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A B S T R A C T   

Overextension—the phenomenon that children extend known words to describe referents outside their voca
bulary—is a hallmark of lexical innovation in early childhood. Overextension is a subject of extensive inquiry in 
linguistics and developmental psychology, but there exists no coherent formal account of this phenomenon. We 
develop a general computational framework that captures important properties of overextension reported se
parately in the previous literature. We operationalize overextension as probabilistic inference over a conceptual 
space that draws on a fusion of knowledge from lexical semantics, deep neural networks, and psychological 
experiments to support both production and comprehension. We show how this minimally parameterized fra
mework explains overextension in young children over a comprehensive set of noun-referent pairs previously 
reported in child speech, and it also predicts the behavioral asymmetry in children's overextensional production 
and comprehension reported in lab settings. Our work offers a computational theory for the origins of word 
meaning extension and supports a single-system view of language production and comprehension.   

1. Introduction 

Young children often extend known words to referents outside their 
vocabulary, a phenomenon known as overextension (Clark, 1978). For 
example, children might extend dog to refer to a squirrel, ball to refer to 
a balloon, or key to refer to a door. Overextension takes place typically 
between 1 and 2.5 years in child development (Clark, 1973) and evi
dences early capacity for lexical innovation under communicative and 
cognitive pressures. Work in linguistics and developmental psychology 
has made important discoveries about overextension (Bloom, 1973;  
Clark, 1973; Clark, 1978; Rescorla, 1980; Vygotsky, 1962), but to our 
knowledge there exists no formal coherent account that synthesizes 
these ideas to explain the wide array of behaviors in overextension, 
both in terms of children's production and comprehension (see Fig. 1 for 
an illustration). Here we present a computational framework for char
acterizing the origins of word meaning extension that connects different 
findings about overextension in the literature. 

Vygotsky (Vygotsky, 1962) describes overextension as a crucial 
stage of early concept formation. In his classic example, a child first 
uttered quah to refer to a duck in a pond, then to bodies of water, to 
liquids in general, including milk in a bottle, as well as to a coin with an 
eagle imprinted on it, and subsequently other round, coin-like objects. 
Vygotsky's work provides an anecdotal account of overextension and 
resonates with work in philosophy and cognitive linguistics suggesting 

how word meanings involve rich but perplexing semantic relations 
[e.g.,Lakoff, 1987; Wittgenstein, 1953]. However, this account does not 
specify the conceptual basis and mechanism that give rise to the word 
choices that children produce in overextension. 

A study by Rescorla (Rescorla, 1980) extends the early work by 
suggesting that children's lexical production of overextension relies on 
rich conceptual knowledge. In her diary study of six children, Rescorla 
has identified three main types of semantic relations that connect 
conventional and overextended referents of a word, described as 1) 
categorical relation: overextension by linking objects within a taxonomy 
(e.g., dog referring to a squirrel); 2) analogical relation: overextension 
by linking objects with shared visual or other perceptual properties 
(e.g., ball referring to an apple); and 3) predicate-based relation: over
extension by linking objects that co-occur frequently in the environ
ment (e.g., key referring to a door). 

Separate from the literature that documents children's over
extension from the perspective of lexical production [e.g., Barrett, 
1978; Clark, 1973, Rescorla, 1980], several studies have shown that 
children's lexical comprehension also exhibits the property of over
extension, and there are important behavioral differences in terms of 
overextensional production and comprehension. In particular, children 
tend to misintepret the meaning of a word by overextending to other 
(related or confounding) referents in the environment (Chapman & 
Thomson, 1980; Mervis & Canada, 1983; Thomson & Chapman, 1977). 

https://doi.org/10.1016/j.cognition.2020.104472 
Received 16 March 2020; Received in revised form 2 September 2020; Accepted 24 September 2020    

⁎ Corresponding author. 
E-mail address: yangxu@cs.toronto.edu (Y. Xu). 

Cognition 206 (2021) 104472

Available online 19 October 2020
0010-0277/ Crown Copyright © 2020 Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2020.104472
https://doi.org/10.1016/j.cognition.2020.104472
mailto:yangxu@cs.toronto.edu
https://doi.org/10.1016/j.cognition.2020.104472
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2020.104472&domain=pdf


The extent that overextension behavior in comprehension mirrors that 
in production has been a subject of controversy (Chapman & Thomson, 
1980; Fremgen & Fay, 1980; Mervis & Canada, 1983), but one ob
servation persists (Behrend, 1988; Naigles & Gelman, 1995): children 
often overextend in production even when they correctly infer the ap
propriate adult word in comprehension, i.e., there exists a production- 
comprehension asymmetry such that comprehension tends to mature 
earlier than production in development. For example, Rescorla 
(Rescorla, 1980) reports a child who consistently identified the correct 
referent upon hearing the word strawberry, but would still overextend 
the word apple to refer to strawberries in production. This asymmetry 
reflects the general trend that comprehension leads production in lan
guage development (Clark & Hecht, 1983), but it remains debated 
whether comprehension and production rely on two separate systems or 
a single system (Pickering & Garrod, 2013). 

