre

the
ratio scale if and only if for all c in S,

S ¼ frc j r 2 Rþg,
�
 interval scale if and only if for all c in S,

S ¼ frcþ s j r 2 Rþ and s 2 Rg,
�
 log-interval scale1 if and only if for all c in S,

S ¼ fscr
j r 2 Rþ and s 2 Rþg,
�
 translation scale2 if and only if for all c in S,

S ¼ fcþ r j r 2 Rg.
The representational theory of measurement measures
objects through a scale S of isomorphisms.3 Structure is
added to X in terms of qualitative relations and functions,
R1; . . . ;Rn. In practice R1; . . . ;Rn are usually observable.
This gives rise to a qualitative structure X ¼ hX ;%;
R1; . . . ;Rni. Measurement consists of finding numerical
structures N ¼ hN;p;S1; . . . ;Sni, where N ¼ Rþ or
N ¼ R, and using the measurement scale,

S ¼ fc jc is an isomorphism of X onto Ng.

In principle any numerical structure isomorphic to X will
suffice for producing a representational measurement scale;
however, in practice numerical structures with well-under-
stood relations are employed.

The relations %;R1; . . . ;Rn are called the primitives of X.
In some cases qualitative structures have infinitely many
primitives. Isomorphisms of X onto itself are called
symmetries (or automorphisms). Symmetries play a major
role throughout the article.

Let c 2S. Each relation or function R on X is mapped
by c onto a relation or function on N denoted by cðRÞ.
For example, the binary relation R on X is mapped onto
the relation cðRÞ ¼ S, where S is the binary relation on N
A log-interval scale can be viewed as a variant of an interval scale by a

nge of variable, i.e., t! et.

A translation scale can be viewed as a variant of a ratio scale by a

nge of variable, i.e., t! log t.

Sometimes the representational theory uses a weaker form of structural

serving functions called homomorphisms as measuring functions. For

purposes of this article, only isomorphisms are needed.
such that for all r and s in N, Sðr; sÞ holds if and only if for
some x and y in X, Rðx; yÞ holds and cðxÞ ¼ r and cðyÞ ¼ s.

3. Plateau’s theory

The Belgian physicist M.J. Plateau was the first to
provide a psychophysical theory of subjective intensity
based on direct measurement (Plateau, 1872). He provided
eight artists with two disks—one painted black and the
other white—and instructed them to paint a gray
disk midway between them. He reported that the resulting
eight gray disks were almost identical, even though they
were painted under different conditions of illumination.
Plateau assumed each artist mixed his gray paint to obtain
a gray such that the ratio of the subjective intensity of
white to gray equaled the subjective intensity of gray
to black. Generalization of this to all pairs of gray disks
then yields,

cðdÞ
cðmÞ

¼
cðmÞ
cðeÞ

,

where d and e are the disks provided for midway judgment,
m is the midway disk painted by the artist, and c is a
function that measures subjective grayness. Because
by physics, the ratios of physical light of gray disks
(or of white and gray disks, black and gray disks, etc.)
do not vary with illumination (and thus, for example,
the ratios of physical light from the gray and white disks
were the same in each artist’s studio), Plateau concluded
that his experiment established the following law for his
stimuli:

Preserved Midway Ratio Law: For all gray disks (including
black and white) d and e,

jðdÞ
jðmÞ

¼
jðmÞ
jðeÞ

iff
cðdÞ
cðmÞ

¼
cðmÞ
cðeÞ

,

where m is the gray disk produced midway between d and
e, and j is a function that measures the physical intensity
of grays.

Plateau then showed the Preserved Midway Ratio Law
implied that

c ¼ rjs

for some positive r and s, that is, the Preserved Midway
Ratio Law implied subjective intensity is a power function
of physical intensity. The following is an argument showing
this under the necessary assumptions that j and c are
onto Rþ and are strictly monotonically related, that is, for
all x and y in X,

jðxÞojðyÞ iff cðxÞocðyÞ.

The argument, which uses a well-known functional
equation, goes as follows:
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Assume the Preserved Midway Ratio Law. Let x, y, u,
and v be arbitrary elements of X. It will first be shown that,

jðxÞ
jðyÞ
¼

jðuÞ
jðvÞ

iff
cðxÞ
cðyÞ
¼

cðuÞ
cðvÞ

. (1)

Assume

jðxÞ
jðyÞ
¼

jðuÞ
jðvÞ

. (2)

It will be shown that cðxÞ=cðyÞ ¼ cðuÞ=cðvÞ. By Eq. (2)
and because j and c are onto the positive reals, let a and b

in X be such that

jðxÞ
jðaÞ
¼

jðaÞ
jðvÞ

and
jðuÞ
jðbÞ
¼

jðbÞ
jðyÞ

.

Then by the Preserved Midway Ratio Law,

cðxÞ
cðaÞ
¼

cðaÞ
cðvÞ

and
cðuÞ
cðbÞ
¼

cðbÞ
cðyÞ

.

Thus

jðxÞjðvÞ ¼ jðaÞ2 and jðuÞjðyÞ ¼ jðbÞ2, (3)

and

cðxÞcðvÞ ¼ cðaÞ2 and cðuÞcðyÞ ¼ cðbÞ2. (4)

By Eq. (2), jðxÞjðvÞ ¼ jðuÞjðyÞ. Thus it follows from Eq.
(3) that jðaÞ ¼ jðbÞ. Because j is strictly increasing, it is a
one-to-one function. Therefore a ¼ b. Thus by Eq. (4),

cðxÞcðvÞ ¼ cðaÞ2 ¼ cðbÞ2 ¼ cðuÞcðyÞ,

and therefore, because a ¼ b,

cðxÞ
cðyÞ
¼

cðuÞ
cðvÞ

.

The implication, cðxÞ=cðyÞ ¼ cðuÞ=cðvÞ implies
jðxÞ=jðyÞ ¼ jðuÞ=jðvÞ follows by a similar argument.
Thus Eq. (1) has been shown.

Defined C on Rþ as follows: For all z in X,

CðjðzÞÞ ¼ cðzÞ.

It then follows from the assumptions about j and c that
C is a strictly increasing function from Rþ onto Rþ. Let
b and r be arbitrary positive reals. Because j is onto Rþ,
let a, b, c, and d be elements of X such that

r ¼ jðaÞ; b ¼ jðbÞ; 1 ¼ jðcÞ and d ¼ jðbrÞ.

