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Abstract In studies of human cognition, Bayesian models are increasingly popular tools for 
understanding how children acquire language. Ideal learner Bayesian models investigate what 
learning strategies are optimal for solving the problem under consideration, while constrained 
learner models reduce memory and processing power in order to investigate what learning 
strategies might be optimal for humans. Both of these model types have been used to investigate 
an early problem in language acquisition: word segmentation. Use of constrained models for 
word segmentation with an English corpus shows a surprising “less is more” effect, where 
simulated learners with fewer memory and processing resources out-perform the ideal learners. 
However, it remains to be seen if this effect persists in other languages. This study examines the 
results of Bayesian modeling for word segmentation on a Japanese corpus. The results of the 
modeling suggest that a robust “less is more” effect is not present in Japanese, and thus does not 
hold across languages.  Instead, the presence of this effect may depend on language-specific 
properties. 



1. Introduction: Bayesian inference for word segmentation 
Children are born without knowing any language; they must acquire it, learning words 

and their appropriate usage through exposure to language produced by others. Words spoken to 
infants by adults, with particular meaning and order, form a data set that children process to learn 
language. Bayesian inference, a sophisticated probabilistic reasoning procedure, has been 
proposed as a model of how children accomplish different tasks in language acquisition. This 
inference process has been used in models of word segmentation (Goldwater et al. 2009, Pearl et 
al. 2011), which is the task of determining where words are in fluent speech. In particular, it has 
been investigated as a learning strategy that would apply at the earliest stages of word 
segmentation, before infants know other useful language-dependent cues that indicate the 
beginnings and ends of words, such as stress cues. For example, stress patterns vary between 
English (stress-initial: LIS/ten) and French (stress-final: écou/TONS), and can therefore reliably 
signal word beginnings or word ends in these languages.  However, infants can only use this 
stress cue once they know what some of the words in the language are, so that they can tell 
whether they’re learning an English-type or a French-type language. Statistical strategies of 
analysis such as Bayesian inference, on the other hand, are language-independent. No prior 
knowledge of words in the language is required, making the statistical strategies suitable to 
model the initial stages of word segmentation. 

 
2. Previous studies of Bayesian word segmentation in English  
2.1. Bayesian inference: A lexicon-building strategy 

Bayesian inference is useful in word segmentation studies where a corpus (represented as 
a collection of utterances with no word boundaries in them, like “Ilikekitties”) is processed by a 
model with no initial lexicon. The model segments the utterances into words (e.g., “I like 
kitties”) , learning the words as it goes (e.g., “I”, “like”, “kitties”), so that it builds a vocabulary 
based only on words it encounters, as a human child would. 

2.2. Algorithms for implementing Bayesian inference 
Two types of algorithms that carry out Bayesian inference have been investigated for 

word segmentation—ideal learners and constrained learners. Ideal learners have unlimited 
processing and memory resources, and are often used to assess whether the data are sufficient for 
learning, and what learning biases might be useful. Constrained learners have limited processing 
and memory resources, and are often used to assess whether the data are sufficient for children, 
who have limited cognitive resources, to actually learn. Putting different restrictions on the 
models (for processing or memory, or both) can result in different hypotheses about what the 
correct segmentation of the data is, which can be compared to the true segmentation adults have 
for the data (this is the segmentation children are presumably trying to learn). Comparing the 
performance of these different algorithms can indicate how human infants, with their limited 
processing and memory resources, actually learn to segment words. 

There are four algorithms implementing Bayesian inference that are used in this study. 
The ideal learning algorithm, first described in Goldwater et al. (2009) [GGJ] uses Gibbs 
sampling to choose the best segmentation for an utterance. Gibbs sampling is a type of Markov 
chain Monte Carlo procedure that is guaranteed to converge on the optimal segmentation, given 
the learning assumptions in the Bayesian model.  It is in this sense that the learning algorithm is 
“ideal”. This ideal learning algorithm operates by iterating over the entire corpus multiple times 
(for example GGJ’s implementation iterated 20,000 times), which involves a large amount of 



processing and requires the child to hold the entire corpus in memory at all times. This ideal 
learning algorithm contrasts with the constrained learning algorithms discussed below, which 
were first implemented by Pearl et al. (2011).   

 The first of the constrained model types is Dynamic Programming with Maximization 
[DPM]. The DPM algorithm uses the Viterbi algorithm to process each utterance as a whole, 
computing the highest probability segmentation, given the current lexicon. Once the utterance is 
segmented, it is added to the lexicon, which affects decisions for subsequent segmentation.  Thus, 
it differs from the ideal learning algorithm by processing utterances one at a time.  This means it 
does not require as much memory as the ideal learner, as it does not need to keep the entire 
corpus in mind. However, it is similar in choosing the optimal segmentation at each point in time. 