Although several hypotheses have been proposed to explain the 
mechanisms behind overextension as well as the relationship between 
production and comprehension, existing views are mixed as to the ex
planation of overextension in terms of: 1) incomplete conceptual system 
(Clark, 1973; Kay & Anglin, 1982; Mervis, 1987), 2) pragmatic choice 
under limited vocabulary (Bloom, 1973), and 3) retrieval error 
(Fremgen & Fay, 1980; Gershkoff-Stowe, 2001; Huttenlocher, 1974;  
Thomson & Chapman, 1977). The first view poses children's immature 
conceptual development as the root of overextension, suggesting that 
children overextend words because their developing conceptual system 
cannot yet distinguish concepts to the extent that adult words do. This 
explanation addresses the semantic aspect of lexical innovation, but not 
the production-comprehension asymmetries, since incomplete con
ceptual knowledge alone could not explain words being correctly un
derstood but not produced. The other two views focus on this latter 
aspect by suggesting that children overextend words either as a com
municative strategy when they lack the proper vocabulary and thus rely 
on an approximation to accomplish their communicative goals, or due 

to performance errors caused by the cognitive effort of retrieving un
familiar words. However, these theories do not propose a formal model 
to explain the conceptual leaps that children make when they do 
overextend words in production or comprehension. 

We present a formal approach to child overextension that is aimed 
at explaining the various findings about this phenomenon under a co
herent view. We propose a general computational framework that 
models child overextension both in terms of production and compre
hension, and we evaluate this framework rigorously against empirical 
findings reported previously from naturalistic and lab settings. 

We focus on modeling the overextension of nouns which represent a 
broad class of concepts in the lexicon. We contribute a new dataset of 
236 noun pairs (i.e., noun-referent) collected from the literature which 
we have made publicly available (see Supplementary Material). We show 
that our computational framework not only explains children's over
extended word choices over different semantic modalities, but with no 
further modification it also replicates the empirical findings about 
production and comprehension from independent psychological ex
periments. Our framework shows that overextension in both production 
and comprehension can be explained by inferential processes on 
common conceptual knowledge, thus providing support for the single- 
system view of language production and comprehension. 

Although we focus our experiments and discussion on presenting a 
unified model that explains overextension in production and compre
hension, it is worth highlighting that our work can also be seen as a 
more general framework of reference from which overextension fol
lows. We elaborate on this view in our second set of experiments, which 
shows that our model can predict both correct and overextended pro
duction and comprehension following empirical findings, and in 
Supplementary Material, in which we show how a longitudinal simula
tion of our model can suggest developmental trajectories from early 
overextension to adult concept formation and reference. 

ball

child caretaker

balloon

child caretaker

Production

Comprehension

Fig. 1. Illustration of overextension in child-caretaker 
communication. Production: The child chooses to extend 
the meaning of a known word— ball in this scenario—to 
refer to the object balloon, word for which has not yet 
entered the child's vocabulary. Comprehension: The 
child, as a listener, must infer the meaning of the car
etaker's utterance— balloon—given possible confounding 
referents in the environment (e.g., a ball). 
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2. Relations to existing computational work 

Our work extends the broad literature on computational modeling 
of word learning and language acquisition. 

A prominent line of research emphasizes modeling cross-situational 
word learning, which posits that children infer the conventional 
meanings of words by leveraging the statistical regularities in natural 
utterances across different situations (Fisher et al., 1994; Gleitman, 
1990; Pinker, 1984; Siskind, 1996). Cross-situational word learning has 
been tackled by several methodological approaches, including symbolic 
(Siskind, 1996), associative (Fazly et al., 2010; Kachergis et al., 2017;  
Yu & Ballard, 2007), and Bayesian (Frank et al., 2009; Frank et al., 
2009; Goodman et al., 2008) models; independent research has also 
proposed connectionist accounts of word learning algorithms (Davis, 
2003; Li et al., 2004; Li et al., 2007; Plunkett et al., 1992; Regier, 2005). 
Differing from this rich area of research, our work instead focuses on 
the innovative aspects of the lexicon on the path toward the acquisition 
of proper or conventional language. 

Our framework draws on a multimodal semantic representational 
space that is inspired partly by recent work on visually grounded word 
learning (Lazaridou et al., 2016; Roy & Pentland, 2002; Yu, 2005). This 
line of research uses visual features in the environment to model word 
learning as a process grounded in visual perception. Our work employs 
similar techniques to account for overextension patterns based on visual 
analogy but also goes beyond by incorporating semantic relations of 
other types, including taxonomic and predicate relations. 

Although computational approaches to child lexical innovation are 
still in their infancy, some recent research has explored particular as
pects of this problem. For example, Alishahi and Stevenson (Alishahi & 
Stevenson, 2005; Alishahi & Stevenson, 2008) developed a probabilistic 
model of early argument structure acquisition that simulates a transient 
period of overgeneralized verb argument structure (e.g., Mary fall toy). 
Related work has studied the relationship between cross-linguistic 
variation in lexicalization and child overextension of spatial preposi
tions and color terms (Beekhuizen et al., 2014; Beekhuizen & 
Stevenson, 2016). This line of research has suggested that both word 
frequency and implicit cognitive biases inferred from cross-linguistic 
tendencies play a role in predicting children's overextension patterns in 
these individual semantic domains. Our approach here offers a general 
way of constructing semantic relations that approximates children's 
conceptual structure in overextension, and we show how these relations 
can be integrated to reproduce overextension behavior across (as op
posed to within) domains. We also show that our models predict the 
differences between production and comprehension observed in child 
overextension without additional parameter tuning. 

3. Computational formulation of theory 

We first present three theoretical hypotheses we explore in our 
computational approach to overextension. We then formulate over
extension as probabilistic inference during communication in which a 
child, in production, wishes to refer to a novel object given vocabulary 
and cognitive constraints, and, in the opposite comprehension scenario, 
needs to infer the intended meaning of an utterance given available 
referents in the environment (see Fig. 1). We describe our framework in 
terms of two main components: 1) a generic probabilistic process of 
overextension for production and comprehension, and 2) the con
struction of a multimodal semantic space that supports probabilistic 
inference. 