Because

r

1
¼

br

b
,

it follows that

jðaÞ
jðcÞ
¼

jðdÞ
jðbÞ

.

Thus by Eq. (1),

cðaÞ
cðcÞ
¼

cðdÞ
cðbÞ

,

and therefore by the definition C,

CðjðaÞÞ
CðjðcÞÞ

¼
CðjðdÞÞ
CðjðbÞÞ

,

that is,

CðrÞ
Cð1Þ

¼
CðbrÞ

CðbÞ
. (5)

Letting

KðbÞ ¼
CðbÞ
Cð1Þ

,

Eq. (5) becomes

KðbÞCðrÞ ¼ CðbrÞ. (6)

Eq. (6) is a well-known, elementary functional equations
whose solutions C have the form CðrÞ ¼ lrg, where l and
g are fixed positive reals and r is an arbitrary positive real.
Thus, by the definition of C, for all z in X,

cðzÞ ¼ ljðzÞg

for some positive l and g.
Plateau’s argument for a power law has two major holes.

Both involve the use and interpretation of ‘‘midway:’’
First, he did not check whether the artists’ midway grays
had the mathematical structural properties that specify a
midway operation �, where �ðx; yÞ ¼ z if and only if z is
‘‘midway’’ between x and z. For empirical purposes, the
most important properties are bisymmetry and commu-
tativity:
A binary operation � on X is said to satisfy bisymmetry

if and only if for all x, y, u, and v in X,

�½�ðx; yÞ;�ðu; vÞ� ¼ �½�ðx; uÞ;�ðy; vÞ�,

and � is said to satisfy commutativity if and only if for all x

and y in X,

�ðx; yÞ ¼ �ðy;xÞ.

The second problem with Plateau’s approach is that even
if his empirical midway operation satisfied all the
mathematical, structural properties of a ‘‘midway’’ opera-
tion, then there is still no objective evidence to argue that
the participant is using the midway operation to produce
subjectively equal ratios, as oppose, for example, subjec-
tively equal differences. Plateau apparently realized this,
for Falmagne (1985) notes,

In a footnote in his paper, we read ‘‘Fechner’s formula
leads to this consequence that, when the overall
illumination increases, the differences in sensation
remain constant; it seemed to me more rational, in
order to explain the invariance of the general effect of
the picture, to postulate a priori the constancy of the
ratios and not the differences of the sensations.’’
(Plateau, 1872, pp. 382–383.) [Translation by Falmagne,
1985; the emphasis is Falmagne’s.]
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4. Bisection operations

Operations that have the formal properties of the
geometric mean

ffiffiffiffiffiffi
xy
p

on Rþ (or equivalently the formal
properties of the arithmetic mean 1

2
ðxþ yÞ on R) are called

bisection operations. The following axiomatizes them.

Definition 2. hX ;%;�i is said to be a bisection structure

with bisection operation � if and only if � is a binary
operation on X and the following five conditions hold for
all u, x, y, and z in X:
�
 Continuum: hX ;%i and hRþ;pi are isomorphic.

�
 Solvability: If u� z%y%x� z then there exists v in X

such that v� z ¼ y.

�
 Monotonicity: x%y if and only if x� z%y� z.

�
 Bisymmetry: ðu� xÞ � ðy� zÞ ¼ ðu� yÞ � ðx� zÞ.

�
 Commutativity: x� y ¼ y� x.

�
 Idempotence: x� x ¼ x.

Theorem 1. Suppose hX ;%;�i is a bisection structure and

S is the set of isomorphisms of hX ;%;�i onto hRþ;p;Bi,
where B is the geometric mean. Then S is a log-interval

scale.

Proof. Follows from Theorem 10 of Section 6.9 of Krantz,
Luce, Suppes, and Tversky (1971). &

Given the ambiguity about whether a given bisection
operation should be given a geometric or arithmetic
representation, a natural line of inquiry is to present
subjects with two bisection tasks that yield functions MR

and MD on a set of stimuli such that for all x; y; z; u; v,
and w in X ; MRðx; zÞ ¼ y if and only if the ratio of
subjective intensities of x to y is the same as the ratio of
subjective intensities of y to z, and MDðu;wÞ ¼ v if and only
if the difference of subjective intensities of u to v is the same
as the difference of subjective intensities of v to w.
Surprisingly, several empirical studies show MR ¼MD.
Pfanzagl (1968) comments:

Other inquiries have shown that the values of the
arithmetic scale are linearly related to the logarithms of
the geometric scale (Ekman, 1962; Ekman & Künnapas,
1962a, 1962b; Torgerson, 1961). The natural explana-
tion of this phenomenon is that in these cases the
subjects are unable to distinguish between arithmetic
and geometric bisection: Regardless whether the sub-
jects are asked to bisect a given interval from a to b [afb]
such that the ratio a : afb equals the ratio afb : b or
such that the interval from a to ajb [the midpoint of the
interval from a to b] equal the interval from ajb to b,
they always perform the same operation. This is also
suggested by experiments of Garner (1954). If this were
true, [by a previous theorem] a logarithmic relationship
would exist between the arithmetic and geometric scales.
Intuitively this is obvious: If both operations are in fact
identical and the operation is one time mapped into the
arithmetic mean and the other time into the geometric
mean, the values of the first scale are related to the
logarithms of the values of the second scale. (p. 127)

The experiments of Garner (1954) are discussed below.
The following theoretical assumptions are inspired by
similar, but different, assumptions Garner made:
1.
 M1 and M2 are bisection operations.

2.
 There is a true subjective intensity scale S which

measures hX ;%;M1i and hX ;%;M2i.

3.
 S is a log-interval scale.

It follows from Assumptions 1 and 2 and Theorem 1 that
M1 and M2 are isomorphic. Assumption 3 is used in the
following theorem to show that M1 ¼M2:

Theorem 2. Assume Statements 1 to 3 just above. Then

M1 ¼M2.

