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Recursion and human language

Hauser, Chomsky and Fitch (2002)

“We hypothesize that FLN only includes recursion and is the only uniquely human 
component of the faculty of language.”
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Recursion and Human Language

• What counts as recursion?
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Uniquely human?

Finally, the observation that the SRP
GTPases behave as reciprocal GTPase acti-
vating proteins (5) can now be understood to
be a consequence of the formation of a shared
catalytic chamber between them. Indeed, the
reciprocal hydrogen bonding between the
bound nucleotides may itself be catalytically
important. However, the structure of the com-
plex also demonstrates how the initial engage-
ment of the two proteins can function as a
latch, in that a number of structural elements,
including the bound nucleotides, contribute to
an intricate interface that is unlikely to disso-
ciate until two subsequent steps, signal pep-
tide transfer followed by nucleotide hydroly-
sis, occur. This kind of mechanism for the SRP
GTPases is consistent with a process requiring
assembly of multiple components, and it can be
distinguished from one in which the GTPases
act along a signaling pathway. Extending the
metaphor, the GTP molecules themselves can
be imagined as “explosive bolts” in that they are
integral to the interface that holds the proteins
together, and so promote transfer of the translat-
ing ribosomal cargo, but that they also provide,
by their hydrolysis, the “explosion” that dis-
engages the components of the targeting com-
plex (fig. S6). This conception of the role of
GTP is somewhat distinct from the classic
GTPase switch model and provides insight into
the logic of the SRP GTPases that may be rel-
evant to understanding other GTPases that func-
tion in the assembly of cellular components.

Note added in proof: A structure of a
similar complex of the SRP GTPases in a
different crystal form was independently de-
termined and is reported by Egea et al. (36).
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Computational Constraints on
Syntactic Processing in a
Nonhuman Primate

W. Tecumseh Fitch1* and Marc D. Hauser2

The capacity to generate a limitless range of meaningful expressions from a
finite set of elements differentiates human language from other animal com-
munication systems. Rule systems capable of generating an infinite set of
outputs (“grammars”) vary in generative power. The weakest possess only local
organizational principles, with regularities limited to neighboring units.We used
a familiarization/discrimination paradigm to demonstrate that monkeys can
spontaneously master such grammars. However, human language entails more
sophisticated grammars, incorporating hierarchical structure. Monkeys tested
with the same methods, syllables, and sequence lengths were unable to master
a grammar at this higher, “phrase structure grammar” level.

Syntax is one key component of human lan-
guage, with no known equivalent in animal
communication systems. The limitless ex-
pressive power of human language requires
structures, termed phrases or sentences,
above the word level (or, by analogy, above
the single call level in animals). Linguistic
syntax involves the rearrangement and per-
mutation of such abstract hierarchical struc-
tures, often with concomitant changes in
meaning. The production and perception of
these hierarchical syntactic structures is a
core capability underlying human linguistic
competence. This level of organization goes

far beyond the simple concatenation proce-
dures sometimes called “syntax” in animal
communication (1–3). However, the evolu-
tion of the language faculty presumably in-
volved the incorporation of some ancestral
primate cognitive capabilities. Thus, a critical
question is whether hierarchical processing
was one of these preexisting abilities, perhaps
evolved to serve noncommunicative func-
tions (e.g., motor control, number, or social
cognition) (4–12).

Rule systems capable of generating infi-
nite sets of sequences (“grammars”) are ar-
ranged in a mathematical hierarchy of in-
creasing generative power, termed the
Chomsky hierarchy (13, 14 ). The weakest
class in this hierarchy are finite state gram-
mars (FSGs), which can be fully specified by
transition probabilities between a finite num-
ber of “states” (e.g., corresponding to words
or calls). Recent evidence suggests that pars-
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Uniquely human?

• Familiarization for 20 minutes to 60 strings of one of two forms (where n=2 or 3)

• Test for generalization to novel strings

ing procedures at this superficial level of
complexity are spontaneously available to
both human infants and nonhuman primates
(3, 15–19). However, FSGs are inadequate to
generate all the structures of any human lan-
guage (13, 20), because all languages mini-
mally require procedures at the next level of
complexity, termed phrase structure gram-
mars (or PSGs, see 21). In addition to con-
catenating items like an FSG, a PSG can
embed strings within other strings, thus
creating complex hierarchical structures
(“phrase structures”), and long-distance de-
pendencies. For example, in English, the
word “if” is typically followed by the word
“then,” but any arbitrary number of words or
phrases can be inserted between them. Such
constructions (and many others) demand
more sophisticated parsing capabilities, in-
cluding a perceptual ability to recognize these
structures and an open-ended memory to
store them. There is a broad consensus in
linguistics and machine learning that PSGs
are more powerful than FSGs and that
grammars above the FSG level are, mini-
mally, a crucial component of all human
languages (14, 22, 23). Though such abili-
ties are available to all normal humans, it is
currently unknown whether parsing abili-
ties above the FSG level are available to
nonhuman animals. We used a familiariza-
tion/discrimination procedure to address
this issue in cotton-top tamarins (Saguinus
oedipus), a New World primate species that
has previously demonstrated successful dis-
crimination of linguistic stimuli according to
rhythmic class, along with a capacity to grasp
transitional probabilities and abstract rules im-
plicit in speech stimuli (17, 18, 24).

The infinite nature of grammars renders
empirical tests of their comprehension prob-

lematic (20, 25). Because limited output from
a PSG can always be approximated by a more
complicated FSG (at the limit, a memorized
list of exemplars), it is difficult to prove
conclusively that subjects have learned the
former. This is equally true for human or
animal subjects. However, failure to master a
grammar (as demonstrated by a failure to
distinguish grammatical from ungrammatical
strings) can be empirically confirmed. Of
course, such a failure could occur for myriad
reasons, and it is thus imperative to demon-
strate success on a similar task, matched in all
extraneous respects, before concluding that
particular computational constraints are at
work. Thus, based on Chomsky’s original
discussion (13, 14 ) we created two gram-
mars, which were used to generate meaning-
less auditory strings consisting of sampled
consonant-vowel (CV) speech syllables. Pre-
vious research demonstrates that such syllab-
ic speech streams are readily attended to and
processed by cotton-top tamarins without
training (17, 24 ). The two grammars were
designed to equate extraneous nongrammati-
cal variables and, thus, to differ specifically
in their capacity to generate hierarchical
phrase structure.

Each grammar created structures out of
two classes of sounds, A and B, each of
which was represented by eight different
CV syllables (26 ) (Audio 1 to 8). The A
and B classes were perceptually clearly
distinguishable to both monkeys and hu-
mans: different syllables were spoken by a
female (A) and a male (B) and were differ-
entiated by voice pitch (! 1 octave differ-
ence), phonetic identity, average formant
frequencies, and various other aspects of
the voice source. For any given string, the
particular syllable from each class was cho-

sen at random. Crucially, syllables for each
class were sampled without replacement,
because otherwise the possibility of exact
acoustic repetitions in the PSG and not in
the FSG would make the two grammars
distinguishable on superficial grounds. The
FSG was (AB)n, in which a random “A”
syllable was always followed by a single
random “B” syllable, and such pairs were
repeated n times. The corresponding PSG,
termed AnBn, generated strings with
matched numbers of A and B syllables. In
this grammar, n sequential “A” syllables
must be followed by precisely n “B” sylla-
bles. We chose the AnBn grammar because
it is the simplest PSG that cannot, in prin-
ciple, be approximated with an FSG but
that can easily be brought into correspon-
dence with a simple FSG in all nongram-
matical respects, as required for our exper-
iment. Further, this grammar is trivially
easy for humans to learn. The AnBn gram-
mar produces center-embedded construc-
tions that, although less common in human
language than other (e.g., right-branching)
structures, are ubiquitous in mathematics
(e.g., nested parentheses in formulas) or
computer programming languages (e.g.,
BEGIN-END statements). Like any PSG,
the AnBn grammar requires additional com-
putational machinery beyond a finite-state
automaton. In computer science terminolo-
gy, this addition would minimally be a
push-down stack. In psychological terms, it
requires some way to recognize a corre-
spondence between either the groups
formed by the As and Bs (e.g., counting) or
between specific As and corresponding Bs
(e.g., long-distance dependencies). This
PSG thus provides the ideal grammar for
the empirical issue addressed by this study
by allowing us to focus on the generative
power of the system without introducing
extraneous performance variables (e.g.,
memory capacity or referentiality).

