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Abstract

Interpreting a seemingly simple function word like “or,” “behind,” or “more” can require logical,
numerical, and relational reasoning. How are such words learned by children? Prior acquisition theories
have often relied on positing a foundation of innate knowledge. Yet recent neural-network-based visual
question answering models apparently can learn to use function words as part of answering questions
about complex visual scenes. In this paper, we study what these models learn about function words,
in the hope of better understanding how the meanings of these words can be learned by both models
and children. We show that recurrent models trained on visually grounded language learn gradient
semantics for function words requiring spatial and numerical reasoning. Furthermore, we find that these
models can learn the meanings of logical connectives and and or without any prior knowledge of logical
reasoning as well as early evidence that they are sensitive to alternative expressions when interpreting
language. Finally, we show that word learning difficulty is dependent on the frequency of models’ input.
Our findings offer proof-of-concept evidence that it is possible to learn the nuanced interpretations
of function words in a visually grounded context by using non-symbolic general statistical learning
algorithms, without any prior knowledge of linguistic meaning.
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1. Introduction

When studying how children learn words, researchers often make the assumption that
knowing the meaning of a word w means having the ability to differentiate between things
that are w and things that are not (Bloom, 2002, ch. 1). This notion of meaning, sometimes
called “external meaning” is in contrast to “internal meaning”—the mental representation of
meaning that a person has for w—the favored definition of meaning in theoretical semantics.
Evaluating children’s ability to understand the meaning of words by how they use them in the
external world seems pretty straightforward in the case of nouns and predicates, but not so
much for function words, like determiners, conjunctions, and prepositions. These closed-class
words tend to have external meanings that only manifest themselves in how they modify other
words or sentences as a whole, making them difficult to study without referring in some way
to their internal meaning. Additionally, parsing their meaning often requires complex reason-
ing skills such as logical, numerical, spatial, or relational reasoning. The abstract nature and
complexity of function words are what make their acquisition by children so difficult to study
using conventional methods. Yet, these same qualities are also what make function words
an ideal test case to compare different theories of language acquisition and their respective
learning strategies.

It has been widely observed that children tend to acquire words and grammatical structures
in a specific order; this is also the case for function words. For example, and is much more
prevalent in children’s linguistic input and is acquired before or (Jasbi, Jaggi, & Frank, 2018;
Morris, 2008); Children start to correctly use the preposition behind before they do in front
of and furthermore, their initial uses of these words are possibly conditioned on contextual
factors like whether the referent object has the property of having a front and back, like a car
or a doll (E. V. Clark, 1977; Kuczaj & Maratsos, 1975; Windmiller, 1973), and the degree
of occlusion between two objects (Grigoroglou, Johanson, & Papafragou, 2019; Johnston,
1984). These differences in order of acquisition represent learning outcomes that can be used
as test cases to study the impact of different types of information available in the input on
learners’ ability to acquire these words.

Theories for the acquisition of function words tend to fall somewhere along the
spectrum between nativist explanations—for example, logical nativism (Crain, 2012)—
and usage-based approaches (Tomasello, 2005). Nativist theories posit that humans are
endowed with innate knowledge of some reasoning skills and that children may undergo
a series of maturational stages, to reach adult-like understanding. These stage-based and
symbolic learning explanations predict that conceptual differences between words may
lead to asymmetries in their acquisition. On the other hand, usage-based approaches
argue that the reasoning skills necessary for understanding function words are learned
through experience. Children learn these words using non-symbolic general learning mech-
anisms which are not exclusive to language acquisition. Usage-based learning mecha-
nisms specifically predict that frequency of exposure is a primary factor in determin-
ing the order in which new words may be learned. While frequency may also play
a role in nativist theories, it is often posited to be secondary to other conceptual
differences.
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1.1. The current study

In this paper, we will consider the acquisition of three pairs of function words and their
respective reasoning skills: (1) logical reasoning with the connectives or and and; (2) spatial
reasoning with the prepositions in front of and behind; (3) numerical reasoning with the scalar
quantifiers more and fewer. We hypothesize that these reasoning pairs can be learned using
non-symbolic general learning algorithms and, furthermore, that the ordering effects seen in
children’s acquisition of these words are simply the result of their frequency in children’s
input, rather than evidence for non-symbolic or stage-based learning strategies. We propose
to use computational models that learn these types of words from grounded input to test
these hypotheses.

