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A Maximum Entropy Model of
Phonotactics and Phonotactic
Learning
Bruce Hayes
Colin Wilson

The study of phonotactics is a central topic in phonology. We propose
a theory of phonotactic grammars and a learning algorithm that con-
structs such grammars from positive evidence. Our grammars consist
of constraints that are assigned numerical weights according to the
principle of maximum entropy. The grammars assess possible words
on the basis of the weighted sum of their constraint violations. The
learning algorithm yields grammars that can capture both categorical
and gradient phonotactic patterns. The algorithm is not provided with
constraints in advance, but uses its own resources to form constraints
and weight them. A baseline model, in which Universal Grammar is
reduced to a feature set and an SPE-style constraint format, suffices
to learn many phonotactic phenomena. In order for the model to learn
nonlocal phenomena such as stress and vowel harmony, it must be
augmented with autosegmental tiers and metrical grids. Our results
thus offer novel, learning-theoretic support for such representations.
We apply the model in a variety of learning simulations, showing
that the learned grammars capture the distributional generalizations of
these languages and accurately predict the findings of a phonotactic
experiment.

Keywords: phonotactics, maximum entropy, learnability, onsets,
Shona, Wargamay

1 Introduction

In one of the central articles from the early history of generative phonology, Chomsky and Halle
(1965) lay out a research program for the theory of phonotactics. They begin with the observation
that the logically possible sequences of English phonemes can be divided into three categories:

(1) a. Existing words, such as brick;
b. Nonexisting words that are judged by native speakers to be well formed, such as

blick; and
c. Nonexisting words that are judged by native speakers to be ill formed, such as bnick.
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Jason Eisner for alerting us to the feasibility of using finite state machines to formalize the computations of our model.
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The scientific challenge posed by this categorization has two parts. The first is to characterize
the grammatical knowledge that permits native speakers to make phonotactic well-formedness
judgments. The second, more fundamental challenge is to understand the principles with which
phonotactic grammars are acquired.

The difficulty of this task is evident from a further point made by Chomsky and Halle,
namely, that there are grammars that fully account for the learning data but fail to capture the native
speaker’s knowledge. For example, they note that both of the rules given in (2) are compatible with
the data available to the learner. However, while the rule in (2a) correctly excludes *bnick, it
also excludes the acceptable form blick. In contrast, (2b) appropriately excludes *bnick but allows
blick as a possible word.

(2) a. Consonantal Segment N r / # b ëk
b. Consonantal Segment N Liquid / # Stop Vowel

The problem of phonotactic learning, then, is that of selecting a particular grammar—the
one that is in fact acquired by native speakers—from among all of the possible grammars that
are compatible with the learning data. Chomsky and Halle schematize the selection process as
follows, where ‘‘AM’’ is the universal mechanism, or acquisition model, that projects grammars
from data.

(3) Primary linguistic data N AM N Grammar

In this article, we take up the challenge posed by Chomsky and Halle, proposing an explicit
theory of phonotactic grammars and of how those grammars are learned. We propose that phono-
tactic grammars are composed of numerically weighted constraints and that the well-formedness
of an output is formalized as a probability determined by the weighted sum of its constraint
violations. We further propose a learning model in which constraints are selected from a constraint
space provided by Universal Grammar (UG) and assigned weights according to the principle of
maximum entropy. This model learns phonotactic grammars from representative sets of surface
forms. We apply the model to data from a number of languages, showing that the learned grammars
capture the distributional generalizations of the languages and accurately predict experimental
findings.

The article is organized as follows. Section 2 elaborates our research goals in constructing
a phonotactic learner, while sections 3 and 4 describe our learning model in detail. The next four
sections are case studies, covering English syllable onsets (section 5), Shona vowel harmony
(section 6), stress systems (section 7), and finally a whole-language analysis, Wargamay (section
8). Section 9 addresses questions raised by our work and outlines directions for future research.

2 Goals of a Phonotactic Learner

We claim that the following criteria are appropriate for evaluating theories of phonotactics and
phonotactic learning.
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2.1 Expressiveness

The findings of the last few decades demonstrate a striking richness of structures and phenomena
in phonology, including long-distance dependencies (e.g., McCarthy 1988), phrasal hierarchies
(e.g., Selkirk 1980a), metrical hierarchies (e.g., Liberman and Prince 1977), elaborate interactions
with morphology (e.g., Kiparsky 1982), and other areas, each the subject of extensive analysis
and research. We anticipate that a successful model of phonotactics and phonotactic learning will
incorporate theoretical work from all of these areas.

A particular consequence of this richness is that the principles governing phonotactics are
cross-classifying: the legality of (say) a particular vowel may depend simultaneously on the various
natural classes to which it belongs, its immediate segmental neighbors, its neighbors on a vowel
tier (section 6), and the position of its syllable in a metrical stress hierarchy. Previous accounts
of phonotactic learning, however, have relied on just a single classification of environments. For
instance, traditional n-gram models (Jelinek 1999, Jurafsky and Martin 2000) are quite efficient
and have broad application in industry, but they define only an immediate segmental context and
are thus insufficient as a basis for phonotactic analysis (sections 5.3, 6). Similarly, the stochastic
context-free grammar of Coleman and Pierrehumbert (1997), while more phonologically sophisti-
cated, rests on a single partition of words into onsets and rhymes. As Coleman and Pierrehumbert
point out, this makes it impossible in principle for the model to capture the many phonotactic
restrictions that cross onset-rhyme boundaries (Clements and Keyser 1983:20–21) or syllable
boundaries (bans on geminates, heterorganic nasal-stop clusters, sibilant clusters).

The maximum entropy approach to phonotactics, like many others, is based on phonological
constraints.1 Crucially, however, it makes no commitments about the content of these constraints,
leaving this as a question of phonological theory. Moreover, as we will show, maximum entropy
models can assess well-formedness using cross-classifying principles.

2.2 Providing an Inductive Baseline

While we have emphasized the primacy of phonological theory, the precise content of the latter
remains an area of considerable disagreement. A computational learning model can be used as a
tool for evaluating and testing theoretical proposals. The idea is that a very simple theory can
provide a sort of inductive baseline against which more advanced theories can be compared. If
the introduction of a theoretical concept makes possible the learning of phonotactic patterns that
are inaccessible to the baseline system, the concept is thereby supported. For earlier work pursuing
the inductive baseline approach, see Gildea and Jurafsky 1996, Peperkamp et al. 2006.

Our own inductive baseline is a purely linear, feature-bundle approach modeled on Chomsky
and Halle 1968 (henceforth SPE). To this we will add the concepts of autosegmental tier (Gold-

1 The use of constraints is the most widely adopted general approach to phonotactics. The alternative strategy of
‘‘licenses’’ is also the subject of current research; see Albright 2006 and Heinz, to appear a,b.
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smith 1979) and metrical grid (Liberman 1975, Prince 1983), showing that both make possible
modes of phonotactic learning that are unreachable by the linear baseline model.

2.3 Accounting for Gradience

All areas of generative grammar that address well-formedness are faced with the problem of
accounting for gradient intuitions. A large body of research in generative linguistics deals with
this issue; see, for example, Chomsky 1963, Ross 1972, Legendre, Miyata, and Smolensky 1990,
Schütze 1996, Hayes 2000, Keller 2000, 2006, Boersma and Hayes 2001, Boersma 2004, Sorace
and Keller 2005, and Legendre, Sorace, and Smolensky 2006. In the particular domain of phonotac-
tics, gradient intuitions are pervasive: they have been found in every experiment that allowed
participants to rate forms on a scale (e.g., Greenberg and Jenkins 1964, Ohala and Ohala 1986,
Coleman and Pierrehumbert 1997, Vitevitch et al. 1997, Frisch, Large, and Pisoni 2000, Treiman
et al. 2000, Bailey and Hahn 2001, Hay, Pierrehumbert, and Beckman 2003, Coetzee 2004,
Hammond 2004, Berent et al. 2007). Gradience is also found in the frequency of ‘‘repairs’’ (such
as excrescent vowel insertion) participants make when asked to utter illegal nonce forms (Davidson
2006). Gradient intuitions can be found even among forms that satisfy the categorical phonotactics
of the language, but contain rare sequences (Frisch, Large, and Pisoni 2000, Bailey and Hahn
2001). Thus, we consider the ability to model gradient intuitions to be an important criterion for
evaluating phonotactic models. As we will show, it is an inherent property of maximum entropy
models that they can account for both categorical and gradient phonotactics in a natural way.

To sum up, we seek to solve Chomsky and Halle’s problem, specifying the structure of the
module AM and testing it on actual phonotactic systems, with the goal of describing the full
range of data including gradient intuitions. As a research strategy, we adopt the inductive baseline
approach, requiring that phonological theories justify themselves through improvements in learn-
ing performance. To this end, we adopt an overall framework for learning, maximum entropy,
that is neutral with regard to the constraints employed. We turn next to the structure of this model.

3 Maximum Entropy Grammars

A maximum entropy grammar uses weighted constraints to assign probabilities to outputs. For
general background on maximum entropy (hereafter, maxent) grammars, see Jaynes 1983, Jelinek
1999:chap. 13, Manning and Schütze 1999, and Klein and Manning 2003. We will rely here on
particular results developed in Berger, Della Pietra, and Della Pietra 1996, Rosenfeld 1996, Della
Pietra, Della Pietra, and Lafferty 1997, and Eisner 2001. For earlier applications of maxent gram-
mars to phonology, in particular to the learning and analysis of input-output mappings, see Gold-
water and Johnson 2003 and Jäger 2004.

Maxent grammars have special properties that recommend them as a basis for phonotactic
learning. They have been subject to thorough mathematical analysis that establishes their conver-
gence properties and their connection to the theories of information and statistical estimation. In
addition, the solutions they embody can be said to have a highly principled character, discussed
in the remainder of this section.
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3.1 The Probabilistic Conception of Phonotactic Well-Formedness

The core idea in the application of maxent grammars to phonotactics is that well-formedness can
be interpreted as probability. We suppose an infinite set � consisting of all universally possible
phonological surface forms. To every member x of this set, a maxent grammar assigns a probability
P(x) that expresses its phonotactic well-formedness. Naturally, the probability of any one given
form will be extremely small. What is important is the differences between these probabilities,
which (as we will show) can be large and meaningful.

Our working hypothesis is that, provided the constraint set is an adequate one, the probabili-
ties assigned to forms by a maxent grammar will correspond to the well-formedness judgments
of native speakers, with lower probabilities for forms judged less acceptable.

3.2 Assigning Probability in Maxent Grammars

A maxent grammar assigns probabilities with a set of constraints, stated in the chosen representa-
tional vocabulary. The constraints are free to refer to all of the featural, structural, and other
distinctions made by the representations, and thus permit multiple overlapping characterizations
of phonological forms, argued in section 2.1 to be crucial to an adequate phonotactic model.

All of the constraints in our model are markedness constraints, in the sense of Optimality
Theory (OT; Prince and Smolensky 1993/2004). No role is played by inputs or by OT-style
faithfulness constraints. This decision is sensible in light of the task at hand: we seek to assess
forms simply for their phonotactic legality, not for their legality as derived from some particular
input. Some consequences of this decision are assessed in section 9.

Every constraint in the grammar has a weight, a nonnegative real number. The weights can
be thought of as scaling the importance of one constraint relative to others. Constraints with
higher weights have a more powerful effect in lowering the probability of forms that violate them.

The probabilities of forms are calculated from their constraint violations and the weights.
The calculation proceeds in several steps. To begin, we find what we will call the score of each
form. This is the weighted sum of the form’s constraint violations, as defined in (4).

(4) Definition: Score
The score of a phonological representation x, denoted h(x), is

h(x) � �N
i=1

wi Ci(x),

where

wi is the weight of the ith constraint,
Ci(x) is the number of times that x violates the ith constraint, and

�N
i=1

denotes summation over all constraints (C1, C2, . . . , CN).2

2 Our ‘‘scores’’ are closely related to the harmony values explored in Smolensky 1986 and subsequent work (Smolen-
sky and Legendre 2006); hence the abbreviation h(x). The term ‘‘score’’ is also used in Prince 2002. The use of scores,
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Table 1
Scores and maxent values for three representations

x *#V (w � 3.0) *C# (w � 2.0) Score (h(x)) Maxent value (P*(x))

CV 3.0⋅0 2.0⋅0 (3.0⋅0) � (2.0⋅0) � 0.0 exp(�0.0) � 1.00
CVC 3.0⋅0 2.0 ⋅1 (3.0⋅0) � (2.0 ⋅1) � 2.0 exp(�2.0) � 0.14
V 3.0 ⋅1 2.0⋅0 (3.0 ⋅1) � (2.0⋅0) � 3.0 exp(�3.0) � 0.05

The next step is to calculate the maxent value of x, as in (5).

(5) Definition: Maxent value
Given a phonological representation x and its score h(x) under a grammar, the maxent
value of x, denoted P*(x), is

P*(x) � exp(�h(x)).

That is, the score is negated, and e (the base of the natural logarithm) is raised to the
result.

The actual probability of x is calculated by determining its share in the total maxent values
of all possible forms in �, a quantity designated as Z.

(6) Definition: Probability
Given a phonological representation x and its maxent value P*(x), the probability of
x, denoted P(x), is

P(x) � P*(x) / Z,

where Z � �
y��

P*(y).

As we will show, the actual computed probabilities, while embodying the most direct interpre-
tation of a maxent grammar, are not crucial in predicting relative well-formedness. For this reason,
we will illustrate here only the calculation of scores and maxent values. To this end, table 1 gives
the evaluation of three schematic phonological representations. The constraints are *#V (‘‘No
word-initial vowel’’) and *C# (‘‘No word-final consonant’’).

Inspection of this table reveals some properties that hold of all of the maxent grammars we
propose. Every constraint weight is required to be greater than or equal to 0. Under this assumption,
the highest possible maxent value is P*(x) � 1; this is assigned to forms (such as CV) that incur
no violations, so that h(x) � 0. Forms with one or more constraint violations receive a lower
maxent value, because maxent value is determined by raising e to the negative of the score: P*(x)
� exp(�h(x)). The presence of the negative sign can now be understood from the semantics of
maxent values: forms with more violations get lower values.

but without their theoretical interpretation under maximum entropy as probability, is the basis of ‘‘linear OT’’ (Keller
2000, 2006).
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The use of maxent grammars commits us to the view that constraints can ‘‘gang up’’; that
is, because of the addition stage in (4), two constraints A and B can together demote the status
of a form below what would be expected from violating A or B alone. (For discussion and evidence
concerning ganging, see Keller 2000, Jäger and Rosenbach 2006, and Pater, Bhatt, and Potts
2007.) The prediction of ganging effects is not unique to weight-based models like maxent; similar
effects are possible in stochastic OT (e.g., Hayes and Londe 2006:81), and in nonstochastic OT
with local constraint conjunction (Smolensky 1995). Various instances of ganging are discussed
in the reports of our simulations below.

In the learning simulations later in the article, we will use the formulas above to connect
theory to data in two ways. When discussing experimental data (section 5), we test for a correlation
between the experimental observations and the maxent values (5) predicted by a grammar. This
is because the maxent values have a direct theoretical interpretation in terms of probability. (They
lack the factor 1/Z seen in the definition of probability (6), but since this factor is constant
across forms, it may be ignored without affecting correlations.) On the other hand, when we lack
experimental data, as in our studies of vowel harmony systems (section 6) and stress (section 7),
it suffices to use just the scores, to establish how well a grammar separates well-formed representa-
tions from ill-formed ones. If all well-formed structures receive scores that are lower (i.e., better)
than the scores of all ill-formed structures, then we judge the grammar to have succeeded in
learning the nongradient phonotactic generalizations. This use of scores is equivalent to one in
which a language is defined by all and only those representations that surpass a particular threshold
of maxent harmony or probability.3

3.3 Learning Maxent Weights

Up to this point, we have defined maxent grammars and described how well-formedness is calcu-
lated from constraint violations and weights. We turn now to the question of learning. Our starting
assumption (see, e.g., Baker 1979) is that the learner has access to a large and representative set
of observed forms drawn from the target language. However, it has no access to ‘‘negative
evidence’’; that is, it is never told what forms are illegal. This plausibly corresponds to the situation
faced by real language learners.

Postponing to section 4 the question of how to find the constraints, we consider here first
the problem of finding the weights for a known set of constraints.

3.3.1 Defining the Objective The objective here is to find the set of constraint weights that
maximizes the probability of the observed forms. Because total probability is fixed (at 1), maximiz-
ing the probability of the observed forms will minimize the probability of the unobserved
forms—or more precisely, the unobserved forms that differ in a principled way from the observed
forms, as determined by the constraint set. Given our probabilistic conception of well-formedness
(section 3.1), this objective for constraint weighting embodies the traditional goals of phonotactic
analysis.

3 See Hale and Smolensky 2006 for a similar threshold approach.
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The term ‘‘maximum entropy’’ relates to this goal. ‘‘Entropy’’ is an information-theoretic
measure of the amount of randomness in the system, given by the formula ��

x��

P(x) log(P(x))

(Cover and Thomas 1991). According to a theorem proved by Della Pietra, Della Pietra, and
Lafferty (1997), if probability is defined as in section 3.2, maximizing entropy is in fact equivalent
to maximizing the probability of the observed forms given the constraints.