Although each of these grammars can
theoretically generate infinite numbers of
strings of infinite length, memory limita-
tions will impose limits on subjects’ prac-
tical ability to parse strings. Because pre-
vious work demonstrates that tamarins can
readily remember and precisely discrimi-
nate among strings up to three syllables in
length (27 ), we restricted n to be two or
three in both of the above grammars. Sixty-
four random strings were generated by each
grammar, with 60 used for exposure and 4
different strings for testing (26 ).

Our testing method has been previously
described in detail (17 ). Briefly, the tama-
rin colony was pseudorandomly divided
into two groups, one per grammar. Each
group included a mixture of sexes and ages
(all adult). All of the monkeys in a partic-
ular group were simultaneously exposed in

Fig. 1. Stimuli and fa-
miliarization-discrimi-
nation paradigm. (A)
Examples of the stim-
uli for the FSG and
PSG used here. Gram-
mars were matched
for length, composi-
tion, loudness, and
other acoustic fea-
tures, and testing and
evaluation procedures
were identical for the
two grammars. A and
B stimulus classes
were spoken by differ-
ent speakers, a female
(denoted by boldface)
and male (normal
font), and thus dif-
fered considerably in
pitch, as well as phonetic identity and other acoustic variables. Possible A syllables were {ba di yo
tu la mi no wu}. Possible B syllables were {pa li mo nu ka bi do gu}. (B) We quantified a cotton-top
tamarin’s propensity to orient toward a stimuli by evaluating responses to stimuli (“look” or “no
look”) in videos offline and blind to stimulus identity. The stimuli were either consistent with or
violated the rules implicit in a previous set of familiarization strings.
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ing procedures at this superficial level of
complexity are spontaneously available to
both human infants and nonhuman primates
(3, 15–19). However, FSGs are inadequate to
generate all the structures of any human lan-
guage (13, 20), because all languages mini-
mally require procedures at the next level of
complexity, termed phrase structure gram-
mars (or PSGs, see 21). In addition to con-
catenating items like an FSG, a PSG can
embed strings within other strings, thus
creating complex hierarchical structures
(“phrase structures”), and long-distance de-
pendencies. For example, in English, the
word “if” is typically followed by the word
“then,” but any arbitrary number of words or
phrases can be inserted between them. Such
constructions (and many others) demand
more sophisticated parsing capabilities, in-
cluding a perceptual ability to recognize these
structures and an open-ended memory to
store them. There is a broad consensus in
linguistics and machine learning that PSGs
are more powerful than FSGs and that
grammars above the FSG level are, mini-
mally, a crucial component of all human
languages (14, 22, 23). Though such abili-
ties are available to all normal humans, it is
currently unknown whether parsing abili-
ties above the FSG level are available to
nonhuman animals. We used a familiariza-
tion/discrimination procedure to address
this issue in cotton-top tamarins (Saguinus
oedipus), a New World primate species that
has previously demonstrated successful dis-
crimination of linguistic stimuli according to
rhythmic class, along with a capacity to grasp
transitional probabilities and abstract rules im-
plicit in speech stimuli (17, 18, 24).

The infinite nature of grammars renders
empirical tests of their comprehension prob-

lematic (20, 25). Because limited output from
a PSG can always be approximated by a more
complicated FSG (at the limit, a memorized
list of exemplars), it is difficult to prove
conclusively that subjects have learned the
former. This is equally true for human or
animal subjects. However, failure to master a
grammar (as demonstrated by a failure to
distinguish grammatical from ungrammatical
strings) can be empirically confirmed. Of
course, such a failure could occur for myriad
reasons, and it is thus imperative to demon-
strate success on a similar task, matched in all
extraneous respects, before concluding that
particular computational constraints are at
work. Thus, based on Chomsky’s original
discussion (13, 14 ) we created two gram-
mars, which were used to generate meaning-
less auditory strings consisting of sampled
consonant-vowel (CV) speech syllables. Pre-
vious research demonstrates that such syllab-
ic speech streams are readily attended to and
processed by cotton-top tamarins without
training (17, 24 ). The two grammars were
designed to equate extraneous nongrammati-
cal variables and, thus, to differ specifically
in their capacity to generate hierarchical
phrase structure.

Each grammar created structures out of
two classes of sounds, A and B, each of
which was represented by eight different
CV syllables (26 ) (Audio 1 to 8). The A
and B classes were perceptually clearly
distinguishable to both monkeys and hu-
mans: different syllables were spoken by a
female (A) and a male (B) and were differ-
entiated by voice pitch (! 1 octave differ-
ence), phonetic identity, average formant
frequencies, and various other aspects of
the voice source. For any given string, the
particular syllable from each class was cho-

sen at random. Crucially, syllables for each
class were sampled without replacement,
because otherwise the possibility of exact
acoustic repetitions in the PSG and not in
the FSG would make the two grammars
distinguishable on superficial grounds. The
FSG was (AB)n, in which a random “A”
syllable was always followed by a single
random “B” syllable, and such pairs were
repeated n times. The corresponding PSG,
termed AnBn, generated strings with
matched numbers of A and B syllables. In
this grammar, n sequential “A” syllables
must be followed by precisely n “B” sylla-
bles. We chose the AnBn grammar because
it is the simplest PSG that cannot, in prin-
ciple, be approximated with an FSG but
that can easily be brought into correspon-
dence with a simple FSG in all nongram-
matical respects, as required for our exper-
iment. Further, this grammar is trivially
easy for humans to learn. The AnBn gram-
mar produces center-embedded construc-
tions that, although less common in human
language than other (e.g., right-branching)
structures, are ubiquitous in mathematics
(e.g., nested parentheses in formulas) or
computer programming languages (e.g.,
BEGIN-END statements). Like any PSG,
the AnBn grammar requires additional com-
putational machinery beyond a finite-state
automaton. In computer science terminolo-
gy, this addition would minimally be a
push-down stack. In psychological terms, it
requires some way to recognize a corre-
spondence between either the groups
formed by the As and Bs (e.g., counting) or
between specific As and corresponding Bs
(e.g., long-distance dependencies). This
PSG thus provides the ideal grammar for
the empirical issue addressed by this study
by allowing us to focus on the generative
power of the system without introducing
extraneous performance variables (e.g.,
memory capacity or referentiality).

Although each of these grammars can
theoretically generate infinite numbers of
strings of infinite length, memory limita-
tions will impose limits on subjects’ prac-
tical ability to parse strings. Because pre-
vious work demonstrates that tamarins can
readily remember and precisely discrimi-
nate among strings up to three syllables in
length (27 ), we restricted n to be two or
three in both of the above grammars. Sixty-
four random strings were generated by each
grammar, with 60 used for exposure and 4
different strings for testing (26 ).

Our testing method has been previously
described in detail (17 ). Briefly, the tama-
rin colony was pseudorandomly divided
into two groups, one per grammar. Each
group included a mixture of sexes and ages
(all adult). All of the monkeys in a partic-
ular group were simultaneously exposed in

Fig. 1. Stimuli and fa-
miliarization-discrimi-
nation paradigm. (A)
Examples of the stim-
uli for the FSG and
PSG used here. Gram-
mars were matched
for length, composi-
tion, loudness, and
other acoustic fea-
tures, and testing and
evaluation procedures
were identical for the
two grammars. A and
B stimulus classes
were spoken by differ-
ent speakers, a female
(denoted by boldface)
and male (normal
font), and thus dif-
fered considerably in
pitch, as well as phonetic identity and other acoustic variables. Possible A syllables were {ba di yo
tu la mi no wu}. Possible B syllables were {pa li mo nu ka bi do gu}. (B) We quantified a cotton-top
tamarin’s propensity to orient toward a stimuli by evaluating responses to stimuli (“look” or “no
look”) in videos offline and blind to stimulus identity. The stimuli were either consistent with or
violated the rules implicit in a previous set of familiarization strings.
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ing procedures at this superficial level of
complexity are spontaneously available to
both human infants and nonhuman primates
(3, 15–19). However, FSGs are inadequate to
generate all the structures of any human lan-
guage (13, 20), because all languages mini-
mally require procedures at the next level of
complexity, termed phrase structure gram-
mars (or PSGs, see 21). In addition to con-
catenating items like an FSG, a PSG can
embed strings within other strings, thus
creating complex hierarchical structures
(“phrase structures”), and long-distance de-
pendencies. For example, in English, the
word “if” is typically followed by the word
“then,” but any arbitrary number of words or
phrases can be inserted between them. Such
constructions (and many others) demand
more sophisticated parsing capabilities, in-
cluding a perceptual ability to recognize these
structures and an open-ended memory to
store them. There is a broad consensus in
linguistics and machine learning that PSGs
are more powerful than FSGs and that
grammars above the FSG level are, mini-
mally, a crucial component of all human
languages (14, 22, 23). Though such abili-
ties are available to all normal humans, it is
currently unknown whether parsing abili-
ties above the FSG level are available to
nonhuman animals. We used a familiariza-
tion/discrimination procedure to address
this issue in cotton-top tamarins (Saguinus
oedipus), a New World primate species that
has previously demonstrated successful dis-
crimination of linguistic stimuli according to
rhythmic class, along with a capacity to grasp
transitional probabilities and abstract rules im-
plicit in speech stimuli (17, 18, 24).

