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0. Abstract

The realm of social and emotional connotation is often thought to be the purview of 
humans rather than machines.  Namely, humans are generally capable of recognizing 
social connotations including emotions (such as embarrassment), intentions (deception 
and persuading), attitudes (confidence and disbelief), and tone (formality, politeness, 
rudeness), and recent work has suggested that machines may also be capable of this feat 
(Pearl and Steyvers 2010).  This study extends the work done by Pearl and Steyvers, 
improving the data gathering methodology, feature extraction, and machine learning 
classification.  Prior to the WordSleuth project, a major barrier to researching social cues 
transmitted through text has been a lack of annotated data.  WordSleuth, an online 
Game-With-a-Purpose  (von Ahn 2006), solves this problem, creating an effective means 
of encouraging a wide variety of participants to generate and annotate data.  Salient 
linguistic features can then be extracted from the data gathered and used to train and 
test machine learning algorithms, effectively teaching machines to identify social 
connotations in text.  In particular, as machines still currently lag behind human 
capabilities, this study extends Pearl and Steyvers' work by examining more complex 
linguistic features and exploring more sophisticated machine learning methods, with the 
aim of substantially improving machine recognition of social connotation.

1. Introduction

An important question in computational linguistics research is how non-linguistic 
information, such as emotions, intentions, attitudes, and tone, can be derived from 
language text.  People are generally capable of it, but so far, machines have lagged 
significantly behind human capability.  One approach is to identify possible features 
humans use, such as low level syntactic cues, and extract them from the input, allowing 
machine learning algorithms to make use of them, potentially even better than humans. 
This research project focuses on low level syntactic clues present in plain text.

The primary technical barrier to research in social connotation up until this project 
was a lack of socially annotated data.  In order to extract such social information from 
text, we must first have a reference point constituted by sufficient examples of each 
category: a database of reliable messages reflecting human perceptions of both the 
intended and perceived social information.  We therefore cannot simply automate the 
process (until after this project), since the machine learning itself requires training data 
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to learn from.  We need also a diversity of examples and styles to generalize from, so 
simply annotating existing works may be insufficient, and is, at the very least, extremely 
time-consuming.  While some sources of information annotated for select specific 
categories exist, such as a database for deception created from the online game Mafia 
Wars (Zhou and Sung 2008), these sources do not reflect the breadth of social 
connotations we are looking for.  Thus, the goal is to obtain messages generated and 
annotated by many people.  Simple survey techniques can only bring in so much data due 
to limited scope and appeal.  Pearl and Steyvers' (2010) solution to this problem: a game, 
specifically, a game-with-a-purpose (von Ahn 2006), that can automate the acquisition of 
data and increase the amount provided by volunteers by making participation more 
enjoyable (Pearl and Steyvers 2010).  We call that game WordSleuth.

2. Creating WordSleuth

2.1 The function and purpose of the WordSleuth game

WordSleuth's game play is bimodal, facilitating the gathering of both new 
annotated messages and annotations of old messages.  In the first mode, message 
generation, players are presented with a contextual picture for inspiration and one of 
eight social cues, and asked to create a message that expresses that cue more than any of 
the others, without using particular taboo words that might make the task of 
identification too easy.  This mode enables the generation of new annotated data, but that 
alone would be insufficient: we also want to gather data about people's perceptions of the 
message's social category.  

Illustration 0: Message Creation Mode
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In the second mode, cue identification, players are presented with a message and 
the contextual image used to generate it, and asked to identify which of the eight social 
cues the message best communicates.  This mode allows users to peer review each others' 
submissions, providing information about whether messages identified represent "good" 
examples of their social cue.  Ideally, messages that are the best examples of their 
category are always agreed upon, while the worst examples show a high degree of 
confusion among the guessers.  It also increases the appeal of the game play, as it appears 
players have a strong preference to the relatively simpler task of identification, perhaps 
because it is faster and less cognitively taxing, providing more instant gratification.  