3.1. Theoretical hypotheses 

We posit three hypotheses under our framework:  

1. Multimodality: a combination of multiple types of semantic relations 
should better predict children's overt strategies of word choices in 

overextension than features treated in isolation;  
2. Effort-saving production (or frequency effect): words that occur more 

frequently in children's linguistic environment are favored over less 
common words in overextended production;  

3. Production-comprehension asymmetry: by reflecting task differences 
between production and comprehension, a single framework should 
predict the empirical observations on child behavior in production 
and comprehension including the reported asymmetry. 

Each of these hypotheses is grounded in the previous findings about 
overextension: the first hypothesis integrates the idea that a developing 
conceptual system forms the basis of children's overextension (Clark, 
1973; Kay & Anglin, 1982; Mervis, 1987; Vygotsky, 1962) with the 
observations of Rescorla (Rescorla, 1980) on the multimodal nature of 
the semantic relations underlying individual word choices; the second 
hypothesis represents the view of cognitive difficulty in retrieving un
familiar or recently-learned words as a cause of overextended word 
choices in production (Fremgen & Fay, 1980; Gershkoff-Stowe, 2001;  
Huttenlocher, 1974; Thomson & Chapman, 1977); and the third hy
pothesis materializes the proposal of Thomson & Chapman (Thomson & 
Chapman, 1977) that task differences may be the key to combining 
early conceptual organization and retrieval difficulty into a general 
model of overextension. In this respect, our model does not make new 
discoveries. However, an important distinction between our work and 
the previous studies is that we provide a single account of over
extension that coherently explains these empirical findings reported 
previously in separation, whereas the existing literature has not pro
posed or evaluated a general formal theory that specifies how the dif
ferent findings may be explained coherently. We test the validity of 
each of our hypotheses through computational experiments with a large 
meta dataset of child overextension in production as reported in an 
array of previous studies, as well as independent behavioral data of 
production and comprehension collected from lab experiments. 

3.2. Probabilistic framework 

3.2.1. Production 
Consider a child with limited vocabulary V who wishes to refer to 

some concept c in the environment (e.g., a balloon), where the adult 
word for c may not be in the child's existing vocabulary. Given a can
didate word w ∈ V for production (e.g., ball), we specify the following 
probabilistic model of word choice in overextension: 

=p w c p c w p w
p c w p w

( | ) ( | ) ( )
( | ) ( )w V

prod
(1)  

The likelihood term p(c|w) measures the appropriateness of refer
ring to (or categorizing) concept c with word w, and is defined as a 
density function (specified later) that depends on the semantic simi
larity between c and cw, or the concept that word w signifies con
ventionally, e.g., ball for “ball”: 

=p c w f c c( | ) ( | )wsim (2)  

The prior p(w) encodes the notion of cognitive effort, that is, some 
words are easier to retrieve than others. Following previous work 
showing the effect of word frequency on overextension (Beekhuizen & 
Stevenson, 2016), we define p(w) as a frequency-based word prior: 

=p w F w
F w

( ) ( )
( )w V (3) 

where F(w) is the total frequency of word w in a representative corpus 
of children's linguistic environment. In this account, frequent words are 
more likely to be chosen for overextension, and we test this assumption 
rigorously against the lexical choices that children were reported to 
make in overextension. 
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3.2.2. Comprehension 
In the case of comprehension, the child hears word w and estimates 

probabilistically that it refers to some concept c in the referential en
vironment E. The comprehension model recovers the similarity-based 
measure used above in its probabilistic formulation: 

=p c w p w c p c
p w c p c

( | ) ( | ) ( )
( | ) ( )c E

comp
(4)  

The likelihood term p(w|c) measures the appropriateness of word w 
to refer to concept c, and is defined by the multimodal similarity 
function: p(w|c) = fsim(cw|c). The prior p(c) is set to the uniform dis
tribution over the set of possible referents E in the child's environment, 
reflecting the assumption that referents in the environment are equally 
likely to be chosen as the target referent a priori. This choice also re
flects the hypothesis that cognitive effort plays a larger role in over
extension in production than in comprehension (Fremgen & Fay, 1980;  
Gershkoff-Stowe, 2001; Huttenlocher, 1974; Thomson & Chapman, 
1977). However, we show in the Supplementary Material that under a 
frequency-based prior (as in the case of the production model), our 
models also capture important components of the production-compre
hension asymmetry reported in the literature, hence elucidating the 
contribution of both the prior and likelihood components in our 
models. 

3.2.3. Multimodal semantic space 
We define a multimodal semantic space that captures the three 

types of relational features described by Rescorla (Rescorla, 1980): 
categorical relation, visual analogy,1 and predicate-based relation. We 
construct these relational features using a fusion of resources drawn 
from lexical semantics, deep learning networks, and psychological ex
periments, as illustrated in Fig. 2 and specified as the following.  

1) Categorical relation. We define the categorical relation between two 
referents via a standard distance measure dc in natural language 
processing by Wu and Palmer (Wu & Palmer, 1994), based on 
taxonomic similarity. Concretely, for two concepts c1 and c2 under a 
taxonomy T (i.e., a hierarchy), the distance is: 

=
+

d c c N
N N

( , ) 1 2
c 1 2

LCS

1 2 (5)  

NLCS denotes the depth of the least common subsumer of c1 and c2 in 
the taxonomy, and N1 and N2 denote the depths of the two concepts. 
This distance measure is bounded between 0 and 1, and is larger for 
concepts that are more distantly related (i.e., share fewer common 
ancestors) in the taxonomy. Under this measure, concepts from the 
same semantic domain (such as dog and squirrel) should yield a lower 
distance than those from across domains (such as ball and balloon). To 
derive the categorical features, we took the taxonomy from WordNet 
(Miller, 1995) and annotated words by their corresponding synsets in 
the database. We used the NLTK package (Bird & Loper, 2004) to cal
culate similarities between referents for this feature.  