The infinite nature of grammars renders
empirical tests of their comprehension prob-

lematic (20, 25). Because limited output from
a PSG can always be approximated by a more
complicated FSG (at the limit, a memorized
list of exemplars), it is difficult to prove
conclusively that subjects have learned the
former. This is equally true for human or
animal subjects. However, failure to master a
grammar (as demonstrated by a failure to
distinguish grammatical from ungrammatical
strings) can be empirically confirmed. Of
course, such a failure could occur for myriad
reasons, and it is thus imperative to demon-
strate success on a similar task, matched in all
extraneous respects, before concluding that
particular computational constraints are at
work. Thus, based on Chomsky’s original
discussion (13, 14 ) we created two gram-
mars, which were used to generate meaning-
less auditory strings consisting of sampled
consonant-vowel (CV) speech syllables. Pre-
vious research demonstrates that such syllab-
ic speech streams are readily attended to and
processed by cotton-top tamarins without
training (17, 24 ). The two grammars were
designed to equate extraneous nongrammati-
cal variables and, thus, to differ specifically
in their capacity to generate hierarchical
phrase structure.

Each grammar created structures out of
two classes of sounds, A and B, each of
which was represented by eight different
CV syllables (26 ) (Audio 1 to 8). The A
and B classes were perceptually clearly
distinguishable to both monkeys and hu-
mans: different syllables were spoken by a
female (A) and a male (B) and were differ-
entiated by voice pitch (! 1 octave differ-
ence), phonetic identity, average formant
frequencies, and various other aspects of
the voice source. For any given string, the
particular syllable from each class was cho-

sen at random. Crucially, syllables for each
class were sampled without replacement,
because otherwise the possibility of exact
acoustic repetitions in the PSG and not in
the FSG would make the two grammars
distinguishable on superficial grounds. The
FSG was (AB)n, in which a random “A”
syllable was always followed by a single
random “B” syllable, and such pairs were
repeated n times. The corresponding PSG,
termed AnBn, generated strings with
matched numbers of A and B syllables. In
this grammar, n sequential “A” syllables
must be followed by precisely n “B” sylla-
bles. We chose the AnBn grammar because
it is the simplest PSG that cannot, in prin-
ciple, be approximated with an FSG but
that can easily be brought into correspon-
dence with a simple FSG in all nongram-
matical respects, as required for our exper-
iment. Further, this grammar is trivially
easy for humans to learn. The AnBn gram-
mar produces center-embedded construc-
tions that, although less common in human
language than other (e.g., right-branching)
structures, are ubiquitous in mathematics
(e.g., nested parentheses in formulas) or
computer programming languages (e.g.,
BEGIN-END statements). Like any PSG,
the AnBn grammar requires additional com-
putational machinery beyond a finite-state
automaton. In computer science terminolo-
gy, this addition would minimally be a
push-down stack. In psychological terms, it
requires some way to recognize a corre-
spondence between either the groups
formed by the As and Bs (e.g., counting) or
between specific As and corresponding Bs
(e.g., long-distance dependencies). This
PSG thus provides the ideal grammar for
the empirical issue addressed by this study
by allowing us to focus on the generative
power of the system without introducing
extraneous performance variables (e.g.,
memory capacity or referentiality).

Although each of these grammars can
theoretically generate infinite numbers of
strings of infinite length, memory limita-
tions will impose limits on subjects’ prac-
tical ability to parse strings. Because pre-
vious work demonstrates that tamarins can
readily remember and precisely discrimi-
nate among strings up to three syllables in
length (27 ), we restricted n to be two or
three in both of the above grammars. Sixty-
four random strings were generated by each
grammar, with 60 used for exposure and 4
different strings for testing (26 ).

Our testing method has been previously
described in detail (17 ). Briefly, the tama-
rin colony was pseudorandomly divided
into two groups, one per grammar. Each
group included a mixture of sexes and ages
(all adult). All of the monkeys in a partic-
ular group were simultaneously exposed in

Fig. 1. Stimuli and fa-
miliarization-discrimi-
nation paradigm. (A)
Examples of the stim-
uli for the FSG and
PSG used here. Gram-
mars were matched
for length, composi-
tion, loudness, and
other acoustic fea-
tures, and testing and
evaluation procedures
were identical for the
two grammars. A and
B stimulus classes
were spoken by differ-
ent speakers, a female
(denoted by boldface)
and male (normal
font), and thus dif-
fered considerably in
pitch, as well as phonetic identity and other acoustic variables. Possible A syllables were {ba di yo
tu la mi no wu}. Possible B syllables were {pa li mo nu ka bi do gu}. (B) We quantified a cotton-top
tamarin’s propensity to orient toward a stimuli by evaluating responses to stimuli (“look” or “no
look”) in videos offline and blind to stimulus identity. The stimuli were either consistent with or
violated the rules implicit in a previous set of familiarization strings.
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Tamarin results

their home cages to 20 min of repeated
playback of 60 different grammar-
consistent strings, in random order, during
the evening. They were then tested individ-
ually the next morning in a sound chamber.
Testing started with a re-familiarization
phase, when random stimuli from the pre-
vious evening’s session were again played
back for 2 min while the animal was fed
treats (at a rate determined by the animal’s
feeding, and uncorrelated with stimulus
presentation). We then closed the sound
chamber door, started video monitoring and
recording, and began playback of the test
stimuli. No food was delivered during test-
ing. Playback was initiated by the observer
when the animal was looking down and
away from the loudspeaker, and latency and
duration of looking (orientation towards the
loudspeaker Fig. 1B) were later scored
blind to condition from the digitized video
(!90% reliability). Each animal (regard-
less of the grammar on which they were
trained) was tested with the same eight
stimuli in random order. Four were novel
stimuli consistent with the training gram-
mar, whereas the other four were violations
(but consistent with the other grammar).

Tamarins easily mastered the FSG, as
demonstrated by a significant increase in
looking to stimuli that violated the rules of
the grammar (N " 10 monkeys, mean of 72%
looking to violations but 34% looking to
grammatically consistent novel stimuli, Wil-
coxon signed rank test, P # 0.007; Fig. 2). At
an individual level, 9 of 10 monkeys looked
more to violations than consistent stimuli.
Thus, the simple alternating sequential pat-
tern embodied in this grammar was sponta-
neously perceived and remembered, and nov-
el stimuli following the familiar pattern elic-
ited less attention than novel stimuli violating
it. This success demonstrates that the acoustic
cues differentiating the two syllable classes
were salient to our tamarin subjects. More
importantly, the ability to learn the rule gov-
erning the construction of an acoustic se-
quence, without any explicit training, indi-
cates that tamarins are sensitive to regulari-
ties in an acoustic stream and can recognize
novel strings as consistent with past inputs.
This finding is consistent with previous re-
search suggesting that monkeys are able, with
or without training, to discover the rules gov-
erning sequential patterns in auditory and
visual stimuli (17, 18, 28, 29).