It has been shown that this type of communal effort of non-experts is capable of 
producing data as reliable as that generated by few experts (von Ahn 2006).  For 
convenience and ease of comparison, the following tables show the initial results obtained 
by Pearl and Steyvers' participants, when the database included 1176 messages and 3198 
annotations.  The reliability of the data increased dramatically when we considered 
messages that have been agreed upon for at least 50% of at least two annotations (Pearl 
and Steyvers 2010).

WordSleuth was originally created as an offline game, which limited its 
effectiveness in reaching participants and gathering data.  A much larger database is 
required to truly generalize about such a nebulous subject as social connotations.

2.2 Bringing WordSleuth online

A solution to the data deficit problem is putting the game online (see 

(Pearl and Steyvers 2010)

(Pearl and Steyvers 2010)
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http://gwap.ss.uci.edu/ for the current instantiation), increasing its accessibility to the 
general public and increasing the amount of data generated.  HTML templates were used 
for the webpages forming the front end of the system, driven by Perl CGI scripts.  More 
modern, flashy methods such as Ruby-on-Rails were contemplated and discarded in favor 
of quick prototyping and known compatibility with popular browsers.  Finally, the front-
end system was integrated with a mySQL database, an improvement in efficiency, 
availability, and methodology from the text files previously used.

Results to date are promising.  Since bringing the game online in January 2011, 
the number of annotations has increased dramatically while the number of messages 
created has nearly doubled.  As of May 2011 the database contains just over 3,500 
messages and 20,000 annotations.
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confidence .81 .03 .02 .01 .01 .07 .03 .02
deception .08 .60 .04 .03 .02 .13 .05 .05
disbelief .03 .03 .79 .03 .01 .02 .03 .04
embarrassment .01 .03 .07 .78 .02 .01 .05 .02
formality .04 .02 .02 .02 .46 .09 .34 .02
persuading .08 .05 .01 .00 .02 .77 .04 .02
politeness .02 .02 .01 .02 .13 .07 .72 .02
rudeness .02 .01 .04 .02 .01 .04 .01 .85

Table 0: Human annotations for database (as of May 2011)
Mean accuracy: 0.74

http://gwap.ss.uci.edu/
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confidence .87 .01 .01 .00 .01 .06 .02 .01
deception .05 .76 .02 .02 .01 .09 .03 .02
disbelief .02 .02 .86 .03 .01 .01 .03 .03
embarrassment .00 .03 .05 .86 .02 .01 .03 .01
formality .02 .00 .00 .01 .68 .04 .24 .01
persuading .05 .04 .01 .00 .01 .84 .03 .01
politeness .02 .02 .00 .01 .10 .04 .80 .01
rudeness .01 .01 .03 .02 .01 .03 .01 .88

Table 1: Human annotations for reliable messages (as of May 2011)
Mean accuracy: 0.84

In general, the expansion of the database has seen an increase in user accuracy in 
identifying the intended social cue, as well as the reduction of certain ambiguities. 
Confusion of deception for confidence, for example, has been halved, even without 
filtering for reliably annotated messages.  Rudeness is still easiest for users to identify, 
but by a slimmer margin.  However, some sources of confusion remain prominent, for 
example formality for politeness, and less so, the reverse.

2.3 Improvement Feature: Taboo word list

One potential complication that may arise with gathering data in a competitive 
framework is the possibility of amassing messages that are artificially representative of 
their classifications.  Players motivated by point gain may specifically craft messages 
that are trivial to guess by including the social tag in the message or using words that are 
too closely related to the tag.  For example, the task of identifying "politeness" in a 
message is trivialized if every message assigned to that category has the word "please". 
Therefore, users should be prevented from using select words.  Rejecting messages 
containing variations of the tag and the tag itself was a simple starting point and solved 
the first half of the problem, but we also needed some way of tracking words that were 
becoming over represented in the database.  Our solution was to dynamically generate a 
list of taboo words based on the theory of mutual information.

