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• Regarding child syntax (Tomasello 1992), it is noted that “of the 162 verbs and predicate

terms used, almost half were used in one and only one construction type, and over two-thirds

were used in either one or two construction types ...” There is also “great uneveness in how

different verbs, even those that were very close in meaning, were used – both in terms of the

number and types of constructions types used.” These observations are held to support the

view, dubbed the Verb Island Hypothesis, that “the 2-year-old child’s syntactic competence is

comprised totally of verb-specific constructions with open nominal slots” rather than abstract

and productive syntactic rules.

• In a study of morphological learning in Italian, Pizutto & Caselli (1994) find that 47% of all

verbs used by 3 children (1;6 to 3;0) were used in 1 person-number agreement form, and an

additional 40% were used with 2 or 3 forms, where six forms are possible (1st, 2nd, and 3rd

person combined with singular and plural). Only 13% of all verbs appeared in 4 or more

forms.

• In a study of determiner use in child language, Pine & Lieven (1997) find that when children

began to use the determiners a and the, “they did so with almost completely different set of

nominals (i.e., there was almost no overlap in the sets of nouns used with the two determiners)

– suggesting that the children at this age did not have any kind of abstract category of

Determiners that included both of these lexical items”. This observation is assumed to

contradict Valian’s (1986) study, which maintains that child determiner use is adult-like by the

age of 2;0.

In this brief note, we demonstrate that these measures of linguistic productivity based on the

diversity of usage show exactly the opposite of the item-based view: they actually reflect statistical

properties inherent in the productive usage of natural language. In other words, even when Einstein

became a world renowned scientist and a talkative one no less, he would still be classified as an

item-based learner according to Tomasello’s measures. Our point of departure is a name that, as we

shall see, ought to send a shiver down the spine of every linguist: George Kingsley Zipf.

2 Zipfian Presence

Under what has become known as Zipf ’s law (1949), the distributions of words in natural language

show an interesting pattern: the frequency of a word tends to be approximately inversely proportional

to its rank in frequency. Let f be the frequency of the word w with the rank of r in a set of N , then:

f =
C

r
where C is some constant

Mandelbrot (1953) introduces two additional parameters to describe similar observations in

other physical systems; Zipf ’s law is the special where α = 1 and β = 0.

f =
C

(r + β)α
where C is some constant
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in fact supported. More broadly, we direct cognitive scientists to certain statistical properties of
natural language that are widely known but not widely appreciated, and to discuss the challenges
their properties pose for the theory of language and language learning. Our point of departure is
a name that ought to strike fear in every living soul: George Kingsley Zipf.

2 Zipfian Presence

Under the so-called Zipf ’s law [17], the distributions of words follow a curious pattern: relatively
few words are used frequently — very frequently — while most words are rare, with many occur-
ring only once in even large samples of texts. More precisely, the frequency of a word tends to be
approximately inversely proportional to its rank in frequency. Let f be the frequency of the word
w with the rank of r in a set of N , then:

f =
C
r

where C is some constant

In the Brown corpus [18], for instance, the word with rank 1 is “the”, which has the frequency
of about 70,000, and the word with rank 2 is “of”, with the frequency of about 36,000: almost
exactly as Zipf’s law entails. The Zipfian characterization of word frequency can be visualized by
plotting the log of word frequency against the log of word rank. By taking the log on both sides of
the equation above (log f = constant − log r ), a perfect Zipfian fit would be a straight line with
the slope -1. Indeed, Zipf’s law has been observed in vocabulary studies across languages and
genres, and the log-log slope fit is consistently in the close neighborhood of -1.0 [19]. The top
line in Figure 1 plots word rank and frequency on a log-log scale based on the Brown corpus: the
Zipfian fit is excellent.
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(1) ln Rank ! 10.53 " 1.005 ln Size,
(.010)

where the standard deviation is in parentheses, and the R2 is .986.
The slope of the curve is very close to "1. This is an expression of
Zipf ’s law: when we draw log-rank against log-size, we get a
straight line, with a slope, which we shall call #, that is very close3

to 1. In terms of the distribution, this means that the probability
that the size of a city is greater than some S is proportional to 1/S:
P(Size $ S) ! %/S#, with # ! 1. This is the statement of Zipf ’s law.4

3. In fact, the regression above is not quite appropriate. Indeed, Monte-Carlo
simulations show that it understates the true # by .05 on average, and understates
the standard deviation on the estimate, which is around .1. But even given those
minor corrections, the estimates of # all remain around 1. See Dokkins and
Ioannides [1998a] for state-of-the-art measurement of #.