In contrast, tamarins failed to master the
PSG, displaying an equivalent rate of looking
to both consistent and inconsistent strings
(N " 10 monkeys, 29% looks to inconsistent
and 31% looks to consistent stimuli; Fig. 2).
No monkey looked at more than half of the
violations. The failure to master the PSG
cannot be due to extraneous factors such as
stimulus length, loudness, or other acoustic

factors; inability to perceive the A and B
classes; or differences in exposure, testing, or
evaluation procedures, all of which were con-
sistent between the two grammars. All of the
test subjects had equivalent experience in this
testing situation, and successfully mastered
many other tasks in this laboratory. The pat-
tern of results is what one would expect if
tamarins attempted to parse the PSG strings
by building an FSG structure [based on sim-
ple transitional probabilities, an ability of
tamarins documented both here and else-
where (17, 19)]. Furthermore, in two other
attempts to test tamarins on this PSG with the
use of slight modifications of stimulus type
and/or testing procedures, we have similarly
found no ability to master this rule (30).
Thus, it appears that cotton-top tamarins have
difficulties in spontaneously learning a rule
of this type, despite their demonstrated ability
to master FSGs equivalent in every respect
except for hierarchical structure.

An alternative explanation for these re-
sults might be that tamarins fail the PSG
because their ability to differentiate succes-
sive items is limited to runs of two. If this
were true, it would account for the asymmet-
ric results we obtained because they would be
able to encode AB AB AB patterns but be
unable to process the longer runs of AAA
BBB. However, a subanalysis gave the same
pattern of results even when n was limited to
two (ABAB versus AABB): tamarins clearly
discriminated violations from consistent
stimuli in the FSG grammar (Wilcoxon
signed rank, P # 0.02) but failed to discrim-
inate these in the PSG (Wilcoxon signed
rank, P " 0.68). The data are thus inconsis-
tent with this alternative hypothesis.

In sharp contrast to the monkeys, adult
humans tested with these same grammars
showed rapid learning of either grammar

(with under 3 min of exposure), and were
easily able to discriminate grammatical
from nongrammatical stimuli for both
grammars (Fig. 2). Undergraduate subjects
were passively exposed to the same training
stimuli as the tamarins, and then were test-
ed on the same test stimuli (26 ). Subjects
scored 93% correct on the FSG and 85% on
the PSG, indicating that adult humans can
easily distinguish between and master ei-
ther grammar under the same experimental
conditions in which the monkeys failed on
the PSG. These data are consistent with
other experimental findings that humans
can learn a PSG and appear to prefer
phrase-structured input (20, 31, 32) and
with the widely-accepted theoretical claim
that human languages demand acquisition
of rule systems at the PSG level (13).

These results suggest that, despite a clear
ability to process sequential regularities in
acoustic strings, tamarins are unable to pro-
cess a simple phrase structure, where compo-
nents at one portion of a string are related to
other components some distance away. Be-
cause earlier work with this species using the
same paradigm demonstrates that these ani-
mals are perfectly capable of storing and
recalling at least three separate stimuli and
comparing them with subsequent strings, this
computational limitation does not result from
some lower level limitation on memory, at-
tention, or number discrimination. Further
work will be necessary using other methods
(e.g., training and reinforcement), different
grammars, and other species (e.g., apes) be-
fore any broad conclusions can be drawn
about nonhuman primate limitations. It is
also possible that nonprimates such as song-
birds, which have some rule-based structure
in their songs, would fare better at the task
developed here. However, the current find-

Fig. 2. Experimental
evidence that mon-
keys can master FSGs
but not PSGs. (Left)
Humans exposed to a
FSG with only local
sequential structure
(top) or a PSG with
hierarchical structure
(bottom) rejected vio-
lations as “different”
and accepted consis-
tent stimuli as “same.”
Asterisk, significant dif-
ference. (Right) Mon-
keys exposed to the
same FSG (top) orient-
ed significantly more
often to violations and
did not orient to novel
strings consistent in
structure with the fa-
miliar strings. However, when exposed to the PSG (bottom), monkeys failed to discriminate between
consistent and inconsistent strings, looking at a similar (random baseline) level to both sets of stimuli.
N.S., no significant difference.
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Recursive syntactic pattern learning by songbirds
Timothy Q. Gentner1†, Kimberly M. Fenn2, Daniel Margoliash1,2 & Howard C. Nusbaum2

Humans regularly produce new utterances that are understood by
other members of the same language community1. Linguistic
theories account for this ability through the use of syntactic
rules (or generative grammars) that describe the acceptable
structure of utterances2. The recursive, hierarchical embedding
of language units (for example, words or phrases within shorter
sentences) that is part of the ability to construct new utterances
minimally requires a ‘context-free’ grammar2,3 that is more com-
plex than the ‘finite-state’ grammars thought sufficient to specify
the structure of all non-human communication signals. Recent
hypotheses make the central claim that the capacity for syntactic
recursion forms the computational core of a uniquely human
language faculty4,5. Here we show that European starlings (Sturnus
vulgaris) accurately recognize acoustic patterns defined by a
recursive, self-embedding, context-free grammar. They are also
able to classify new patterns defined by the grammar and reliably
exclude agrammatical patterns. Thus, the capacity to classify
sequences from recursive, centre-embedded grammars is not
uniquely human. This finding opens a new range of complex
syntactic processing mechanisms to physiological investigation.
The computational complexity of generative grammars is formally

defined3 such that certain classes of temporally patterned strings can
only be produced (or recognized) by specific classes of grammars
(Fig. 1). Starlings sing long songs composed of iterated motifs
(smaller acoustic units)6 that form the basic perceptual units of
individual song recognition7–9. Here we used eight ‘rattle’ and eight
‘warble’ motifs (see Methods) to create complete ‘languages’ (4,096
sequences) for two distinct grammars: a context-free grammar
(CFG) of the form A2B2 that entails recursive centre-embedding,
and a finite-state grammar (FSG) of the form (AB)2 that does not
(Fig. 2a, b; ‘A’ refers to rattles and ‘B’ to warbles).
We trained 11 European starlings, using a go/nogo operant

conditioning procedure, to classify subsets of sequences from these
languages (see Methods and Supplementary Information). Nine out
of eleven starlings learned to classify the FSG and CFG sequences
accurately (as assessed by d 0 , which provides an unbiased measure of
sensitivity to differentiating between two classes of patterns), but
this task was difficult (Fig. 2c). The rate of acquisition varied
widely among the starlings that learned the task (303.44 ^ 57.11
blocks to reach criterion (mean ^ s.e.m.), range 94–562 blocks with
100 trials per block), and was slow by comparison to other operant
song-recognition tasks7.
To assess the possibility that starlings learned to classify correctly

the motif patterns described by the CFG and FSG grammars through
rote memorization of the training exemplars, we further tested the
first four birds to reach stable asymptotic performance on the initial
classification training (mean d 0 ^ s.e.m. at asymptote 2.52 ^ 0.40,
Fig. 2d). We transferred the birds abruptly from the 16 baseline
training stimuli to 16 new sequences from the same two grammars
(A2B2 and (AB)2, eight sequences from each) while maintaining the
same operant contingencies used during baseline training. Starlings

correctly classified the new CFG and FSG sequences during the
first transfer session (Fig. 3a). The mean d 0 over the first 100 trials
with new stimuli (roughly six responses to each exemplar) was
1.08 ^ 0.50, which is significantly better than chance performance
(d 0 ¼ 0). Over the first five 100-trial blocks of the transfer session, the
mean d 0 was 1.14 ^ 0.20 (Fig. 3a), and the lower bound of the 95%
confidence interval (CI) around d 0 was above zero for all birds (range
0.34–1.18), with subsequent performance continuing to improve.
Thus, the birds did not simply memorize the 16 baseline training
stimuli, but instead acquired general knowledge about features
diagnostic of the two grammars, and applied this knowledge to
classify the new stimuli correctly. Given that the same elements
(motifs) composed the sequences in each class, this knowledge must
be related to the differential patterning of these elements by each
grammar. Additional generalization tests using ‘probe’ procedures
that test for learning during exposure to the new grammatical stimuli
(see Methods and Fig. 3b) also reject the rote memorization hypoth-
esis, and support the conclusion that the birds acquired information
about the patterning of motifs in the CFG and FSG classes.
One possibility consistent with interpretations of experiments on

syntactic processing in cotton-top tamarins10–12 is that the birds
learned only the FSG, and treated the grammatical CFG sequences
as the complement set. However, the results of further probe tests rule
out this possibility. We constructed 16 motif sequences based on four
different agrammatical patterns (AAAA, BBBB, ABBA and BAAB,
with four exemplars per pattern, using the same A and Bmotifs as for
the FSG and CFG grammars) and presented them along with new
A2B2 and (AB)2 patterns as probe stimuli (Methods). The response