Under the standard assumption that the forms in the observed data are independent and
identically distributed, the probability of the observed data P(D) is simply the product of the
probabilities of all the individual data.

(7) Probability of the observed data under a given set of constraints and weights
Given a maxent grammar and a set D of observed data, the probability of D under the
grammar is

P(D) � ∏
x�D

P(x),

where P(x) is as defined in (6).

Finding the set of weights that maximizes P(D) is a search problem, to whose solution we
now turn.4

3.3.2 Finding the Weights The search begins by giving every constraint the same initial weight;
in our simulations, this value is always 1. The system then carries out an iterated calculation
intended to maximize P(D). The calculation follows an ascending path on the multidimensional
surface defined by the weights, achieving ever higher values for P(D) until the highest possible
value has been reached.

For mathematical convenience, the search actually finds the maximum for the natural loga-
rithm of P(D), not P(D) itself. Since the log function is monotonic, the weights that maximize
log(P(D)) are the same as the weights that maximize P(D).

The process of iterative ascent is illustrated in figures 1 and 2, which depict the learning of
the constraint weights for the two-constraint grammar given in table 1. Figure 1 shows the three-
dimensional surface corresponding to the search space, with the horizontal dimensions correspond-
ing to the two constraint weights and the vertical dimension to log(P(D)).5 Figure 2 gives the
same information in the form of a contour map and includes the actual path taken during learning.
The ascent terminates at the peak (3, 2), where the log probability of the training data is maximized
at log(P(D)) � �7641.8.

The strategy pursued here never actually calculates the surface as a whole, but instead deter-
mines at each stage the local gradient, or slope. This indicates the direction (uphill) that the next
search iteration should take. This procedure is guaranteed to converge on the weights that maxi-

4 The text of this section oversimplifies, as it is standard in maxent modeling to prevent overfitting (Duda, Hart,
and Stork 2001:5) by adding a term to the objective in (15) that penalizes large weights. We used the Gaussian prior,
discussed in Goldwater and Johnson 2003:sec. 2, setting the parameters � and � to 0 and 1, respectively.

5 The latter was approximated by assuming that all strings (composed of C and V) were of length 10 or less.
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Figure 1
The surface defined by the probability of a representative training set for the grammar given in
table 1

mize log(P(D)) because, as Della Pietra, Della Pietra, and Lafferty (1997) show, in a maxent
grammar the surface being ascended is always convex; that is, it contains no local maxima in
which the search could get stuck. Following the gradient also suffices to indicate when the upward
journey can be terminated: this is when the slope becomes sufficiently close (by an arbitrarily
chosen small value) to zero. There are many algorithms that can iteratively ascend a surface given
the gradient. We used the conjugate gradient method (Press et al. 1992), which is known to
converge quickly for this type of problem (Malouf 2002).

The heart of the calculation is the determination of the gradients. Formally, the gradient
consists of a vector of partial derivatives, one for each constraint in the grammar. Each partial
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Figure 2
Iterative ascent of the surface given in figure 1

derivative has the form
∂

∂wi
log(P(D)) and expresses the rate at which log(P(D)) responds to local

changes in the weight assigned to constraint Ci. The computation of the partial derivatives will
depend on the current location along the surface and on the constraint violations in the learning
data.

As Della Pietra, Della Pietra, and Lafferty (1997) show (see also Berger, n.d.), each partial

derivative
∂

∂wi
log(P(D)) is equal to an intuitively interpretable value, namely, the difference

between the number of observed violations of Ci and the number of expected violations, a value
denoted O[Ci] � E[Ci]. Thus, if we can determine both the observed and the expected violations
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for all constraints, we will know the direction in which the iterative search should continue, and
it will converge on the right answer.

Calculating the observed violation count of a constraint O[Ci] is straightforward: one simply
sums the violations of the constraint over all examples in the learning data. However, calculating
the expected violation count E[Ci] is more difficult—seemingly impossible, in fact—since we
must sum over the set of all possible phonological representations x � �, an infinite set. Postponing
this issue momentarily, we first define expected violation count formally, as a probability-weighted
sum.

(8) Definition: Expected number of violations
Given a grammar that determines maxent values, the expected number of violations of
constraint Ci is

E[Ci] � �
x��

P(x) Ci(x),

where

P(x) is the probability of the representation x,
Ci(x) is the number of times that x violates Ci, and

�
x��

represents summation over all x in �.

Instead of calculating expected values exactly, we approximate them by examining only the
strings in � that are no longer than the longest string in the learning data D. This is a finite—albeit
exponentially large—subset of �, and to sum over it we employ methods borrowed from work
in computational OT (Ellison 1994, Eisner 1997, Albro 1998, 2005, Riggle 2004). As this work
has shown, the properties of a very large set of strings can be computed by representing the set
as a finite state machine. We construct our machines by first representing each constraint as a
weighted finite state acceptor. Using intersection (Hopcroft and Ullman 1979), we then combine
the constraints into a single machine that embodies the full grammar (Ellison 1994, Riggle 2004).
Each path through this machine corresponds to a phonological representation together with its
vector of constraint violations. We then obtain the E[Ci] values by summing over all paths through
the machine, using a method devised by Eisner (2001, 2002). The sum over all paths of a given
length is rescaled according to the frequency of forms of that length in the learning data.

We now summarize the procedure for constraint weighting. The core process is an iterated
hill-climbing search, designed to maximize the probability of the learning data (P(D)). The search
is determined at each stage by calculating a local gradient based on the observed/expected differ-
ence O[Ci] � E[Ci] for each constraint. O[Ci] is determined by inspection of the learning data,
while E[Ci] is calculated by the finite state method described immediately above.

4 Searching the Space of Possible Constraints

In principle, there exists a maxent grammar that succeeds fully in the goal of maximizing the
probability of the learning data: it would deploy constraints with such an extreme degree of detail
that they banned all and only the nonobserved data. Such a grammar is of no interest, because
it wrongly excludes nonexistent but possible forms like blick (section 1). Grammar learning
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becomes interesting—becomes a phonological problem—when we attempt to learn more general
constraints that have the capacity to predict which novel forms will be phonologically legal.
However, even when the problem is considered in this way, one still faces a formidable difficulty:
the fact that an enormous number of distributional generalizations are consistent with any given
set of surface forms. We must therefore find a strategy for navigating the space of possible
generalizations and selecting members of that space for inclusion in the grammar.

Previous research on phonotactic learning has not addressed the selection problem in a
general form. Work in OT (Hayes 2004, Prince and Tesar 2004, Jarosz 2006, Pater and Coetzee
2006) generally assumes that the constraint set is provided by UG. No selection problem arises
under this approach, as learning consists simply of assigning a ranking to the constraint set. The
parameter-setting approach set forth in Dresher and Kaye 1990 likewise confronts no selection
problem, since the parameters and their cues are provided a priori. However, our interest in
establishing an inductive baseline (section 2.2) is incompatible with any rich UG approach, either
constraint-based or parametric. Though it may be necessary to add specific universal constraints
to UG, our present goal is to determine how much of phonotactic learning can be done without
them.

Another option not open to us is simply to incorporate every possible constraint into the
grammar, relying on the weighting algorithm to determine the importance of each one. This is
essentially the proposal of Pierrehumbert (2006), who applies it to the analysis of medial consonant
clusters. This strategy might be successful when the number of constraints is small, either because
the empirical domain is restricted or because the theory of UG assumed tightly limits the number
of possible constraints. However, neither condition is met here.

To solve the selection problem, we assume that UG determines the feature inventory and
the format of constraints, yielding a search space that is quite large and hence compatible with
the inductive baseline approach. Nevertheless, in our experience it is effectively searchable, pro-
vided the right search heuristics are used. In what follows, we first give our proposals for limiting
the constraint space, then cover the search heuristics.

Like other properties of our learner, our proposals concerning the search space and heuristics
constitute a theoretical claim about language learning. To be sure, they are also motivated by
issues of implementation—but not, we think, in a way that sacrifices realism with respect to the
human learner. If we have characterized the problem of learning phonotactics correctly, then the
human learner faces the same search problem as our mechanical learner. The claim is that humans
perform the search for phonotactics in a way that is functionally identical to the strategy we
describe.

4.1 The Constraint Space

The learner is assumed to be provided with a set of features, the inventory of segments in the
target language, and the feature specifications for each of those segments.6 For our purposes,

6 For work on the learning of segments and features from the input signal, see Boersma, Escudero, and Hayes 2003,
Mielke 2004, Lin 2005a, and Goldsmith and Xanthos 2006.
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it is the natural classes determined by the features, rather than the features themselves, that
determine the content of a constraint. Many natural classes have multiple featural definitions, and
it is immaterial which particular definition is used to state a constraint. To locate the natural
classes determined by a segment inventory and feature set, we use an algorithm and software
created by Kie Zuraw.

4.1.1 Constraint Format Using the natural classes, we construct two basic constraint types. The
first type is just a sequence of feature matrices, as in (9).

(9) *

�
�F
�G

⋅
⋅
⋅
� �

�H
�I
⋅
⋅
⋅
� . . . �

	J

K
⋅
⋅
⋅
�

Here, F, G, . . . are features and �, �, . . . take the values � and �. Such a constraint is matched
to representations as in SPE. It acts as a function, returning the number of matches.

We also assume (Halle 1959, Stanley 1967, SPE:chap. 7, Fudge 1969, Prince and Smolensky
1993/2004) that constraints may include logical implication; schematically, ‘‘if a particular seg-
ment has feature values [�F, �G, . . . ], then any preceding/following segment must have the
values [�H, �I, . . . ].’’ An example from the grammar of English onsets is the following: ‘‘if a
nasal occurs in an onset, any preceding sound must be [s]’’ (Fudge 1969:279, Selkirk 1982:346).
This is straightforward to state as an implication. But without the capacity for implication, we
would instead have to formulate a set of constraints that jointly ban every segment except [s] in
the context / # [�nas]. Many similar cases can be found.

To formalize implication, we allow exactly one of the matrices of a constraint to be modified
by the complementation operator �; thus, [��F, �G, . . . ] means any segment not a member of
the natural class [�F, �G, . . . ]. For example, the constraint proposed by Fudge and Selkirk
limiting prenasal segments to [s] would be formulated as *[��voice,�ant,�strid][�nas].7 A
slightly more general version of this is actually learned by our system; see #3 of table 4.

As we will show (section 5.3.2), the use of implicational constraints produces an improvement
(albeit a modest one) in the performance of our system. It also creates grammars that are smaller
and easier to interpret.

4.1.2 Limiting the Number of Possible Constraints The number of possible constraints is propor-
tional to |C|n, where |C| is the number of natural classes and n is the maximum number of feature

7 We will use the following abbreviations for feature names: ant � anterior; approx � approximant; cons �
consonantal; cont � continuant; cor � coronal; dors � dorsal; lab � labial; lat � lateral; nas � nasal; son � sonorant;
spread � spread glottis; str � stress; strid � strident; syl � syllabic. We will also use C for [�syllabic], V for
[�syllabic], # for [�segment] (a word boundary, as in SPE), and [ ] for [�segment] (any segment, also as in SPE).
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Table 2
Number of possible constraints for various values of |C| and n

|C|

30 100 200 400

1 30 100 200 400

2 900 10,000 40,000 160,000

n 3 27,000 1,000,000 8 million 64 million

4 810,000 100 million 1.6 billion 26 billion

5 24 million 10 billion 320 billion 10 trillion

matrices that may occur in a constraint. Some exact counts for a few values of C and n are given
in table 2.8

With our current implementation, we find that it is feasible to search constraint inventories
that number in the tens of millions, but not higher—hence, above the line shown in table 2. Since
|C|n grows rapidly with both |C| and n, we discuss below how we limit the number of possible
constraints by restricting C and n. In principle, similar limitations would apply for the human
learner, whose computational capacity is unknown. Given that exponential growth soon defeats
any finite system, there must be limitations of some sort (see also Newport and Aslin 2004).

|C| will in general be small to the extent that the feature system makes use of principles of
underspecification, as embodied in works such as Kiparsky 1982, Archangeli 1984, and Steriade
1987, 1995. In our simulations, we use feature systems embodying both privative underspecifica-
tion (e.g., [labial], [coronal], and [dorsal] may only take the value �) and contrastive underspecifi-
cation (e.g., for English [voice] is specified only on obstruents, where it is contrastive).

Concerning n, we suggest that no particular value can be imposed on all types of constraints.
Instead, n should be sensitive to the internal complexity of the constraint. Specifically, we propose
a trade-off between the size of a constraint (the number of natural classes that define it) and its
specificity. For instance, constraints on stress patterns, which manipulate a tiny number of natural
classes (defined only by degree of stress and syllable weight), may employ an n of up to 4 (section
7.3), whereas segmental constraints, which manipulate a far larger set of natural classes, must be
limited to n � 2, with 3 permitted under special circumstances (section 5.1). We postpone the
details of our proposals about this trade-off to the discussion of the simulations.

8 These values, which assume no implicational constraints, are calculated with the formula ∑
n

i�1
|C|i. With implicational

constraints included, the formula is ∑
n

i�1
(|C|i � i(|�C| � |C|i�1)), where |�C| is the number of complement natural classes.

For the English onset simulation in section 5, |C| is 97, |�C| is 90, and n is 3, so the total size of the set of possible
constraints is about 3.5 million.
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4.2 Search Heuristics

Given a large set of possible constraints as just defined, we must next form them into a grammar.
Since, as already noted, we cannot simply weight all possible constraints, our learner must be
made more discerning: it needs a way to home in early on the constraints that are important for
characterizing the target language. We do this by providing the system with search heuristics:
we search first among the constraints that are most accurate (section 4.2.1); and among constraints
of (roughly) equal accuracy, we seek constraints that are maximally general (section 4.2.2).

4.2.1 Accuracy The accuracy of a constraint is defined using values already described in the
discussion of constraint weighting: it is the number of violations of the constraint observed in
the data (O[Ci]), divided by the number of violations expected given the current grammar
(E[Ci])—that is, O/E. Under the reasonable hypothesis that languages favor accurate constraints,
one would expect that a constraint with O/E of (say) 0/1,000 would be a very powerful constraint
whose violation would lead to a strong intuition of ill-formedness, whereas a constraint with O/
E of 500/1,000 might at best induce a small sense of ill-formedness. For earlier use of O versus
E in the study of phonotactics, see Pierrehumbert 1994 and Frisch, Pierrehumbert, and Broe 2004.

We deviate from the simplest O/E criterion in two ways. First, one would expect a constraint
with O/E of 0/10 to be ‘‘weaker’’ than one with 0/1,000, the intuition being that in the first case
violations are expected to be rare in any event. To reflect this intuition, we follow the method
of adjustment proposed by Mikheev (1997; see also Albright and Hayes 2002, 2003), which
substitutes a statistical upper confidence limit on O/E for O/E itself. Using this method, a difference
in accuracy between 0/10 and 0/1,000 comes out not as 0 vs. 0, but as 0.22 vs. 0.002.9 Second,
in our implementation we do not actually sort the constraints by accuracy; rather, we use an
approximate criterion consisting of a stepwise rising accuracy scale (e.g., O/E � .001, O/E �
.01, etc.). At each step, the entire set of candidate constraints is searched, and each is assessed
for whether it meets the current O/E criterion.

A final note on implementation: while for constraint weighting (section 3.3.2) we compute
E using a finite state machine, this method turns out to be too slow for the task of vetting a great
number of candidate constraints, the problem being that the machine must be rebuilt for each
one. Instead, we take a large random sample from the set � of all possible phonological representa-
tions. When the sample is sufficiently large and is drawn according to well-established techniques
(Della Pietra, Della Pietra, and Lafferty 1997, MacKay 2003), the average number of violations
in the sample provides a fairly accurate estimate of the expected value for � as a whole. For
details of sampling, see appendix A.

4.2.2 Generality Within the strata defined by the accuracy scale, our system selects constraints
in order of generality. The idea that the learner of phonology seeks simple generalizations goes

9 We use a value of � � 0.975 for the upper confidence limit, which in our experience helps exclude pointless
constraints from the learned grammars without also excluding constraints with explanatory merit.
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back at least to SPE, though SPE conceived it as applicable to entire grammars rather than to
individual rules or constraints.

We implement generality as a two-level hierarchy. First, shorter constraints (fewer matrices)
are treated as more general than longer ones. This procedure is effective, because longer sequences
can often be assessed on the basis of the shorter sequences they contain. For instance, the well-
formedness of a consonant cluster C1C2C3 is usually determined by that of C1C2 and C2C3 (Green-
berg 1978, Clements and Keyser 1983, Pierrehumbert 1994). In such cases, early discovery of
simple, widely applicable constraints obviates the need for more complex ones.

From the same principle it follows that among constraints of equal length, one should first
search those whose matrices contain the most general featural expressions. The classic way of
assessing featural generality is the feature-counting metric of SPE. However, in keeping with our
overall emphasis on natural classes instead of their featural expressions, we suggest that the value
of a constraint is proportional to the number of segments contained in its classes, and our metric
sorts constraints of a given length on this basis.