Proof. Let c be in S. Because S is a log-interval scale, it
follows by Theorem 3.12 of Luce and Narens (1985) that r

and s in the real interval ð0; 1Þ can be found such that for all
x and y in X,

cðM1ðx; yÞÞ ¼
cðxÞrcðyÞ1�r if cðxÞpcðyÞ;

cðxÞscðyÞ1�s if cðxÞXcðyÞ:

(

Because M1 is commutative, r ¼ s. Let �0 be the operation
defined on Rþ by u�0v ¼ urv1�r. Then c is an isomorphism
of hX ;%;M1i onto hR

þ;p;�0i. By Theorem 1, hX ;%;M1i

is isomorphic to hRþ;p;�i, where� is the geometric mean
operation. Thus hRþ;p;�0i and hRþ;p;�i are iso-
morphic, and it is not difficult to show that this can only
happen when r ¼ 1

2
. Thus c�1 is an isomorphism of

hRþ;p;�i onto hX ;%;M1i. A similar argument shows
that c�1 is an isomorphism of hRþ;p;� i onto
hX ;%;M2i.Thus M1 ¼M2. &

Theorem 2 provides a theory for the experimental results
mentioned in the above quote of Pfanzagl’s: subjects are
measuring the stimuli on (or with respect to) a log-linear
scale (or an equivalent scale, for example an interval scale).
However, many psychophysical researchers believe or
assume—some explicitly and others implicitly—subjects
are using a ratio scale.

5. Torgerson’s conjecture

Torgerson (1961) examines several experiments invol-
ving direct judgments of subjective intensity. He concludes,

These results are all consistent with the notion that the
subject perceives only a single quantitative relation
between stimuli. When this relation is interpreted as
either a psychological distance or a psychological ratio,
it can be shown that the subjective magnitudes obey the
properties of the corresponding commutative group—
the addition group for the distance interpretation
and the multiplication group the ratio interpretation.
(p. 205)
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It is important to distinguish Torgerson’s conjecture, as
formulated above, from the proposition that ‘‘the judg-
ments of equal ratios corresponded to judgments of equal
differences’’ (used sometimes by Torgerson, 1961) and as
well as the proposition ‘‘the ordering of ratios is the same
as the ordering of differences.’’ These latter two proposi-
tions are about the equality or ordering of two 4-ary
relations on stimuli. Torgerson’s conjecture, however, is
about the equality of pairs 2-ary relations on stimuli; that
is, for all stimuli x and y and all relations a, if x a y stands
for the judged ratio of y to x is p (where p is a particular
number), then there exist a number q and a relation b such
that,

xby iff the judged difference between x and y is q and

a ¼ b.

From an experimental point of view, judgments of the
above 4-ary relations are of a different nature from the
judgments of the above 2-ary relations; and from a
mathematical point of view, the mathematical theory
leading to the conclusion that ‘‘the judgments of equal
ratios corresponded to judgments of equal differences’’ is
very different for the two kinds of relations. Whether or
not the above distinctions between 2-ary versus 4-ary
relations are of practical import in experimental applica-
tions is not clear at this time.

6. Garner’s experiments

Torgerson used experimental results from Garner (1954)
to support his conclusion. In his experiments, Garner used
fractionation and equisection methods to obtain his
stimuli. Fractionation methods produce constant ratio
sequences and equisection methods produce constant
difference sequences. Fractionation data are obtained by
supplying an initial stimulus t1 and instructing observers to
provide a stimulus t2 that is a particular fraction f (which
could 41 or o1 or an integer, for example, one-half or
one-quarter) that is in subjective intensity f of t1, and then
provide stimulus t3 that is f in terms of subjective intensity
of t2, and so on. There are variants of this method, for
example, providing the observer with two stimuli that
provide a fixed subjective intensity ratio (in place of the
fraction f) and then asking the observer to adjust another
stimulus to a standard so that it and the standard produce
the same subjective ratio. For equisection judgments,
observers are asked to provide a sequence of stimuli such
that the intervals between adjacent stimuli are equal in
subjective intensity. Garner had subjects produce both
fractionation and equisections in a loudness experiment.
The relevant result for this discussion is described by
Torgerson as follows:

Several years ago, Garner (1954) tried to get subjects
first to set a variable stimulus between two standard
stimuli so that the successive differences were equal, and
second, to set the variable so that the successive ratios
were equal. That is, first, so that V � S1 ¼ S2 � V , and
second, so that V=S1 ¼ S2=V . For most of his
subjects—thirteen out of eighteen—the value set for
the variable was the same in the two conditions: Equal
subjective intervals were also equal subjective ratios.
(Torgerson, 1961, p. 204)

I consider the following assumptions and definitions to
be a fair interpretation and idealization of the above result
of Garner (1954) and the assumptions he made:
1.
 Physical assumption hX ;%i is a continuum.

2.
 (Empirical assumption) To each pair of stimuli a and b

and for each stimulus c the subject can adjust a stimulus
d to satisfy the command, ‘‘Find a stimulus d so that the
ratio of the loudness of a to b is the same as the ratio of
the loudness of c to d.’’ These adjustments produce a
strictly increasing function Rab from hX ;%i onto hX ;%i
defined by

RabðcÞ ¼ d.
3.
 (Empirical assumption) (i) For all x and y in X, there
exist a and b in X such that RabðxÞ ¼ y; and (ii)
there exists c and d in X such that for all z in X,
Rcd ðzÞ ¼ z.
4.
 (Empirical assumption) To each pair of stimuli ðx; zÞ the
subject can adjust a stimulus y to satisfy the command,
‘‘Find a stimulus y so that the difference of the loudness
of x to y is the same as the difference of the loudness of y

to z.’’ When such a y is produced, we write
MDðx; zÞ ¼ y.
5.
 (Theoretical assumption) Let X ¼ hX ;%;Rabia;b 2X . Then
there exist a function c and a numerical structure,
N ¼ hRþ;p;Tabia;b 2X , such that (i) c is an isomorph-
ism of X onto N, and (ii) for each a and b in X there
exists cab 2 Rþ such that for each s in Rþ,

TabðsÞ ¼ cabs.

Statement 5 corresponds a direct measurement assump-
tion made by Garner that the Tab can be interpreted as
ratios. Statement 5 is needed to insure the Tab are
multiplications by positive reals. An immediate conse-
quence of Statement 5 is that sc is an isomorphism of
X onto N for each s in Rþ, and it is not difficult to show
that the set of isomorphisms of X onto N is a ratio scale.
Under the assumption of Statements 1–4, an empirical
assumption that is logically equivalent to Statement 5 can
be given. The equivalent states that the functions in R ¼
fRab j a 2 X and b 2 X g commute and that R is closed
under function composition. Thus, because Statements 1–4
do not use direct measurement, Statements 1–5 can be
reformulated to yield an equivalent system of assumptions
that do not use direct measurement.4
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Definition: MR is defined on X as follows: for all x, y,
z in X,

MRðx; zÞ ¼ y iff RxyðyÞ ¼ z.