 The Dynamic Programming with Sampling algorithm [DPS] relaxes this second behavior.  
Instead of choosing the optimal segmentation, it selects a segmentation probabilistically.  Thus, 
low probability segmentations may be chosen some of the time, as it processes each utterance 
incrementally.  Like the DPM algorithm, it processes utterances incrementally. 

 The Decayed Markov Chain Monte Carlo algorithm [DMCMC] also processes 
utterances incrementally, but uses a modified form of the Gibbs sampling procedure that the 
ideal learner uses.  In particular, it uses only these utterances it has already encountered to inform 
segmentation decisions, rather than the entire corpus. This reduces the processing power required, 
as compared to the ideal algorithm.  In addition, this algorithm implements a recency effect, 
where it tends to focus on utterances (and parts of utterances) it has encountered more recently.  
In this way, it is likely to require less memory than the ideal algorithm since it does not need to 
remember everything it has seen in precise detail. 

2.3. Learner assumptions & previous results 
  Previous Bayesian learning studies have investigated the effect of certain kinds of 

knowledge about words (Goldwater et al. 2009, Pearl et al. 2011).  The unigram learner assumes 
words are independent units, while the bigram learner thinks that words predict what words 
follow them. Previous studies have also assumed the basic unit of representation is the phoneme 
– that is, a learner gets a stream of phonemes as input and must put word boundaries in 
appropriately. Pearl et al. (2011) is one such study, and found a “less is more” effect for some of 
their unigram learners, where cognitive limitations help, rather than impede, language acquisition  
(Newport 1990). While this idea may seem counterintuitive, it is nonetheless true that children, 
who have greater cognitive limitations than adults, are in fact better at language acquisition than 
adults. The presence of a “less is more” effect in English when using a Bayesian inference 
learning strategy thus seems in line with what we would expect of children’s learning strategies.  

The “less is more” effect occurred in the Pearl et al. (2011) study because unigram 
learners assumed that commonly occurring sequences of words (e.g., “at the”) were in fact one 
word (i.e., “atthe”), which is an undersegmentation error. Ideal learners with unrestricted 
memory tended to notice just how frequent these word sequences are and so undersegmented 
them.  In contrast, the learners with limited memory were not always able to notice how frequent 
these sequences are, and so did not undersegment them nearly as often.  In this way, restricted 
memory and processing resources produced better word segmentation results. 

The assumption that the phoneme is the basic input unit for children is unlikely to be true, 
however. Evidence suggests that infants are aware of syllables before phonemes (Thiessen & 
Saffran 2003). Because of this, other studies (Phillips & Pearl 2012) have used the syllable as the 



basic unit for a Bayesian learning strategy.  Again, a “less is more” effect was found for English 
data – in fact, a more robust effect where both unigram and bigram constrained learners 
outperformed the ideal learners.   

The ideal unigram learners in the Phillips & Pearl (2012) study again made many more 
undersegmentation errors on frequent bigrams composed of short words such as “can you” and 
“do you” than did the constrained unigram learners. The ideal learners used the entire corpus to 
calculate the frequency of these bigrams and then uniformly undersegmented all instances. The 
constrained learners did not have the context of the entire corpus that led to these errors and 
segmented these bigrams correctly as they occurred. While constrained learners tended to make 
more oversegmentation errors, the ideal learners made a greater number of errors overall.  

The bigram constrained learners in the study also out-performed the bigram ideal learners. 
The ideal learner correctly segmented 72.5% of the words in the corpus, accounting for 80% of 
total word types. The constrained learners segmented 85% of words in the corpus, but only 
76.8% of the total word types. Phillips and Pearl (2012) interpreted this to mean that the 
constrained learners were more successful at segmenting more frequently occurring words than 
the ideal learners, leading to greater overall accuracy despite correctly segmenting fewer word 
types. 

 
3. Cross-linguistic Bayesian segmentation 

If we are interested in a successful language-independent word segmentation strategy, it 
is important to demonstrate that it works for multiple languages.  Specifically, it must be shown 
to be successful on many different language types before generalizations about its utility for 
language acquisition can be made.   