Mutual information is a measure of the inter-dependence of two variables (Peng 
2005): in this case, word frequency and social category.  Two independent variables 
should have a mutual information score of 0, while two variables that are dependent and 
closely related will have a higher score than two non-closely related.  The following 
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equation was used,
Mutual Information (x , y )=log ( p (x : y ))

( p (x )∗p (y ))
where,

p (x : y )=probability of word x given category y ,
p (x )=probability of word x among all words ,
p (y )=probability of category y among all categories .

For each social category, the words with the highest mutual information score are 
declared to be taboo in the game, and players are not allowed to use them when 
generating a message for that particular category.  Common words, such as articles and 
pronouns, should be automatically excluded, since they are evenly distributed among all 
the categories.

Taboo list functionality was implemented with a Perl script to calculate the mutual 
information scores for each word in each social category in the current database, set to 
update approximately once per day.  Thus the taboo lists are dynamically updated to 
reflect the state of the database, automatically without requiring the direct supervision of 
the researchers.  The following code fragment illustrates the implementation of the 
mutual information calculation:

For example, as of May 2011 each category yielded the following taboo words:

Category Taboo List: Top  7
confidence wil, modest, mvp, talkies, rule, scruffles, sorts 
deception recommend, spreadsheet, dastardly, issue, nerdy, jan, 

suntan 

Code Fragment 0: tabooListGenerator.pl: calculating mutual information

# calculate p(x) = #occurrences of word/#total words
my $px = $wordFrequency{$word}/$totalWords;
# calculate p(y) = #occurrences of a given tag/totalMessages
my $py = $tagCount{$category}/$totalMessages;
# calculate p(x|y) = #word x in tag y/#words in tag y
if (! exists $wordCount{$category} || $px == 0) #if $py is 0,

bigger problems to be alerted to (ie. social tag not 
existing)

{
$pointWiseMutualInfo = 0;

}
else
{

my $pxGy = $count/$wordCount{$category};
$pointWiseMutualInfo = log($pxGy/$px/$py); #log(p(x|y)/

(p(x)*p(y)))
}
$mutualInfo{$category}{$word} = $pointWiseMutualInfo;
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disbelief beats, megaphone, guitar, twenty, vat, goatse, smoothly 
embarrassment stew, conscious, mins, grease, mighty, private, spade 
formality delivery, abuse, form, grammy, greetings, martin, 

distinguished 
persuading million, thousand, reasons, captain, poverty, carrots, tonic 
politeness nicely, grateful, bumping, rough, shore, orphans, scores 
rudeness kangaroo, facts, uncalled, scum, listed, spotty, gingers 
Table 2: Taboo list results (as of May 2011)

Many of these words are intuitively related to their given category: “modest” in 
confidence, “recommend” in deception, “million”, “thousand”, “reasons” for persuading, 
etc.  However, many appear at first glance to be out of place.

A useful, if unexpected, outcome of applying this methodology was the 
identification of words that were non-intuitively highly correlated with particular 
categories.  For example, just after the game went online in January 2011, the taboo list 
generator yielded “nancy” for confidence.  Yet “nancy” does not seem to be a word that one 
would intuitively associate with the social category confidence; it seems rather arbitrary. 
In fact, that unigram was an artifact of the message generation system.  In the 
beginning, when the game was offline and the database relatively small, a user happened 
to use the name “Nancy” in several messages for the category confidence.  Because there 
were so few repeated words in general and that one happened to be used enough in a 
particular category, it had a relatively high mutual information score, even though it may 
not be truly representative of the category.  Making “nancy” taboo for the confidence 
category prevents users from creating additional instances correlating the unigram to the 
category, thus eventually lowering its mutual information score.  Thus, taboo 
functionality reduces the effect of coincidental correlation.

Eventually, as the database grows, trends can be examined to set an appropriate 
absolute boundary on the mutual information score, rather than simply using the highest 
relative scores.  The taboo list should eventually resemble the game for which it was 
named and represent words that are highly correlated for each category within the 
current database.  It is important to note that this will not necessarily reflect the 
correlation present in general language usage, since this model actively discourages high 
correlations.  Therefore, taboo list functionality increases both the depth and breadth of 
data represented by discouraging trivially obvious words such as the categories 
themselves and by dynamically identifying and reducing coincidentally high correlations 
of words to categories.