2) Visual analogical relation. We define the visual analogical relation by 
cosine distance between vector representations of referents in visual 
embedding space. In particular, we extracted the visual embeddings 
from convolutional neural networks—VGG-19 (Simonyan & 
Zisserman, 2015), a state-of-the-art convolutional image classifier 
pre-trained on the ImageNet database (Deng et al., 2009)—fol
lowing procedures from work on visually-grounded word learning 
(Lazaridou et al., 2016). Under this measure, concepts that share 
visual features (such as ball and balloon, both of which are round 

objects) should yield a relatively low distance even if they are re
motely related in the taxonomy. To obtain a robust visual re
presentation for each concept c, we sampled a collection of images 
I1, …, Ik up to a maximum of 256 images from ImageNet. With each 
image Ij processed by the neural network, we extracted the corre
sponding visual feature vector from the first fully connected layer 
after all convolutions: vj

c. We then averaged the sampled k feature 
vectors to obtain an expected vector vc for the visual vector re
presentation of c.  

3) Predicate-based relation. We define the predicate-based relation by 
leveraging the psychological measure of word association. Word 
associations reflect many kinds of semantic relationships, and im
portantly some of these relationships are predicate-based that are 
not captured by either the “categorical” or the “visual” component 
of the model, e.g., in the case of key and door. We assumed that two 
referents that co-occur together frequently should also be highly 
associable, and we followed the procedures in (De Deyne et al., 
2018) by taking the “random walk” approach to derive vector re
presentations of referents in a word association probability matrix. 
This procedure generates word vectors based on the positive point- 
wise mutual information from word association probabilities pro
pagated over multiple leaps in the associative network. As a result, 
concepts that share a common neighborhood of associates are more 
likely to end up closer together in the vector space. De Deyne et al. 
(De Deyne et al., 2018) showed that this measure yields superior 
correlations with human semantic similarity judgments in compar
ison to other measures of association. We used word association data 
from the English portion of the Small World of Words project (De 
Deyne et al., 2018). The data is stored as a matrix of cue-target 
association probabilities for a total of 12,292 cue words. We used 
the implementation provided by the authors2 to compute vector 
representations from the association probability matrix. We used 
cosine distance to compute predicate-based distances between pairs 
of referent vectors. 

To complete our formulation of the multimodal semantic space, we 
integrate the three types of semantic relations specified above into a 
density function based on conceptual similarity that measures the 
likelihood of concepts being associated by overextension in the prob
abilistic framework. 

We take the Gaussian-Euclidean form of the generalized context 
model (GCM) or exemplar model of categorization (Nosofsky, 1986), 
which defines the similarity between two concepts c1 and c2 as a de
caying function of the distance separating them in psychological space. 
First, the model computes the distance between the concepts as the 
Euclidean norm over the distance components in each psychological 
dimension: 

= + +d c c d c c d c c d c c( , ) [ ( , ) ( , ) ( , ) ]c v p1 2 1 2
2

1 2
2

1 2
2 1/2 (6)  

Under this formulation, the psychological dimensions correspond to 
the three types of multimodal relations: categorical distance dc, visual 
analogical distance dv, and predicate-based distance dp. Then, a 
Gaussian kernel computes concept similarity as a decaying function of 
psychological distance: 

=c c d c c
h

sim( , ) exp ( , )
1 2

1 2
2

(7)  

This similarity measure is modulated by a single kernel width para
meter h, which controls the sensitivity of the model to the distance 
function. The magnitude of h determines how slowly the similarity 
measure decreases with respect to distance in the multimodal relations. 
We empirically estimate the value of h from data in the experiments and 
provide a simulation of the model based on a range of values for the 

1 While Rescorla defined analogy to include broader perceptual features, such 
as auditory, we restrict this investigation to visual features in the interest of 
data availability for a large-scale study. 2 https://github.com/SimonDeDeyne/SWOWEN-2018. 
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sensitivity parameter in Supplementary Material. 
To formulate a parsimonious model, we use a single kernel width 

parameter to modulate all three unmodified distance measures (instead 
of three separate parameters). While further refinements such as nor
malization strategies may be valuable to explore, we found this simple 
formulation to be sufficient for our empirical evaluations and theore
tical inquiries. Furthermore, we show in Supplementary Material that 
allowing independent kernel width parameters to act on each psycho
logical dimension does not change the conclusions from our experi
ments. 

In practice, this similarity measure readily yields the density func
tion required by the production and comprehension models; formally, it 
must be normalized to form a proper density function: 

=f c c c c
Z

( | ) sim( , )
h

sim 1 2
1 2

(8) 

where Zh depends only on h,3 and thus need not be explicitly computed 
in the models. 

To ensure that the three types of relational features provide com
plementary information, we calculated their inter-correlations based on 
the 236 concept pairs that we used for our analyses. Although corre
lations were significant (p  <  .001), coefficients were low or moderate 
(Spearman's ρ; category vs visual: 0.238; category vs predicate: 0.445; 
visual vs predicate: 0.421), suggesting that each feature contributes to 
information encoded in the multimodal semantic space. We further 
verify the contribution of each individual feature in a predictive task on 
overextension (see Section 6). 