LETTERS

Figure 1 | Grammatical forms. a, Finite-state form (AB)n. b, Context-free
form AnBn. Both grammars describe patterned sequences of elements
(lower-case letters) of the sets ‘A’ and ‘B’. Longer strings of the form (AB)n,
where n gives the number of AB iterations, are produced by appending
elements to the end of an n 2 1 sequence. Longer strings with the form
AnBn are produced by embedding elements into the centre of an n 2 1
sequence. Learning of and generalization to an AnBn pattern implies the
capacity to process syntactic structures generated through recursive centre-
embedding. Black arrows denote insertion points for higher-order
sequences. Brightly coloured squares mark the ‘AB’ phrase inserted at each
order. Different hues denote different elements.
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Humans regularly produce new utterances that are understood by
other members of the same language community1. Linguistic
theories account for this ability through the use of syntactic
rules (or generative grammars) that describe the acceptable
structure of utterances2. The recursive, hierarchical embedding
of language units (for example, words or phrases within shorter
sentences) that is part of the ability to construct new utterances
minimally requires a ‘context-free’ grammar2,3 that is more com-
plex than the ‘finite-state’ grammars thought sufficient to specify
the structure of all non-human communication signals. Recent
hypotheses make the central claim that the capacity for syntactic
recursion forms the computational core of a uniquely human
language faculty4,5. Here we show that European starlings (Sturnus
vulgaris) accurately recognize acoustic patterns defined by a
recursive, self-embedding, context-free grammar. They are also
able to classify new patterns defined by the grammar and reliably
exclude agrammatical patterns. Thus, the capacity to classify
sequences from recursive, centre-embedded grammars is not
uniquely human. This finding opens a new range of complex
syntactic processing mechanisms to physiological investigation.
The computational complexity of generative grammars is formally

defined3 such that certain classes of temporally patterned strings can
only be produced (or recognized) by specific classes of grammars
(Fig. 1). Starlings sing long songs composed of iterated motifs
(smaller acoustic units)6 that form the basic perceptual units of
individual song recognition7–9. Here we used eight ‘rattle’ and eight
‘warble’ motifs (see Methods) to create complete ‘languages’ (4,096
sequences) for two distinct grammars: a context-free grammar
(CFG) of the form A2B2 that entails recursive centre-embedding,
and a finite-state grammar (FSG) of the form (AB)2 that does not
(Fig. 2a, b; ‘A’ refers to rattles and ‘B’ to warbles).
We trained 11 European starlings, using a go/nogo operant

conditioning procedure, to classify subsets of sequences from these
languages (see Methods and Supplementary Information). Nine out
of eleven starlings learned to classify the FSG and CFG sequences
accurately (as assessed by d 0 , which provides an unbiased measure of
sensitivity to differentiating between two classes of patterns), but
this task was difficult (Fig. 2c). The rate of acquisition varied
widely among the starlings that learned the task (303.44 ^ 57.11
blocks to reach criterion (mean ^ s.e.m.), range 94–562 blocks with
100 trials per block), and was slow by comparison to other operant
song-recognition tasks7.
To assess the possibility that starlings learned to classify correctly

the motif patterns described by the CFG and FSG grammars through
rote memorization of the training exemplars, we further tested the
first four birds to reach stable asymptotic performance on the initial
classification training (mean d 0 ^ s.e.m. at asymptote 2.52 ^ 0.40,
Fig. 2d). We transferred the birds abruptly from the 16 baseline
training stimuli to 16 new sequences from the same two grammars
(A2B2 and (AB)2, eight sequences from each) while maintaining the
same operant contingencies used during baseline training. Starlings

correctly classified the new CFG and FSG sequences during the
first transfer session (Fig. 3a). The mean d 0 over the first 100 trials
with new stimuli (roughly six responses to each exemplar) was
1.08 ^ 0.50, which is significantly better than chance performance
(d 0 ¼ 0). Over the first five 100-trial blocks of the transfer session, the
mean d 0 was 1.14 ^ 0.20 (Fig. 3a), and the lower bound of the 95%
confidence interval (CI) around d 0 was above zero for all birds (range
0.34–1.18), with subsequent performance continuing to improve.
Thus, the birds did not simply memorize the 16 baseline training
stimuli, but instead acquired general knowledge about features
diagnostic of the two grammars, and applied this knowledge to
classify the new stimuli correctly. Given that the same elements
(motifs) composed the sequences in each class, this knowledge must
be related to the differential patterning of these elements by each
grammar. Additional generalization tests using ‘probe’ procedures
that test for learning during exposure to the new grammatical stimuli
(see Methods and Fig. 3b) also reject the rote memorization hypoth-
esis, and support the conclusion that the birds acquired information
about the patterning of motifs in the CFG and FSG classes.
One possibility consistent with interpretations of experiments on

syntactic processing in cotton-top tamarins10–12 is that the birds
learned only the FSG, and treated the grammatical CFG sequences
as the complement set. However, the results of further probe tests rule
out this possibility. We constructed 16 motif sequences based on four
different agrammatical patterns (AAAA, BBBB, ABBA and BAAB,
with four exemplars per pattern, using the same A and Bmotifs as for
the FSG and CFG grammars) and presented them along with new
A2B2 and (AB)2 patterns as probe stimuli (Methods). The response
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Figure 1 | Grammatical forms. a, Finite-state form (AB)n. b, Context-free
form AnBn. Both grammars describe patterned sequences of elements
(lower-case letters) of the sets ‘A’ and ‘B’. Longer strings of the form (AB)n,
where n gives the number of AB iterations, are produced by appending
elements to the end of an n 2 1 sequence. Longer strings with the form
AnBn are produced by embedding elements into the centre of an n 2 1
sequence. Learning of and generalization to an AnBn pattern implies the
capacity to process syntactic structures generated through recursive centre-
embedding. Black arrows denote insertion points for higher-order
sequences. Brightly coloured squares mark the ‘AB’ phrase inserted at each
order. Different hues denote different elements.
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patterns for the agrammatical probe stimuli differed significantly
from those for new (AB)2 stimuli for all four birds, and from those
for new A2B2 stimuli for three of the four birds (X2 calculated
separately for each bird and stimulus class, P , 0.05 in 7 of 8
cases; X2 ¼ 1.74 (not significant) for one case). It may be relevant
that the nonconforming bird was the only one of the four tested for
which the FSG sequences served as the Sþ stimuli (see Methods).
Regardless, three of the four birds clearly learned to classify both the
CFG and FSG stimuli during training, suggesting that they learned
both FSG and the CFG patterning rules.
Time andmemory capacity both constrain the functional length of

any grammatical string, yet part of the power of a generative
grammar is its capacity to describe strings of arbitrary length. To
test whether our birds generalized from A2B2 and (AB)2 to higher
orders of grammatical structure, we probed the birds with n ¼ 3
(that is, A3B3 and (AB)3) and n ¼ 4 motif sequences while they
maintained baseline (n ¼ 2) classification (seeMethods and Fig. 3b).
All birds accurately classified the n ¼ 3 CFG and FSG sequences
(mean d 0 1.37 ^ 0.54; range for lower bound of 95% CI 0.03–2.23)
and the n ¼ 4 CFG and FSG sequences (mean d 0 1.27 ^ 0.22;
range for lower bound of 95% CI 0.23–1.54). Thus, classification
training with n ¼ 2 sequences can induce behaviour consistent with
higher-order, generative grammars, including those using recursive
centre-embedding.
An alternative explanation for these results is that the birds learned

a ‘simpler’ grammar that approximates the recursive structure in the
AnBn sequences. Sequences that follow the pattern AnBn constitute a
subset of those that follow the more general pattern A*B*, in which
the number of a’s and b’s can vary independently. Although a CFG is
required to produce sequences in which the number of a’s and b’s are
matched, (as in AnBn), the whole of A*B* can be generated by a
finite-state grammar. We tested whether the birds learned an A*B*
finite-state approximation to AnBn by examining their responses to
the following A*B* patterns: A1B3, A3B1, A2B3 and A3B2 (four
randomly chosen sequences per pattern, same A/Bmotif vocabularies
as all FSG and CFG stimuli). We presented the A*B* stimuli along
with AnBn and (AB)n (n ¼ 2, 3, 4) sequences as probes during the
same sessions.
If birds learned A*B* as a finite-state approximation to AnBn, then

the pattern of response to each A*B* stimulus should match the
response toAnBn reference stimuli. Our results reject this hypothesis.
All birds showed a strong bias to treat the A*B* patterns differently
from the AnBn reference stimuli, while maintaining accurate classi-
fication of the AnBn and (AB)n reference and training stimuli (mean
d 0 $ 1.19 in all four cases). Responses to all four A*B* patterns were
significantly different from responses to theA2B2 andA4B4 reference
stimuli (X2 , 0.001 for all 8 cases, d.f. ¼ 3). Responses to the A1B3,
A3B2 and A3B1 patterns were significantly different from responses
to the A3B3 patterns (X2 , 0.001 in all cases, d.f. ¼ 3). In addition,
all six pair-wise comparisons between responses to individual A*B*