From Statements 1–5 and the additional assumption that
hX ;%;MDi is a bisection structure, it does not follow that
MR ¼MD, even with the additional assumption that for
some M%

R and M%

D the set of isomorphisms of

hX ;%;Rab;MR;MDia;b 2X onto

hRþ;p;Tab;M
%

R;M
%

Dia;b 2X

is a ratio scale. This is because there are such situations
where M%

R is the geometric mean function and M%

D is
arithmetic mean function and therefore M%

RaM%

D. Thus in
the context of Statements 1–5, the observance of the
equality MR ¼MD is an empirical fact, not an analytic
conclusion. However, if functions representing subjective
differences between stimuli are introduced, then it becomes
an analytic conclusion.
6.
 (Empirical assumption) To each pair of stimuli a and b

and for each stimulus c the subject can adjust a stimulus
d to satisfy the command, ‘‘Find a stimulus d so that the
difference of the loudness of a to b is the same as the
difference of the loudness of c to d.’’ These adjustments
produce a strictly increasing function Dab on hX ;%i
defined by DabðcÞ ¼ d.
7.
 (Empirical assumption) For all x, y, z in X,

MDðx; zÞ ¼ y iff DxyðyÞ ¼ z.
8.
 (Theoretical assumption) There exists a numerical
structure

hRþ;p;R%

ab;D
%

abia;b 2X

such that the set of isomorphisms from

hX ;%;Rab;Dabia;b 2X onto hRþ;p;R%

ab;D
%

abia;b 2X

is a ratio scale.

Theorem 3. Assume Statements 1–4 and 6–8. Then the

following three propositions are true:
1.
 MR ¼MD.

2.
 Torgerson’s conjecture: (i) For all a and b in X, there exist

c and d in X such that Dab ¼ Rcd ; and (ii) for all a and b in

X, there exist c and d in X such that Rab ¼ Dcd .

3.
 For each a and b in X there exist s in and t in Rþ such that

R%

ab is the function that is multiplication by s and D%

ab is the

function that is multiplication by t.

Proof. Proposition 1 follows from Proposition 2. Proposi-
tions 2 and 3 are immediate consequences of the following
theorem. &

Theorem 4. Suppose hX ;%;V jij2J is such that hX ;%i is a

continuum, F is a strictly %-increasing function from X onto
X, V j is a set, function, or relation on X for each j in J, and

S is a ratio scale of isomorphisms of

hX ;%;F ;V jij2J onto hRþ;p;F%;V%

j ij2J .

Then there exists r in Rþ such that for all t in Rþ,

F%ðtÞ ¼ rt.

Proof. Because S is a ratio scale of isomorphisms, it
follows that for all s and t in Rþ,

F%ðstÞ ¼ sF%ðtÞ,

and it is well-known that the only solution this functional
equation is F%ðtÞ ¼ rt for some r in Rþ. &

The following theorem is an immediate consequence of
Theorem 4.

Theorem 5. Suppose X ¼ hX ;%;F ;G;Vjij2J is a relational

structure and hX ;%i is a continuum, and F and G are strictly

%-increasing functions from X onto X. Suppose N ¼

hRþ;p;F%;G%;V%

j ij2J is a numerical structure and S is a

ratio scale of isomorphisms of X onto N. Then F and G

commute, that is F � G ¼ G � F , where � is the operation of

function composition.

Proof. By Theorem 4, F% and G% are multiplications by
positive reals and thus F% and G% commute. By
isomorphism, F and G commute. &

The following theorem shows that under the assumption
of Statements 1–4 and 6 and 7, the conclusion of Theorem
3 follows with the theoretical assumption Statement 8
replaced by an empirical condition (Statement (ii) of
Theorem 6 below).

Theorem 6. Assume Statements 1–4 and 6 and 7. Let

R ¼ fRab j a 2 X and b 2 X g. Then the following two state-

ments are logically equivalent:
(i)
 Statement 8.

(ii)
 The elements of R commute, R is closed under function

composition, and for all a and b in X, Rab is a symmetry

of X (Definition 1).
Proof. We first note that it follows from Statement 3 that
R is homogeneous, that is, for each x and y in X, there
exists R in R such that RðxÞ ¼ y.
Assume (i). By Statement 8, let

X ¼ hX ;%;Rab;Dabia;b 2X ; N ¼ hRþ;p;R%

ab;D
%

abia;b 2X ,

S be the set of isomorphisms of X onto N, and c 2S. Let
R% ¼ fR%

ab j a 2 X and b 2 X g. By Theorem 4, each element
of R% is a multiplication by a positive real. Because R is
homogeneous, it follows by isomorphism that R% is
homogeneous. Because by Statement 1 hX ;%i is a
continuum, it then follows that R% is the set of all
multiplications by positive reals. Because R% is the set of
multiplications by all positive reals, it follows that the
elements of R% commute and are closed under function
composition. By isomorphism, the elements of R commute



ARTICLE IN PRESS
L. Narens / Journal of Mathematical Psychology 50 (2006) 290–301296
and are closed under function composition. It is easy to
verify that for each a and b in S, that a � b�1 is an
isomorphism of N onto itself and all isomorphisms of
N onto itself can be obtained in this way. Because S is a
ratio scale, it is easy to show that

A ¼ fa � b�1 j a 2S and b 2Sg

is the set of multiplication by positive reals. Because R% is
also the set of all multiplications by positive reals,
A ¼ R%. By isomorphism, R is the set of symmetries of X.