One potential limitation of our construction of multimodal space is 
that some of the data sources, namely taxonomy and word association, 
come from adult-based knowledge (taxonomy) or from experiments 
performed with adult participants (word association); child-specific 
sources of similar data are scarce for the purposes of our large-scale 
experiments. While we acknowledge that features obtained from these 
data might not perfectly correspond to children's mental representa
tions, we expect these extensively tested data sources to provide useful 
signal to our experiments, which we confirm by corroborating devel
opmental psychologists' hypotheses in a formal setting. Future work can 
explore the representational and predictive effects of using child-spe
cific semantic features if they become available at scale, either by 

collecting such data or by attempting to degrade the adult-level features 
in a systematic way. 

4. Meta data of child overextension 

One important evaluation of our framework involves testing our 
model against a comprehensive array of word-referent pairs comprising 
children's overextensional production as reported in the child language 
literature. We collected this meta dataset by performing a meta survey 
of 8 representative studies from the literature and collected a total of 
323 examples of overextension noun-referent pairs. We selected studies 
containing the most examples of overextended noun-referent pairs as 
recorded in one of the following conditions: diary records, videotaped 
play sessions, or picture naming activities. Most (51%) overextension 
entries for our analyses came from Rescorla's diary studies (Rescorla, 
1976; Rescorla, 1980; Rescorla, 1981), and the remaining sources 
complemented this extensive resource. 

Each entry in our dataset consisted of an overextended noun and the 
novel referent that noun has been extended to. We kept word-referent 
pairs of nouns that overlapped with the available data from the three 
feature resources we described, resulting in a total of 236 word-referent 
pairs from 8 different sources. Table 1 shows some examples from this 
meta dataset and their sources from the literature, and we have made 
the entire meta dataset available to the community. 

While the data we used for analysis may not constitute an ex
haustive range of child overextension, we followed a thorough proce
dure in data collection by recording every word-referent pair in which 
both constituents could be denoted by one noun. Furthermore, we 
collected a diverse set of overextensional cases from multiple sources 
surveyed from the literature as opposed to an individual study. Future 
empirical efforts to collect larger and systematic records of children's 
overextension could provide a valuable addition to our work, and we 
believe that the models we propose here can be applied to those re
cords. 

5. Materials and methods 

5.1. Data and code availability 

Data and code for replication, including a demonstration, are de
posited at: 

https://github.com/r4ferrei/computational-theory-overextension. 

animal

bird

mammal

dog

squirrel

duck

Categorical relation

key door

open windowlock

truck

balloon

ballVisual relation

Predicate-based relation

Fig. 2. Types of semantic relations in multimodal semantic space.  

3 Concretely, = ( )Z dxexph
x
h
2

. 
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5.2. Vocabulary from early childhood 

To approximate children's vocabulary in early childhood, we col
lected nouns reported to be produced by children of up to 30 months of 
age from the American English subset of the Wordbank database (Frank 
et al., 2017). This database is based on the MacArthur-Bates Commu
nicative Development Inventories (Fenson et al., 2006) and aggregates 
average age of acquisition for over 680 English words. Because over
extension has been typically reported to occur between 1 and 2.5 years 
(Clark, 1973) (that covers the range in Wordbank), we constructed a 
vocabulary V using all the nouns from Wordbank for which the required 
semantic features could be obtained. The resulting vocabulary includes 
317 out of the 322 nouns from the database (see Supplementary Material, 
Table S4 for a complete list). 

5.3. Word frequencies in child-caretaker speech 

To capture the distribution of nouns in young children's linguistic 
environment, we collected a large set of child-caretaker speech tran
scripts from the CHILDES database (MacWhinney, 2014). Specifically, 
we worked with all transcripts from studies performed in naturalistic 
child-caretaker situations for children between 1 and 2.5 years (the 
typical overextension period), resulting in 1713 transcripts with over 
200 K noun tokens in total.4 

We measured the relative frequency of each noun by dividing its 
total number of token occurrences across all transcripts by the total 
number of noun tokens. Then, to alleviate the effect of minor spelling 
differences or variability in child versions of adult words (e.g., mama/ 
mommy/mom), we counted the frequency of each entry in the over
extension dataset as the total frequency of the lemma variations of its 
synset in the WordNet database. 

5.4. Model optimization and evaluation methods 

In Section 6.1, we evaluated our probabilistic models against the 
meta set of overextension word-referent pairs, O = {(wi,ci)}, with re
spect to all words in the child vocabulary V. We assessed the model by 
finding the maximum a posteriori probability (MAP) of all the over
extension pairs under the single sensitivity parameter h, which we op
timized to the MAP objective function via standard stochastic gradient 
descent: 

=p w c h p c w h p w
p c w h p w

max ( | ; ) max ( | ; ) ( )
( | ; ) ( )h i

i i
h i

i i i

w V i
prod

(9)  

We maintained this value of h for all other experiments in this 
paper. 

For our likelihood-based evaluations, we used the Bayesian 
Information Criterion (BIC), a standard measure for probabilistic 
models that considers both degree of fit to data and model complexity. 
The score is defined as = n k LBIC log( ) 2 log( ), where n is the number 
of data points, L is the maximized likelihood of the model, and k is the 
number of free parameters (here, k = 0 for the prior-only baselines and 
k = 1 for all other models, which are parameterized by the kernel width 
h). 

6. Results 

We evaluate the proposed computational framework following two 
steps: 1) we test model accuracy in predicting children's overextended 
word choices, as reported from the literature; and 2) we use the same 
model from step 1) with no parameter tuning to assess its explanatory 
power on explaining behavior differences in production and compre
hension under an independent set of lab experiments, also as reported 
from the literature. 