3. Using WordSleuth

The data gathered in the WordSleuth database cannot be simply directly fed to a 
computer and expect coherent results.  It must first be parsed and processed for salient, 
numerable features.  Furthermore, many feature are only present for a few messages, 
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listing only those features present for each message reduces the dimensionality of the 
data set, thus increasing the efficiency of the algorithms.

3.1 Features

Originally, Pearl and Steyvers used 12  features extracted for each message: the 
number of word types,  number of word tokens, ratio of types to tokens, number of 
punctuation marks, number of question marks, number of exclamation marks, number of 
main clauses, average characters per word, mean log frequency of words used, and lists of 
unigrams, bigrams, and trigrams that appear more than once in the data set.  This 
project added the following features: number of interrobangs, ratio of exclamation to 
question mark, average words per main clause, number of sub-clauses, average words per 
sub-clause, and accuracy and precision scores for human performance on each message. 
For example, interrobangs appear in the disbelief category more often than others, while 
formality and deception are often expressed with numerous sub-clauses distancing the 
speaker from the audience.  Accuracy and precision scores give a sense of the usefulness 
of a particular message as an exemplar.  Accuracy is calculated as the percentage of times 
a particular message was correctly identified, while precision represents a measure of the 
agreement (or lack of confusion) of the guessers, calculated as a percentage of the 
maximum possible entropy.  Maximum entropy (which is 3 bits for an 8 category choice) 
represents the state of maximum confusion (each category is guessed 1/8 of the time), and 
thus the lowest precision (0).  Minimum entropy (0) represents complete certainty (such 
as when all guessers guess the same category) and thus the highest degree of precision 
(1.0 or 100%).  Thus precision is calculated:

precision=
(H max −H x )

H max
where,

H x=∑ p (x )∗log2
1

(p (x ))
and, 

H max =H ( 1
8

, 1
8

, 1
8

, 1
8

, 1
8

, 1
8

, 1
8

, 1
8

)=3

I considered several ways to calculate precision, such that precision should 
represent the amount of agreement of the guessers on a particular message.

First, I considered precision to be simply the frequency of the most common guess, 
but quickly realized some flaws with this hypothesis.  This calculated precision could 
never be lower than accuracy, and yet it occurs in other domains that precision is lower 
than accuracy.  Further, this metric would not be sufficiently fine-grained.  For example, 
consider 2 messages, one that is guessed 50% one category and 50% another, to be 
represented (.5, .5) for short, and the other, that is guessed 50% one category, 25% 
another, and 25% a third (.5, .25, .25).  In both cases, this calculation for precision would 
yield .5, but it seems intuitively that the second case represents a higher degree of 
confusion among the participants, since more categories were under consideration.
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Next, I considered various ways of penalizing precision based on the number of 
categories guessed.  However, this method is insufficiently fine-grained as well.  Consider 
2 messages, the first (.5, .25, .25) and the second (.5, .24, .01).  Simply accounting for the 
most commonly guessed and the number of categories would calculate the same precision 
for each of these messages, but again intuition says the second one might represent a 
lower degree of confusion, since the third category has so few guessers compared to the 
other two.  Precision should take into account the relative frequency of each category 
guessed as well.

The entropy ratio calculation solves these problems.  It is possible for a message to 
have lower precision than accuracy (such as, for example, (.3, .1, .1, .1, .1, .1, .1, .1)), and 
there is sufficiently high granularity to distinguish the aforementioned cases.

3.2 Algorithms

Preliminary research with the machine learning algorithm Sparse Multinomial 
Logistic Regression (Pearl and Steyvers 2010) showed performance nearly on par with 
human performance, but not quite.  Just as there is variation among the performance of 
individual humans on learning tasks, different machine learning algorithms vary in 
performance, with their own sets of strengths and weaknesses.  This paper examines 
additional algorithms in an attempt to reach human proficiency.