Assume (ii). Then the elements of R commute, R is
closed under the operation of function composition, �, and
elements of R are symmetries of X. It has already been
shown that R is homogeneous. By part (ii) of Statement 2,
the identity function on X is in R. It then follows
by Theorem 4.2 of Narens (1981) (or Lemma 4.4 and
Theorem 4.3 of Narens, 1985) that there exists a ratio
scale of isomorphisms of hX ;%;Rab;Dabia;b 2X onto
some numerical structure N0 of the form N0 ¼ hRþ;p;
R0ab;D

0
abia;b2X . &

7. Magnitude estimation and production

Stevens (1948, 1950) introduced direct measurement
methods of magnitude estimation and production. Ratio

magnitude estimation and production methods generally
collect data in the form ðx; p; yÞ, where x and y are intensity
stimuli and p is a word that describes the real number p. In
practice, p is an integer or a fraction, but theoretically it
could name any real number. Instructions like ‘‘For the
stimuli x and y, estimate the number p such that y is p times
x’’ (magnitude estimation), or ‘‘Adjust the stimulus y so that
y is p times x’’ (magnitude production) are typically used to
gather the data ðx; p; yÞ. In direct measurement methodol-
ogies, the data are measured through procedures that take
seriously the semantics of the instructions or at least a good
part of the semantics. For example Stevens measures using
functions c so that for all x and y in X,

cðyÞ
cðxÞ
¼ p iff ðx; p; yÞ,

and Garner measures using functions c so that there exists
a positive real c such that for all x and y in X,

cðyÞ
cðxÞ
¼ c iff ðx; p; yÞ.

Narens (1996) presented a theory for measuring magnitude
estimation data using the representational theory of
measurement. This axiomatic theory is based on the
primitive f pðxÞ ¼ y, where p is fixed and x and y vary.

7.1. Narens (1996) theory
Definition 3. S ¼ hX ;%; f 1; . . . ; f n; . . . in2Iþ is said to be a
Stevens’ magnitude structure if and only if hX ;%i is a
continuum, for each n in Iþ, f n is a %-strictly increasing
function from X onto X, and the following five conditions
hold, where p is an arbitrary positive integer and t, x, y,
and z are arbitrary elements of X:
(1)
 x%f pðxÞ.

(2)
 f 1 is the identity function on X.

(3)
 For all t in X, f pðtÞ � f qðtÞiff poq.

(4)
 For all x and t in X, if t � x, then

(i) there exist n in Iþ such that x � f nðtÞ, and
(ii) there exist m in Iþ and u in X such that

t � u � x and f mþ1ðtÞ ¼ f mðuÞ.
(5)
 (Multiplicative Property) If r ¼ q � p, then f r ¼ f q � f p.
Conditions (1), (2), (3), and (5) are straightforward and
are very reasonable idealizations for Stevens’ methods of
ratio estimations. Condition (4) is a condition like an
Archimedean axiom (of measurement theory).

Theorem 7. Let S ¼ hX ;%; f 1; . . . ; f n; . . . in2Iþ . Then the

following two statements are equivalent:
1.
 S is a Steven magnitude structure.

2.
 There exists an isomorphism c from S onto

N ¼ hRþ;p;Tnin2Iþ , where for each n in Iþ, Tn is the

function on Rþ such that for all x in Rþ, TnðxÞ ¼ nx.

Proof. Statement 1 implies Statement 2 by Theorem 12 of
Narens (1996). Assume Statement 2. Let c be an iso-
morphism from S onto N. Then Conditions 1–4 of
Definition 3 immediately follow by isomorphism. To show
Condition (5), let p and q be arbitrary elements if Iþ. Then
Tp � Tq ¼ Tpq, and thus by the isomorphism c�1,
f p � f q ¼ f pq. &

Theorem 8. Let S and N be as in Theorem 7. Then the set

of isomorphisms of X onto N is a ratio scale.

Proof. Theorem 12 of Narens (1996). &

Narens (1996) conjectured that the multiplicative prop-
erty was too strong of a restriction to hold empirically, and
suggested that it be replaced by a weaker principle implied
by it. The weaker principle is called the ‘‘Commutative
Property.’’

Definition 4. M ¼ hX ;%; f 1; . . . ; f n; . . . in2Iþ is said to be a
magnitude structure if and only if hX ;%i is a continuum,
for each n in Iþ, f n is a strictly increasing %-function from
X onto X, Conditions (1)–(4) of Definition 3 hold, and the
following condition holds:
(50)
 (Commutative Property) f p � f q ¼ f q � f p.
Theorem 9. The following two statements are logically

equivalent.
1.
 M is a magnitude structure.
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2.
 There exists a numerical structure N ¼ hRþ;p;
M1; . . . ;Mn; . . . in2Iþ such that (i) M1 is multiplication

by 1 and for each na1 in Iþ, Mn is the function of

multiplication by some real number cn, and (ii) the set of

isomorphisms from M onto N is a ratio scale.

Proof. Theorems 4 and 5 of Narens (1996). &

It is easy to reformulate Definitions 3 and 4 so that they
apply to fraction names of the form 1

n, n 2 Iþ, and show the
obvious reformulations of Theorems 7, 8, and 9 hold for
such fractions. The following is another reformulation for
a situation involving a name t for each real number t.

Definition 5. X ¼ hX ;%; f tit2Rþ is said to be a full

magnitude structure if and only if hX ;%i is a continuum,
for each t in Rþ, f t is a %-strictly increasing function from
X onto X, and the following three conditions hold, where s

and t are arbitrary elements of Rþ and u x, y, and z are
arbitrary elements of X:
(1)
5L

elem

and

G is

hðyÞ

ðf �

in G
Either x � f tðxÞ for all x in X, or x ¼ f tðxÞ for all x in
X, or f tðxÞ � x for all x in X.
(2)
 For all u in X, f sðuÞ � f tðuÞ iff sot.

(3)
 (Commutative Property) f s � f t ¼ f t � f s.

(4)
 (Homogeneity) For all u and v in X there exists r in Rþ

such that f rðuÞ ¼ v.
A numerical representing structure for a full magnitude
structure X with f t interpreted via isomorphism as multi-
plication by a positive real is called a ‘‘full multiplicative
representing structure.’’

Definition 6. N ¼ hRþ;p;Mtit2Rþ is said to be a a full

multiplicative representing structure if and only if for each t

in Rþ, Mt is the function of multiplication by some real
number ct.

Theorem 10. Suppose X ¼ hX ;k; f tit2Rþ is a full magnitude

structure. Then there exists a full multiplicative representing

structure N ¼ hRþ;p;Mtit2Rþ such that the set of iso-

morphisms of X onto N is a ratio scale.