In sum, our learner primarily seeks constraints that are accurate, following an ascending
sequence of thresholds for O/E. In choosing among constraints at the same threshold, it prefers
constraints that are short, and among these, constraints that have more general natural classes.
Using these procedures, a constraint space in the tens of millions can be effectively searched,
creating an inductive baseline learner.

4.3 Learning a Phonotactic Grammar

The complete process of learning alternates between constraint selection and constraint weighting:
a new constraint is selected, as in section 4.2, and then all the constraints are reweighted, as in
section 3.3. This alternating procedure is necessitated by the O/E accuracy criterion for constraint
selection. Recall that E values are estimated using whatever constraints are already in the grammar.
Each newly introduced constraint, once weighted, alters the E values, and it is the altered values
that are relevant for selecting additional constraints. Moreover, reweighting must be carried out
on the entire constraint set, not just the new constraint, since the new constraint often takes over
some of the explanatory burden borne by constraints selected earlier.

The overall algorithm is summarized in (10).

(10) Phonotactic learning algorithm

Input: a set � of segments classified by a set F of features, a set � of surface
forms drawn from �*, an ascending set � of accuracy levels, and a maximum
constraint size �

1 begin with an empty grammar �
2 for each accuracy level & in �
3 do
4 select the most general constraint (section 4.2.2) with accuracy less than &

(if one exists) and add it to �
5 train the weights of the constraints in � (section 3.3)
6 while a constraint is selected in step 4
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As stated here, the learning algorithm terminates when the search in step 4 of (10) fails to
return a new constraint at the least stringent accuracy level. It is also possible, in the interest of
expediency, simply to stipulate a maximum grammar size.

In what follows, we first assess the effectiveness of our inductive baseline model against
data from a classic area of phonotactic study, the onset inventory of English (section 5). We then
move away from our inductive baseline, showing the effectiveness of autosegmental tiers (Shona
vowel harmony, section 6) and the metrical grid (unbounded stress, section 7). Our final analysis
takes on the phonotactics of an entire language, Wargamay (section 8).

5 English Onsets and Gradient Well-Formedness

The inventory of syllable onsets in English is an ideal empirical domain for the testing of phonotac-
tic learning models. The basic generalizations have been extensively studied (Bloomfield 1933,
Whorf 1940, O’Connor and Trim 1953, Fudge 1969, Selkirk 1982, Clements and Keyser 1983,
Hammond 1999), and available experimental data permit rival models to be evaluated. In this
section, we report the results of learning maxent constraints on word-initial onsets.

5.1 Learning Simulation

In constructing a learning corpus for English onsets, we must consider the status of ‘‘exotic’’
onsets such as [zw] (as in Zwieback), [sf] (sphere), and [pw] (Puerto Rico). These onsets are
rare, and some of them may well not be encountered at all during the primary period of phonologi-
cal acquisition. To deal with this question, we tried a variety of learning corpora. In this section,
we report a simulation based on the assumption that exotic onsets are not encountered by language
learners. This corpus was obtained by culling all of the word-initial onsets from the online CMU
Pronouncing Dictionary (http://www.speech.cs.cmu.edu/) and removing all of the onsets that we
judged to be exotic. This corpus was created before any modeling was done, so we can claim
not to have tailored it to get the intended results. We obtained similar, though slightly less accurate,
results for a variety of ‘‘exotic’’ corpora, reported in appendix B.

The nonexotic corpus, with frequencies,10 is given in (11).

(11) The English onset learning data
k 2764, r 2752, d 2526, s 2215, m 1965, p 1881, b 1544, l 1225, f 1222, h 1153, t
1146, pr 1046, w 780, n 716, v 615, g 537, dÇ 524, st 521, tr 515, kr 387, + 379, gr
331, t+ 329, br 319, sp 313, fl 290, kl 285, sk 278, j 268, fr 254, pl 238, bl 213, sl 213,
dr 211, kw 201, str 183, ‡ 173, sw 153, gl 131, hw 111, sn 109, skr 93, z 83, sm 82,
‡r 73, skw 69, tw 55, spr 51, +r 40, spl 27, L 19, dw 17, gw 11, ‡w 4, skl 1

It can be seen that no [Cj] onsets are included in the corpus; we follow Clements and Keyser
(1983:42) in assuming that words like pew are syllabically parsed as [[p]onset [ju]rhyme]�.

10 These are type, not token, frequencies. Using the latter produces slightly less accurate results in modeling the
experimental data discussed in section 5.3. In general, it appears that the use of type frequencies yields better results in
modeling any sort of phonological intuitions based on the lexicon; for discussion, see Bybee 1995, 2001, Pierrehumbert
2001a, Albright 2002b, Albright and Hayes 2003, Hayes and Londe 2006, and Goldwater 2007.
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Table 3
Feature chart for English consonants

p t t+ k b d dÇ g f ‡ s + h v L z Ç m n √ l r j w

cons � � � � � � � � � � � � � � � � � � � � � � � �
approx � � � � � � � � � � � � � � � � � � � � � � � �
son � � � � � � � � � � � � � � � � � � � � � � � �
cont � � � � � � � � � � � � � � � � �
nas � � �
voice � � � � � � � � � � � � � � � � �
spread �
lab � � � � � �
cor � � � � � � � � � � � � �
ant � � � � � � � � � � � � �
strid � � � � � � � � � � � � �
lat �
dors � � �
high � �
back � �

We used a fairly standard feature set for English, taken mostly from SPE and from Halle
and Clements 1983. We controlled the total number of natural classes defined (section 4.1) by
using both contrastive and privative underspecification, shown in table 3 with blanks.

We set the maximum constraint size n (section 4.1) at 3 and the accuracy schedule (section
4.2.1) at [.001, .01, .1, .2, .3]. To implement our proposed trade-off between constraint size and
featural specificity (section 4.1), we stipulated that no constraint could contain more than two
matrices drawn freely from the full feature set; the remaining matrix of a size 3 constraint was
limited to a set of seven ‘‘core’’ natural classes, that is, the class containing only the boundary
marker (#, appended before and after each onset) and the classes [�syllabic], [�consonantal],
and [�sonorant].11

5.2 The Learned Grammar

The learner was run 10 separate times. Since constraint selection is stochastic (section 4.2.1), it
learned slightly different grammars on different occasions; however, the empirical predictions of
the grammars were very similar. We report here the grammar that performed worst in the correla-
tion test below (section 5.3.2). This grammar contained 23 constraints, which in table 4 are listed

11 A reviewer asks if this requirement could be tightened, so that at least one matrix in a three-matrix constraint
would be either word boundary or the class of all segments, designated [ ]. We think this is insufficiently expressive,
because many phonotactic constraints have intervocalic environments (*[�syl][�F][�syl]).

In fact, for English the limitation on size 3 constraints made no difference to the grammars learned. Since it is crucial
to the Wargamay simulation of section 8, we use it here and elsewhere for consistency.
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Table 4
The learned grammar for English onsets

Constraint Weight Comment Examples

1. *[�son,�dors] 5.64 *[√] *√, *s√
2. *[�cont,�voice,�ant] 3.28 *[Ç] *Ç (see also

#16)
Nasals and obstruents may only be5.91 *kt, *kk, *skt

3. *�
��voice

�ant
�strid

� [�approx] preceded (within the onset) by [s].

4. *[ ][�cont] 5.17 Fricatives may not cluster with *sf, *s‡, *sh,
preceding C. *sfl

5. *[ ][�voice] 5.37 Voiced obstruents may not cluster *sb, *sd, *sgr
with preceding C.

6. *[�son][ ] 6.66 Sonorants may only be onset-final. *rt
7. *[�strid][�cons] 4.40 Nonstrident coronals may not *dl, *tl, *‡1

precede nonglides.
8. *[ ][�strid] 1.31 Stridents must be initial in a cluster. *st+ (see also

#14, #22)
4.96 The only consonants that may follow *pw vs. pl, pr

9. *[�lab] �
��approx

�cor � labials are [l] and [r].

*+l vs. +r4.84 Only [r] may follow nonanterior
10. *[�ant] �

��approx
�ant � coronals.

11. *[�cont,�voice][ ] 4.84 Voiced fricatives must be final in an *vr, *vl vs. fr,
onset. fl

12. *[�cont,�ant][ ] 3.17 [t+] and [dÇ] must be final in an *t+r, *dÇr vs.
onset. tr, dr (see

also #22)
13. *[ ][�back] 5.04 [j] may not cluster with a preceding *[bj]ons

C; see above for assumed syllabic
parsing of [ju].

14. *[�ant,�strid][�ant] 2.80 Sibilants must agree in anteriority *sr vs. +r (see
with a following [�anterior] also #22)
consonant.

15. *[�spread][��back] 4.82 [h] may only cluster with [w] (dialect *hr vs. *hw
assumed has [hw] as legal).

16. *[�cont,�voice,�cor] 2.69 Disprefer voiced coronal fricatives L, z, *Ç (see
(violable). also #2)

2.97 Voiced obstruents may only be gw, dw vs. gr,
17. *[�voice] �

��approx
�cor � followed by [l, r] (violable). dr

2.06 [‡, L] may only be followed by [r] ‡w vs. ‡r (see
18. *��cont

�strid� �
��approx

�ant � (violable). also #21)

skl vs. spl3.05 In effect: only [p], and not [k], may
19. *[ ] �

��cont
�voice
�lab

� [�cons] occur / s l (violable).

(continued)
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Table 4 (continued)

Constraint Weight Comment Examples

?stw vs. skw,2.06 In effect: only [r] may occur after
20. *[ ][�cor] �

��approx
�ant � [st]. str (see also

#23)
21. *[�cont,�strid] 1.84 [‡, L] are rare (violable). ‡ vs. f, s
22. *[�strid][�ant] 2.10 In effect: [+r] is rare (violable). +r vs. fr

1.70 In effect: [t] can only be followed by tw vs. tr
23. *��cont

�voice
�cor

� �
��approx

�ant � [r] (violable).

in the order they were learned.12 We think most or all of the constraints are sensibly interpretable
in the context of English phonology; see the comment column of table 4 for discussion. The
weights also have plausible interpretations. Highly weighted constraints, such as #1 in table
4, reflect phonotactic principles that hold exceptionlessly in the learning data. Lower-weighted
constraints are of two types. Some, like #23, are ‘‘violable’’ in the sense that they penalize onsets
that occur in the learning data but are highly underrepresented. Others belong to ‘‘gangs,’’ which
collectively assign harsh penalties to impossible clusters (e.g., the gang #8, #14, #22, which gives
*[st+] the bad score of 6.21). Violable constraints may also belong to gangs: for example, #2
ganging with #16 to rule out *[Ç], or #18 and #21 ganging to penalize the especially rare onset
[‡w].

5.3 Assessing the Learned Grammar

We assessed the learned grammar first by comparing its predictions with the English lexicon,
then by checking it against experimental results.

5.3.1 Comparison with the English Lexicon We sought to determine whether the grammar would
admit the attested onsets of English (defined as those included in the learning data) and exclude
all others. To this end, we created a list of all logically possible onsets consisting of up to three
English phonemes and determined the score (� h(x), defined in (4)) assigned by the grammar
to each onset in this list. The 12 best scores for clusters not in the learning data were [stw] 3.76,
[dl] 4.40, [hl] 4.82, [hr] 4.82, [vl] 4.84, [vr] 4.84, [+l] 4.84, [+w] 4.84, [sr] 4.90, [fw] 4.96, [pw]
4.96, and [spw] 4.96. Of these, the least penalized form [stw] has been called an ‘‘accidental
gap’’ (Rastle, Harrington, and Coltheart 2002, Fudge and Shockey, n.d.). Most unattested onsets
received harsher scores; for instance, the score for [rt] was 21.81.

12 Maxent tableaux for the simulations reported here, as well as a version of the software we employed, can be
obtained from http://www.linguistics.ucla.edu/people/hayes/Phonotactics/.
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Most attested onsets received perfect scores (� 0). However, a few of the rarest onsets did
receive penalties: [L] 4.54, [‡w] 3.91, [skl] 3.05, [dw] 2.97, [gw] 2.97, [z] 2.69, [+r] 2.10, [‡]
1.85, [‡r] 1.85, [tw] 1.70. Given that these onsets are rare ([L] in particular is illegal except in
function words) and that rare real sequences tend to be downrated by native speakers (see section
2.3), these scores strike us as plausible.

We conclude that the grammar did a reasonably good job of separating good from bad onsets,
the threshold (see section 3.2) falling at a score of about 4.

5.3.2 Modeling Experimental Data We also assessed the grammar on its ability to replicate the
gradient judgments of English speakers. To this end, we modeled the data from one of the earliest
experiments on phonological well-formedness intuitions, Scholes 1966 (experiment 5). Scholes
obtained yes/no ratings of 66 monosyllabic nonwords from a group of seventh-grade students
(N�33). The students were asked, for each form, whether it ‘‘is likely to be usable as a word
of English.’’ The syllable rhymes of the nonwords were kept few, and deliberately bland, so that
the great bulk of the variation in responses can plausibly be attributed to the onsets. Following
Pierrehumbert (1994) and Coleman and Pierrehumbert (1997), we take the proportion of ‘‘yes’’
responses pooled across participants to be an indicator of the mean well-formedness intuition of
individuals in the population. Frisch, Large, and Pisoni (2000) demonstrate that this method yields
scores that are highly correlated with well-formedness ratings on a numerical scale. As with
results from similar studies, the pooled Scholes data show a gradient transition from relatively
well-formed to highly ill-formed clusters, seen in figure 3 below.

In assessing the performance of the model against these data, we are comparing probabilities
with probabilities: that is, the probability that an experimental subject will accept the form against
the absolute probability assigned to the form by the maxent grammar. For this purpose, we use
maxent values (P*(x); (5)), which are proportional to probabilities (6). In addition, we incorporate
a free parameter T, whose value is determined on a best-fit basis, and whose purpose is to render
the predicted scores comparable in overall distribution to the experimental data.13 Hence, the
scores matched against the data are as in (12).

(12) predicted-rating(x) � P*(x)1/T

Under the best-fit value (T � 7.4), the correlation of predicted ratings against observed
ratings (fraction of ‘‘yes’’ responses) was r � 0.946. This means that most of the variation in
the subjects’ responses is explained by the model. The scattergram (figure 3) shows the predictions
of the model plotted against subject ratings for all 62 onsets in the Scholes experiment.

The correlation of 0.946 becomes more meaningful when compared with the correlations
obtained under alternative approaches. We tested five other models, as follows:

13 T is mnemonic for the computational ‘‘temperature,’’ a term reflecting the origin of maximum entropy theory in
statistical mechanics; see, for example, Smolensky 1986:270.
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Figure 3
Performance of the model in predicting the data from Scholes 1966

1. In order to compare our machine-learned constraints with a handcrafted grammar, we
translated the constraints proposed by Clements and Keyser (1983) into our own formalism
and assigned them weights as in section 3.3.14

We also tested four alternatives that are less expressive, in the sense that they do not allow well-
formedness to be computed from independent cross-classifying constraints (section 2.1).

2. The grammar labeled ‘‘without features’’ in table 5 was learned in the same way as our
model, but differs in having only single-membered natural classes (one per segment in
the inventory).

14 The constraints consisted of #1, #2, #6, #11, #12, #13, and #15 of table 4, plus *[��voice,�ant,�strid][�nas],
*[��voice,�ant,�strid][�son], *[�cont,�voice,�ant][��cons,�cor], *[�cont][�cont], *[�lab][�lab],
*[�strid][�lat], *[�voice,�ant,�strid][�cons,�cor], *[�voice,�ant,�strid][�cont,�voice,�ant][�back],
*[�voice][�voice], and *[ ][�cont,�ant].
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Table 5
Comparison of performance of six modelsa

Model r

Our model 0.946
Clements and Keyser 1983 constraints with maxent weights 0.936
Coleman and Pierrehumbert 1997 0.893
Our model without features 0.885
N-gram model 0.877
Analogical model 0.833

a Because many of the data points were concentrated at the ends of the scale of
predicted values, we also performed nonparametric (Spearman) regressions for all of
the models. The values corresponding to the right-hand column above were 0.889, 0.869,
0.796, 0.757, 0.761, and 0.818.

3. We implemented Coleman and Pierrehumbert’s (1997) onset-rhyme model, which has
one rule for each onset type in the learning data and does not use segmental or featural
information to relate nonidentical onsets.

4. We also included an n-gram model from computational linguistics, constructed with the
ATT GRM library (Mohri 2002, Allauzen, Mohri, and Roark 2005; http://www
.research.att.com/�fsmtools/grm/). This model uses segmental representations, not fea-
tures, and was trained with standard methods.

5. Finally, we tested an analogical model patterned after the one described in Bailey and
Hahn 2001. This model assesses well-formedness not with grammatical constraints, but
on the basis of the aggregate resemblance of the onset under consideration to all the on-
sets in the learning data.15

All models were fitted to the data with a free parameter T, as with our own model.
The performance (measured by r) of the various models is summarized in table 5. As can

be seen, our machine-learned grammar was sufficiently accurate that it slightly outperformed a
carefully handcrafted grammar. These two grammars outperform all the others; a plausible reason
is that they are the only models that employ the standard apparatus of phonological theory, namely,
features and natural classes.16

We also used the Scholes data to check the consequences of assumptions made in setting
up our model. First, we found that the model worked poorly if the search heuristics of section

15 We explored a number of versions of this model and found that the best-performing version was one that used
the segmental similarity metric of Frisch, Pierrehumbert, and Broe (2004) and that paid no heed to token frequencies in
the learning data.