3.2.1 KNN: K-Nearest-Neighbors

3.2.1.1 KNN Background

As a “peer pressure” multinomial classification algorithm, K-Nearest-Neighbors 
operates on an inductive principal of classifying a test data point based on the training 
data points proximate to it.  Each unknown data point adopts the classification of those 
closest to it, or, in the case of disagreement, the most common classification of nearby 
training points.  Let there be two subsets of data, one for training whose classifications 
are known to the algorithm and one for testing whose classifications are unknown to the 
algorithm, but known to the evaluator of algorithms.  (Here the “correct classification” is 
defined as that specified by the user when the message was generated.)  For each data 
point in the test data, KNN calculates the Euclidean distance between that data point 
and each data point in the training subset.  It then assigns the classification of the test 
data point to the most common classification of the K training cases with the smallest 
distances.

There is some concern about efficiency.  For n test cases and d training cases, the 
algorithm runs in at minimum O(n*d) time and can do no better, making it inefficient for 
large values of n or d.  In reality, because of the way we parse features, n depends on both 
the number of messages and the number of features parsed, and thus grows rather 
quickly.  KNN may not be practical if the database continues to grow in size as hoped.

To begin with, KNN was run on the database toward the end of May 2011 and fed 
only the features originally extracted by Pearl and Steyvers in 2010.  Next, KNN was 
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applied to the additional low level features.  In both cases, performance was averaged 
over values of N ranging from 1 to 55.

3.2.1.2 KNN Results
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confidence .80 .04 .01 .02 .02 .06 .02 .03
deception .09 .55 .03 .01 .00 .11 .01 .00
disbelief .03 .02 .79 .02 .03 .04 .04 .03
embarrassment .02 .06 .03 .79 .02 .02 .03 .02
formality .02 .01 .01 .02 .60 .03 .31 .00
persuading .07 .06 .02 .01 .03 .76 .03 .02
politeness .03 .02 .03 .11 .02 .05 .71 .02
rudeness .02 .01 .07 .03 .00 .06 .01 .80

Table 3: KNN on May 2011 data, original features
Mean accuracy 0.76
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confidence .17 .14 .12 .10 .08 .12 .16 .10
deception .13 .13 .16 .09 .12 .16 .09 .12
disbelief .12 .10 .13 .12 .14 .16 .12 .10
embarrassment .06 .16 .11 .11 .16 .14 .15 .11
formality .10 .15 .14 .18 .10 .10 .15 .07
persuading .13 .13 .16 .11 .13 .08 .15 .12
politeness .15 .08 .16 .08 .15 .16 .18 .13
rudeness .12 .09 .12 .11 .11 .09 .15 .20

Table 4: KNN on May 2011 data, all features
Mean accuracy 0.24
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Notably, KNN's mean performance on the original features is equivalent to human 
performance on all messages.  Surprisingly, KNN performed much worse with all features 
than with the original features alone.  However, KNN is sensitive to dimensionality and 
proximity, and it may be that the new features confused the algorithm by creating the 
illusion of proximity.

KNN is a naïve algorithm in that it overlooks certain patterns apparent in the 
data, such as clustering.  Furthermore, as an inductive algorithm, it is only able to learn 
from the training set.  Thus, it is unable to make use of test cases themselves, which 
would be particularly beneficial when the differing categories are highly interspersed, as 
is the case here.  Transductive clustering suffers neither of these deficiencies.

3.2.2 Transductive Clustering

The primary difference between induction and transduction in this case is the 
ability to make use of information from unlabeled points in the test subset (Chapelle, 
Scholkopf, and Zien 2006).  While inductive KNN would only use training data near a 
test point, transduction also considers other as yet unlabeled test points and is able to 
make use of their proximity once labeled.  Furthermore, clustering is able to take 
advantage of the patterns that exist in the data beyond the first level of nearby points.