6.1. Explaining word choices in overextension 

To assess how well the model captures children's word choices in 
overextension, we first evaluated the production model against the 
meta set of overextension word-referent pairs, O = {(wi,ci)}, with re
spect to all words in the child vocabulary. For each pair, the model 
chooses the target word based on the given overextended sense ci by 
assigning a probability distribution over words w in the vocabulary. 

To assess the contribution of the three features, we considered all 
possible restrictions of the multimodal space, and thus tested the pro
duction model under single features and all possible combinations of 
feature pairs, along with the full multimodal model consisting of cate
gorical, visual analogical, and predicate-based relations. We also com
pared these models under the frequency-based prior p(w) versus those 
under a uniform prior, as well as a baseline model that chooses words 
only based on the prior distribution. 

We evaluated all models under two metrics: Bayesian Information 
Criterion (BIC) and performance curves similar to receiver operating 
characteristics. The BIC is a standard measure for probabilistic models 
that considers both degree of fit to data (i.e., likelihood) and model 
complexity (i.e., number of free parameters). All of our models that 
incorporate semantic features contain a single parameter, the kernel 
width h, and baseline models do not contain any free parameters. Under 
the second criterion, we assessed model performance curves that 
measure predictive accuracy at different numbers of allowed model 
predictions m. Concretely, for each level of m, we measured the pre
dictive accuracy of the model from its choice of top m words in the 
vocabulary, which is equivalent to the proportion of overextension 
pairs (wi,ci) for which the model ranks the correct production wi among 
its top m predictions for referent ci. Since the dataset for this experiment 
focuses on overextended word-referent pairs, we similarly limited the 
word choices available to the model in each prediction by removing the 
appropriate word from the set of candidates for that concept. 

Table 2 summarizes the BIC scores of the family of production 
models. We make three observations. First, models that incorporate 
features performed better than the baseline (i.e., lower in BIC scores), 
suggesting that children overextend words by making explicit use of the 
semantic relations we considered. This confirms the first theoretical 
hypothesis that we presented. Second, models with the frequency-based 
prior performed dominantly better than those with the uniform prior, 
suggesting that word usage frequency or cognitive effort and semantic 
relations jointly affect children's word choices in overextension. This 
confirms our second hypothesis. Third, models with featural integration 
performed better than those with isolated features (i.e., all features < 
feature pairs < single features in BIC score), suggesting that children 

Table 1 
Examples of overextension data, one for each source included in this study.      

Uttered word → Referent Source empirical study  

Ball → Onion (Thomson & Chapman, 1977) 
Car → Truck (Fremgen & Fay, 1980) 
Apple → Orange juice (Rescorla, 1981) 
Ball → Marble (Barrett, 1978) 
Fly → Toad (Clark, 1973) 
Cow → Horse (Gruendel, 1977) 
Apple → Egg (Rescorla, 1976) 
Truck → Bus (Rescorla, 1980) 

4 Specifically, we collected transcripts from the studies in Bates et al. (1988);  
Bernstein-Ratner (1985); Bloom (1973); Bloom et al. (1974); Braunwald 
(1971); Brent & Siskind (2001); Brown (1973); Demetras (1986); Demetras 
et al. (1986); Feldman & Menn (2003); Hayes & Ahrens (1988); Higginson 
(1985); Kuczaj II (1977); Leubecker-Warren & Bohannon III (1984);  
MacWhinney (2014); Masur & Gleason (1980); McCune (1995); McMillan 
(2004); Morisset et al. (1995); Newman et al. (2016); Ninio et al. (1994);  
Rollins (2003); Sachs (1983); Suppes (1974); Valian (1991). 
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rely on multiple kinds of semantic relations in overextensional word 
choices. This provides further evidence for our first hypothesis. 

Fig. 3 further confirms these findings in performance curves that 
show average predictive performance under a range of m possible word 
choices: all features > feature pairs > single features > baseline in the 
area under curves. Although Fig. 3 shows a large range of possible word 
choices to clearly contrast the performance trends of each family of 
models, note that predictive performance is reasonable even within a 
smaller, more plausible number of possible word choices: the full 
multimodal model correctly predicts 55% of the overextension data in 
its top 5 word choices (compared to 12% accuracy of the frequency 
baseline model). 

It could be argued that, when very few word choices are allowed 
(e.g., under 5), the model accuracy is still relatively low in absolute 
terms, and limitations of our current model and data sources could help 
explain this result—for example, differences between children's 
knowledge and the adult knowledge comprising our conceptual space, 
and discrepancies between idealized model inference and the actual 
inferential processes performed by children in word selection could 
both be factors limiting the performance of our models. However, we 
also emphasize that the overextension dataset cannot be taken as an 
exhaustive account of all possible overextensions that children produce. 
For instance, the following model predictions are counted as incorrect 
because the dataset does not contain such word-referent pairs: tuna for 
fish, tiger for jaguar, and orange for peach. These examples show that 

many incorrect predictions are still closely related to the target re
ferents and capture the kind of semantic relationship displayed by ty
pical cases of overextension. Supplementary Material, Table S3 provides 
more sample model outputs for both correct and incorrect predictions. 

We further evaluated the ability of the three features in our multi
modal space to capture the diversity of semantic relations present in 
children's overextension in a logistic regression analysis that achieved 
84% accuracy in distinguishing the true overextension word pairs in 
our dataset from randomized control pairs (see more details of this 
analysis in Supplementary Material). Fig. 4 shows the estimated con
tribution of each semantic relation toward characterizing the over
extension dataset, along with some examples best explained by each 
multimodal feature that illustrate how the model captures the different 
types of semantic relations on which children rely in overextension. 

