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Recursion and human language

Hauser, Chomsky and Fitch (2002)

“We hypothesize that FLN only includes recursion and is the only uniquely human
component of the faculty of language.”
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Recursion and Human Language

¢ \What counts as recursion?

S
a b S
S — abs$ a/ll)\S S — aSh
S%a}b /\Sﬁab
a b
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Uniguely human?

Computational Constraints on
Syntactic Processing in a
Nonhuman Primate

W. Tecumseh Fitch'* and Marc D. Hauser?

The capacity to generate a limitless range of meaningful expressions from a
finite set of elements differentiates human language from other animal com-
munication systems. Rule systems capable of generating an infinite set of
outputs (“grammars”) vary in generative power. The weakest possess only local
organizational principles, with regularities limited to neighboring units. We used
a familiarization/discrimination paradigm to demonstrate that monkeys can
spontaneously master such grammars. However, human language entails more
sophisticated grammars, incorporating hierarchical structure. Monkeys tested
with the same methods, syllables, and sequence lengths were unable to master
a grammar at this higher, “phrase structure grammar” level.
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Uniguely human?

e Familiarization for 20 minutes to 60 strings of one of two forms (where n=2 or 3)
Phrase Structure

Finite State Grammar: A"B"
Grammar (AB)"
ABAB AB AKX 'BBB
AB AB no li ba pa
ABABAB lapawumonoli AA BB yola pa do

AAA BBB balatulipaka

e Test for generalization to novel strings
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amarin results
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Uniguely human?

Recursive syntactic pattern learning by songbirds

Timothy Q. Gentner't, Kimberly M. Fenn?, Daniel Margoliash"* & Howard C. Nusbaum?

Humans regularly produce new utterances that are understood by
other members of the same language community'. Linguistic
theories account for this ability through the use of syntactic
rules (or generative grammars) that describe the acceptable
structure of utterances®. The recursive, hierarchical embedding
of language units (for example, words or phrases within shorter
sentences) that is part of the ability to construct new utterances
minimally requires a ‘context-free’ grammar™’ that is more com-
plex than the ‘finite-state’ grammars thought sufficient to specify
the structure of all non-human communication signals. Recent
hypotheses make the central claim that the capacity for syntactic
recursion forms the computational core of a uniquely human
language faculty*’. Here we show that European starlings (Sturnus
vulgaris) accurately recognize acoustic patterns defined by a
recursive, self-embedding, context-free grammar. They are also
able to classify new patterns defined by the grammar and reliably
exclude agrammatical patterns. Thus, the capacity to classify
sequences from recursive, centre-embedded grammars is not
uniquely human. This finding opens a new range of complex
syntactic processing mechanisms to physiological investigation.
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Starlings and Recursion
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Humans and Recursion

Do Humans Really Learn A" B" Artificial Grammars
From Exemplars?

Jean-Rémy Hochmann, Mahan Azadpour, Jacques Mehler
Department of Cognitive Neuroscience, International School of Advanced Studies

Received 5 April 2007; received in revised form 10 December 2007; accepted 11 December 2007

Abstract

An important topic in the evolution of language is the kinds of grammars that can be computed by
humans and other animals. Fitch and Hauser (F&H; 2004) approached this question by assessing the
ability of different species to learn 2 grammars, (AB)" and A" B". A" B" was taken to indicate a phrase
structure grammar, eliciting a center-embedded pattern. (AB)" indicates a grammar whose strings entail
only local relations between the categories of constituents. F&H’s data suggest that humans, but not
tamarin monkeys, learn an A" B” grammar, whereas both learn a simpler (AB)" grammar (Fitch &
Hauser, 2004). In their experiments, the A constituents were syllables pronounced by a female voice,
whereas the B constituents were syllables pronounced by a male voice. This study proposes that what
characterizes the A" B" exemplars is the distributional regularities of the syllables pronounced by either
a male or a female rather than the underlying, more abstract patterns. This article replicates F&H’s
data and reports new controls using either categories similar to those in F&H or less salient ones.
This article shows that distributional regularities explain the data better than grammar learning. Indeed,
when familiarized with A”B" exemplars, participants failed to discriminate A®B? and A?B? from
A" B" items, missing the crucial feature that the number of As must equal the number of Bs. Therefore,
contrary to F&H, this study concludes that no syntactic rules implementing embedded nonadjacent
dependencies were learned in these experiments. The difference between human linguistic abilities and
the putative precursors in monkeys deserves further exploration.
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What are these experimental results telling us?