Figure 2 | Classification of grammatical pattern stimuli. a, b, Sonograms
(frequency range 0.2–10.0 kHz; scale bars, 1 s) showing four of the eight
sequences constructed from the finite-state grammar (AB)n (a) and the
context-free grammar AnBn (b) used in the initial FSG versus CFG
pattern classification training with n ¼ 2. Similarly coloured boxes mark the
samemotifs inmultiple sequences. The position of amotif within a sequence
is arbitrary with respect to its subscript label. See Supplementary
Information for complete stimulus patterns and sonograms. c, Acquisition

curves for the baseline FSG/CFG classification, showing mean d 0 over the
first 250 blocks (100 trials per block) for birds that learned quickly and
were subjected to further testing (green), birds that learned slowly (black)
and birds that did not reach the accuracy criterion (red; see Methods).
d, Mean d 0 (^s.d.) on the baseline CFG versus FSG classification task at
asymptote. Open circles show means from individual birds. Colours and
groups as in c.
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patterns were significantly different (X 2 , 0.0005 for all cases,
d.f. ¼ 3) suggesting that the birds did not treat the A*B* patterns
as a single stimulus class. These results suggest that the birds did not
solve the recursive classification tasks by learning a finite-state
approximation to the CFG. Rather, it seems that they learned
AnBn, or a functionally equivalent rule.
We then used the pattern of responses to the various agrammatical

probe stimuli to test alternative hypotheses for the starlings’ accurate
classification of AnBn and (AB)n patterns. For example, the task
could reduce to the classification ‘AA’ and ‘AB’, or ‘BB’ and ‘AB’, if only
the initial (primacy) or terminal (recency) motif pairs are attended
to, respectively. Similarly, birds could correctly classify AnBn and
(AB)nmotif sequences by listening for B/A transitions (AnBn patterns
have none), counting the number of A/B transitions (AnBn patterns
have only one), or listening for AA (or BB) motif pairs. Each of these
potential solution strategies can be and were ruled out by considering
specific comparisons among the various agrammatical probe stimuli
(Fig. 4 and Supplementary Information). In all cases, classification
of the agrammatical patterns was significantly worse (lower d 0)
than grammatical probe stimuli, suggesting that these alternative
strategies were not the basis for generalization performance. Instead,
starlings seem to have learned the patterning rules defined by each
grammar.
We thus demonstrate that starlings can recognize syntactically

well-formed strings, including those that use a recursive centre-
embedding rule. At least a simple level of recursive syntactic pattern
processing is therefore shared with other animals. These results
challenge the recent claim that recursion forms the computational
core of a uniquely human narrow faculty for language (FLN)4.
We attempted to rule out the most plausible finite-state solution
strategies that could account for accurate classification of AnBn

patterns (Supplementary Information), suggesting that the learned
patterning rule conforms to a stochastic context-free grammar. In

practice, however, the stimulus sets used to test such claims must be
finite. Thus, the theoretical possibility remains that a finite-state
grammar, however heavily contrived, may account for the observed
behaviour (see Supplementary Information). Of course, theoretical
difficulties in proving the use of context-free rather than finite-state
grammars extend to studies of grammatical competence in humans
as well, and therefore call into question the falsifiability of claims
regarding CFGs in humans compared to non-humans.
Although uniquely human syntactic processing capabilities, if any,

may reflect more complex context-free grammars or higher levels in
the Chomsky grammatical hierarchy, it may prove more useful to
consider species differences as quantitative rather than qualitative
distinctions in cognitive mechanisms. Suchmechanisms (for example,
memory capacity) need not map precisely onto strict formal gram-
mars and automata theories. There might be no single property
or processing capacity that marks the many ways in which the
complexity and detail of human language differs from non-human
communication systems13. Future studies can gauge the extent of the
recursive syntactic abilities demonstrated here, by examining the
processing of right-embedded structures more common in human
languages (and more easily understood), and the interface between
generalized syntactic and semantic knowledge.

METHODS
Baseline training.Motifs can be classified into four spectro-temporally distinct
categories: whistles, warbles, rattles and high-frequency motifs6 (Supplementary
Information).We used eight ‘rattle’ and eight ‘warble’motifs from the repertoire
of a single male starling (sets ai and b i, respectively, i ¼ 1–8) as the vocabulary
for two distinct grammars (Fig. 2a, b). One grammar defined sequences of the
form A2B2, and the other defined sequences of the form (AB)2. For example, the
explicit sequence of sound patterns rattlei–rattlej–warblek–warblel is defined by
A2B 2, but rattlei–warblek–rattlej–warblel, using the same four elements, is
defined by (AB)2. Because the song stimuli were created from a common
vocabulary, only the patterning of motifs within each sequence varied between
the classes defined by each grammar.

For each of the CFG (A2B2) and FSG ((AB)2) grammars, we generated all
possible motif sequences consisting of four elements. From each of these
complete ‘languages’, we randomly selected three subsets of eight sequences
such that within each subset, each motif appeared exactly once in each possible

Figure 3 | Generalization to new FSG and CFG sequences. a, Mean d 0

(^s.e.m.) for transfer from the training to new FSG and CFG stimuli
(turquoise, mean performance over the five blocks of trials preceding
transfer; blue, performance in the first five blocks after transfer; 100 trials
per block). Performance was stable across these post-transfer blocks
(F3,4 ¼ 1.15, P ¼ 0.35, repeated measures ANOVA), then increased
gradually to pre-transfer levels (not shown). All mean d 0 values shown are
significantly greater than zero (see text). Acquisition of the transfer stimuli
was much faster than for the original training sets (12.50 ^ 3.11 blocks to
criterion (mean ^ s.e.m.), range 8–15 blocks; 100 trials per block), which
can be attributed partially to generalization across the CFG and FSG classes.
b, Mean d 0 (^s.e.m.) during grammatical probe sessions. Birds correctly
classified new AnBn and (AB)n sequences when n ¼ 2 (blue), n ¼ 3 or n ¼ 4
(purple). Classification accuracy was significantly above chance for all three
types of probe sequences (mean d 0 for n ¼ 2, 1.63 ^ 0.39; see text for n ¼ 3,
n ¼ 4). Classification of the baseline training stimuli (turquoise) was well
above chance for all three conditions (mean d 0 $ 2.39, s.d. # 0.25). The
drop between training and probe stimulus classification was significant in
only the n ¼ 4 condition (P , 0.05,Mann–WhitneyU-test), suggesting that
these sequences were more difficult to classify correctly than the other
grammatical test sequences (see Supplementary Information).

Figure 4 | Agrammatical controls for alternative strategies. Mean d 0

(^s.e.m.) values for comparisons among theAAAA,BBBB,ABBA andBAAB
agrammatical stimuli, to rule out the use of alternate solution strategies. For
primacy (see main text), AAAA and ABBA should be classified similarly to
new n ¼ 2 CFG and FSG patterns, respectively, presented during the same
probe sessions (Methods). For recency (see main text), BBBB and BAAB
should be classified similarly to new n ¼ 2 CFG and FSG patterns,
respectively. If starlings are listening for the presence of a B/A motif
transition (see text), then the d 0 value comparing BAAB and ABBA to AAAA
and BBBB should be similar to that for new n ¼ 2CFG and FSG patterns. d 0

for the new n ¼ 2 CFG and FSG probe stimuli (dark blue) was significantly
higher than that for all three control comparisons (light blue; asterisk
indicates P , 0.05 for all cases, paired t-test).

LETTERS NATURE|Vol 440|27 April 2006

1206

©!2006!Nature Publishing Group!