6.2. Explaining production-comprehension behavioral differences 

To assess whether the same modeling framework also accounts for 
the overextension behaviors in production and comprehension, we 
performed a set of replication analyses based on the independent em
pirical study conducted by McDonough (McDonough, 2002). That study 
analyzed children's performance in production and comprehension with 
respect to a set of nouns and corresponding visual stimuli in four do
mains: animals, food, vehicles, and clothes. The 30 nouns were split 
into two groups by age of acquisition (16 early and 14 late nouns) to 
test the hypothesis that items typically learned early in development 
would suffer overextension less frequently than those learned later in 
development. 

In the production task, children were shown the stimuli in sequence 
and asked to name them. In the comprehension task, in each trial, ex
perimenters showed a triplet of stimuli, uttered a target word, and 
asked the child to find the stimulus corresponding to the target word. 
The comprehension task included trials in two conditions: high con
trast, in which the two distractors belonged to a different domain than 
the target stimulus, and low contrast, in which one of the distractors 
belonged to the same domain as the target stimulus (see Fig. 5). Table 3 
shows the stimuli triplets and conditions. 

We replicated these experiments with our computational frame
work. For the production experiment, we presented the production 
model based on Eq. (1) with each stimulus referent c, and measured the 
probability of correct (target word) production, pprod(w|c), versus all 

Table 2 
Bayesian Information Criterion (BIC) scores for production models with respect 
to overextension dataset (N = 236). A lower BIC score indicates a better model.     

Model BIC score 

Frequency prior Uniform prior  

baseline  2471  2717 
categorical (cat.)  1863  2093 
visual (vis.)  1817  2041 
predicate (pred.)  1853  2072 
vis. + pred.  1732  1947 
cat. + vis.  1682  1904 
cat. + pred.  1646  1871 
all features  1592  1812 

Fig. 3. Performance curves for production models showing cross-validated 
model accuracies in reconstructing word choices (N = 236). Aggregated results 
(single features and feature pairs) show mean accuracy over individual models; 
see Supplementary Material, Fig. S2 for a fine-grained comparison of all models. 

Fig. 4. Percentage shares and overextension examples explained by the three 
types of features in the collected meta dataset (N = 236). 
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other words in the child vocabulary. For the comprehension experi
ment, we presented the model based on Eq. (4) with each target word 
w, and computed the probability of the target referent versus the two 
distractors in the triplet, pcomp(c|w) (with E = the triplet of stimuli in 
Eq. (4)). 

The empirical data on the left panel of Fig. 6 demonstrates the be
havioral asymmetry between production and comprehension. The drop 
in performance from comprehension to production is particularly 
striking for late nouns, but even among early nouns, children performed 
better in the high-contrast condition of the comprehension task than in 
the production task. 

The right panel of Fig. 6 shows the results from our model re
production in terms of the predicted proportion of correct responses per 
task (production, and comprehension in low and high contrast condi
tions) and per noun group (early and late nouns). We observe that these 

results replicate the trends from empirical data: in the comprehension 
task, low contrast trials elicited higher rates of overextension than high 
contrast trials, and there was no difference between early and late items 
in comprehension (e.g., pig overextended to hippo and hippo over
extended to pig at similar rates). Welch's t-tests confirmed these results: 
over the 14 triplets of stimuli, the proportion of correct comprehension 
in the high contrast, early noun condition (M = 1.0) was significantly 
higher than in the low contrast, early noun condition (M = 0.92): t 
(13) = 3.05, p  <  0.01; and there was no significant difference in the 
proportion of correct comprehension between the low contrast, early 
noun condition (M = 0.92) and the low contrast, late noun condition 
(M = 0.92): t(25) = 0.01, p = 0.995. Although the model predicts 
lower rates of overextension than empirical results, it is worth high
lighting that we did not re-tune the parameter h in any way from the 
previous experiment, and thus the qualitative match shows that the 
model is able to predict patterns of overextension in comprehension 
without any exposure to such data beforehand. In the production task, 
correct labels were produced for early items (n = 16, M = 0.68) more 
often than for late items (n = 14, M = 0.30), and the difference be
tween the two groups was significant (Welch's t(23) = 6.08, 
p  <  0.001). 

To ensure that our results were not tainted by the overlap between 
overextension data from the previous experiment and the stimuli from 
the computational replication described here, we repeated this experi
ment with a model parameter h that was tuned only on overextension 
pairs in which neither the produced word nor the referent appear in the 
data from Table 3. This procedure removed 111 out of the 236 over
extension pairs from the training data. We observed no relevant 
changes to our experiment results: all significance values reported 
above were maintained, as were the relative performance values shown 
in Fig. 6. 

Comparing the results in the two tasks, we make two observations. 
First, the semantic space and probabilistic formulation enable the 
model to make predictions that recapitulate empirical findings in both 
production and comprehension, suggesting that the framework captures 
relevant features of young children's linguistic abilities. Second, the 
model predicted the asymmetry between production and comprehen
sion without any modification, showing that a single system can explain 
the common phenomenon in developmental psychology: that children 

Fig. 5. Two conditions in comprehension experiment devised by McDonough (McDonough, 2002).  

Table 3 
Experimental stimuli from McDonough (McDonough, 2002). Each row shows 
one triplet as presented in the comprehension experiment, and columns orga
nize them into high and low contrast selections, as well as early and late items. 
The bottom section shows triplets omitted from this experiment due to lack of 
feature data for the stimuli marked by asterisks.     