16 A final note concerning these models. Bailey and Hahn (2001) suggest that improvements in modeling can be
obtained if constraint-based and analogical models are blended. We find that this is true, but only to a limited extent.
When the base model is augmented by the analogical model, the values corresponding to the right-hand column of table
5 (first five values) are 0.947, 0.939, 0.923, 0.916, and 0.901.
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4.2 were dropped. Simply letting the model select constraints at random and weight them yielded
poor correlations and failed to separate legal from illegal forms; for example, one run with 1,000
randomly selected constraints yielded r � 0.855, with illegal [√ lr tl] rated far better than attested
[+r w]. Second, the use of implicational constraints (section 4.1.1) made a modest difference to
the performance of the model; the best grammar learned without implication had 28 (instead of
23) constraints and achieved a correlation of r � 0.926. Finally, the use of token instead of type
frequencies for the learning data (footnote 10) also yielded a somewhat lower correlation,
r � 0.924 in the best of five runs; for the token frequencies used, see appendix B.

6 Nonlocal Phonotactics: Shona Vowel Harmony

The English onset simulation was a demonstration of our model in its simple, inductive baseline
version. Next, we consider a phonotactic pattern that requires us to move beyond the baseline.
The pattern in question is nonlocal, imposing restrictions on nonadjacent sounds.

Examples of this kind are numerous; we focus here on the vowel harmony system of Shona,
a Bantu language of Zimbabwe (Fortune 1955, Beckman 1997, Riggle 1999). We chose Shona
because it has relatively few exceptions in stems, so that vowel harmony is plainly evident as a
phonotactic principle. In this respect, Shona differs from other vowel harmony languages (see
Kiparsky 1973 for Hungarian, Clements and Sezer 1982 for Turkish), where abundant disharmonic
stems might create problems for a purely phonotactic learning strategy. For the same reason, we
limit our study to verbs, where the harmony pattern is closest to exceptionless.17

6.1 The Shona Data Pattern

Shona has five vowels, [i e a o u], whose distribution is restricted by the harmony principles
given here (examples, given in Shona orthography, are from Hannan 1981):

(13) Shona vowel distribution
a. [a] is freely distributed.18

b. [e] and [o] may occur as follows:
i. They may occur in initial syllables, as in beka ‘belch’, gondwa ‘become replete

with water’.
ii. [e] may occur noninitially if the preceding vowel is [e] or [o], as in cherenga

‘scratch’, fovedza ‘dent’.
iii. [o] may occur noninitially only if the preceding vowel is [o], as in dokonya ‘be

very talkative’.
c. [i] and [u] may occur as follows:

i. They may occur in initial syllables, as in gwisha ‘take away’, huna ‘search
intently’.

17 For the idea that particular parts of speech have special phonotactics, see Kelly 1991, Smith 2001.
18 However, in our learning data, final vowels are always /a/, since the dictionary entries for verbs all end with the

suffix /-a/.
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ii. [i] may occur noninitially unless the preceding vowel is [e] or [o], as in kabida
‘lap (liquid)’, bhigidza ‘hit with thrown object’, churidza ‘plunge, dip’.

iii. [u] may occur noninitially unless the preceding vowel is [o], as in baduka ‘split’,
bikura ‘snatch and carry away’, chevhura ‘cut deeply with sharp instrument’,
dhuguka ‘cook for a long time’.

In dynamic terms, this implies a kind of asymmetrical harmony for [high]: the mid vowels
[e] and [o] require a following high [i] to be lowered to [e], and the mid vowel [o] requires a
following [u] to be lowered to [o]. In fact, Shona suffixes alternate in height in order to conform
to these requirements (Fortune 1955:26, Beckman 1997:10–11), though our focus is on harmony
as a phonotactic pattern.

We analyzed 4,399 Shona verbs from the online version of Hannan’s (1959) Shona dictionary,
available from the CBOLD project (http://www.cbold.ddl.ish-lyon.cnrs.fr/). Inspection of the cor-
pus showed that even in verbs, the harmony system is not free of exceptions: a fair number of
idiophones and borrowings violate the normal harmony pattern. The details are presented in table
6, which gives totals from our training set for all 25 possible two-vowel sequences. The table
gives both the raw counts and an ad hoc O/E estimate, namely, the raw frequency divided by the
product of the two individual vowel frequencies. The latter depicts underrepresentation more
clearly by compensating for the overall frequencies of vowels. Phonotactically aberrant cases are
classified intuitively as ‘‘�’’, ‘‘?’’, or ‘‘*’’ according to the kind of violation they contain.

The detailed data illustrate an aspect of Shona that has to our knowledge not been previously
noticed: [o] is somewhat ‘‘weak’’ as a harmony trigger, in that the high vowels [i u] follow it
with modest frequency. The sequences [o i] and [o u] are nevertheless underrepresented, and we
will assume that a phonotactic grammar should take account of this; this assumption is reflected
in our assignment of ‘‘?’’ status to these sequences.

6.2 Failure of the Inductive Baseline Model

Adopting a straightforward feature system for Shona segments, we ran our inductive baseline
learner on Shona. The settings were the same as for the English onset simulations (section 5.1),
with a few exceptions. We set n (the maximum number of feature matrices in a constraint) at 4,
because for V1CCV2 sequences, the harmonic dependency between V1 and V2 has no chance of
being detected unless constraints can span four feature matrices. In addition, we extended the
highest accuracy threshold (section 4.2.1) slightly from 0.3 to 0.35, which (ultimately) proved
necessary for capturing the marginal status of [o u] and [o i]. We ran the learner for several days,
forming a grammar of 300 constraints.

To test this grammar, we gave it 50 test words to rate. Of these, 25 took the form mVmVma,
where the two slots labeled ‘‘V’’ were filled with all possible vowel pairs (mimima, mimema,
etc.). The remaining 25 were similar, but took the form mVndVma, chosen to test whether the
system had learned the harmonic restrictions across consonant clusters.

The inductive baseline model achieved only minimal descriptive success. It did find five
valid harmony constraints applicable to VCV sequences, shown in table 7. These sufficed to rule
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Table 6
Shona vowel distribution: Corpus data

Vowel Ad hoc
sequence Count O/E Status Comment

a a 1443 1.03 �
a e 3 0.02 * Noninitial [e] without harmony trigger
a o 0 0.00 * Noninitial [o] without harmony trigger
a i 500 1.69 �
a u 568 1.24 �

e a 639 0.77 �
e e 587 5.30 �
e o 0 0.00 * Noninitial [o] without harmony trigger
e i 2 0.01 * [i] not lowered after [e]
e u 260 0.96 � [e] not a lowering trigger for back vowels

o a 638 0.75 �
o e 153 1.35 �
o o 694 6.56 �
o i 23 0.13 ? [i] not lowered after [o] (weak trigger)
o u 20 0.07 ? [u] not lowered after [o] (weak trigger)

i a 1130 1.14 �
i e 0 0.00 * Noninitial [e] without harmony trigger
i o 0 0.00 * Noninitial [o] without harmony trigger
i i 478 2.29 �
i u 175 0.54 �

u a 1737 1.14 �
u e 4 0.02 * Noninitial [e] without harmony trigger
u o 1 0.005 * Noninitial [o] without harmony trigger
u i 175 0.55 �
u u 811 1.63 �

Table 7
Results of the inductive baseline learner applied to Shona

Constraint Weight Comment

1. *[�back][ ][�high,�low,�back] 4.20 *[e,i][ ]o
2. *[�low][ ][�high,�low,�back] 1.35 *a[ ]o
3. *[�high][ ][�high,�low] 3.77 *[i,u][ ][e,o]
4. *[�high,�low][ ][�high,�low,�back] 3.19 *[e,o][ ][i]
5. *[�low][ ][�high,�low] 4.15 *a[ ][e,o]
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out all the ill-formed cases of mVmVma; they also penalized ?momima (with the same value as
*memima) and left only ?momuma classified erroneously as perfect. However, for the mVndVma
forms, the model failed completely: no constraints regulating the vowels of V1CCV2 were found,
so all of these were classified as perfect.

We judge that the reason for this failure lay in the unmanageable hypothesis space. The
number of possible four-matrix constraints is extremely large (1.9 billion, with our feature set),
and the available search time was consumed before the relevant V-to-V constraints could be
found.19 The presence of a not inconsiderable number of triple clusters in Shona (e.g., [ndw])
renders the possibility of the inductive baseline learner’s succeeding even more remote, because
it would have to search 328 billion five-matrix constraints.

6.3 Moving beyond the Inductive Baseline: Projections

From the viewpoint of contemporary phonological theory, the analytic approach to vowel harmony
offered by our inductive baseline system is implausible. Phonologists have long been aware that
vowel harmony systems normally ‘‘care’’ only about the vowels of the string, and they have
adopted formal devices that permit this, expressing the nonlocal process in local terms. This can
be done, for instance, with an autosegmental tier for vowels (Clements 1976, Goldsmith 1979),
perhaps incorporated into some conception of feature geometry (Archangeli and Pulleyblank 1987,
Clements and Hume 1995). Without attempting to choose among these theories, we argue that a
vocalic representation offers a solution to the problem of learning harmony systems.

To create the effects of a vowel tier in our system, we use the idea of projection (Vergnaud
1977, McCarthy 1979). In particular, the vowel projection of a phonological representation is the
substring consisting of all and only its vowels, appearing in the same order as in the main represen-
tation. Projections are scanned during constraint discovery in the same way as the full representa-
tion, and every constraint applies on its own projection. For example, the vowel projection con-
straint *[�high, �low][�high] forbids mid-high vowel sequences regardless of how many
consonants intervene.

Technically, a projection is defined by a set of criterial feature values and consists of feature
matrices containing only the values of the projected features. For example, the vowel projection
employs the criterial value [�syllabic] and projects the features that classify vowels, which for
our Shona feature set are [high], [low], and [back]. We assume that projections also include the
SPE feature [segment], which (in its minus value) designates the word boundary. To give an
example, the verb gondwa, from (13), is shown in (14) in both its complete representation (which
we will call the default projection) and its vowel projection.

19 As a control, we also considered whether the Shona lexicon fails to instantiate the principles of harmony for vowel
pairs that are separated by consonant clusters. To test this, we made up a set of pseudowords of the form VCCV, extracted
from all such sequences in the real training set (e.g., [i√ga] from chingamidza. From these, our improved vowel projection
learner (see section 6.3) learned a reasonable approximation of the harmony pattern. This shows that the failure of the
inductive baseline learner cannot be attributed to gaps in the learning data, but rather must be the result of the wrong
learning strategy.
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(14) [�seg] g o n d w a [�seg] Default projection

�
�high
�low
�back
�seg

��
�high
�low
�back
�seg

�[�seg] [�seg] Vowel projection

We amplified our inductive baseline learner to create projections and scan them for phonotac-
tic generalizations. The modified version of the learner alternates among the available projections,
learning from each in turn. When maxent values are calculated (section 3.2), the constraints on
all projections are applied in parallel.

6.4 A Vowel-Projection-Based Grammar for Shona

Using a vowel projection, we reran the Shona simulation. The learner quickly found all available
vowel projection constraints; they were always among the first 30 learned. Since the constraints
from the default projection are of little interest here, we therefore allowed learning to terminate
after 40 constraints. We ran the model five times and obtained similar results on each run.

For the least effective grammar (lightest penalty for illegal vowel sequences), the crucial
constraints for vowel harmony were as shown in table 8. The core harmony constraint is #1, an
across-the-board ban on noninitial mid vowels that are not licensed by a preceding mid vowel.
The vowel [o] is subject to a stricter licensing requirement that it be preceded by [o], and this is
enforced by #2.20 The remaining three constraints are all violable and penalize high vowels in
lowering environments. The near-unattested [e i] receives a substantial penalty due to the ganging
of #3 and #4, whereas the merely underrepresented [o i] and [o u] are only lightly penalized by
virtue of violating #4 and #5, respectively. A further discovered vowel projection constraint,
*[�high,�low,�back][ ][�high,�back], weighted 3.49, penalizes an unattested nonlocal se-
quence, [o V u].

We tested the vowel projection grammar with the same set of words (mVmVma, mVndVma)
with which we had tested the inductive baseline grammar. The vowel projection grammar correctly
sorted the mVmVma forms into the categories given in table 6 (�, ?, *), assigning harsh penalties
(at least 4.24) to all starred forms (e.g., *[mamema]), lighter penalties (2.33 and 2.27, respectively)
to ?[momima] and ?[momuma] (which illustrate the ‘‘weak trigger’’ characteristic of [o]), and
perfect scores to all other forms.

However, the crucial comparison concerns the mVndVma forms, where the inductive baseline
grammar had failed entirely. The vowel projection grammar correctly assigned the same score
to each mVndVma form as to the corresponding mVmVma form—all of the vowel harmony
constraints were learned on the vowel projection, which treats such forms alike. For the same

20 The learner formulated #2 so that it is obeyed by [u o] sequences; we suspect this is because the training data
included one case of [u o] but none of [a o], [i o], or [e o]. [u o] is penalized only by #1. Since #1 and #2 gang up on
[i o] and [a o] (both frequency zero), these are predicted to be the worst possible harmony violations.
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Table 8
Vowel projection grammar for Shona: Harmony constraints

Constraint Projection Weight Comment

1. *[��high,�low][�high,�low] Vowel 5.02 *[�e,o][e,o]
2. *[��low,�back][�high,�low,�back] Vowel 4.43 *[�o]o
3. *[�high,�back][�high,�back] Vowel 1.91 *ei
4. *[�high,�low][�high,�back] Vowel 2.33 *[e,o]i
5. *[�high,�low,�back][�high,�back] Vowel 2.26 *ou

reason, the vowel projection grammar would assign these scores to analogous forms with conso-
nant clusters of any length.

In conclusion, we claim that our learner has achieved a reasonable approximation to Shona
vowel-sequencing phonotactics. The learning of Shona harmony became possible when we moved
beyond our inductive baseline model to incorporate a vowel projection. Thus, the concept of a
vowel tier can be defended on learnability grounds: in controlled comparative simulations, it
makes phonotactic learning possible where it would not otherwise be so.21

7 Locality in Stress Patterns: The Metrical Grid

Another type of nonlocal phonotactics is found in stress systems. Where stress is predictable, it
is often analyzed derivationally: a grammar assigns a stress contour to each form, based on its
segmental or syllabic representation. But predictable stress is also a phonotactic pattern, a regular-
ity of surface forms. We adopt this perspective here, noting that it readily extends to languages
like English (Selkirk 1980b) where stress is not fully predictable, but obeys important restrictions.

7.1 Unbounded Stress

The nonlocality of stress is seen clearly in so-called unbounded stress patterns. One such pattern,
attributed to Eastern Cheremis and various other languages (Hayes 1995:sec. 7.2), works as
follows:

21 The LI reviewers asked if we could dispense with projections and use Kleene star notation (i.e., (x)*, ‘‘zero or
more x’’) instead. For example, #1 in table 8 would be stated to rule out [��high,�low] ([��syl])*[�high, �low].
We are skeptical that this would work. Kleene star is much less restrictive than projections, as it need not employ the
same intervention class throughout a constraint. We judge that this would lead to severe search space problems. For
example, the constraint of Hungarian that Hayes and Londe (2006) call LOCAL NN is stated by them as *[�back][�back]
[�back] on a vowel tier; in Kleene star notation, it would require [�back]([�syl])*[�back]([�syl])*[�back]. With
any reasonably large number of natural classes, five-matrix constraints lead to a very large search space.

In general, however, work pursuing the inductive baseline approach must be prepared to consider multiple approaches
to solving a learnability problem. The result in this section shows the sufficiency of vowel projections for the task at
hand, but to demonstrate necessity would be a long-term project.
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(15) a. Every heavy syllable bears some degree of stress.
b. Every initial syllable bears some degree of stress.
c. Of the stressed syllables in a word, the rightmost bears main stress.

In terms of main stress, this is a ‘‘default to opposite’’ system (Prince 1985), with the pattern
‘‘rightmost heavy, else initial.’’ The generalization in (15c) has been called ‘‘End Rule Right’’
(Prince 1983), a term we will use below.

This description implies two clear instances of nonlocality. First, the fact that exactly one
syllable bears main stress (culminativity; Hayes 1995) is a nonlocal observation that cannot be
stated in our inductive baseline model. Because our model imposes a limit n on the number of
feature matrices that may appear in a constraint (section 4.1.2), it can only require that the main
stress appear within n � 1 syllables of a particular word edge or other landmark; it cannot quantify
over all syllables of a word to determine that exactly one of them bears main stress. The same
considerations imply that the End Rule Right restriction in (15c) cannot be captured by our
inductive baseline learner; there is no guarantee that this syllable will fall within the n-syllable
limit.