Proof. One shows that ff t j t 2 R
þg is a commutative

homogeneous group of symmetries of X and then use
Lemma 4.4 and Theorem 4.3 of Narens (1985).5 &
et G ¼ ff t j t 2 Rþg. Then hG; �i is a group: let f and g be arbitrary

ents of G and x be an element of X. Let y be an arbitrary element of X

by homogeneity, let y in G be such that yðxÞ ¼ y.

By homogeneity, let h in G be such that hðxÞ ¼ ðf � gÞðxÞ. To show

closed under function composition, it needs only to be shown that

¼ ðf � gÞðyÞ. By the Commutative Property (Definition 5),

gÞðyÞ ¼ ðf � gÞðyðxÞÞ ¼ ðf � g � yÞðxÞ
¼ ðf � y � gÞðxÞ ¼ ðy � f � gÞðxÞ ¼ y½f � gÞðxÞ�
¼ y½hðxÞ� ¼ ðy � hÞðxÞ ¼ ðh � yÞðxÞ
¼ h½yðxÞ� ¼ hðyÞ.

By homogeneity, let k in G be such that kðxÞ ¼ f �1ðxÞ. To show f �1 is

, it needs only to be shown that kðyÞ ¼ f �1ðyÞ. By the Commutative
8. Empirical tests

8.1. Multiplicative and Commutative Properties

Ellermeier and Faulhammer (2000) tested the Multi-
plicative and Commutative Properties in a standard
loudness magnitude production paradigm and found the
Multiplicative Property to fail and the Commutative
Property to hold. For example, they found that when
subjects were asked to produce a stimulus x that was three
times as loud as the stimulus t, and then later were ask to
produce a stimulus y that was twice as loud as x, and at an
unrelated time to produce a stimulus z that was six times as
loud as t, that zay. Results of Ellermeier and Faulhammer
indicate that y was generally much larger than z in the
sense that the y was about the production of 12 times t,
thus producing a failure of the Multiplicative Condition.
However, the productions of (i) a stimulus x that was three
times as loud a stimulus t followed later by the production
of a stimulus y that was twice as loud as x, and (ii) the
production of c that was twice as loud as t followed at a
later time by the production of d that was three times as
loud as c, generally yielded y and d of approximately the
same size, confirming the holding of the Commutative
Property. A parallel study in vision by PeiXner (1999)
yielded similar results. Steingrimsson and Luce (2005b)
also observed the holding of the Commutativity Property
in a loudness experiment for instructions producing stimuli
that were two times and three times other stimuli. Zimmer
(2005) in a loudness production experiment also found
Multiplicative Property to fail and the Commutative
Property to hold. Her tests were for producing stimuli
that were one-half as loud, one-third as loud, and one-sixth
as loud as other stimuli.
8.2. Commutativity of ratios with differences

Many psychophysicists and psychophysical models
assume that psychological intensities like loudness are
measurable by a ratio scale. Theorem 5 shows that when
strictly increasing functions f and g on a continuum of
stimuli are measured by a common ratio scale of
isomorphisms, they both are represented as multiplica-
tions. Because multiplications commute, it follows by
isomorphism that the functions f and g commute. This
suggests that a ratio magnitude function R produced
(footnote continued)

Property (Definition 5),

ðf �1ÞðyÞ ¼ ðf �1ÞðyðxÞÞ ¼ ðf �1 � yÞðxÞ
¼ y½f �1ðxÞ� ¼ y½kðxÞ� ¼ ðy � kÞðxÞ
¼ ðk � yÞðxÞ ¼ k½yðxÞ� ¼ kðyÞ.

Because f and f �1 are in G and G is closed under function

composition, the identity function on X is in G.

It follows from the definition of ‘‘full magnitude structure’’

(Definition 5) that each element of G is a symmetry of X. Theorem 10

then follows from Lemma 4.4 and Theorem 4.3 of Narens (1985).
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v

Fig. 1. Test of the commutativity of R3 and Da;b. If commutativity holds,

the two orders of chaining these operations should not make a difference,

and multiple productions of y and v should be statistically indistinguish-

able.

7These studies reach their conclusions through tests of critical
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through ratio production instructions should commute
with a difference magnitude function D produced through
difference production instructions. The following experi-
ment of Ellermeier, Narens, and Dielmann (2003) tested
this conclusion.

The subjects were asked to make ratio and difference
productions. The ratio production instructions were the
same as in Ellermeier and Faulhammer (2000): subjects
were presented a tone and asked to make the second tone p

times as loud as the first one (denoted by RpðtÞ ¼ x, where t

is the first tone and x is the result of the adjustment) for
p ¼ 2; 3. Ellermeier et al. (2003, p. 72), write the following
about their difference instruction: ‘‘y we cannot simply
say for difference productions ‘adjust the second tone so
that the loudness difference is p’ without providing a unit.
Therefore, the following difference matching instruction
Da;b, a � b, was implemented where Da;bðxÞ ¼ y holds if
and only if the subject adjusts a stimulus y such that ‘the
difference in loudness between y and x is the same as the
difference between b and a’.’’

Two different choices of a; b were used in the experiment:
50, 58 dB SPL and 50, 62 dB SPL. Starting from the base
level of 65 dB SPL this yields four tests of the commu-
tativity of Rp and Da;b illustrated in Fig. 1.

Four of the six subjects satisfied commutativity between
their ratio and difference productions.6

9. Theoretical implications

In psychophysics, it is often assumed that judgments of
intensity within a modality are made on the same scale.
(Some researchers assume a common scale across mod-
alities.) For example, Garner states:

1. It is assumed that there is a true loudness scale, which
functions for all kinds of loudness judgments.

2. It is assumed that all fractionation judgments (for a
given verbalized fraction) are made with the same ratio
or fraction, regardless of loudness level. (Garner, 1954,
p. 17)
6That two subjects were not in line with this outcome is consistent with

the observation that some subjects sometimes distinguish perceptual ratios

and differences (e.g. Birnbaum, 1982; Schneider, 1980).
In the representational theory such ‘‘same scale’’ or
‘‘common scale’’ assumptions correspond to assuming that
the judgments are primitive relations of measurement
structure, for example, ‘‘all fractionation judgments (for a
given verbalized fraction) are made with the same ratio or
fraction’’ corresponds to a primitive R (‘‘the same ratio’’)
that is a function from stimuli onto stimuli.
The assumption made by many experimenters that ratio

productions can be represented by numerical ratios,
implies, given a rich enough set of ratio productions, that
the ratio productions can be measured on a ratio scale.
The assumption that ratio productions can be measured

on a ratio scale implies by Theorem 4 that such
productions, when taken as primitives of the qualitative
measurement structure and measured on a ratio scale, are
necessarily represented by numerical ratios. However,
Theorem 4 shows more: any strictly %-increasing function
from the set of stimuli onto itself that is a primitive of the
qualitative measurement structure is represented by a
numerical ratio. In particular, difference productions will
be represented as ratios. Thus Torgerson’s conjecture is a
consequence of ratio and difference productions being
primitives of the same qualitative structure that is
measurable by a ratio scale (Theorem 5).
With regards to measurement on a ratio scale, there are

three theories to be tested:
(1)
qua

1982

qua

of m
Ratio productions are measurable on a ratio scale.

(2)
 Difference productions are measurable on a ratio scale

(or equivalently, difference productions are measurable
on a translation scale (Definition 1)).
(3)
 Ratio and difference productions are measurable on a
common ratio scale.
The above studies of Ellermeier and Faulhammer (2000),
PeiXner (1999), Steingrimsson and Luce (2005b), and
Zimmer (2005) provides empirical confirmation for (1),
and the study of Ellermeier et al. (2003) provides empirical
confirmation for (3) and therefore also (1) and (2).7

Because of the empirical failure of the Multiplicative
Condition (Ellermeier & Faulhammer, 2000; PeiXner, 1999;
Zimmer, 2005), direct measurement methodologies that rely
on assigning a number to a stimulus because it corresponds
to a number named in the instructions should be looked
upon with incredulity, especially since the above empirical
studies were performed in domains that were regarded by
the leading proponents of direct measurement techniques as
being best suited for those techniques. However, the data
produced by direct measurement instructions can still be an
important tool in rigorous psychophysical research if
analyzed by other methodologies—the above studies and
litative axioms. Other researchers, for example, Birnbaum (1978,

), Hagerty and Birnbaum (1978), and Veit (1978) have used

ntitative fits to the data to argue that the sole underlying operation

agnitude judgment is a subtractive operation.
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theory involving the Commutative Property being a
testament to this point. In my opinion, given the failing
of the Multiplicative Property, the mapping of number
names onto the ratios they name is probably of little value
for basic psychophysics, although it still may be of
importance in parts of applied psychophysics where
communication about subjective intensity is an important
consideration. However, the holding of the Commutative
Property suggests that ratio scales obtained through the use
of number names in instructions and proper measurement
techniques may still be a valuable tool for basic psycho-
physics.

10. Combined monaural and binaural judgments

In the past, direct measurement studies of loudness have
been conducted using monaural and binaural presenta-
tions. These studies suffer, like almost all of the direct
measurement studies in the literature, from false or
nongrounded assumptions about how the number words
used in the instructions to participants are to be interpreted
in the numerical representation of the data. In recent
theoretical and empirical articles, Luce and Steingrimsson
studied loudness productions in which sounds were
presented to the left ear only, the right ear only, and
simultaneously to both ears, including productions that
were responses to direct measurement instructions (Luce,
2002, 2004; Steingrimsson & Luce, 2005a, 2005b). They
took care to explicitly state how number words in the
instructions to participants are related to the theoretical
models they were investigating, and tested empirically their
assumptions about the relationship. This section investi-
gates the role of the Commutativity Property for loudness
in situations where combined monaural and binaural
judgments are made.

Throughout the section, let hX ;%i be a continuum of
sound intensities, and let the notation ðx; yÞ stand for the
simultaneous presentation of the sound x to the left ear and
the sound y to the right ear. ðx; 0Þ will stand for presenting
the sound x in the left ear and no sound in the right ear,
and ð0; yÞ will stand for presenting the sound y in the right
ear and no sound in the left ear.8

Ratio magnitude production instructions l; p and r; p and
p can be given for, respectively, the sounds presented only
in left ear, sounds presented only in the right ear, and pairs
of physically equivalent sounds ðz; zÞ presented simulta-
neously to both ears. This gives rise to the three qualitative
structures,

Xl ¼ hX ;%; f l;pip2Rþ ; Xr ¼ hX ;%; f r;pip2Rþ and

X ¼ hX ;%; f pip2Rþ ,
8Some experiments involving ratio judgments p, where p is a name of a

fractiono1 and x is not too far from perceptual threshold, 0 is taken to be

the element of X that is at threshold. However, throughout this section it

will be assumed that 0 represents no sound.
for measuring the loudness of sounds, respectively, for the
left ear only, the right ear only, and both ears simulta-
neously. For Xl , ‘‘f l;pðxÞ ¼ z’’ is to be interpreted as ‘‘z is
the adjusted stimulus to the instruction, ‘Find the stimulus
that is p times x’,’’ and a similar interpretation holds for Xr

and f r;p; and for X, ‘‘f pðxÞ ¼ z’’ is to be interpreted as
‘‘ðz; zÞ is the adjusted stimulus to the instruction, ‘Find the
stimulus z that is p times ðx; xÞ’.’’
Assume Xl , Xr, and X are measurable by ratio scales of

isomorphisms. (The testing of the commutativity of the
primitive ratio production functions of each structure
provides via Theorem 4 a method for testing this
assumption.)
It follows from the above ratio scale assumption and

Theorem 5 that for Xl and Xr to be measurable on the same
ratio scale of isomorphisms, the primitive ratio production
functions of Xl must commute with the primitive ratio
production functions on Xr. Similar results hold for the
pairs Xl , X and Xr, X. These commutativity conditions are
natural and simple tests to conduct. To my knowledge no
experiments of this type have yet been performed. This is
unfortunate because such experiments bear directly on the
following assumptions of Garner, which many psychophy-
sicists appear to me to use as an intuitive basis—along with
ratio scalability—for guiding their loudness research:

1. It is assumed that there is a true loudness scale, which
functions for all kinds of loudness judgments.

2. It is assumed that all fractionation judgments (for a
given verbalized fraction) are made with the same ratio
or fraction, regardless of loudness level. (Garner, 1954,
p. 17)

If the above suggested commutativity tests were to fail, I
believe that the concept of a ‘‘loudness scale’’ for ‘‘all kinds
of loudness judgments’’ would be in great jeopardy.
Commutativity between the ratio production primitives
of Xl and X produce the following interesting result:

Theorem 11. Suppose � is a new primitive binary relation on

X, where x�z stands for, ‘‘The stimulus x when presented to

the left ear is judged by the participant to be the same

loudness as ðz; zÞ, that is, the same loudness as the stimulus z

presented simultaneously to both ears.’’ Suppose � is

monotonic in the following sense: for all x, y, u, and v in

X, if x�ðy; yÞ and u�ðv; vÞ, then
(i)
 x%u if and only if y%v, and
(ii)
 the function defined by hðxÞ ¼ y if and only if x�ðy; yÞ is

a strictly increasing function from X onto X.
Let C be the structure,

C ¼ hX ;%;�; f l;pip2Rþ .