Early noun Early noun Late noun  

(High contrast) (Low contrast) (Low contrast) 
Pig Train Bus 
Cow Pants Shorts 
Orange Bicycle Motorcycle 
Dog Car Truck 
Apple Shirt Vest 
Cat Dress Sweater 
Egg Airplane Rocket 
Shirt Pig Hippo 
Bicycle Cow Moose 
Boat Carrot Celery 
Pants Orange Beet 
Dress Dog Fox 
Car Apple Strawberry 
Train Cat Raccoon 
Carrot Shoe *Sandal 
Airplane Cake *Pie 
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often overextend words even when they seem to correctly understand 
the appropriate adult words in comprehension. Our modeling frame
work reveals that incorporating the task demands of production and 
comprehension into a probabilistic process grounded in the same re
presentational knowledge is sufficient to capture this asymmetry. 
Together this set of results confirms the third hypothesis that we pro
posed. 

We highlight that, whereas our first experiment focused on pre
dicting overextended word choices only, our second experiment al
lowed the model to predict both correct and overextended behavior in 
both word choice (production) and referent selection (comprehension), 
as evidenced by our comparisons of the rates of overextension observed 
in empirical data and predicted by our model. This observation in
dicates that our model not only explains overextension in production 
and comprehension, but also serves as a more general framework of 
reference from which both overextension and appropriate word usage 
might follow. We demonstrate this possibility in a longitudinal simu
lation of our model in Supplementary Material. 

7. Discussion and conclusion 

We have presented a formal computational account of children's 
overextension. We formulated the problem of overextension in pro
duction and comprehension under a probabilistic framework and 
showed that a shared set of multimodal semantic relations between 
production and comprehension (combining categorical, visual analo
gical, and predicate-based features) and a minimally-parameterized 
model can explain substantial variation in children's overextended 
word choices from the developmental literature. Furthermore, we 
showed how the same framework leveraging cognitive effort in word 
retrieval, specified as a frequency-based prior, enhances model pre
dictability of word choices in production while helping to explain the 
asymmetry between production and comprehension. Our computa
tional analyses have confirmed the three theoretical hypotheses that we 
presented initially, and we have provided support for an integrated 
view of production and comprehension (Pickering & Garrod, 2013), 
such that production and comprehension in overextension both rely on 
a single system that supports probabilistic inference over a shared set of 
representations in a single conceptual space. 

Our computational approach also offers a synthesis of the previous 
psychological findings about overextension. By expressing children's 
conceptual knowledge via multimodal semantic relations; their lexical 
choices via a probabilistic process that can overextend in-vocabulary 
words to out-of-vocabulary referents under communicative need; and 
cognitive effort in word retrieval as a probabilistic process in which the 
correct word competes for retrieval with other words in the vocabulary, 

our framework integrates these ideas into a general account of over
extension that explains a broad range of data ranging from naturalistic 
settings to lab experiments. 

Our work adds to an extensive body of computational studies that 
model word learning in children. While previous research has made 
substantial progress in modeling the acquisition of conventional lan
guage use (Abend et al., 2017; Fazly et al., 2010; Frank, Goodman, 
et al., 2009; Niyogi, 2002; Xu & Tenenbaum, 2007; Yu & Ballard, 2007), 
there is relatively little work on modeling how children innovatively 
use words to bypass their linguistic limitations for naming out-of-vo
cabulary referents. Our framework helps to elucidate the computational 
processes of early word meaning extension and extends related work on 
modeling overextension within individual domains (Alishahi & 
Stevenson, 2005; Alishahi & Stevenson, 2008; Beekhuizen et al., 2014;  
Beekhuizen & Stevenson, 2016) to modeling meaning extension across 
domains. 

It is important to acknowledge that overextension is a general 
phenomenon that applies to word classes beyond nouns (Clark, 1973). 
Psychologists have observed that children also systematically over
extend a variety of other classes of words, for example: antonym pairs 
related to quantity [less/more (Donaldson & Balfour, 1968)] and time 
[before/after (Clark, 1971)]; dimensional terms such as big for more 
specialized properties including tall and high (Clark, 1972); verbs such 
as ask and tell (Chomsky, 1969); kinship terms such as brother and sister 
(Piaget, 1928); spatial terms, with one general purpose term standing in 
for a variety of spatial relations [1], among others. A challenge remains 
as how to formalize semantic knowledge more generally that would be 
applicable to overextension in these other word classes. 

A comprehensive formal account of lexical acquisition should also 
specify a mechanism to capture the phenomenon of vocabulary growth 
over time. One way to model this process would be to integrate word 
learning and overextension strategies into a coherent model. Future 
work should explore this possibility of combining the mechanisms of 
overextension and word learning to account for child behavior under 
naturalistic environment. 

We have offered a computational account of child overextension 
that incorporates theories from developmental psychology and supports 
probabilistic construction and inference of innovative word usages that 
resemble those described in classical work (Vygotsky, 1962). Our fra
mework along with the meta dataset that we have collected will pave 
the way for a formal and scalable characterization of children's lexical 
innovation. Our work sheds light on the computational basis of word 
meaning extension as a manifestation of human lexical creativity in 
early childhood. 

Fig. 6. Results of comprehension and production experiments from empirical data of McDonough (McDonough, 2002) and from model reproduction. Each bar shows 
the proportion of correct responses (referent selection in comprehension, and word utterance in production). Comprehension bars show performance over 14 triplets 
of stimuli, and production bars show performance over 16 early nouns and 14 late nouns. Error bars represent bootstrap 95% confidence intervals. 
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