A representation for stress that addresses these locality issues is the metrical grid, proposed
by Liberman (1975) and employed as a basis for stress theory by Liberman and Prince (1977),
Prince (1983), Gordon (2002), and others. From the earliest work, theorists have recognized the
implications of the grid for phonological locality.22

In a typical grid, every syllable is assigned to a terminal-level grid position, represented here
as a row of x’s at the bottom of the grid. Every stressed syllable is designated as such by assigning
it an additional x on the next row up from the bottom. Main-stressed syllables are also assigned
an x on the third, highest row. This is illustrated in the following representation, which shows a
schematic 13-syllable word containing three heavy syllables, obeying the stress pattern in (15):

(16)

�
x

x x x x
x x x x x x x x x x x x x
L L L H L H L L H L L L L

�
word

Main stress row
Stress row
Syllable row
Syllables: H � heavy

L � light

Since all of this phonological material belongs to a single word, the brackets for word division
enclose all levels of the grid.

Grid formalism makes it possible to characterize the nonlocal patterns described above in
local terms. The requirement that every word have exactly one stress is expressed by requiring
that there be exactly one x between each pair of word brackets on the main stress row. The
constraint for the End Rule Right generalization can be expressed locally as in (17).

22 It has often been argued that the grid should be amplified with constituency information, such as foot structure
(Liberman and Prince 1977, Halle and Vergnaud 1987, Hayes 1995). The present discussion makes no use of such
constituency, taking an agnostic view on whether it exists. For discussion of ‘‘hidden structure’’ of this kind, see section
9.5.
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(17) * x Main stress row
x x Stress row

The literal interpretation is, ‘‘Avoid a main stress mark when another grid mark follows on the
immediately lower row.’’

7.2 Formalizing Grids as Projections

By providing localist representations of patterns that would appear as nonlocal in an inductive
baseline representation, the grid makes possible the learning of stress generalizations that would
otherwise be missed. To demonstrate this, we constructed a formalization of the grid, using the
same device of projection used earlier for vowel harmony.

For simplicity, we assumed an inventory of terminal elements consisting of just six symbols,
each designating a syllable type: �ĬL, �L, �L, H̆, �H, �H�. L designates light syllables and H heavy;
and the IPA diacritics [n̆� �] designate stressless, secondary-stressed, and main-stressed syllables.
These six entities were classified with the prosodic features [heavy], [stress], and [main]: primary
stress is [�stress, �main] and secondary stress is [�stress, �main]. We used these features
(plus the SPE feature [segment], which distinguishes segments from word boundaries) to express
the grid as a set of projections, as in table 9.

The three projections are shown in detail for a schematic form in (18).

(18) Representing a grid with projections: [�L ĬL �H ĬL]
Main

[�seg] [�seg][�seg]
projection
Stress[�seg] [�seg]
projection��seg

�main� ��seg
�main�

Default
[�seg] [�seg]

projection�
�seg
�heavy
�str
�main

��
�seg
�heavy
�str
�main

��
�seg
�heavy
�str
�main

��
�seg
�heavy
�str
�main

�
This representation is closely analogous to a traditional grid, as can be shown by simply

replacing every matrix containing [�seg] with x and marking word boundaries with brackets,
as in (19).

Table 9
Formalizing a metrical grid with projections

Criterial features Projected features

Main projection [�main] [segment]
Stress projection [�str] [segment], [main]
Default projection none all
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(19)

�
x

x x
x x x x
L L H L

�
word

Main stress row
Stress row
Syllable row

The projection version may appear to be richer in information, since each row encodes the presence
of higher-level grid marks with its featural content. However, traditional use of grids has generally
done more or less the same, relying on geometrical (‘‘dominated by’’) rather than featural
descriptions.

7.3 Learning Stress with Grids

We tested our learner under this scheme by having it try to learn the schematic stress pattern in
(15). As training data, we employed all strings of length five or less drawn from the symbol set
�ĬL �L �L H̆ �H �H� that obey (15) ([�L], [�H], [�L ĬL], [�L �H], [�H ĬL], [�H �H], [�L ĬL ĬL], etc.). With
this training set, the projections of table 9, and the same learning parameters as in the English
onset simulation (section 5.1), our system consistently discovered the constraints and weights
given in table 10.

We tested this grammar by calculating the scores it derives for every possible string up to
length five drawn from the complete inventory �ĬL �L �L H̆ �H �H�. The grammar successfully
assigned perfect scores to all legal forms and penalty scores of at least 5.44 to all illegal ones.

Our inductive baseline learner cannot learn this stress pattern. Indeed, it cannot even represent
the grammar that would be needed: if the maximum number of matrices used in a constraint is
n, the grammar will be defeated by words of length n � 1. Thus, when we set n at 4, the grammar
learned failed to rule out five-syllable forms like *[�H ĬL ĬL ĬL �H] (with two primary stresses) and
*[�H ĬL ĬL ĬL ĬL] (with none).

In sum, hierarchical representations permit the statement of nonlocal generalizations using
formal principles that are stated locally. In previous work, this property has been noted as an
important basis for developing a constrained theory of possible stress patterns (see, e.g., Hayes

Table 10
Grammar learned for stress pattern (15)

Constraint Projection Weight Comment

1. *## Main 6.18 Culminativity
2. *[�main][ ] Stress 7.18 End Rule Right
3. *H̆ Default 6.57 WEIGHT-TO-STRESS (Prince and

Smolensky 1993/2004:56)
4. *#[�str] Default 5.44 Every word must begin with a stress.

Default 6.57 Light syllables may be stressed only
5. *� � ��str

�heavy� if initial.
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Table 11
Commonly learned stress constraints

Constraint Projection Languages/33 Comment

1. *# # Main 33 Culminativity (existence)
2. *[�str][�str] Default 25 *CLASH (Prince 1983)
3. *[ ][ ] Main 23 Culminativity (uniqueness)
4. *#[�main] Stress 13 End Rule Left
5. *[ ][�str]# Default 13 See section 9.2

1995:34). But by the same token, the locality property is important to learning, since it makes it
possible to discover the crucial generalizations using a learner with a restricted search space.

7.4 Other Stress Rules

To get a clearer idea of how the model performed in learning stress systems, we let it attempt to
learn similar schematic simulations for the empirical typology of quantity-insensitive systems
compiled by Gordon (2002). Gordon’s research interest was in developing an a priori constraint
set whose factorial typology (Prince and Smolensky 1993/2004:sec. 3.1) would match with the
observed natural language systems. Here, we simply used his 33 observed stress patterns as a
criterion for our model, to determine whether they could all be learned.

Our simulations were carried out along the same lines as in section 7.2, except that since
the languages in question make no distinction of syllable quantity, the terminal vocabulary was
limited to just three elements distinguished by stress level (�̆, ��, ��). We followed Gordon in
including all legal patterns of up to eight syllables in the training sets, and in a couple of cases
made minor corrections to Gordon’s typology on the basis of the cited source materials.

For n (the maximum number of matrices in a constraint), we employed a value of 4. This
follows our earlier claim (section 4.1.2) that constraint systems permit a trade-off of length against
internal complexity. Since the feature system for prosodic properties (here, just �[�stress],
[�main]�) is impoverished, a value of 4 is feasible without creating a huge search space. Setting
n at 4 permits the system to learn constraints like [�main][ ][ ]#, which is used for deriving
antepenultimate stress (see, e.g., the entry for Georgian in appendix C).

The 33 grammars learned by our system contained a variety of constraints, of which the six
most common are given in table 11. We tested the 33 learned grammars by examining all possible
strings of length 8 or less composed of the elements (�̆, ��, ��). The model was entirely successful
in distinguishing the well-formed from the ill-formed strings, assigning a perfect score to every
legal form and a substantial penalty to every illegal one, in each language.23

23 For the full set of learning data and grammars, see appendix C. As one would expect, the system could also learn
many imaginable but unlikely stress systems; for discussion, see section 9.4.



412 B R U C E H A Y E S A N D C O L I N W I L S O N

Table 12
Wargamay phonemes

Consonants Labial Apicoalveolar Retroflex Laminopalatal Velar

Stops b d õ g
Nasals m n « √
Trill r
Approximants lateral l

central w ˙ j

Vowels Front Central Back

high i, i� u, u�
low a, a�

8 A Whole-Language Analysis: Wargamay

The ultimate goal of our learning model is to induce a complete description of the phonotactics
of any given language. In this section, we take a first step toward this goal by applying the model
to data from the Australian aboriginal language Wargamay (Dixon 1981). Wargamay was chosen
because of its interesting quantity-sensitive stress system, and because Dixon’s meticulous descrip-
tion of its phonotactics provides a baseline against which our learned grammar can be evaluated
(see also Sherer 1994, Hayes 1995, Kager 1995, McGarrity 2002). The theoretical issues addressed
here are similar to those discussed earlier. In particular, our study of Wargamay provides further
evidence for the utility of multiple projections in phonological representations, and it reveals
gradient well-formedness patterns that previous work on the language does not fully account for.

8.1 Segments, Features, and Training Data

Table 12 gives the phoneme inventory of Wargamay in IPA notation. These phonemes have
various allophones, involving contextual or free variation, as well as optional neutralizations,
described in Dixon 1981:16–17. We idealize somewhat in abstracting away from these details.

The segmental features we assumed are shown in table 13. In addition, we assumed that
vowels are classified by the prosodic features [stress] and [main], as in section 7.2.

We used as our learning data the vocabulary of approximately 950 items included in Dixon’s
grammar. We removed reduplicated forms, which Dixon treats as two separate phonological
words, and a handful of forms that contain blatant violations of the phonotactic system.24 The
set of remaining forms was considerably smaller than the learning data for our previous analyses

24 These are [√ija«ma] ‘ask’ ([«m] cluster), [jawuj«ba˙i] ‘big grey kangaroo’ ([j«b] cluster, with the phonotactically
regular variant [jawujmba˙i]), and the loanwords [drajga] ‘tracker’ (initial cluster), [ga�gu˙uõ] ‘cockroach’ (final obstruent),
and [lajn] ‘line’ (initial [l] and final cluster).
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Table 13
Feature chart for Wargamay

b d õ g m n « √ r l ˙ j w i a u i� a� u�

syl � � � � � � � � � � � � � � � � � � �
cons � � � � � � � � � � � � � � � � � � �
approx � � � � � � � � � � � � � � � � � � �
son � � � � � � � � � � � � � � � � � � �
lab � �
cor � � � � � � �
ant � � � � � � �
lat � � �
dors � �
high � � � � � � � �
back � � � � � � � �
long � � � � � �

and contained only one item of more than four syllables. We judged this corpus to be too limited
to serve as input to our learner, particularly because we are interested in learning the stress
system of the language. Therefore, we inflected each nominal and verbal root according to the
morphological description given by Dixon (1981:27ff.). The resulting set contains about 6,000
words and instantiates the stress pattern across a range of word lengths from one to six syllables.
In the following sections, we discuss how the grammar learned from these data accounts for the
segmental and stress phonotactics of Wargamay.

8.2 Learning Simulation

The resources our learner used for Wargamay integrate those from the previous sections. We
deployed projections for a metrical grid (as in (18)) as well as a vowel projection (section 6.3).25

Our Wargamay grids were amplified versions of what was used in the previous section, since
instead of just schematic syllable strings, we had to deal with complete representations. Sidestep-
ping the question of syllabification (see section 9.5), we defined a weight projection whose criterial
feature was [�syllabic] and whose projected features were [long], [stress], [main], and [segment].
Since only long-voweled syllables count as heavy in Wargamay, this sufficed to provide a lowest-
level grid layer that could represent syllable count and weight.

The feature matrix limit n was set at 4 for the grid projections and 3 elsewhere; otherwise,
all parameter settings for the learner were set the same as in the English onset simulation.

The system learned a large grammar, which we limited by fiat to 100 constraints. Multiple
runs yielded essentially identical results, and we discuss only one representative run here. In brief,

25 As it happened, no constraints were learned on the vowel projection. However, assuming that projections are not
learned on a language-specific basis, but are specified in UG, learners have no choice but to search each one during
phonotactic learning.
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Table 14
Constraints on CV sequencing in Wargamay

Constraint Weight Comment

1. *#V 2.64 No initial vowelsa

2. *VV 5.43 No vowel sequences
3. *#[ ]C 5.71 No initial consonant clusters (given *#V)
4. *CC# 3.94 No final consonant clusters

a This constraint has a low weight because it is ganged with various others (e.g., #2
and #3) that penalize vowel-initial forms. No vowel-initial form receives a score lower than
5.41.

we found that our system learned all of Dixon’s phonotactic principles: examination of a systematic
set of test forms (sections 8.3–8.4) indicates that any form that violates one of Dixon’s phonotactics
is penalized, usually severely, by the learned grammar. However, our grammar may also have
overfitted the data, learning constraints that characterize accidental gaps (section 8.5).

In what follows, rather than covering the whole grammar all at once, we will divide Warga-
may phonotactics into various empirical domains, discussing the constraints learned and the sys-
tem’s performance for each.

8.3 Segmental Phonotactics

8.3.1 CV Sequencing The sequencing of consonants and vowels in Wargamay phonotactics is
straightforward. Every word must begin with a consonant, vowel sequences are not permitted,
and consonant clusters cannot appear at the beginning or end of the word. The grammar constructed
by our learner accounts for these restrictions economically, as shown in table 14.

8.3.2 Initial and Final Consonants Any consonant except [r] or [l] (the anterior approximants)
can appear at the beginning of the word, and a subset of the sonorants ([m n « l r j]) may appear
word-finally. The learned grammar captures these restrictions with the constraints listed in table
15. With these constraints, the grammar penalizes all of the unattested word-initial and word-

Table 15
Constraints on word-initial and word-final consonants in Wargamay

Constraint Weight Comment

1. *#[�approx,�ant] 4.70 No initial [r] or [l]
2. *[�lat]# 4.06 No final [r] or [˙]
3. *[�son]# 4.27 No final obstruents
4. *[�syl,�back]# 4.18 No final [w]
5. *[�dors]# 4.20 No final dorsals
6. *[�lab]# 3.61 No final labials
7. *[�approx,�ant]# 1.68 No final [˙]
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final consonants and gives all of the attested word-initial consonants perfect scores. However,
with respect to word-final position it is more restrictive than Dixon’s description. The constraint
*[�lab]# penalizes both [b], which is not possible finally, and [m], which does occur in that
position. Similarly, the constraint *[�lat]#, whose weight seems too high to us, penalizes both
unattested [˙]# and attested [r]#.

Inspection of the learning data explains why the learner singles out [m] and [r], among the
consonants that are attested finally, as relatively ill formed. There are exactly 4 items in Dixon’s
vocabulary that end in [m], and none of the inflectional affixes end in this consonant. Consequently,
[m]-final words make up less than 1% of the consonant-final words in the inflected learning data.
The numbers for [r]-final words are only slightly higher (11 vocabulary items, � 1% of consonant-
final learning data). In comparison, all of the other attested word-final consonants occur in at
least 5% of the consonant-final inflected words of the learning data. Thus, the learner has selected
constraints against the attested word-final consonants that are substantially rarer than their compet-
itors.

8.3.3 Intervocalic Consonants and Clusters The richest area of Wargamay’s segmental phono-
tactics is its inventory of intervocalic consonant sequences. Every single consonant is attested
intervocalically, and our learned grammar contains no constraints against consonants in the
environment / V V. However, the inventory of biconsonantal and triconsonantal clusters is
quite restricted. Dixon identifies the following cluster types as possible root-internally:

(20) Legal root-internal consonant clusters in Wargamay (Dixon 1981)
a. Homorganic nasal-stop sequences ([mb nd «õ √g])
b. [n l r ˙ j] followed by [b õ g m « √] (i.e., by the set of nonapical stops and nasals)
c. [l r ˙ j] followed by legal nasal-stop sequences or [w]

Many of the clusters included in this description are unattested ([n« l« ˙m ˙« j« lnb lnd lnõ
lng rmb rnd rnb rnõ rng ˙nb ˙nd ˙nõ ˙ng jnd jng jw]) or occur in just one vocabulary item ([n√ j√
rw ˙«õ ˙√g ˙w jnb]). A generalization not noted by Dixon is that triconsonantal clusters containing
nonhomorganic nasal-stop sequences are marginal: [lnb lnõ lng rnb rnõ rng ˙nb ˙nõ ˙ng jng] are
among the unattested clusters, and [jnb jnõ] occur in only one or two roots. A generalization
evidently related to (20b) is that the apical sequence [nd] never occurs within a triconsonantal
cluster (thus, [lnd rnd ˙nd jnd] are unattested in roots).

Because roots can end in consonants, and some of the inflectional affixes are consonant-
initial, one might expect a much larger inventory of intervocalic clusters in conjugated forms
(Dixon 1981:22). To a large extent, this expectation is dashed by morpheme-specific alternation.
For example, the ergative/instrumental case ending, which is [-√gu] after vowels, loses its initial
nasal and undergoes place-of-articulation assimilation when combined with nasal-final roots; this
alternation, like others documented by Dixon, serves to reinforce the phonotactic pattern found
root-internally. There are, however, clusters that appear only under inflection, namely, [mg «g
m« n« «« rd ld l« j« lnd]. While [n« l« j«] are accidental gaps on Dixon’s analysis, the other
members of this set expand the phonotactic system in virtue of their initial nonapical nasals and
clustering apical stops.
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Table 16
Constraints on intervocalic consonant clusters in Wargamay

Constraint Weight Comment

1. *[�son]C 5.63 The first member of a cluster must be
a sonorant.