 
3.1. Japanese 

Japanese is not only a different language from English, but belongs to a different 
language family and has several notable differences. First, there are fewer Japanese syllable 
types (4: V, CV, VC, CVC) than English syllable types (6: V, CV, VC, VCC, CVC, CVCC).  
Most Japanese syllables consist of either a single vowel (a), or an onset consonant and vowel (ta). 
Other grammatical syllables types allow for a nasal or geminate coda (hon, at/ta). Japanese also 
has fewer phonemes (21) than English (40).   In addition, Japanese has more standardized 
morphology, with very predictable verb conjugation. For example, there are very few verbs that 
conjugate irregularly, and Japanese verbs do not conjugate differently for different subjects, so 
that I, he, she, they, or we run all translate to haSiru. The root of the verb does not change with 
conjugation as some English verbs do; instead there is only a changed suffix to indicate case 
(haSi/ruhaSi/nai).  

 
3.2. Japanese segmentation results and discussion 

Table 1 shows the F-scores of word tokens as well as the precision and recall of word 
boundaries on a Japanese corpus of child-directed speech to children between the ages of 2 and 
20 months that was derived from the CHILDES database. Tokens (T) refers to unique words, 
which may have multiple instances throughout the corpus. Word boundaries (B) refers to the 
edges of words (e.g. “at the” has four: at the beginning and end of both “at” and “the”).  F-score 
(F) is the harmonic mean of precision (p) and recall (r):  

 
F = 2pr/(p+r) 



 
where precision is the fraction of retrieved instances that are correct and recall is the fraction of 
correct instances that are retrieved. For example, a learner analyzing a corpus of 10 words that 
identifies a total of 9 words, and correctly identifies 6 of those will have a precision of 6/9 and a 
recall of 6/10. The F-score is one way to represent this information in a single number, with a 
higher number representing greater segmentation accuracy. F-score over tokens therefore gives 
one concise measure of segmentation performance.  Word boundary precision and recall, when 
compared against each other, can indicate whether the simulated learner is undersegmenting 
(boundary precision > boundary recall) or oversegmenting (boundary precision < boundary 
recall). 
 
Table 1: Token F-scores (TF) and word boundary precision (BP) and recall (BR) of different 

learners from the Japanese corpus 
 TF BP BR 
Unigram    
Ideal 65.372 77.912 73.212 
DPM 64.758 71.358 78.718 
DPS 64.564 70.046 82.182 
DMCMC 64.318 74.914 75.344 
Bigram    
 GGJ-Ideal 65.468 69.56 86.412 
DPM 59.772 63.002 88.946 
 DPS 56.246 59.808 91.338 
DMCMC 50.296 54.246 96.32 

 
The unigram learners, ideal and constrained, all performed roughly the same with regards 

to correctly identifying unique tokens, as seen by their F-scores. While the unigram ideal learner 
has the highest F-score (65.372), the learner with the lowest F-score, the DMCMC learner, was 
not much lower (64.318). When we examine the boundary precision and recall scores, only the 
ideal learner appears to be undersegmenting – all the constrained learners appear to be 
oversegmenting (though the DMCMC learner is doing so only very slightly). 

While the unigram constrained learners had lower token F-scores than did the unigram 
ideal learner, the bigram constrained learners more significantly under-performed when 
compared to the bigram ideal learner. This was somewhat surprising, as the bigram learners did 
better than the unigram learners on the English corpora investigated in GGJ and Pearl et al 
(2011) (see Table 2).  However, for Japanese, all the constrained bigram learners have F-scores 
at least five points lower than the ideal learner F-score of 65.468, and the lowest scorer, the 
DMCMC learner, has a score roughly 15 points lower (50.296). Notably, when we examine the 
boundary precision and recall, all learners (both ideal and constrained) are oversegmenting, with 
the DMCMC learner doing this the most – the difference between its boundary precision and 
recall is over 40 points (precision: 54.246, recall: 96.32).  
 
Table 2: Token F-scores (TF) and word boundary precision (BP) and recall (BR) of different 

learners from Pearl-Brent derived English corpus 
 TF BP BR 
Unigram    



Ideal 53.124 92.0 62.1 
DPM 58.762 66.7 88.5 
DPS 63.682 60.9 89.5 
DMCMC 55.116 86.3 74.5 
Bigram    
 GGJ-Ideal 77.062 85.6 82.0 
DPM 75.076 75.2 89.6 
 DPS 77.768 52.8 90.5 
DMCMC 86.264 81.1 87.6 

 
As seen in Table 2, the constrained learners, both unigram and bigram, performed better 

than the ideal learners when segmenting words in the English corpus. Importantly, the improved 
performance of the various constrained learners using Bayesian inference compared to the ideal 
learners suggests a “less is more” effect that increases segmentation accuracy. This is at odds 
with the data obtained from the Japanese corpus, shown in Table 1. In particular, the ideal 
learner always does the best, presumably because it does not make as many oversegmentation 
errors.This suggests that Bayesian inference does not automatically produce a “less is more” 
effect across all languages, where constrained learners outperform ideal learners.  