!

patterns for the agrammatical probe stimuli differed significantly
from those for new (AB)2 stimuli for all four birds, and from those
for new A2B2 stimuli for three of the four birds (X2 calculated
separately for each bird and stimulus class, P , 0.05 in 7 of 8
cases; X2 ¼ 1.74 (not significant) for one case). It may be relevant
that the nonconforming bird was the only one of the four tested for
which the FSG sequences served as the Sþ stimuli (see Methods).
Regardless, three of the four birds clearly learned to classify both the
CFG and FSG stimuli during training, suggesting that they learned
both FSG and the CFG patterning rules.
Time andmemory capacity both constrain the functional length of

any grammatical string, yet part of the power of a generative
grammar is its capacity to describe strings of arbitrary length. To
test whether our birds generalized from A2B2 and (AB)2 to higher
orders of grammatical structure, we probed the birds with n ¼ 3
(that is, A3B3 and (AB)3) and n ¼ 4 motif sequences while they
maintained baseline (n ¼ 2) classification (seeMethods and Fig. 3b).
All birds accurately classified the n ¼ 3 CFG and FSG sequences
(mean d 0 1.37 ^ 0.54; range for lower bound of 95% CI 0.03–2.23)
and the n ¼ 4 CFG and FSG sequences (mean d 0 1.27 ^ 0.22;
range for lower bound of 95% CI 0.23–1.54). Thus, classification
training with n ¼ 2 sequences can induce behaviour consistent with
higher-order, generative grammars, including those using recursive
centre-embedding.
An alternative explanation for these results is that the birds learned

a ‘simpler’ grammar that approximates the recursive structure in the
AnBn sequences. Sequences that follow the pattern AnBn constitute a
subset of those that follow the more general pattern A*B*, in which
the number of a’s and b’s can vary independently. Although a CFG is
required to produce sequences in which the number of a’s and b’s are
matched, (as in AnBn), the whole of A*B* can be generated by a
finite-state grammar. We tested whether the birds learned an A*B*
finite-state approximation to AnBn by examining their responses to
the following A*B* patterns: A1B3, A3B1, A2B3 and A3B2 (four
randomly chosen sequences per pattern, same A/Bmotif vocabularies
as all FSG and CFG stimuli). We presented the A*B* stimuli along
with AnBn and (AB)n (n ¼ 2, 3, 4) sequences as probes during the
same sessions.
If birds learned A*B* as a finite-state approximation to AnBn, then

the pattern of response to each A*B* stimulus should match the
response toAnBn reference stimuli. Our results reject this hypothesis.
All birds showed a strong bias to treat the A*B* patterns differently
from the AnBn reference stimuli, while maintaining accurate classi-
fication of the AnBn and (AB)n reference and training stimuli (mean
d 0 $ 1.19 in all four cases). Responses to all four A*B* patterns were
significantly different from responses to theA2B2 andA4B4 reference
stimuli (X2 , 0.001 for all 8 cases, d.f. ¼ 3). Responses to the A1B3,
A3B2 and A3B1 patterns were significantly different from responses
to the A3B3 patterns (X2 , 0.001 in all cases, d.f. ¼ 3). In addition,
all six pair-wise comparisons between responses to individual A*B*

Figure 2 | Classification of grammatical pattern stimuli. a, b, Sonograms
(frequency range 0.2–10.0 kHz; scale bars, 1 s) showing four of the eight
sequences constructed from the finite-state grammar (AB)n (a) and the
context-free grammar AnBn (b) used in the initial FSG versus CFG
pattern classification training with n ¼ 2. Similarly coloured boxes mark the
samemotifs inmultiple sequences. The position of amotif within a sequence
is arbitrary with respect to its subscript label. See Supplementary
Information for complete stimulus patterns and sonograms. c, Acquisition

curves for the baseline FSG/CFG classification, showing mean d 0 over the
first 250 blocks (100 trials per block) for birds that learned quickly and
were subjected to further testing (green), birds that learned slowly (black)
and birds that did not reach the accuracy criterion (red; see Methods).
d, Mean d 0 (^s.d.) on the baseline CFG versus FSG classification task at
asymptote. Open circles show means from individual birds. Colours and
groups as in c.
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Abstract

An important topic in the evolution of language is the kinds of grammars that can be computed by
humans and other animals. Fitch and Hauser (F&H; 2004) approached this question by assessing the
ability of different species to learn 2 grammars, (AB)n and AnBn. AnBn was taken to indicate a phrase
structure grammar, eliciting a center-embedded pattern. (AB)n indicates a grammar whose strings entail
only local relations between the categories of constituents. F&H’s data suggest that humans, but not
tamarin monkeys, learn an AnBn grammar, whereas both learn a simpler (AB)n grammar (Fitch &
Hauser, 2004). In their experiments, the A constituents were syllables pronounced by a female voice,
whereas the B constituents were syllables pronounced by a male voice. This study proposes that what
characterizes the AnBn exemplars is the distributional regularities of the syllables pronounced by either
a male or a female rather than the underlying, more abstract patterns. This article replicates F&H’s
data and reports new controls using either categories similar to those in F&H or less salient ones.
This article shows that distributional regularities explain the data better than grammar learning. Indeed,
when familiarized with AnBn exemplars, participants failed to discriminate A3B2 and A2B3 from
AnBn items, missing the crucial feature that the number of As must equal the number of Bs. Therefore,
contrary to F&H, this study concludes that no syntactic rules implementing embedded nonadjacent
dependencies were learned in these experiments. The difference between human linguistic abilities and
the putative precursors in monkeys deserves further exploration.

Keywords: Language; Artificial grammar; Evolution; Center embedded; Nonadjacent dependencies

1. Introduction

Research and discussion about the origins of linguistic abilities were very lively until 1866
when all further discussion was banned by the Société de Linguistique de Paris. The subject
was revitalized in later years by Pinker and Bloom (1990). In a recent theoretical article,

Correspondence should be sent to Jean-Rémy Hochmann, Department of Cognitive Neuroscience, International
School of Advanced Studies, via Beirut 4, I–34014, Trieste, Italy. E-mail: hochmann@sissa.it
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What are these experimental results telling us?

• Are starlings capable of recursion, while cotton-top tamarins not?

• Are humans capable of recursion?

• Is a difference in the experimental methodology responsible for the outcome?

• Would a rational learner in these experiments to identify recursion?

10Saturday, January 7, 2012



(.5) S → NP(sg) VP(sg)
(.5) S → NP(pl) VP(pl)
(.5) NP(sg) → Name
(.4) NP(sg) → Det N(sg)
(.1) NP(sg) → NP(sg) PP
(.9) NP(pl) → Det N(sg)
(.1) NP(pl) → NP(pl) PP
(.5) NP → NP(sg)
(.5) NP → NP(pl)

(1.0) PP → P NP
(.3) VP(pl) → V(pl)
(.6) VP(pl) → V(pl) NP
(.1) VP(pl) → V(pl) S

p(T ) =
�

R

p(R)

= p(S→ NP VP)× p(NP(pl)→ NP(pl) PP)× p(NP(pl)→ Det N)× . . .

= .5× .1× .9× 1× .5× .4× .3
p(w1w2 . . . wn) =

�

T

p(T |y(T ) = w1w2 . . . wn)

Statistical Models of Grammar

• Probabilistic Context-Free Grammars (PCFGs) 
S

NP(pl)

NP(pl)

Det

the

N(pl)

pitchers

PP

P

in

NP

NP(sg)

Det

the

N(sg)

dugout

VP(pl)

V(pl)

sleep
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Statistical properties of recursion

• A PCFG of the following form will generate the relevant type of recursive strings:

• The distribution of strings generated by such a grammar has a distinctive property: 
shorter strings are always more frequent than longer strings. 

• In contrast, there is no recursive PCFG that can generate a set of strings in which 
each length is equally likely.  Instead, such a set could only be generated by a non-
recursive grammar:

(p) S → a S b
(1-p) S → a b

P (akbk) = pk−1(1− p)

(p) S → a b
(q) S → a a b b
(r) S → a a a b b b

(1-(p+q+r)) S → a a a a b b b b
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(.69) S → . . . V . . .

(.31) S → . . . V S

Statistical properties of recursion

• We find this patterning in natural language

• Sentential embedding in the Brown corpus:

no 
embedding

1 level of 
embedding

2 levels of 
embedding

3 levels of
embedding or 

more

# of 
sentences

percentage

15366 5874 826 113

0.69 0.26 0.04 <0.01

overgenerates longer 
examples
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Statistical grammar learning

• Work in computational linguistics has addressed the problem of grammar learning 
from a corpus of utterances.