For example, consider Illustration 1: if training point A is near test point Q, and Q 
is near test point R, transductive clustering is able to infer that A and Q and R should 
have the same label, since they form a cluster, because the unlabeled test point Q 
between A and R joins them together.  Both KNN and transductive clustering would label 
both Q and R with category gold hexagon, but with differing underlying logic.  Inductive 
KNN would label Q according to A (gold hexagon), and then R according to A (also gold 
hexagon), and not explicitly understand that Q and R are the same category, because it is 
blind to point  R when considering point Q (and vice-versa).  This difference in logic 
becomes more salient if there is an additional training point of a different category, as 
follows.

Illustration 1: Training point A (gold 
hexagon), test points Q and R

RQ A
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Now consider Illustration 2, in which another training point B exists (labeled with 
category blue diamond), closer to R than A is to R, and of a different label than A.  KNN 
(K=1) would label R according to B, rather than according to A, since R is nearer to B, 
though intuitively A and R should probably belong in the same cluster, and thus the same 
category label.  This intuition grows stronger with the introduction of more unlabeled 
points, as shown in Illustration 3.

3.2.2.1 Transductive Agglomerative Clustering

Transductive Agglomerative Clustering works by merging nearby points into 
clusters (Gashler 2011).  Once a labeled point is merged into a cluster, the entire cluster 
gains the label of that point, and thus do all the unlabeled points within the cluster.  In 
theory this sounds plausible.  However, the mean accuracy of this algorithm was only 

Illustration 3: Additional unlabeled data points enhance the intuition  
of two clusters, where the left cluster should be gold hexagon, and  
the right cluster blue diamond.

Illustration 2: Training points A (gold hexagon) and B (blue diamond),  
and test points Q and R.  Distances x and y such that x < y < 2x.

RQ A B

x x y

RQ A B

x x y

?

? ? ?

?

?
?
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about 0.13 (below the baseline of 0.15), when tested with 10 repetitions of 10-fold cross-
validation.  Upon closer examination of the algorithm, one finds that clusters of differing 
labels are never joined, which bodes ill for data that shows many small, interspersed 
clusters, or clusters that have some conflicting labels.  These are in fact the 
characteristics inherent to the current WordSleuth data set.

3.2.2.2 Transductive Graph Cutting

Transductive Graph Cutting uses a min-cut/max-flow algorithm to separate out the 
various labels present in the data and deliminate clusters accordingly (Gashler 2011). 
When run on the May 2011 data set with only the original features present with both 10 
repetitions of 10-fold cross-validation and 10 repetitions of 2-fold cross-validation, the 
mean accuracy was 0.97, much higher than the other algorithms or human annotations. 
A result so high seemed to indicate the potential of overfitting; to truly determine, 
additional testing data is required, but running 2 fold cross-validation to reduce the ratio 
of training to test data suggests the results are robust.  When run on the same data set 
and cross-validation, but with all features extracted, the mean accuracy was 0.98, 
showing that the additional features did not cause this algorithm the level of confusion as 
inductive KNN experienced.

4. Future Directions

With additional time, the WordSleuth project could benefit from further research 
done in several areas, including additional feature research and machine learning 
techniques.  For example, this paper only examines relatively low level syntactic clues; 
the success of certain classifiers relative to humans on such low level cues suggests that 
humans may cue into these low level clues, but they probably also use higher level data, 
including sentence structure.  Input messages could be parsed into syntax trees to 
examine high level syntactic structures.  I began tentative work on approximating these 
structures with simple parts of speech tagging which shows promise, but time constraints 
did not permit.  Additional machine learning algorithms not examined in this paper, 
including additional inductive and transductive algorithms would be interesting to look 
into, and combining the strengths of multiple algorithms with methods such as bagging 
could yield more powerful, consistent, and robust results.
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6. Appendix Contents: code written specifically for WordSleuth

6.1 Taboo list generation script: taboo_list_generator.pl

6.2 Feature extraction script: get_features_shamu.pl 