¢ Are starlings capable of recursion, while cotton-top tamarins not?
e Are humans capable of recursion?
e |s a difference in the experimental methodology responsible for the outcome?

e \Would a rational learner in these experiments to identify recursion?
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Statistical Models of Grammar

e Probabilistic Context-Free Grammars (PCFGs)

L T e e e

S
NP(sg) VP(sg) /\
NP(pl) VP(pl) NP (pl) VP(pl)
|
Name /\ V(o)
Det N(sg) NP(pl) PP |
NP(sg) PP P T sleep
e
Det N(sg) | |p | |
NP(pl) PP the pitchers in NP(sg)
TN
NP(sg) Det  N(sg)
NP (pl) | |
P NP o) = T[p(R) the dugout
V(pl) §
—  p(S = NP VP) x p(NP(pl) — NP(pl) PP) x p(NP(pl) — Det N) x ...
V(pl) NP = B5x.1x9x1x.5x%x.4x.3
V(pl) S
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Statistical properties of recursion

e A PCFG of the following form will generate the relevant type of recursive strings:
(p)S — aShb
(I-p) S — ab

e The distribution of strings generated by such a grammar has a distinctive property:
shorter strings are always more frequent than longer strings.

P(a"b*) = p*~1(1 - p)

e In contrast, there is no recursive PCFG that can generate a set of strings in which
each length is equally likely. Instead, such a set could only be generated by a non-
recursive grammatr:

(p)S — ab

(S — aabb

(r)S — aaabbb
(I-(p+q+1r)) S — aaaabbbb
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Statistical properties of recursion

¢ \We find this patterning in natural language

e Sentential embedding in the Brown corpus:

3 levels of
no 1 level of 2 levels of embedding or
embedding | embedding embedding J
more
7 81 15366 5874 826 113
sentences
percentage 0.69 0.26 0.04 <0.01
(.69) S — .V .
((31) S — . VS
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Statistical grammar learning

¢ \Work in computational linguistics has addressed the problem of grammar learning
from a corpus of utterances.

e Given a corpus of data D, and a set of PCFG grammar rules

¢ \We might want to find the set of rule probabilities that maximizes the likelihood of
the data (maximum likelihood learning)

argmax, p(D|f) = argmax, » _p(D|T)p(T|6)
T

¢ This task is not trivial, because we don’t know what the right trees are for the
sentences. However, there are algorithms which allow us to solve this problem
(inside-outside).

e Can such a learner detect the signature properties of recursion just discussed?
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Statistical learning of recursion

¢ |Inside-Outside algorithm trained on corpus of sentences of the form A"B"
(10 different words could fill in A and B), generated either by

1. a recursive PCFG, with non-recursive rule probability 1/3; or
(.666) S — ASB

((333) S — AB
2. a non-recursive PCFG with equal rule probabilities for each string length (up to
n=3). (333)S — AB
((333) S — AABB

((333) S — A AABBB
¢ The initial set of rules was as follows:
ASB
A B
AABB
AAABBB
AAAABBBB

n »n w» wn wm
bbbl
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Statistical learning of recursion

e Results for statistically recursive training data:

Ll

ASB

AB

AABB
AAABBB
AAAABBBB

ASB

AB

AABB
AAABBB
AAAABBBB
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Statistical learning of recursion

e As far as | can tell from the descriptions in the papers, previous experiments used
such a statistically non-recursive distribution. As a result, the cotton-top tamarins are
behaving perfectly rationally, even if they have the possibility of representing
grammatical recursion. (What are the humans and starlings doing, then?)

¢ But there was another limitation on the experimental data: only sentences up to a
small fixed length (n=3) were presented. What would a statistical learner do in the
context of such limited data, even if it weren’t equiprobable?
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Data restrictions

¢ | applied the inside-outside algorithm to the same grammar, removing all sentences
from the stochastic training data of length greater than 6. This yielded the following

grammar.
0)S — ASB
A471)S — AB
(300)S — AABB
(229)S — AAABBB
0)S — AAAABBBB

¢ This result is optimal from the perspective of the statistical learner: it does not need
to throw away probability mass on the possibility of generating strings longer than
those actually witnessed in the training data. This tendency can be somewhat
tempered by a Bayesian approach to grammar learning, but is difficult to overcome
in the face of such limited data.
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Inducing recursion

¢ Question: How can we overcome the desire of the learner not to throw away
probability mass on unseen strings?

e Answer: inductive bias (universal grammar)

e Another Question: But what does this inductive bias look like?
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he nature of inductive bias

¢ The Bayesian approach to learning:

Evaluate the probability of hypotheses given the data

p(H|D) o< P(D|H)p(H)

posterior
probabllity of
the hypothesis
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Bayesian Inductive bias

¢ \What is the nature of the prior probability distribution? That is, how likely does a
learner consider different grammatical hypotheses?

e A proposal: prefer hypotheses with small or large probability values (i.e., penalize
splitting rule probabilities among many rules)

Dirichlet prior: o« parameter tells us how much we dislike spreading probability
around.