4. There are slight variations on the expression of Zipf ’s law. The most
common one is the ‘‘rank-size rule,’’which subsection III.4 discusses. Its expression
is less convenient than the above probabilistic representation. Also, Gell-Mann
[1994, p. 95] proposes the modification P(Size $ S) ! a/(S & c)#, where c is some
constant. This paper sticks to the traditional representation (with c ! 0) of Zipf ’s
law, for two reasons. First, there is an immense empirical literature that studies
this representation. Second, theory turns out to say that the representation with
the constant c ! 0 is the one we should expect to hold.

FIGURE I
Log Size versus Log Rank of the 135 largest U. S. MetropolitanAreas in 1991
Source: StatisticalAbstract of the United States [1993].
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Child
Sample
Size (S)

a & the Noun
types

a or the Noun
types (N )

Overlap
(expected)

Overlap
(empirical)

S
N

Naomi (1;1-5;1) 884 60 349 19.0 19.8 2.53
Eve (1;6-2;3) 831 61 283 22.7 21.6 2.94

Sarah (2;3-5;1) 2453 187 640 26.4 29.2 3.83
Adam (2;3-4;10) 3729 252 780 32.0 32.3 4.78
Peter (1;4-2;10) 2873 194 480 43.0 40.4 5.99
Nina (1;11-3;11) 4542 308 660 47.2 46.7 6.88

First 100 600 53 243 19.6 21.8 2.47
First 300 1800 141 483 26.7 29.1 3.73
First 500 3000 219 640 32.3 34.2 4.68

Brown corpus 20650 1175 4664 23.8 25.2 4.43

Table 1. Empirical and expected determiner-noun overlaps in child speech. The Brown corpus
is included for comparison. Results include the data from six individual children and the first

100, 300, 500 determiner-noun pairs from all children pooled together, which reflect the earliest
stages of language acquisition. The expected values in column 5 are calculated using only the

sample size S and the number of nouns N (column 2 and 4 respectively), following the analytic
results in Box 2.

The theoretical expectations and the empirical measures of overlap agree extremely well (col-
umn 5 and 6 in Table 1). Neither paired t-test nor paired Wilcoxon test show significant differ-
ence between the two sets of values. Perhaps a more revealing test is linear regression: a perfect
agreement between the two sets of value would have the slope of 1.0, and the actual slope is
1.08 (adjusted R2 = 0.9705). In other words, the determiner usage data from child language is
consistent with the productive rule “DP→D N”.

The empirical studies also reveal considerable individual variation in the overlap values, and
it is instructive to understand why. As the Brown corpus results show (Table 1 last row), sample
size S, the number of nouns N , or the language user’s age alone is not predictive of the overlap
value. The variation can be formally analyzed. Given N nouns in a sample of S, greater overlap
value will be obtained when more nouns are expected to occur more than once, or Sp > 1. That
is, words whose occurrence probabilities that are greater than 1/S can contribute to the overlap
value; Zipf’s law allows us to express this probability cutoff line in terms with ranks, following
equation (1). The approximation below uses a well-known result from Euler’s summation for-
mula.

S
1

r HN
= 1

r =
S

HN
≈ S

ln N
(4)

That is, only nouns whose ranks are lower than S/(ln N ) can be expected to be non-zero overlaps.
The total overlap is thus a monotonically increasing function of S/(N ln N )which, given the slow
growth of lnN , is approximately S/N , a term that must be positively correlated with overlap
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Child
Sample
Size (S)

a & the Noun
types

a or the Noun
types (N )

Overlap
(expected)

Overlap
(empirical)

S
N

Naomi (1;1-5;1) 884 60 349 19.0 19.8 2.53
Eve (1;6-2;3) 831 61 283 22.7 21.6 2.94

Sarah (2;3-5;1) 2453 187 640 26.4 29.2 3.83
Adam (2;3-4;10) 3729 252 780 32.0 32.3 4.78
Peter (1;4-2;10) 2873 194 480 43.0 40.4 5.99
Nina (1;11-3;11) 4542 308 660 47.2 46.7 6.88

First 100 600 53 243 19.6 21.8 2.47
First 300 1800 141 483 26.7 29.1 3.73
First 500 3000 219 640 32.3 34.2 4.68

Brown corpus 20650 1175 4664 23.8 25.2 4.43

Table 1. Empirical and expected determiner-noun overlaps in child speech. The Brown corpus
is included for comparison. Results include the data from six individual children and the first

100, 300, 500 determiner-noun pairs from all children pooled together, which reflect the earliest
stages of language acquisition. The expected values in column 5 are calculated using only the

sample size S and the number of nouns N (column 2 and 4 respectively), following the analytic
results in Box 2.

The theoretical expectations and the empirical measures of overlap agree extremely well (col-
umn 5 and 6 in Table 1). Neither paired t-test nor paired Wilcoxon test show significant differ-
ence between the two sets of values. Perhaps a more revealing test is linear regression: a perfect
agreement between the two sets of value would have the slope of 1.0, and the actual slope is
1.08 (adjusted R2 = 0.9705). In other words, the determiner usage data from child language is
consistent with the productive rule “DP→D N”.