Suppose S is a ratio scale of isomorphisms of C onto

N ¼ hRþ;p;�%; gl;pip2Rþ
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and for each x and y in X there exists t in Rþ such that

f l;tðxÞ ¼ y. Then there exists a ratio production primitive f l;q

of Xl such that for all x in X,

x�ðf l;qðxÞ; f l;qðxÞÞ.

Proof. Let c 2S. Let a be an arbitrary symmetry of
C and x and y be arbitrary elements of X. Then

hðxÞ ¼ y iff x�ðy; yÞ iff aðxÞ�ðaðyÞ; aðyÞÞ iff

hðaðxÞÞ ¼ aðyÞ,

that is, h is invariant under the symmetries of X. Let
cðhÞ ¼ h%. Then by isomorphism, h% is a strictly increasing
function from Rþ onto Rþ that is invariant under the
symmetries of N, that is, h% is invariant under multi-
plications by positive reals. Thus for each positive real
number s, h%

ðswÞ ¼ sh%
ðwÞ for all real w. The well-known

solution to this functional equation is h%
¼ multiplication

by a positive real number. Thus h% is a symmetry of N, and
therefore by isomorphism, h is a symmetry of X. By a
hypothesis of the theorem, let f l;q be a primitive production
function of Xl such that

f l;qðxÞ ¼ y.

By Theorem 4, c maps f l;q onto a function gl;q that is
multiplication by a positive real. Because by isomorphism,

h%
ðcðxÞÞ ¼ cðyÞ and gl;qðcðxÞÞ ¼ cðyÞ,

it follows that h%
¼ gl;q, because two multiplications that

have the same value on a positive real are the same
multiplication. By isomorphism, h ¼ f l;q, and thus, by the
definition of h, u�ðf l;qðuÞ; f l;qðuÞÞ for each u in X. &

11. Discussion

It is important to distinguish direct measurement data

from direct measurement. Direct measurement data can be
used in various ways, for example, as input into a direct
measurement procedure, or as in this article, a means for
testing qualitative axioms of a representational measure-
ment theory for magnitude production.

Two forms of direct measurement are considered in the
article: a strong form in which ratio productions named by
number words are interpreted veridically as the numerical
ratios they name; and a weak form in which the ratio
productions named by number words may have interpreta-
tions as ratios that are different from numerical ratios they
name. Both forms assume that the responses to instructions
to produce ratios are represented numerically by ratios,
and thus the word ‘‘ratio’’ (and supposedly the participants
concept associated with it) is being ‘‘directly’’ represented.
The strong form additionally ‘‘directly represents’’ the
number mentioned in the instruction by itself. The previous
sections show that both forms are testable, with the
Multiplicative Condition being the appropriated test for
the strong form, and the Commutative Condition being
the appropriate test for the weak form. Section 8.1
cites experimental literature that is confirmatory for the
Commutative Condition and disconfirmatory for the
Multiplicative Condition.
Section 7 provides an axiomatic theory for the numerical

representations produced by both forms of direct measure-
ment. The axiomatic theory eliminates the need for
assuming anything is being ‘‘directly represented,’’ and
thus allows for a purely behavioral approach to ratio
production data. It isolates the Multiplicative and Com-
mutative Conditions as the critical axioms for empirical
testing.
There is a sizable literature showing that subjects do not

distinguish between ratios and differences in a variety of
direct measurement tasks. However, many of these rely on
direct measurement methodologies and thus are flawed
because they do not provide credible evidence that either
kind of judgment can be represented as ratios or
differences. Others (e.g., Birnbaum & Elmasian, 1977)
provide credible evidence for the simultaneous representa-
tion of ratio and difference judgments by transforming the
data to fit an appropriate model. The study of Ellermeier
et al. (2003) is unique in that verifies empirically the
holding of commutativity between qualitative ratio and
difference production functions. By Theorem 5, this
qualitative condition of commutativity is necessary for
production functions to be simultaneously represented as
ratios.
A consequence of Theorem 5 is that for a ratio

production function R and a difference production
function D to be represented by the same ratio scale, then
R and D must commute. Section 10 uses this result to
formulate testable relationships between judgments of
loudness for sounds presented to a single ear, say the left
ear, and judgments of loudness for sounds simultaneously
presented to both ears: For such judgments to be measured
by a common ratio scale it is necessary for the left ear
loudness production functions commute with the both ears
loudness production functions. Also under the assumption
of a common scale, a remarkably simple relationship was
shown between loudness of sounds z presented to left ear
only and the simultaneous presentation z to the left and
right ears: there is a ratio production function f for sounds
presented to left ear such that for each sound z that is
presented simultaneously in each ear, the sound f ðzÞ

presented to left ear only is judged to be the same loudness
as the simultaneous presentation.
The above results demonstrate the power of the

assumption that subjective intensity is ratio scalable,
particularly when subjective intensities under different
instructions or conditions are represented on a common
ratio scale. For ratio production paradigms, the ratio
scalability of the behavior results from the commutativity
of the ratio production functions. I do not view this
commutativity corresponding to part of the participant’s
judging of ratios; instead I view it as a result of a
construction due to the experimenter or as an axiom about
observable behavior formulated by a theoretician. Simi-
larly, I view the ratio production functions as being a
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product of the experiment, and without additional strong
assumptions about the participant’s processing of intensity
and judgmental strategy, I do not see them having
phenomenological correlates in the participant.
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