We propose to use a new modeling approach, which considers models as independent
learners—in other words, like a new “species” of language learners—that can be leveraged to
implement “proofs of concept” (Lappin, 2021, ch. 1.2; Pearl, 2023; Portelance & Jasbi, 2023;
Tsuji, Cristia, & Dupoux, 2021; Warstadt & Bowman, 2023). A proof of concept can show us
what is learnable “in practice” for models and “in principle” for humans. In doing so, models
may be used to inform debates about the relative innateness of certain linguistic knowledge
(A. Clark & Lappin, 2011). This approach draws on recent model interpretability work show-
ing what kinds of grammatical knowledge language models learn (Futrell et al., 2019; J. Hu,
Gauthier, Qian, Wilcox, & Levy, 2020; Lake & Baroni, 2018; Linzen, Dupoux, & Goldberg,
2016; Manning, Clark, Hewitt, Khandelwal, & Levy, 2020), and what kinds of learning biases
they have (Papadimitriou & Jurafsky, 2023). With our experiments, we hope to offer proof of
concept evidence showing what is in practice learnable from visually grounded language on
the meaning of abstract function words requiring complex reasoning skills.

We use neural network models that learn from both linguistic and visual representations to
study the effect of visual grounding on learning the meaning of function words. We can con-
sider the interactions that may emerge from cross-modal statistical word learning, an open
question developmentalists are still tackling (Saffran & Kirkham, 2018). Specifically, we
experiment with neural network models learning a language in a visual question answering
task, where they must come up with word representations in order to answer questions about
visual scenes. The task we use is called the CLEVR (Compositional Language and Elemen-
tary Visual Reasoning) dataset (Johnson et al., 2017). It contains visual block-world scenes
and corresponding questions like “Are there more red cubes than metal spheres?” Models are
never given the meaning of words or any form of mapping between words and the content of
images. They must deduce this information during training. Learning the meaning of words
then becomes an auxiliary objective that can lead models to successfully complete their task:
to generate the correct answer given some string and an image (examples from the task are
given in Fig. 1).

In order to propose that a neural network learner offers additional proof that some
outcome—the meaning of function words—is likely learnable in humans, it is insufficient to
just show that the models can learn this outcome; we must also weigh in on what might have
led the model to learn it in the first place and acknowledge that the proposed prerequisites for
learning the outcome must also be available to human learners (Baroni, 2021). Furthermore,
we must outline the learning assumptions on which our proof-of-concept depends.
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Q: Are there more Q: What color is Q: Are there any Q: The matte thing Q: What number of Q: Is the big cyan

brown shiny objects the matte object to other things that are that is both in front cubes are the same metal thing the same
behind  the large the right of the large the same shape as the of the purple cube color as the rubber shape as the brown
rubber cylinder than block? large green thing? and to the left of the ball? thing?
gray blocks? A: blue A:no blue rubber cylinder is A:l A:no
A:yes what color?

A: green

Fig. 1. Example images and corresponding questions taken from the CLEVR dataset.