2. *C[�approx,�syl] 4.25 The second member of a cluster must
not be [r l ˙ j].

3. *[�dors][�cor] 4.48 No dorsal-coronal clusters
4. *[�lab][�son,�cor] 4.42 *[�lab][d õ] (allows [mg m«])
5. *[�ant][�ant] 4.04 *[« ˙ õ][d n r l] (allows [nd «õ jõ])
6. *[�approx,�ant][�lab] 4.11 *[« õ][�lab] (allows [nb nm])
7. *[�dors][�lab] 4.07 No dorsal-labial clusters
8. *[�lab][�dors] 3.36 No labial-dorsal clusters
9. *[�lat][�son,�ant] 2.10 *[r ˙][n r l]

10. *CC[�syl,�son] 2.10 *CC[�son]
11. *[�dors][�syl,�son] 1.75 Allows [√g]
12. *[�approx][�son,�ant] 0.51 *[nn] vs. [nd]
13. *[�lab][�son,�syl] 1.67 Allows [mg]
14. *[�approx,�ant][�son,�dors] 1.08 *[« õ] before [√]
15. *[�back,�syl]C 1.84 No [w]-initial clusters
16. *[�cons,�syl][�ant] 2.21 No glides before apicoalveolars
17. *[�lab][�son,�lab] 1.90 *[mm] (allows [mb])

The constraints learned by our model, given in table 16, capture the major generalizations
on Wargamay consonant clusters and adjudicate the marginal cases in a way that is sensitive to
frequency of occurrence. Of the approximately 2,400 two- and three-consonant clusters that are
logically possible given the Wargamay segment inventory, these constraints assign perfect scores
to only 46. The clusters predicted to be perfect include all of the homorganic nasal-stop sequences
(20a), all of the clusters of type (20b), and the clusters of type (20c) that contain homorganic
nasal-stop sequences (i.e., [rmb r«õ r√g lmb l«õ l√g ˙mb ˙«õ ˙√g jmb j«õ j√g]).

The constraints assign perfect scores to some clusters that are not found in the learning data,
namely, [rmb r«g l«g ˙«g j«g]. Of these, [rmb] is an accidental gap according to Dixon’s analysis.
The remaining clusters, [r«g l«g ˙«g j«g], can be rationalized as projections from the attested
triconsonantal clusters (which begin with [r l ˙ j]) and the frequent occurrence of [«g] in the
learning data (resulting from the combination of a root ending in [«] and the invariant dative/
allative suffix [-gu]). The constraints also assign rather weak penalties to other unattested clusters;
we discuss here only those not considered accidental gaps in Dixon’s account. [jd] (2.21) and
[jnõ] (3.17) are assigned low penalties probably because of the presence of one single stem in
the learning data, [ju˙ujnbi] ‘river bank’. Four clusters with geminates are slightly underpenalized
([««g] 3.55, [««õ] 3.55, [mm] 3.57, [√√] 3.91), suggesting that it might be profitable to amplify
the learner with the capacity to recognize adjacent identical items (Obligatory Contour Principle;
Leben 1973, Goldsmith 1979, McCarthy 1986).
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In addition, the constraints penalize a few consonant clusters that are found in the learning
data: these are [m«] 1.67, [n√] 2.16, [jnb] 2.21, [˙√] 2.83, [mg] 3.36, and [�l,r,˙�w] 4.25. Of these,
two occur only under inflection ([mg m«]); the others are clusters that occur in just one or two
roots.

In summary, there is a good numerical and qualitative fit between the clusters predicted by
the learned grammar and Dixon’s analysis. To the extent that the two differ, this can be attributed
either to the fact that the set of clusters found in conjugated forms is larger than the set found in
roots, or to a greater sensitivity to frequency on the part of our model. The present analysis
captures one major generalization that was not noted by Dixon, namely, that nonhomorganic
sequences are marginal postconsonantally.

8.3.4 Consonant-Vowel Combinations In comparison to consonant cluster phonotactics, the reg-
ularities governing consonant-vowel combinations in Wargamay are understudied. However,
Dixon (1981) does note one restriction on VC sequences: [ij] occurs prevocalically, but not before
a consonant or at the end of the word. Further evidence for this phonotactic comes from the
phonological rule of Yotic Deletion (Dixon 1981:23), which eliminates [j] in the environment

�C# 	./ [i]

Our model learns three constraints (table 17) to cover this part of the system. It can be seen
that the learner, in its rigorous pursuit of general constraints (section 4.2.2), goes beyond Dixon’s
narrow description of the [ij] phonotactic. In the learning data, there are no instances of [iw]C
(recall that [w] cannot appear in the first position of a consonant cluster), [iji], or [iwi]; constraint
#1 folds these gaps together with the ban on [ij]C. Similarly, there are only nine roots in the
vocabulary that exemplify [uj]#; constraint #2 therefore expresses a gradient prohibition on both
[ij]# and [uj]#, while constraint #3 forms with #2 a gang ensuring that unattested [ij]# receives
a greater penalty. (The complement class [��son,�cor] appears in these constraints because it
is the largest class that contains all of the legal word-final consonants except [j].)

8.4 Metrical Phonotactics

Wargamay stress respects a distinction between heavy and light syllables, where a heavy syllable
is defined as one containing a long vowel, regardless of whether it is closed. Words containing
all light syllables exhibit a right-to-left trochaic pattern.

Table 17
Constraints related to Yotic Deletion

Constraint Weight Comment

1. *[�back,�syl][�cons][��long,�back] 3.99 *[i][jw]C, *[i][jw][i]
2. *[�high,�syl][��son,�cor]# 2.88 *[i,u]C#, where C �/ [n « r l ˙]
3. *[�back,�syl][��son,�cor]# 1.99 *[i]C#, where C �/ [n « r l ˙]
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(21) Stress pattern of light-syllable words in Wargamay26

�� �̆ [�bada] ‘dog’
�̆ �� �̆ [ga�gara] ‘dilly bag’

�� �̆ �� �̆ [�giõa�wulu] ‘freshwater jewfish’
�̆ �� �̆ �� �̆ [ba�õinõi�la√gu] ‘spangled drongo-ERG/INSTR’

�� �̆ �� �̆ �� �̆ [�jajim�bali�lagu] ‘play about-INTR.PURP’

As is evident from these examples, primary stress falls on the leftmost stressed syllable, following
End Rule Left.

Heavy syllables (i.e., syllables with a long vowel) are limited to word-initial position in
Wargamay, and all heavy syllables bear primary stress. Even-syllable words containing heavies
exhibit the same stress pattern as all-light words. But three-syllable words of this type contain a
lapse (sequence of unstressed syllables), because polysyllabic words never have final stress (Dixon
1981:20).

(22) Stress pattern of heavy-syllable words in Wargamay

��̄ �̆ [�mu�ba] ‘stone fish’
��̄ �̆ �̆ [�gi�ba˙a] ‘fig tree’ (*[�gi�ba�˙a], [�gi��ba˙a])
��̄ �̆ ��̆ �̆ [�gu�√a�˙a«i«] ‘rubbish-ABL’

There are no six-syllable words that begin with a heavy syllable in the training data and
only one such word with five syllables. The stress pattern of this last form, [ba�lbalilagu] ‘roll-
INTR.PURP’, is uncertain: in particular, Dixon’s description does not make clear whether there is
a lapse after the heavy syllable ([�ba�lbali�lagu]) or at the end of the word ([�ba�lba�lilagu]). We
selected the former, on the basis of pattern congruity, but will not consider such forms any further
in light of our uncertainty about the facts.

To summarize, Wargamay has an essentially right-to-left trochaic stress pattern, with primary
stress on the leftmost stressed syllable. Heavy syllables are limited to initial position, and three-
syllable words that begin with a heavy have a final lapse.

The learned grammar contains the constraints on stress and length given in table 18. We
tested this set against all possible strings of up to length six of the set of possible syllables [�ga
�ga� �ga �ga� ga ga�]. ([g] and [a] were chosen to avoid distracting segmental violations.) As our
test showed, the constraints of table 18 assign penalties of at least 5.26 to all incorrectly stressed
words and perfect scores to all correctly stressed words except [�ga�ga] (0.19) and [�ga�] (2.78).
The reason for the latter penalty was that there are only 15 monosyllabic words (all heavy) in
the learning data (�1% of the total).

We experimented with learning Wargamay without projections and discovered that without
a weight projection the stress pattern was inaccessible, owing to the nonlocality of the vowels

26 Dixon (1981:20) explicitly describes the stress pattern of words up to five syllables long. We make the straightfor-
ward assumption that six-syllable words follow the same alternating pattern.
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Table 18
Constraints on stress and lengtha

Constraint Projection Weight Comment

1. *[ ][ ] Main 3.26 Culminativity (uniqueness)
2. *## Main 3.10 Culminativity (existence)
3. *## Stress 2.16 Culminativity (existence)
4. *#[�main] Stress 1.55 End Rule Left
5. *[��long,�str][�str] Weight 6.53 *CLASH, since all heavies are

stressed
6. *[��long,�main][�str][�str] Weight 6.51 Lapse is legal only after

heavy main-stressed
syllables.

7. *[ ][�str][��long,�main,�str][ ] Weight 4.45 *LAPSE, in a restricted context
8. *[�long,�str]# Weight 4.37 NONFINALITY (Prince and

Smolensky 1993/2004:42),
except for heavy

9. *[ ][�long] Weight 3.55 No noninitial heavy
10. *#[�main][��long,�main] Weight 3.51 Initial window for main stress
11. *[��long,�str]# Weight 2.77 Penalizes final stress, found

only in monosyllables
(violable)

12. *[�long,�main] Weight 2.12 WEIGHT-TO-STRESS

13. *[�long][ ]# Weight 0.19 Minuscule penalty for CV�CV
a End Rule Left (#4) is ganged with #10 and others; no form violating it receives a penalty less than 8.04. WEIGHT-

TO-STRESS (#12) is ganged with #9 and others; no form violating it receives a penalty less than 5.86.

(which were assumed to be the stress-bearing units, standing in for syllables). This is essentially
the same reason why Shona vowel harmony was unlearnable without projections. The system
could learn Wargamay stress without the higher grid projections (main and stress, needed for
unbounded stress), though the resulting grammar was more complicated.

8.5 Additional Constraints

The 43 constraints discussed above account for all of the phonotactics of Wargamay discussed
by Dixon (1981). The learner also selected 57 additional constraints that have no direct analogue
in Dixon’s analysis. A complete list of these constraints appears in appendix D.

These additional constraints tend to be somewhat complex and unintuitive from a phonolo-
gist’s point of view. They either are unviolated in the training data (28 constraints) or are violated
only a few times, indicating underrepresentation (29 constraints). All are stated on the default
projection; that is, they are segmental constraints. None is weighted higher than 5.0; in contrast,
the learner assigned values over 5 to several highly general, exceptionless constraints listed above.
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We have two conjectures for the presence of these puzzling constraints. First, it is possible
that they are valid, by which we mean that had it been possible to carry out experiments with
Wargamay speakers of the kind Scholes performed, it would have emerged that test forms violating
these constraints were rated low. Another possibility, however, is that our learner overfitted the
data, seizing on generalizations that are accidentally true. If this is the case (as parallel study of
living languages could reveal), there are two possible responses.

One would seek phonology-independent measures of grammar complexity that would limit
the number of constraints learned. We note that the last ‘‘Dixonian’’ constraint in our grammar
(ignoring the mostly redundant constraint #2 in table 17) was discovered 56th; thus, halting
constraint selection earlier would have eliminated most of the problematic constraints. It may be
worth exploring measures (such as Minimum Description Length; Grünwald, Myung, and Pitt
2005) that could prune away constraints that do not appreciably increase the probability of the
learning data.

The other possibility is that our system is still too close to the inductive baseline: it requires
principles of phonological theory that will help it avoid accidentally true generalizations on the
default projection. One such principle concerns the role of stress in segmental sequencing. Twelve
of our puzzling constraints mentioned the natural class [�str, �main], that is, secondary-stressed
vowels. We suspect that no such constraints are possible in phonology; segmental sequencing is
often sensitive to stress, but hierarchically: a particular sequence is possible when it includes a
vowel with a degree of stress greater or lower than some particular value. Formal means for
characterizing such hierarchies are given in Prince and Smolensky 1993/2004:sec. 5.1 and de
Lacy 2004. For the remainder, it may be useful to invoke general principles of segment licensing,
notably the principles of sonority sequencing (Sievers 1901) and cue theory (Steriade 1999,
2001a).

8.6 Summary

The present investigation of Wargamay has demonstrated the ability of our model to account for
an entire phonotactic system. It has also sharpened Dixon’s (1981) description of the language’s
segmental phonotactics, revealing gradient patterns in the word-final consonant inventory and a
previously unnoticed restriction on nonhomorganic nasal-stop clusters, and it has demonstrated
the ability of metrical projections to account for a weight-sensitive stress pattern. The learner
may also have overfitted the system of segmental phonotactics, an issue for further research.

9 General Discussion

In sum, we claim to have developed a system that can learn a nontrivial portion of the phonotactics
of natural languages, given only a modest amount of information in the form of a segment
inventory, a feature system, and a projection set. In so doing, we have developed arguments that
phonological representations must include apparatus similar to the vowel tier (section 6) and the
metrical grid (sections 7, 8). In this final section, we discuss questions that arise from our study
and outline directions for future work.
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9.1 Comparison with Optimality Theory

Our model differs from OT in three main respects: the constraints in a grammar are not universal,
but learned from language-specific data; the constraints are weighted rather than ranked; and the
well-formedness of a surface form is determined independently of an input or any other type of
conditioning information. Many hybrid approaches are possible; for example, Pater, Potts, and
Bhatt (2006) propose a model in which constraints are weighted, but which otherwise adopts the
assumptions of OT. Without attempting to explore the entire space of possibilities, we will restrict
our comparison with OT to the topics of weighting versus ranking and the role of inputs.

As originally observed by Prince and Smolensky (1993:219) (see also Prince 2002, Smolen-
sky and Legendre 2006), the languages defined by strict domination are not the same as those
defined by numerical weighting, given the same set of constraints. The question of whether
constraints are ranked or weighted in natural language is an empirical one.

Two important advantages of our approach are that it has a well-established mathematical
foundation and that it permits grammars that make gradient predictions. For OT, the Constraint
Demotion algorithm family of Tesar and Smolensky (1998, 2000) satisfies the first of these criteria
in a sense, as it provably converges for the case of consistent input-output mappings. However,
for purposes of phonotactic learning, where the goal is to learn a maximally restrictive grammar,
the algorithm does not suffice, and efforts to adapt it to phonotactic learning have been limited
to adding ad hoc heuristics intended to rank faithfulness constraints as low as possible (Hayes 2004,
Prince and Tesar 2004). Moreover, the grammars learned with these heuristics are ‘‘brittle’’—they
cannot rate forms gradiently (going against experimental observation; section 2.3), and they cannot
treat phonotactic patterns that have even one counterexample. Thus, for example, one single word
containing [pw] (e.g., Puerto Rico) would suffice to produce a low ranking for the constraint
against labial � [w] clusters. In contrast, a maximum entropy model responds flexibly and
sensitively to the range of frequencies encountered in the learning data.

Other algorithms satisfy the gradience criterion, but fail elsewhere. The Gradual Learning
Algorithm (Boersma 1997, Boersma and Hayes 2001) responds flexibly to gradient data, but in
a well-defined class of cases it fails to find the target grammar (Pater 2008).27 The OT model of
Pater and Coetzee (2006) also has the capacity to treat gradience, reacting to imperfect phonotactic
generalizations by creating lexically specific faithfulness constraints. However, the statistic this
model employs is just O (observed), not O/E (observed/expected); essentially, it ranks markedness
constraints by sorting them in increasing order of O. This is problematic, because constraints
with identical O values but sharply different E values differ in their effects. For example, Clements
and Keyser (1983:48) propose a constraint whose sole purpose is to ban the onset [stw]; its
analogue in our grammar is #20 in table 4. Since English lacks [stw], the O value for this constraint
is zero. Its E value is low, since [stw] contains [tw] and thus is already penalized by #23 in table

27 More recent work has proposed substitutes for the Gradual Learning Algorithm that address its shortcomings (Lin
2005b, n.d., Wilson 2007, Maslova, to appear). However, this work has not yet addressed the problem of learning
phonotactics.
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4. In contrast, the onset [skt] violates a very general constraint on sonority sequencing, the highly
weighted #3. This constraint also has an O of zero, but because it does not substantially overlap
with simpler constraints, it has a much higher E. While we lack experimental data, we think it
very likely that [skt] would be rated as much worse than [stw]. Such cases suggest that O alone
will not suffice to model native intuition; E is needed, too.

The closest OT model to our own is that of Jarosz (2006). As we do, Jarosz uses a search
procedure that maximizes the probability of the learning data. She treats gradience by letting
the system learn multiple grammars, each with its own probability. While Jarosz’s model is
mathematically principled, it relies on enumeration of all N! rankings and thus could not be used
at present for modeling data patterns of realistic size.