The empirical studies also reveal considerable individual variation in the overlap values, and
it is instructive to understand why. As the Brown corpus results show (Table 1 last row), sample
size S, the number of nouns N , or the language user’s age alone is not predictive of the overlap
value. The variation can be formally analyzed. Given N nouns in a sample of S, greater overlap
value will be obtained when more nouns are expected to occur more than once, or Sp > 1. That
is, words whose occurrence probabilities that are greater than 1/S can contribute to the overlap
value; Zipf’s law allows us to express this probability cutoff line in terms with ranks, following
equation (1). The approximation below uses a well-known result from Euler’s summation for-
mula.

S
1

r HN
= 1

r =
S

HN
≈ S

ln N
(4)

That is, only nouns whose ranks are lower than S/(ln N ) can be expected to be non-zero overlaps.
The total overlap is thus a monotonically increasing function of S/(N ln N )which, given the slow
growth of lnN , is approximately S/N , a term that must be positively correlated with overlap
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measures. This is confirmed in strongest terms: S/N is a near perfect predictor for the empirical
values of overlap (last two columns of Table 1): r = 0.986, p < 0.00001.

We now briefly explore the question whether the determiner usage data by children can be
accounted for by the item based approach to language learning. Our effort is hampered by
the lack of concrete models for the item-based learning approach, a point that Tomasello con-
cedes [4, p274]. Analytical results like those in Box 2 cannot be similarly obtained. A plausi-
ble approach can be construed based on a central tenet of item-based learning, that the child
does not form grammatical generalizations but rather memorizes specific and itemized combi-
nations. Similar approaches such as construction grammar [10], usage [27] and exemplar based
models [28] make similar commitment to the role of verbatim memory. To this end, we con-
sider a type of learning model that memorizes determiner-noun pairs in the input, and these
pairs are then sampled jointly, following the commitment of item-based learning, rather than
independently (which would be the productive rule-based view).

Child
Sample
Size (S)

Overlap
(BIG learner)

Overlap
(small learner)

Overlap
(empirical)

Eve 831 16.0 17.8 21.6
Naomi 884 16.6 18.9 19.8
Sarah 2453 24.5 27.0 29.2
Peter 2873 25.6 28.8 40.4
Adam 3729 27.5 28.5 32.3
Nina 4542 28.6 41.1 46.7

First 100 600 13.7 17.2 21.8
First 300 1800 22.1 25.6 29.1
First 500 3000 25.9 30.2 34.2

Table 2. Is the full productivity data in child language consistent with item-based learning? Two
variants of learners are considered. One type, the BIG learner, is designed to mimic the long

term commitment to memory; it stores a large set of determiner-noun pairs , which consists of
a sample of 1.1 million child directed utterances from the CHILDES database (methods as

described in Box 3). The other variant – the small learner – only memorizes the adult utterances
present in each child’s transcript. For both learners, we draw an independent and random
sample from these stored D-N pairs with respect to their joint empirical frequencies; this is

contrasted with the rule-based model in which D and N are drawn independently. The sample
size matches those in each child’s production (Table 1, column 2). The overlap values are then

calculated as the percentage of nouns that appear with both “a” and “the” over those that
appear with either. The results are given in Table 2, averaged over 1000 trials per child.

Both sets of overlap values from item-based learning (column 3 and 4) are significantly dif-
ferent from the empirical measures (column 5): p < 0.005 for both paired t-test and paired
Wilcoxon test. This suggests that children’s use of determiners do not follow the predictions
of the item-based learning approach. Naturally, our evaluation here is tentative since the proper
test can be carried out only when the theoretical predictions of item-based learning are made
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clear. And that is exactly the point: the advocates of item-based learning not only rejected the al-
ternative hypothesis without adequate statistical tests, but also accepted the favored hypothesis
without adequate statistical tests. Intuition is no substitute for theoretical analysis or statistical
validation.

4 An Itemized Look at Verbs

The formal analysis in section 3 can be generalized to the study of child verb syntax and mor-
phology (Box 1). Unfortunately, the acquisition data in support of the Verb Island Hypothesis [4]
and the item-based nature of early morphology [14] is not available in the public domain.