The learning mechanisms used by visual question answering models are almost certainly
different from those used by children, but they do share one high-level property: the use of
indirect negative evidence. Early work suggested that children do not make use of any explicit
negative evidence for word learning (Baker, 1979; Fodor & Crowther, 2002; Marcus, 1993;
Pinker, 1989). However, many researchers have shown that they do rely on implicit nega-
tive evidence (R. Brown, 1970; Chouinard & Clark, 2003; A. Clark & Lappin, 2011; Farrar,
1992; Penner, 1987; Saxton, 1997; Snow & Ferguson, 1977), for example, when their desired
outcomes are not met when they are misunderstood. The meanings of words may then be
learned indirectly from this evidence, and the same may be said for our models. Though visual
question answering models receive direct supervision on their training task—generating cor-
rect answers to questions—they do not receive direct supervision to learn abstract reasoning
or the meanings of function words; these learning outcomes are incidental to the task and
instead could be one of many strategies that models converge towards to answer the ques-
tions correctly. Our proof of concepts is thus conditional on the availability of some form of
supervision—direct or indirect—during learning.

Indeed, we are not the first to make these assumptions. Visual question answering models
have already been used to explore neural networks’ capacity to learn meaningful repre-
sentations of referential words, such as nouns and predicates when trained on language
tasks grounded in the visual world (Jiang et al., 2023; Mao, Gan, Kohli, Tenenbaum, &
Wu, 2019; Pillai, Matuszek, & Ferraro, 2021; Wang, Mao, Gershman, & Wu, 2021; Zellers
et al.,, 2021). As for function words, Hill, Hermann, Blunsom, and Clark (2018) briefly
consider how visually grounded models learn negation, and Kuhnle and Copestake (2019)
studied how these models interpret the quantifier most. Regier’s (1996) earlier extensive
work also considered how neural network models can learn to map visual scenes to spatial
prepositions, though his models did not learn from any linguistic input per se and predate
visual question answering models. Others more recently have also used these tasks to model
noun and predicate learning in children (Hill, Clark, Blunsom, & Hermann, 2020; Nikolaus
& Fourtassi, 2021). However, to the best of our knowledge, no work has probed visually
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In front vs. behind

Fig. 2. Threshold-based interpretation of behind and in front relative to gray cube in CLEVR dataset. (Image from
Johnson et al. 2017.)

grounded neural network models’ representations of the meaning of function words in the
context of children’s function word learning.
Throughout this paper, we will address three major research questions:

1. How do visually grounded question answering models learn to represent and interpret
function words and do these representations generalize to unseen linguistic and visual
contexts?

2. Does the existence of alternative expressions in each reasoning pair affect their acqui-
sition or are the meanings of function words acquired in isolation?

3. Do models learn these function words in a similar order to children and are these
ordering effects the results of their frequency or do they follow from other conceptual
explanations?

With respect to our first research question, each of our function words of interest is defined
in absolute terms and mapped to a function over predicates in the CLEVR dataset we use.
For example or is defined as the logical operator, A VvV B, more is defined as the function
greater than, |A| > |B|, and behind is defined as having a y-coordinate that is strictly greater
than some other referent’s, as in Fig. 2. In practice however, most of these words have much
more gradient meanings when used by people in naturalistic contexts. The use of language in
context distinguishes semantic representations from pragmatic interpretations. We probe how
models interpret these words in novel contexts to determine how their meanings may be rep-
resented. Do their interpretations suggest that they have clear-cut thresholds that distinguish
the meaning of words like more and fewer or does linguistic gradience arise as a result of their
learning environment when exposed to grounded language use in continuous visual settings?
In the CLEVR dataset, the underlying meanings of words like more and behind are threshold-
based. So, the statement “there are more As than Bs” is always interpreted as true as long
as the difference between |A| and |B| is over some threshold, here |A| — |B| > 0. Linguistic
gradience, on the other hand, may be thought of as allowing words to have different interpre-
tations depending on context as a function of some gradient factor. So instead, we may expect
our statement “there are more As than Bs” to be interpreted as true or false as a function of
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the magnitude of the difference |A| — |B| across contexts rather than based on some context-
agnostic threshold. If models can learn representations that lead to gradient interpretations
in novel contexts by using simple learning algorithms, then we can offer proof-of-concept
evidence that these function words are learnable from supervised data using non-symbolic
learning mechanisms.