• Given a corpus of data D, and a set of PCFG grammar rules

• We might want to find the set of rule probabilities that maximizes the likelihood of 
the data (maximum likelihood learning)

• This task is not trivial, because we don’t know what the right trees are for the 
sentences.  However, there are algorithms which allow us to solve this problem 
(inside-outside).  

• Can such a learner detect the signature properties of recursion just discussed?

argmaxθ p(D|θ) = argmaxθ

�

T

p(D|T )p(T |θ)
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Statistical learning of recursion 

• Inside-Outside algorithm trained on corpus of sentences of the form AnBn 
(10 different words could fill in A and B), generated either by 

1. a recursive PCFG, with non-recursive rule probability 1/3; or 

2. a non-recursive PCFG with equal rule probabilities for each string length (up to 
n=3).

• The initial set of rules was as follows:
S → A S B
S → A B
S → A A B B
S → A A A B B B
S → A A A A B B B B

(.333) S → A B
(.333) S → A A B B
(.333) S → A A A B B B

(.666) S → A S B
(.333) S → A B
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Statistical learning of recursion

• Results for statistically recursive training data:

• Results for statistically non-recursive training data:

(.648) S → A S B
(.325) S → A B
(.005) S → A A B B
(.018) S → A A A B B B
(.004) S → A A A A B B B B

(0) S → A S B
(.370) S → A B
(.300) S → A A B B
(.330) S → A A A B B B

(0) S → A A A A B B B B
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Statistical learning of recursion

• As far as I can tell from the descriptions in the papers, previous experiments used 
such a statistically non-recursive distribution. As a result, the cotton-top tamarins are 
behaving perfectly rationally, even if they have the possibility of representing 
grammatical recursion.  (What are the humans and starlings doing, then?)

• But there was another limitation on the experimental data: only sentences up to a 
small fixed length (n=3) were presented.  What would a statistical learner do in the 
context of such limited data, even if it weren’t equiprobable?
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Data restrictions

• I applied the inside-outside algorithm to the same grammar, removing all sentences 
from the stochastic training data of length greater than 6.  This yielded the following 
grammar:

• This result is optimal from the perspective of the statistical learner: it does not need 
to throw away probability mass on the possibility of generating strings longer than 
those actually witnessed in the training data.  This tendency can be somewhat 
tempered by a Bayesian approach to grammar learning, but is difficult to overcome 
in the face of such limited data.

(0) S → A S B
(.471) S → A B
(.300) S → A A B B
(.229) S → A A A B B B

(0) S → A A A A B B B B

18Saturday, January 7, 2012



Inducing recursion

• Question: How can we overcome the desire of the learner not to throw away 
probability mass on unseen strings? 

• Answer: inductive bias (universal grammar)

• Another Question: But what does this inductive bias look like?
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The nature of inductive bias

• The Bayesian approach to learning: 

                Evaluate the probability of hypotheses given the data

p(H|D) ∝ P (D|H)p(H)

likelihood of 
the data

prior probability 
of the 

hypothesis

posterior 
probability of 

the hypothesis
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Bayesian inductive bias

• What is the nature of the prior probability distribution? That is, how likely does a 
learner consider different grammatical hypotheses?

• A proposal: prefer hypotheses with small or large probability values (i.e., penalize 
splitting rule probabilities among many rules)

Dirichlet prior: α parameter tells us how much we dislike spreading probability 
around.

α=1 α=.5 α=.1
21Saturday, January 7, 2012



Bayesian inductive bias

• An experiment:

• Compare posterior probabilities of recursive and non-recursive hypothesis given

• different strengths of prior (i.e., alpha values)

• different data samples (i.e., stochastic vs. flat distributions)
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Bayesian inductive bias

flat 
distribution 

stochastic 
distribution 

Color indicates ratio of posterior probability for recursive vs. non-
recursive hypotheses (black line =1)
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Bayesian inductive bias

• Size of data sample also matters: as stochastic sample increases in size, it becomes 
more difficult to get the learner to conclude that there is a recursive grammar
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Bayesian Inductive Bias

• Thus far, we have only considered the relative goodness of two hypotheses: the 
completely recursive and the completely non-recursive grammars.  Might an 
intermediate grammar have an even higher posterior probability?

• Use MCMC methods (Gibbs Sampling) to estimate posterior probability of recursion 
given stochastically distributed data (k examples of AnBn, with n∈[1,5], prec=.3)

mean =.09
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Another kind of inductive bias: 
connectionist networks

• Elman (1990,1991): represent sequences through temporal extent

• Feed a sequence to a connectionist network one symbol at a time

• Activation of hidden units is copied to context units at each time step 

• Context units provide input to hidden units at the next time, providing 
memory of past. 

• Identical inputs can be treated differently, depending on context.

ContextInput

Output

Simple 
Recurrent 
Network
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Connectionist networks

• Train network to predict the next symbol in the sequence, adjusting the weights 
between the units when the output is inaccurate.

• Though it is in general impossible to accurately predict the next symbol, knowledge 
of the structure of a language can help to restrict the possible guesses.

ContextInput

Output

Where’s the bias?

• Number of hidden 
units (compression of 

knowledge) 

• Properties of learning 
algorithm
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Another kind of inductive bias:
Connectionist networks

• Trained networks to predict next symbol and end of sentence symbol for 
stochastically generated and flatly distributed training set for strings from anbn 
language up to length 6 (i.e., no longer than a3b3).  

• Assessed accuracy of prediction of end of string on novel test set for strings of 
different lengths.
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Conclusions and Implications

• Statistical distributions need not be orthogonal to structural properties of language: 
grammatical structure will typically have a statistical signature. 
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Statistical Signatures of Grammatical Structure

• Guy (1991): Phonological variation and t/d-deletion

226 GREGORY R. GUY

TABLE 1. The exponential relationship: - t ,d retention in two data sets

N

Guy (1991) (7 speakers)
Monomorphemic
Semiweak past
Regular past

Santa Ana (1991) (45 s
Monomorphemic
Semiweak past
Regular past

658
56

181
;peakers)

3724
297
836

% Ret.

61.9
66.1
84.0

42.1
59.3
74.3

Estimated pr

.852

.813

.840

.7494

.7698

.7428

Significance

Best-fit pr = .85
Chi-square = 1.28, p = .55

Best-fit pr = .75
Chi-square = 1.17, p = .57

tion rate in monomorphemic words and the square root in semiweak past
tense forms; in regular past tense forms, it is simply equal to the observed
rate of retention. It can be noticed that these three independent estimates of
the base rate are very close to one another. From these, I have calculated a
best-fit estimate of this value, and expected values of retention and deletion.
The results show convergence between the data and the predictions of the ex-
ponential model. A chi-square test shows the model is not rejected; on the
contrary, it has a very high p value.

NONMORPHOLOGICAL CONSTRAINTS: QUANTITATIVE
PREDICTIONS OF THE MODEL

Complications to this basic picture emerge when we consider that variable
rules are normally conceived of as being affected by multiple independent
variables, as mentioned earlier. Thus, the likelihood of a rule applying in a
particular case is a function not only of the input probability, but also of
other variable conditions. This function is usually expressed, in the current
standard version, by the logistic equation in (1):

Pa,ijk

\-Pijk 1 - P o -Pi \-Pj \-Pk

(1)

In this formulation, Pijk is the probability of the rule applying to a form
that is in the context of conditioning factors /, j , and k; Po is the input prob-
ability; and Ph Pj, Pk are the factor weights or conditional probabilities as-
sociated with the conditioning factors /, j , k.

The factors that may appear at a particular point in this equation are as-
sembled into factor groups, representing a particular point of conditioning
in the rule with all of the values that can occur at that point. Thus, the fac-
tor / in the equation given might represent the effect of a following segment
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Statistical Signatures of Grammatical Structure

• Brill and Kapur (1993): Verb second and conditional entropy
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Conclusions and Implications

• Statistical distributions need not be orthogonal to structural properties of language: 
grammatical structure will typically have a statistical signature. 

• Such statistical signatures will also allow us to distinguish other types of grammatical 
hypotheses on the basis of the distributions they give rise, even below the level of 
context-free.

• A rational learner will attend to properties of statistical distributions while engaging in 
language acquisition.

• If we are to understand whether humans and non-humans possess the capacity to 
learn the patterns of natural and non-natural languages, we must conduct 
experiments where it is rational for them to draw such conclusions. 
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