But there is no escape from the Zipfian grasp: the combinatorics of verbs and their morpho-
logical and syntactic associates are similarly lopsided in their usage distribution as in the case of
determiners. Consider first the kind of verbal syntax distributions attributed to the Verb Island
Hypothesis. We focus on constructions that involve a transitive verb and its nominal objects, in-
cluding pronouns and noun phrases. Following the definition of “sentence frame” in Tomasello’s
original Verb Island study [4, p242], each unique lexical item in the object position counts as
a unique construction for the verb. Figure 3 shows the construction frequencies of the top 15
transitive verbs in 1.1 million child directed utterances.
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Figure 3. Rank and frequency of verb-object constructions based on 1.1 million child-directed
utterances. Processing methods are as described in Box 3 except here we focus on adjacent verb-
nominal pairs in part-of-speech tagged texts. The verbs are the top 15 most frequent transitive
verbs: put, tell, see, want, let, give, take, show, got, ask, make eat, like, bring and hear. For each
verb, we counted its top 10 most frequent constructions, which are defined as the verb followed
a unique lexical item in the object position (e.g., “ask him” and “ask John” are different construc-
tions.) For each of the 10 ranks, we tallied the construction frequencies for all 15 verbs: the
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Subject 1 form 2 forms 3 forms 4 forms 5 forms 6 forms token/type

Italian children 81.8% 7.7% 4.0% 2.5% 1.7% 0.3% 1.533

Italian adults 63.9% 11.0% 7.3% 5.5% 3.6% 2.3% 2.544

Spanish children 80.1% 5.8% 3.9% 3.2% 3.0% 1.9% 2.233

Spanish adults 76.6% 5.8% 4.6% 3.6% 3.3% 3.2% 2.607

Catalan children 69.2% 8.1% 7.6% 4.6% 3.8% 2.0% 2.098

Catalan adults 72.5% 7.0% 3.9% 4.6% 4.9% 3.3% 2.342

No major difference between Spanish & Catalan kids and adults

The main predictor is also S/N
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Millions
of words

# possible
verb forms

Max # forms 
for any 
lemma

Basque 0.6 22 16

Catalan 1.7 45 33

Czech 2.0 72 41

Greek 2.6 83 45

Hungarian 1.0 76 48

Hebrew 2.5 33 23

Slovene 2.5 32 24
Spanish 2.7 51 34

From Chan (2008)
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(1) The generalization problem (“poverty of the stimulus”): When and how is generalization from the
evidence presented to the learner justified? Human language learning clearly involves generalization,
because in response to fragmentary linguistic evidence, we adopt a grammar (a “model” of the linguistic
environment) that accepts many expressions that have never been seen or heard.
Statistical studies show how significant this generalization is. Zipf noticed not only that frequent words
are short, but also that frequent words are very frequent:
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This curve fits the real data quite well (Teahan, 1998). On a log-log scale:
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This observation could lead us to underestimate the extent of generalization needed, but we can correct
that error by looking at the frequency of items that occur just once in the Brown corpus, adding those
that occur twice, and so on:
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Aux_isP ! Aux_isP  NP

Aux_amP ! Aux_amP  NP
Aux_areP ! Aux_areP  NP

VsawP ! Vsaw NP

VrecommendP ! Vrecommend NPVattack P ! Vattack NP

VkickP ! Vkick NP

S ! NP~VP

NP !D~N

AuxP ! AuxP~NP

VP ! V~NP
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sures of usage diversity requires extremely large samples. This may not be possible in principle
for the study of young children’s language, even those not nearly as reticent as baby Einstein.
Additional methods for probing linguistic knowledge must be sought. But this ought to be old
news since Chomsky [1] and Brown [2].

As every computer scientist knows, Zipf’s law comes to haunt us as the sparse data problem.
As statistical models of language grow more sophisticated, the number of parameters that must
be empirically valued shoots up exponentially. Hence one rapidly runs out of available data to
estimate these parameters — thanks to Zipf’s law — even when the statistical models of language
are very simple, and drastic simplifying assumptions are made about the independence of lin-
guistic structures [41]. Figure 4 plots the log-log plot of the top 200 syntactic syntactic rules of
modern English from the Penn Treebank [42], which again show excellent Zipfian fit.
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Figure 4. The frequency distribution of the top 200 syntactic rules in the Penn Treebank.
Since the corpus has been manually annotated with syntactic structures, it is straightforward
to extract rules and tally their frequencies. The most frequent rule is “PP→P NP”, followed by
“S→NP VP”. The perfect Zipfian line of slope -1 is given as a reference point.

In a line of research similar in spirit to language acquisition, statistical induction of grammar [43]
shows that focusing on lexically specific constructions pays very little dividend: much of the
statistical language model’s generalizing ability (implicitly) resides in broad ranging rules. Item-
based learning, with its heavy focus on specific and lexically defined constructions, seems ill-
equipped for wide linguistic coverage.

But most significant victim of George Kingsley Zipf must be the child learner herself. The
task faced by children acquiring language is no different from that of the computational linguist,
for the input data are also Zipfian in character. The sparse data problem strikes just as hard, and
thus the role of memory in language learning should not be overestimated. In linguistics and
cognitive science, of course, the learner’s challenge bears another name: the argument from the
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