We turn now to the specific kinds of errors the simulated learners made in Japanese. As 
mentioned above, there were many more oversegmentation errors, as indicated by the boundary 
precision and recall scores.  Table 3 shows a detailed description of these kinds of errors, 
dividing them by linguistic category (noun, verb, adjective, nonsense word, expression). 

 
Table 3: Types and tokens (# of unique tokens / # of instances) of oversegmentation errors made 

by different learners from Japanese corpus	
  	
  
 
Unigram 

Noun 
kore ko re 

Verb 
tabetetabe te 

Nonsense 
bUbUbU bU 

Expression 
dOzodO zo 

Adjective 
GOzuGO zu 

GGJ-Ideal 9 / 58 11 / 81 2 / 11 0 / 0 3 / 21 
DPM 9 / 186 9 / 171 2 / 31 4 / 103 5 / 93 
DPS 12 / 314 6 / 125 6 / 104 3 / 68 3 / 42 
DMCMC 7 / 73 9 / 98 5 / 56 2 / 18 4 / 66 
Bigram      
GGJ-Ideal 8 / 415 12 / 427 3 / 82 0 / 0 3 / 61 
DPM 8 / 508 9 / 277 3 / 59 0 / 0 3 / 127 
DPS 10 / 480 7 / 274 2 / 50 1 / 20 4 / 127 
DMCMC 10 / 747 12 / 585 2 / 64 4 / 179 2 / 86 

 
 The pattern of oversegmentation errors is consistent across different learners, with the 

main difference being the number of mistakes. For example, most of these oversegmented words, 
shown in Table 3 above, had two syllables, with only occasional errors for words with three 
syllables. Oversegmented verbs were segmented between the root and conjugated morphemes 
(tabete  tabe te). This occurred exclusively with short verbs of two to three syllables; verbs 
with longer conjugated endings were correctly segmented.  This is likely due to the increased 
predictability of these longer morphemes, as opposed to the less predictable single-syllable 
morphemes. 



Table 4: Types and tokens (# of unique tokens / # of instances) of undersegmentation errors 
made by different learners from Japanese corpus 

 
Unigram 

Noun 
hai kore 
haikore 

Verb 
koko irete 
kokoirete 

Nonsense 
A A 
AA 

Particle 
kore wa 
korewa 

Repetition 
takai takai 
takaitakai 

GGJ-Ideal 5 / 94 3 / 59 2 / 60 19 / 444 2 / 32 
DPM 3 / 37 8 / 82 0 / 0 15 / 163 5 / 70 
DPS 1 / 9 1 / 12 0 / 0 18 / 231 7 / 118 
DMCMC 1 / 15 2 / 36 1 / 68 21 / 420 2 / 32 
Bigram      
GGJ-Ideal 2 / 27 0 / 0 3 / 146 17 / 152 5 / 24 
DPM 1 / 8 3/ 36 1 / 8 16 / 244 8 / 102 
DPS 2 / 13 4 / 57 1 /8 11 / 150 11 / 95 
DMCMC 4 / 6 2 / 13 0 / 0 13 / 53 11 / 69 

 
While the most common oversegmentation errors were made with verbs and nouns, as 

seen in Table 4 above, the most common undersegmentation errors were made for phrases with 
particles (kore wa  korewa) and repetitive words (takai takai  takaitakai). Since particles are 
frequently occurring parts of speech in Japanese, they comprised both the greatest number of 
error types and the greatest total number of errors for unigram learners. Similarly to the 
previously discussed English undersegmentation of frequently occurring bigrams (e.g. “at the”), 
the learners segment the Japanese phrase as if it were one word. The unigram learners, which do 
not treat previously occurring words as predictive, are more prone to this mistake. The unigram 
learners ranged from 15 (DPM) to 21 (DMCMC) errors segmenting unique tokens, with a range 
of 163 (DPM) to 444 (Ideal) total error instances. The bigram learners had a lower range of 11 
(DPS) to 17 (Ideal) unique token errors, and a range of only 53 (DMCMC) to 244 (DPM) total 
error instances. 

 
4. Conclusion and Future Research 

It remains to be seen how well learner strategies using Bayesian inference do for other 
languages besides Japanese and English.  It may only produce this “less is more” effect for 
languages with specific properties.  Japanese differs from English in a number of ways – it is 
currently unclear which properties are responsible for the difference in behavior, though the 
predicatable morphology seems to have caused more oversegmentation errors. Comparison to 
other languages may suggest which properties are required to produce a robust “less is more” 
effect when modeling word segmentation. 
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