25 3.0

2.0
I 1

=T X=.5 =,
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Bayesian Inductive bias

® An experiment:
e Compare posterior probabilities of recursive and non-recursive hypothesis given
e different strengths of prior (i.e., alpha values)

e different data samples (i.e., stochastic vs. flat distributions)
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Bayesian inductive bias
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Bayesian Inductive bias

¢ Size of data sample also matters: as stochastic sample increases in size, it becomes
more difficult to get the learner to conclude that there is a recursive grammar

10
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Bayesian Inductive Bias

¢ Thus far, we have only considered the relative goodness of two hypotheses: the

completely recursive and the completely non-recursive grammars. Might an

intermediate grammar have an even higher posterior probability?

e Use MCMC methods (Gibbs Sampling) to estimate posterior probability of recursion

given stochastically distributed data (k examples of A"B", with ne[1,5], prec=.3)

0.3

0.1

e ]
o

k=100

1000000 1400000 1800000 0.0 0.1 0.2 0.3 0.4

Iterations N =1000 Bandwidth =0.01452

mean =.09

x=1 x=.5 x=.1
k=100 | 0.09 0.11 0.25
k=1000| 0.12 0.25 0.30
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Another kind of iInductive bias:
connectionist networks

e Elman (1990,1991): represent sequences through temporal extent

¢ Feed a sequence to a connectionist network one symbol at a time
e Activation of hidden units is copied to context units at each time step

e Context units provide input to hidden units at the next time, providing
memory of past.

e |dentical inputs can be treated differently, depending on context.

Output . ‘

C ~
Recurrent (e £ b
Network N

- J

Input ?’ ?’ ‘ ‘ ‘ Context
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Connectionist networks

¢ Train network to predict the next symbol in the sequence, adjusting the weights
between the units when the output is inaccurate.

e Though it is in general impossible to accurately predict the next symbol, knowledge
of the structure of a language can help to restrict the possible guesses.

\Where’s the bias?

Output B ._‘ e Number of hidden
) A units (compression of
A N knowledge)

® Properties of learning

Input ? ‘ ’ ’ ‘ ‘ ‘ Context
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Another kind of inductive bias:
Connectionist networks

¢ Trained networks to predict next symbol and end of sentence symbol for
stochastically generated and flatly distributed training set for strings from a"b"
language up to length 6 (i.e., no longer than a3b3).

e Assessed accuracy of prediction of end of string on novel test set for strings of
different lengths.

100
80
60

B flat B stochastic
40

Prediction Accuracy

20
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Conclusions and Implications

e Statistical distributions need not be orthogonal to structural properties of language:
grammatical structure will typically have a statistical signature.
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Statistical Signatures of Grammatical Structure

e Guy (1991): Phonological variation and t/d-deletion

TABLE |. The exponential relationship: -t,d retention in two data sets

N % Ret. Estimated p, Significance
Guy (1991) (7 speakers)
Monomorphemic 658 61.9 .852 Best-fit p, = .85
Semiweak past 56 66.1 813 Chi-square = 1.28, p = .55
Regular past 181 84.0 .840
Santa Ana (1991) (45 speakers)
Monomorphemic 3724 42.1 .7494 Best-fit p, = .75
Semiweak past 297 59.3 .7698 Chi-square = 1.17, p = .57
Regular past 836 74.3 .7428
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Statistical Signatures of Grammatical Structure

e Brill and Kapur (1993): Verb second and conditional entropy

_ Z Zp+1(w, v) log py1(w|v)
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Conclusions and Implications

e Statistical distributions need not be orthogonal to structural properties of language:
grammatical structure will typically have a statistical signature.

e Such statistical signatures will also allow us to distinguish other types of grammatical
hypotheses on the basis of the distributions they give rise, even below the level of
context-free.

¢ A rational learner will attend to properties of statistical distributions while engaging in
language acquisition.

e |f we are to understand whether humans and non-humans possess the capacity to
learn the patterns of natural and non-natural languages, we must conduct
experiments where it is rational for them to draw such conclusions.
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