9.2 No Faithfulness

Our system assigns probabilities to each form on its own, not as a member of a candidate set
derived from a particular input. It follows that our system uses no faithfulness constraints, which
penalize differences between inputs and outputs.

In a system that includes inputs and faithfulness constraints, markedness constraints can
often be simplified. For example, to characterize a penultimate-stress language that tolerates
stressed monosyllables (e.g., Polish), our system deploys the constraint *[ ][�stress]# (table 11,
#5). With faithfulness and ranking, this constraint can be simplified to a straightforward ban on
final stress, *[�stress]# (NONFINALITY; Prince and Smolensky 1993/2004:42). The crucial ranking
is �DEP(�), CULMINATIVITY� �� *[�stress]#, where DEP(�) forbids the insertion of syllables of
any kind and CULMINATIVITY requires words to have stresses. This partial grammar is illustrated
in (23).28

(23) A faithfulness-based account of penultimate stress

a. /� �/ CULMINATIVITY DEP(�) *[�stress]#

	 �� �

� �� *!

� � *!

b. /�/

	 �� *

�� � *!

� *!

It can be seen that faithfulness, in the form of DEP(�), is needed to let [��] win for underlying /�/

28 For brevity, we omit whatever constraint is needed to force penultimate stress in words of three or more syllables.
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instead of [�� �]. Our own FAITH-less system, equipped with just CULMINATIVITY and NONFINALITY,
would assign all of the probability to polysyllabic forms, thus wrongly designating [��] as illegal.

More generally, faithfulness constraints permit probability to be distributed not across all of
�, but across specific subsets of it: [��] is legal because it is the best monosyllable, not because
it is violation-free. Our own system, in contrast, needs to set up grammars in which all phonotacti-
cally perfect forms are free of violations.29

We concede a lesser elegance in such cases, but not necessarily the scientific ground, for
the following reasons.

First, as Chomsky and Halle emphasize in SPE, we can only evaluate an acquisition model
(3) by ‘‘confronting it with empirical evidence relating to the grammar that actually underlies
the speaker’s performance’’ (1968:331); they go on to say, ‘‘We stress this fact because the
problem has so often been misconstrued as one of ‘taste’ or ‘elegance.’ ’’ We agree that the
question is an empirical one. Phonotactic grammars that are insufficiently general typically leave
gaps: illegal forms that fall between the constraints and are thus misclassified as legal. However,
this has not been a problem for the grammars learned by our system. As we have shown with
exhaustive testing, these grammars effectively separate well-formed structures from ill-formed
ones, with overlap limited to attested forms that are highly underrepresented. The reason is that
the model is designed to defend actively against gaps. The process of sample creation (section
3.3) constantly explores the space of phonotactic possibilities, looking for illegal forms that should
be ruled out with new constraints.

The other reason to favor general grammars is that only such grammars can account for how
humans extend their knowledge to new forms. For instance, a grammar of English that simply
listed the existing syllable onsets would fail to generalize to unattested onsets in the way observed
by Scholes (1966). Because our model seeks general constraints (section 4.2.2) based on natural
classes, it captures the distinctions among the unattested clusters tested by Scholes rather well.
Whether the model would perform even more accurately if it made use of faithfulness is a matter
for future work to determine.

9.3 Relating Phonotactics to Alternation

Phonological alternation occurs when morphemes take on different forms in different contexts.
It is related to phonotactics because alternations frequently are seen to enforce the phonotactics
dynamically. For instance, the English plural morpheme /-z/ is altered to [-s] following voiceless
obstruents, as in cups [kRps], in order to avoid a violation of the phonotactic constraint that bans
voicing disagreement in final obstruent clusters. This is the essence of the ‘‘conspiracy problem’’

29 We emphasize that the issue at hand is not whether or not maxent grammars can mimic the effects of strict
constraint ranking. This becomes clear when one considers applications of maximum entropy intended to derive outputs
from inputs, as in Goldwater and Johnson 2003. Here, strict ranking is mimicked by large differences in weights. For
instance, for (23) a maxent grammar that weights the constraints (in order of appearance) at 32.2, 32.2, and 15.6 derives
the correct output probabilities (i.e., 1 for winners, 0 for losers) to within seven significant figures.
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(Kisseberth 1970), which has been the focus of a great deal of phonological theorizing, notably
in OT. OT seeks to reduce the description of alternations to the same principles that govern
phonotactics: the ranking of markedness over faithfulness constraints results in both static restric-
tions on surface forms and alternations that respect those restrictions.

Despite the many successes achieved in OT, we are not convinced that the link between
phonotactics and alternation is as tight as the theory claims. In fact, not all alternations solve
phonotactic problems. In Yidi« phonology, [u] is chosen (productively) as the epenthetic vowel
following a nasal consonant, yet there is no evident connection between nasality and [u] in
Yidi« phonotactics (Hayes 1999b). English vowel length alternations (SPE) are phonotactically
motivated insofar as they optimize foot structure (Prince 1990, Hayes 1995), but the accompanying
quality alternations ([i�] � [[], [eì] � [+], [aì] � [ì], [oF] � [&]) have no evident phonotactic
basis.

We suggest that the proper link between alternations and phonotactics is at the level of
language learning: knowing the phonotactics makes it easier for the language learner to discover
alternations. Thus, for example, an English-learning child who already knew the principle of
voicing agreement in final obstruent clusters would be in a good position to understand and
analyze the voicing alternation in the plural suffix (Albright and Hayes 2002, Hayes 2004, Prince
and Tesar 2004). That is, it would be immediately apparent that the simple concatenation
[kRp]�[z] is insufficient for the plural of cup, owing to its phonotactic violation; and it would
remain only to find the change needed to produce the correct output [kRps].

There is experimental evidence compatible with this conception. Children evidently learn at
least some of the phonotactics of their language very early (i.e., in infancy; see Hayes 2004 for
literature review)—so that whatever model of acquisition is developed should in any event include
the capacity to learn phonotactics solely from distributional data. Moreover, the experimental
findings of Pater and Tessier (2003) suggest that phonotactic knowledge does indeed assist learners
in finding alternation patterns. A learning system for phonological alternations devised by Albright
and Hayes (2002, 2003) already incorporates an elementary capacity to use phonotactic knowledge
to assist learning, as does the OT-based system of Tesar and Prince (2003).

We suggest that human language learners first obtain an outline analysis of their language’s
phonotactics, following the method described here, then take on the many forms of string mapping
that must be learned: mapping from paradigmatic base forms to the other paradigm members
(Albright 2002a), from bases to reduplicants (McCarthy and Prince 1995), from one free variant
to another (Kawahara 2002), and so on. These mappings are learned as a maxent grammar that
incorporates faithfulness constraints. The constraints used for string mappings would include
markedness constraints learned at the phonotactic stage, but they might also include constraints
learned from the mapping data themselves, to cover cases like the Yidi« and English alternations
just mentioned.

This sketch is one instantiation of what we call learning-theoretic phonology, by which we
mean a theory whose overall architecture recapitulates the incremental process through which
phonological knowledge is acquired.
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9.4 How Is Phonological Typology to Be Explained?

While establishing the content of the acquisition module AM ((3) above) strikes us as the central
theoretical challenge in phonology, there is a second question that also deserves attention: why
are languages the way they are? More specifically, what is the basis for the systematic crosslinguis-
tic patterns, especially involving markedness, that emerge from typological study? Certainly an
inductive baseline learner cannot explain them; typologically unnatural patterns that can be charac-
terized by general and accurate constraints will be just as learnable as the typologically natural
ones.

One possible response to this question would be to say that, as our inductive baseline strategy
is pursued further, it will turn out that the only effective learning strategy is one with an extremely
rich UG—a UG that incorporates the entire constraint set for phonology (Prince and Smolensky
1993/2004, Tesar and Smolensky 1998, 2000, McCarthy 2002). If so, the problem of typology
will likely be solved, and the outcome of our efforts will be an inductive baseline argument for
the universal-constraint approach.

However, there are other ways to enrich the inductive baseline model that are more conserva-
tive in their reliance on UG. For instance, language learners could make use of their own phonetic
experience, accessing it to discover phonetically natural constraints grounded in articulation and
perception (Boersma 1998, Hayes 1999a, Steriade 1999, 2001a,b, Gordon 2004, Hayes, Kirchner,
and Steriade 2004). Preference for such constraints would constitute a learning bias in favor of
phonological systems that are easier to produce or perceive, or that suffer a lesser recognition
burden from alternation. For experimental evidence in favor of learning biases, and a mechanism
(based on maximum entropy) whereby they could be incorporated into a general learning scheme,
see Wilson 2006.

Further afield, we note that many scholars hold the view that not all typological patterns
should be explained by UG; instead, the diachronic process of language transmission and mistrans-
mission is responsible for much or all of typology. For representative statements of this idea, see
Ohala 1981, Baroni 2001, Myers 2002, and Blevins 2004. We think that more serious assessment of
this position will become possible as formally implemented models of the process of phonological
evolution (de Boer 2001, Kochetov 2002, Boersma 2005, Boersma and Hamann 2006, Wedel
2007) become increasingly available and are applied to data patterns of realistic size.

9.5 Hidden Structure

Tesar and Smolensky (1998, 2000) and Tesar (2004) address the problem of ‘‘hidden structure’’
in phonological learning. By this they mean structure that is not detectable in the phonetic signal,
but is phonologically present and provides order and systematicity to the data pattern. An example
of hidden structure is syllable weight (e.g., Hayes 1995:sec. 3.9.2): certain properties of syllables
are used to classify them into light and heavy categories, which then can be used to make sense
of other patterns, particularly stress.
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Hidden structure is often partly language-specific; for example, different languages impose
different criteria for what counts as a heavy syllable. This creates a ‘‘chicken-or-egg’’ problem:
we need to know the language-specific criterion of syllable weight in order to detect the stress
pattern, but it is often the stress pattern itself that gives the main evidence for the syllable weight
criterion. Tesar and Smolensky offer intriguing methods, based on expectation maximization and
inconsistency detection, to discover both the hidden structure and the generalizations based on it.

While our present model incorporates no clear cases of hidden structure, we believe it could
be scaled up to learn it. The key idea is that the correct choice of hidden structure is detectable
by maxent methods: the correct hidden structure will yield a tighter phonotactic characterization,
which increases the probability of the learning data, a measurable quantity under the maxent
approach. In future work we hope to address the problem in these terms.

9.6 Directions for Future Work

In expanding the approach taken here, we think an important line to follow will be to enrich the
class of formal mechanisms it can access. In other words, while we have shown that vowel tiers
and grids are important to phonotactic learning, we judge that our system is still too close to its
original inductive baseline, as there are phonological phenomena it clearly cannot learn unless
further modified. We end by giving two examples.

First, we cannot claim that our system of projections has fully solved the problem of learning
nonlocal phonotactic dependencies. Notably, it cannot account for consonant-to-consonant depen-
dencies of the kind studied in McCarthy 1979, 1988, MacEachern 1999, Frisch and Zawaydeh
2001, Frisch, Pierrehumbert, and Broe 2004, and Rose and Walker 2004. Simply adding a conso-
nant projection is unlikely to suffice for these cases, because of two special factors. Consonant-
to-consonant phonotactics relies heavily on similarity: those consonants that are most similar are
the ones whose distribution is phonotactically regulated. Further, there are also gradient distance
effects: consonants that are separated at a short distance are regulated more closely than those at
greater distances. Neither of these effects could be modeled merely by introducing a consonant
projection. We anticipate that the right approach would be to incorporate a similarity metric into
the theory (for a review of various possibilities, see Bailey and Hahn 2001) and use it to scan
the nearby segments.

We also lack a theory to learn the phonotactics of neutral vowels—that is, cases where
particular vowels (not just consonants) are skipped over in vowel harmony. We are encouraged
here by findings (Gordon 1999, Gick et al. 2006, Benus and Gafos 2007) that in their allophonic
forms, neutral vowels can be weakly harmonic, taking on slightly different phonetic forms depend-
ing on the neighboring harmonic vowels. The incorporation of such phonetic detail into the
representations would ‘‘localize’’ the phonotactics on the vowel projection, perhaps sufficing to
make neutral-vowel phonotactics learnable.

Appendix A: Generating Samples

As noted in section 4.2.1, to obtain E[Ci] (expected violation counts) when we are seeking a new
constraint to add to the grammar, we generate a ‘‘sample’’—that is, a set of forms drawn from
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the probability distribution defined by the current grammar. Our procedure for sample creation
is as follows. We assume that the current grammar has been represented as a finite state machine
�, constructed as in section 3.3.2. � is intersected with the machine that accepts �n (the set of
all strings of length n), yielding an acyclic machine �, which represents every possible string x
of length n together with its score h(x), as defined in (4).

Each transition t in � has a violation vector V(t), representing the violations incurred by
any path traversing t. The cost of t is defined as e taken to the negative power of the dot product

of the current weights and V(t), that is, exp(��N
i=1

wi V(t)i). Following MacKay (2003), � is

globally normalized by dividing each transition t’s cost by the total cost of all paths from the
terminus of t to the final state in �.

Samples of length n are generated by beginning at the initial state of � and randomly
selecting transitions until the final state is reached. Specifically, if the current state is q, the
probability of choosing transition t from q is equal to t’s share of the total probability of transitions
leaving q. The number of samples of length n is determined by fitting a Poisson distribution to
the observed distribution of lengths in the learning data, and the sample size as a whole roughly
matches that of the learning data.

Appendix B: Modeling English Onsets with ‘‘Exotic’’ Items Included in the Learning
Data

We mentioned in section 5.1 that it is hard to determine to what extent children pay attention to
extremely rare onsets (e.g., from borrowed words) when learning English onset phonotactics. In
the main text, we report a simulation using only ‘‘nonexotic’’ data. In this appendix, we show
what happens when exotic onsets are included.

Following a method given in Pierrehumbert 2001b, we attempted to mimic the language-
learning experience of the children who participated in Scholes’s (1996) experiment. To this end,
we employed the CELEX English database (Baayen, Piepenbrock, and Gulikers 1995).30 We first
removed the null-onset words, then obtained frequency estimates of the remaining 39,053 forms
by counting the hits for each when searched on the Google search engine.31 We then used these
counts as the basis of simulated childhoods: sampling from the overall token frequencies, we
selected words to be included in the simulated vocabularies. A word was included in a vocabulary
once it had been ‘‘heard’’ five times, and the vocabularies were set at 10,000 words. We repeated
this procedure 10 times.

This method yielded learning sets that included a modest number of exotic onsets, while
matching closely in overall frequencies with the primary corpus (11), the median correlation being
r � 0.967. We report here just one learning run, the one that did worst in matching the Scholes

30 We used CELEX here, not the CMU Pronouncing Dictionary, since we judged that the latter contains substantially
more typographical errors. These are more perilous in preparing non-hand-edited corpora.

31 For discussion of this method, see Blair, Urland, and Ma 2002, Hayes and Londe 2006:64–65.
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data. In this run, the training data included three ‘‘exotic’’ onsets (four instances of [sr], one of
[Ç], and one of [sf]), but lacked any cases of [hw], [skl], or [‡w]. Given these learning data, our
model produced a grammar that correlated fairly well with the Scholes data (r � 0.929, compared
with 0.946 for the main simulation given above) and did about as well as the main simulation in
separating attested from unattested clusters. In the other nine learning sets, the correlation with
the Scholes data ranged from 0.930 to 0.943.

We also tried simply learning a grammar from the type frequencies for all onsets, using the
entire CELEX database. This produced a considerably larger number of ‘‘exotic’’ onsets (25 not
included in (11)), and learning performance was somewhat worse. Correlation across 10 runs
with the Scholes data ranged from 0.913 to 0.928, and separation of legal forms from illegal was
rather more haphazard.

We conclude that phonological learning is possible under our system with exotic onsets but
that performance is better when the exotic forms are removed. It does not seem impossible that
children could recognize exotic items as such, because they often contain clues to their status,
specifically their limitation to learned words ([sf]), interjections ([p+]), or words describing far-
away places and cultural items (labial � [w]).

Appendix C: Training Sets and Constraints for the Stress Typology of Gordon 2002

The following chart lists the grammars our system learned for the patterns in Gordon’s (2002)
typological survey of quantity-insensitive stress. Constraints are listed in discovery order. Abbrevi-
ations: M � main tier, S � stress tier; otherwise default tier; [s] � [stress], [m] � [main], 1
� [�main], 2 � [�stress, �main], 0 � [�stress].

Language Stress pattern Constraints learned

Araucanian 1, 01, 010, 0102, 01020, 010202, *## M 4.6, *#[�m] S 1.4, *[�s][�s] 5.5,
0102020, 01020202 *[ ][ ] M 2.7, *00 2.7, *#[ ][�m] 6.1,

*[�s][ ][��s,�m] 4.7

Atayal 1, 01, 001, 0001, 00001, 000001, *## M 6.3, *[�m] S 1.9, *[�s][ ] 8.0
0000001, 00000001

Biangai 1, 10, 210, 2010, 22010, 202010, *## M 4.6, *1[ ] S 3.4, *#0 2.7, *[ ][ ][ ][�m]
2202010, 20202010 S 1.0, *00 3.2, *[ ][�s]# 2.6, *[ ][�s][�s] 5.2,

*[�m][ ]# 4.2, *[��s,�m][ ][�s] 4.0,
*#[��s,�m][�s] 3.5

Cavineña 1, 10, 010, 2010, 02010, 202010, *## M 5.0, *1[ ] S 2.8, *[�s][�s] 5.4, *00 3.2,
0202010, 20202010 *[ ][�s]# 2.7, *[�m][ ]# 4.3,

*[��s,�m][ ][�s] 4.4

Cayuvava 1, 10, 100, 0100, 00100, 200100, *## M 5.6, *[ ][�m] S 1.1, *[�s][�s] 2.5,
0200100, 00200100 *[ ][ ] M 1.6, *[ ][�s]# 4.6, *[�s][ ][�s] 1.9,

*1[ ] S 1.8, *000 2.2, *[ ][�s][ ]# 3.0,
*[�s][ ][ ][�m] 3.8, *[�m][ ][ ]# 3.5,
*[��s,�m][ ][ ][�s] 3.3
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Language Stress pattern Constraints learned

Central 1, 01, 021, 0201, 02021, 020201, *## M 4.6, *1[ ] S 20.0, *[�m]# 20.0,
Alaskan 0202021, 02020201 *[ ][ ][ ][�m] S 4.6, *#[�s,�m] 20.0,
Yupik *[�s][�s,�m] 20.0, *[��s,�m]0 20.0,

*[��s,�m][ ][�s][ ] 20.0

Chitimacha 1, 10, 100, 1000, 10000, 100000, *## M 3.1, *[�m] S 2.6, *#[�m] 3.9, *[ ][ ]
1000000, 10000000 M 2.6, *[ ][�s] 5.7

Creek 1, 01, 010, 0201, 02010, 020201, *## M 6.2, *1[ ] S 2.9, *[�s][�s] 2.7,
0202010, 02020201 *#[�s,�m] 2.1, *00 5.4, *#[�s][ ] 4.9,

*[��s,�m][ ][�s] 5.0

Estonian (data 1, 10, 100, 1020, 10200, 10020, *## M 2.6, *#[�m] S 2.1, *#[�m] 3.5, *[ ][ ]
from Hint 102020, 100200, 1020200, M 2.8, *[�m][ ][ ][ ] S 0.1, *[�s][�s] 6.6,
1973) 1020020, 1002020, 10202020, *[�s,�m]# 2.4, *0[��s,�m]0 5.8, *[ ][�s]#

10200200, 10020200, 10020020 4.3

Garawa 1, 10, 100, 1020, 10020, 102020, *## M 1.7, *#[�m] S 1.2, *#[�m] 5.4, *[ ][ ]
1002020, 10202020 M 3.2, *[�m][ ][ ][ ] S 0.1, *[�s][�s] 6.3,

*[�s,�m]# 5.9, *[�m][��s,�m]0 6.3, *[ ]1
S 3.4

Georgian 1, 10, 100, 0100, 20100, 200100, *## M 5.3, *[ ][�m] S 12.0, *[�s][�s] 7.6,
2000100, 20000100 *[ ][ ] M 10.1, *[ ][�s,�m] 12.1, *[ ][�s]#

4.4, *#0[�m] 20.0, *[ ][�s][ ]# 0.2,
*[�m][ ][ ]# 10.0, *1[ ][ ][ ] 16.1

Gosiute 1, 12, 102, 1022, 10202, 102022, *## M 6.8, *#[�m] S 1.3, *#[�m] 1.8, *[ ][ ]
Shoshone 1020202, 10202022 M 4.5, *0# 1.4, *0[��s,�m] 6.6,

*[�s][ ][��s,�m] 0.9, *[�s][�s][ ] 6.2,
*[ ][��s,�m]# 6.2

Hopi 1, 10, 010, 0100, 01000, 010000, *## M 4.6, *[�m] S 2.7, *[�s][�s] 1.2,
0100000, 01000000 *[ ][ ] M 2.6, *#[�m][�m] 2.0, *#[ ][�m][ ]

6.2, *[ ][ ] S 5.0, *[ ][�s]# 4.4

Indonesian 1, 10, 010, 2010, 20010, 202010, *## M 7.5, *1[ ] S 7.0, *[�s][�s] 20.0,
2002010, 20202010 *[ ][�s]# 7.1, *[�m][ ]# 18.5, *#[ ][�s,�m]

1.3, *#0[�m] 5.4, *[��s,�m]00 1.3, *[ ][ ]00
20.0

Ioway-Oto 1, 01, 010, 0100, 01002, 010020, *## M 4.6, *#[�m] S 1.7, *[�s][�s] 5.8,
0100200, 01002002 *[ ][ ] M 2.0, *#[ ][�m] 6.1, *[�m][ ][ ] S

1.0, *[�s][ ][�s] 4.6, *00[��s,�m] 3.2,
*[�s][ ][ ][��s,�m] 3.6

Lakota 1, 01, 010, 0100, 01000, 010000, *## M 4.5, *[�m] S 2.8, *[�s][�s] 1.1,
0100000, 01000000 *[ ][ ] M 2.7, *#[ ][�m] 7.3, *[ ][ ] S 5.2

Lower 1, 10, 100, 1020, 10020, 100020, *## M 5.0, *#[�m] S 5.4, *#[�m] 20.0, *[ ][ ]
Sorbian 1000020, 10000020 M 20.0, *[�m][ ] S 20.0, *[�s][�s] 20.0,

*[�s,�m]# 20.0, *[�s,�m][ ][ ] 20.0,
*[�m][��s,�m][ ]# 20.0
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Language Stress pattern Constraints learned

Macedonian 1, 10, 100, 0100, 00100, 000100, *## M 20.0, *[�m] S 20.0, *[ ][ ] M 20.0,
0000100, 00000100 *[ ][�s]# 20.0, *[ ][�s][ ]# 20.0, *[ ][ ] S

20.0, *[�s][ ][ ][ ] 20.0, *[�m][ ][ ]# 20.0

Malakmalak 1, 10, 010, 1020, 01020, 102020, *## M 4.8, *#[�m] S 2.4, *[�s][�s] 2.9,
0102020, 10202020 *[ ][ ] M 1.4, *00 5.4, *[�s,�m]# 2.1, *[ ]1 S

1.9, *[ ][�s]# 4.9, *[�s][ ][��s,�m] 4.6

Maranungku 1, 10, 102, 1020, 10202, 102020, *## M 20.0, *#[�m] S 11.5, *#[�m] 11.5,
1020202, 10202020 *[ ][ ] M 4.0, *[�m][ ][ ][ ] S 5.4, *[�s][�s]

20.0, *0[��s,�m] 20.0, *[�s][ ][ ][�s] 2.8

Nahuatl 1, 10, 010, 0010, 00010, 000010, *## M 4.6, *[�m] S 2.9, *[�s][�s] 1.8,
0000010, 00000010 *[ ][ ] M 2.9, *[ ][�s]# 3.5, *[�s][ ][ ] 5.1,

*[�m][ ]# 3.8

Pacific Yupik 1, 01, 010, 0102, 01002, 010020, *## M 4.6, *#[�m] S 1.4, *[�s][�s] 5.9,
0100202, 01002002 *[ ][ ] M 2.5, *#[ ][�m] 6.2, *[�m][ ][ ] S

1.1, *00# 2.2, *00[��s,�m] 1.8,
*[�s][ ][ ][��s,�m] 5.9,
*[�s][ ][��s,�m]# 3.7

Palestinian 1, 10, 201, 2010, 20201, 202010, *## M 6.2, *1[ ] S 7.1, *[�s][�s] 6.8, *#0 6.1,
Arabic 2020201, 20202010 *00 6.5

Pintupi 1, 10, 100, 1020, 10200, 102020, *## M 2.8, *#[�m] S 1.8, *#[�m] 3.5, *[ ][ ]
1020200, 10202020 M 2.7, *[�m][ ][ ][ ] S 0.2, *[�s][�s] 6.1,

*[�s,�m]# 5.3, *0[ ][�s] 2.0,
*0[��s,�m][ ] 5.6, *[ ]1 3.4

Piro 1, 10, 010, 2010, 20010, 202010, *## M 5.1, *1[ ] S 5.8, *[�s][�s] 5.6,
2020010, 20202010 *[ ][�s]# 3.0, *[�m][ ]# 3.7, *#[ ][�s,�m]

2.2, *#0[�m] 4.7, *[��s,�m][ ][�s,�m] 1.5,
*[��s,�m]0[�m] 5.2

Quebec 1, 21, 201, 2001, 20001, 200001, *## M 2.7, *[ ][�m] S 3.9, *[�m]# 4.4,
French 2000001, 20000001 *[ ][ ] M 2.6, *#0 7.3, *[ ][ ][ ] S 3.8, *1[ ]

4.3

Sanuma 1, 10, 010, 2010, 20010, 200010, *## M 5.0, *[ ][�m] S 3.1, *[�s][�s] 4.5,
2000010, 20000010 *[ ][ ] M 3.1, *[ ][�s,�m] 3.5, *[ ][�s]# 2.7,

*[�m][ ]# 4.2, *#0[�m] 5.8, *1[ ][ ] 4.4

Southern 1, 10, 010, 0120, 01020, 010220, *## M 4.6, *#[�m] S 1.4, *[�s]1 2.2, *[ ][ ]
Paiute 0102020, 01020220 M 2.0, *[�m][ ][ ][ ] S 0.1, *00 5.4,

*[�s,�m]# 2.2, *#[�s][�s] 1.0, *[ ]1 S 2.4,
*[�s][�s][�s] 5.0, *#[ ][�m][ ] 5.8,
*[�s][ ][��s,�m][ ] 5.6, *[ ][�s]# 4.9

Tauya 1, 21, 201, 2201, 20201, 220201, *## M 3.5, *1[ ] S 5.6, *[�m]# 3.8, *#0 5.6,
2020201, 22020201 *[��s,�m]0 6.3, *[ ][�s][�s] 6.5

Udihe 1, 01, 201, 2001, 20001, 200001, *## M 2.9, *[ ][�m] S 3.3, *[�s][�s] 4.4,
2000001, 20000001 *[ ][ ] M 3.1, *[�m]# 4.2, *[ ][�s,�m] 3.7,

*#[��s,�m][�m] 6.0, *1[ ] 4.4
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Urubu Kapor 1, 01, 201, 0201, 20201, 020201, *## M 3.6, *1[ ] S 1.9, *[�s][�s] 6.9, *[�m]#
2020201, 02020201 3.8, *[��s,�m]0 6.7

Walmatjari 1, 10, 100, 1020, 10200, 10020, *## M 20.0, *#[�m] S 20.0, *#[�m] 20.0,
(data from 100200, 100020, 1000200, *[ ][ ] M 5.1, *[�m][ ] S 20.0, *[�s][�s]
Hudson 1978) 1000020, 10000200, 10000020 20.0, *[�s,�m]# 20.0, *0[��s,�m][ ]# 20.0

Winnebago 1, 01, 001, 0010, 00102, 001002, *## M 4.7, *#[�m] S 1.5, *[�s][�s] 20.0,
0010020, 00100202 *[ ][ ] M 14.6, *#[�s][ ] 4.4, *[�m]00 20.0,

*[ ]1 S 14.6, *00# 20.0, *[�m][ ][ ] S 20.0,
*#[ ][ ][�m] 20.0, *[�s][ ][ ][��s,�m] 14.5

Appendix D: Further Constraints for Wargamay

The following 57 constraints for Wargamay were learned by our system but have no analogue
in Dixon’s (1981) phonotactic analysis; for discussion, see section 8.5. All were discovered on
the default projection; they are listed by descending order of weight.

Constraint Weight

1. *[�syl][�son,�dors][�back] 3.91
2. *[�long][�ant,�lat][��long,�high,�str] 3.65
3. *[�son,�approx][��long,�back,�str]# 3.60
4. *[�approx][�syl][��long] 3.55
5. *[�high,�main,�str][�lat] 3.51
6. *[�main][�son,�ant][�high,�main] 3.49
7. *[�syl][�back][��long,�back] 3.43
8. *[�approx,�syl][�ant][�str] 3.33
9. *[�high,�back,�main][�son][�back,�main] 3.18

10. *[�syl][�son,�cor][�back] 3.18
11. *[�main,�str][�son,�lab] 3.10
12. *[�cons][�son,�ant][��son,�ant] 3.05
13. *[��son,�ant][�long][�cons] 3.04
14. *[�son,�lab][�back,�main,�str] 3.04
15. *[�son,�dors][�main,�str] 3.02
16. *[�back][�long][�approx] 2.97
17. *#[�cons,�approx][��long,�back] 2.92
18. *[�high,�back,�main,�str][�son,�cor] 2.90
19. *[�ant][�son][�back,�main] 2.83
20. *[�str][�ant][�back,�str] 2.82
21. *[��long,�high,�str][�ant]# 2.81
22. *[�cons,�son][�long,�back] 2.77
23. *[�back][�high,�main,�str] 2.76
24. *[�main,�str][�cons][�back] 2.74
25. *[�high,�main,�str][�son,�ant] 2.74
26. *[�high,�back][�approx]# 2.73
27. *[�approx,�cor][�high,�back,�main][�cons] 2.70
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Constraint Weight

28. *[�back][�long][��cons,�son] 2.70
29. *[�back,�main][�back] 2.66
30. *#[�ant][��long,�back] 2.66
31. *[�back][�high,�syl][�cons] 2.65
32. *#[�son,�ant][�high,�str] 2.64
33. *[�approx][�son][�high,�back,�syl] 2.60
34. *[�son,�approx,�ant][�high,�main,�str] 2.58
35. *[�cons][�long,�high][�approx,�cor] 2.57
36. *[�high,�back,�main,�str][�lab] 2.52
37. *[�back,�main,�str][�son,�ant] 2.51
38. *[�long][��lat][�son,�syl] 2.48
39. *[�main][�back][��long,�back,�str] 2.47
40. *[�cons][�long,�high][�approx] 2.47
41. *[�long,�back][�son,�lab] 2.47
42. *[�ant][�son][�back,�str] 2.44
43. *[�syl][�ant][�back,�main] 2.43
44. *[�syl][�son,�cor][�high,�main] 2.40
45. *[�approx][�son][�high,�str] 2.34
46. *[�long,�back][�son,�ant] 2.25
47. *[�son,�cor][�long] 2.18
48. *[�approx][�son,�dors] 2.16
49. *[�high,�main,�str][�cons] 2.15
50. *[�long,�high][�cons][��long,�back,�str] 2.09
51. *[�main][�back][�high,�back,�main] 2.09
52. *[�cons][�high,�syl][�back] 1.92
53. *[�back,�syl][�syl] 1.84
54. *[�long][�back] 1.52
55. *[�syl][�son,�cor][�high,�back] 1.16
56. *[�syl][�ant][�ant] 0.95
57. *[�son,�cor][�long,�back] 0.40
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in phonological acquisition, ed. by René Kager, Joe Pater, and Wim Zonneveld, 245–291. Cambridge:
Cambridge University Press.

Rastle, Kathleen, Jonathan Harrington, and Max Coltheart. 2002. The ARC Nonword Database. Quarterly
Journal of Experimental Psychology: Section A 55:1339–1362.

Riggle, Jason. 1999. Relational markedness in Bantu vowel harmony. In Phonology at Santa Cruz 6, ed.
by Adam Ussishkin, Dylan Herrick, Kazutaka Kurisu, and Nathan Sanders, 57–70. Santa Cruz:
University of California, Department of Linguistics. Available at http://repositories.cdlib.org.

Riggle, Jason. 2004. Generation, recognition, and learning in finite state Optimality Theory. Doctoral disserta-
tion, UCLA, Los Angeles, CA.

Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement as correspondence. Language
80:475–531.

Rosenfeld, Ronald. 1996. A maximum entropy approach to adaptive statistical language modeling. Computer
Speech and Language 10:187–228. [Long version: Tech. rep. CMU-CS-94-138, Carnegie Mellon
University, Pittsburgh, PA.]

Ross, John R. 1972. The category squish: Endstation Hauptwort. In Chicago Linguistic Society (CLS) 8,
ed. by Paul M. Peranteau, Judith N. Levi, and Gloria C. Phares, 316–328. Chicago: University of
Chicago, Chicago Linguistic Society.

Scholes, Robert. 1966. Phonotactic grammaticality. The Hague: Mouton.
Schütze, Carson T. 1996. The empirical base of linguistics: Grammaticality and linguistic methodology.

Chicago: University of Chicago Press.
Selkirk, Elisabeth O. 1980a. Prosodic domains in phonology: Sanskrit revisited. In Juncture, ed. by Mark

Aronoff and Mary Louise Kean, 107–129. Saratoga, CA: Anma Libri.
Selkirk, Elisabeth O. 1980b. The role of prosodic categories in English word stress. Linguistic Inquiry 11:

563–605.
Selkirk, Elisabeth O. 1982. The syllable. In The structure of phonological representations (part II), ed. by

Harry van der Hulst and Norval Smith, 337–383. Dordrecht: Foris.
Sherer, Tim. 1994. Prosodic phonotactics. Doctoral dissertation, University of Massachusetts, Amherst.
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