With respect to our second research question, the existence of alternative expressions or
worlds is the cornerstone behind Gricean pragmatic reasoning, and what allows us to have
different interpretations of the same word in different contexts (Degen, 2023; Grice, 1975).
Children have been found to exhibit pragmatic reasoning skills in multiple domains, espe-
cially when alternative worlds are made salient (Baharloo, Vasil, Ellwood-Lowe, & Srini-
vasan, 2023; Barner, Brooks, & Bale, 2011; Horowitz & Frank, 2016; Katsos & Bishop, 2011;
Stiller, Goodman, & Frank, 2015). It is, however, unclear if this ability is acquired through
specific means. Following Gricean’s theory, we might expect children to be able to judge the
informativeness of contrasting expressions as soon as they have learned their meaning (E. V.
Clark, 2003; Katsos & Bishop, 2011), suggesting that these abilities may stem from the same
learning mechanisms. If visual question answering models can learn to consider alternative
expressions when interpreting function words like and and or in novel contexts, then we may
offer proof of concept evidence that the ability to reason about alternatives can be derived
from a statistical learning mechanism applied in a contextually grounded setting.

With respect to our third research question, frequency or word predictability is a known
predictor of the order in which children acquire words (Braginsky, Yurovsky, Marchman, &
Frank, 2019; Goodman, Dale, & Li, 2008; Kuperman, Stadthagen-Gonzalez, & Brysbaert,
2012; Portelance, Duan, Frank, & Lupyan, 2023). There may, however, be other factors—
in relation to or independent from—frequency that makes learning the meaning of certain
function words harder than others. For example, E. V. Clark (1993) points out that there
seems to be an asymmetry in the acquisition of adjective pairs like big and little, tall and short,
etc., where children tend to produce words for positive dimensions before they do negative
ones. This difference in learning may be independent from frequency, since in experiments
where children are exposed to nonsense word pairs like these with even frequency, they still
seem to favor learning the positive words over the negative ones (Klatzky, Clark, & Macken,
1973). These results would then promote a conceptual explanation for these effects over a
frequency-based explanation. Such asymmetries may also exist for similarly polarized pairs
of function words. Here, we explore whether the order in which these words are learned is a
function of how frequent they are in the input or if there may be other factors that make certain
function words intrinsically more difficult to learn than others. We will compare the order in
which children acquire words requiring similar abstract reasoning to the order in which visual
question answering models learn these same words while varying their relative frequency in
the models’ input.

Our approach is as follows. We define a novel semantic testing task within the CLEVR
block world to determine whether models understand the meanings of function words in
unseen contexts. We then evaluate model performance on these novel tests throughout train-
ing to visualize how learning progresses. Next, we compare the relative order in which models
learn our function words to the acquisition order we expect in children. We manipulate input
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distributions and train models on different subsets of the training data with various function
word frequencies to analyze whether the ordering effects initially observed are solely medi-
ated by frequency or if other more conceptual factors play a role.' In the remainder of this
introduction, we briefly review children’s acquisition of function words and the visual ques-
tion answering task and dataset we use.

1.2. Children’s acquisition of the target function words

For each of the word pairs and their respective reasoning skills considered in this study
(“and”/*or,” “behind”/“in front of,” “more”/“fewer”), we review what is currently known and
debated about their acquisition in the child language learning literature. We note that most of
the previous research on these words is exclusively about English, with a couple of exceptions,
mentioned when relevant.

1.2.1. “and”/ “or”

The source of the emergence of logical reasoning in children has been debated for quite
some time (for a thorough review of the field, see Jasbi, 2018, Ch. 5). Proposals tend to
fall somewhere along the spectrum between logical nativism (Crain, 2012) and usage-based
approaches (Morris, 2008). Logical nativism posits that humans are endowed with innate
logic and children then go through a series of developmental stages to reach adult-like logical
understanding. As for usage-based approaches, these argue that logical reasoning is learned
through experience using general learning mechanisms—as opposed to learning strategies
that are specific to logical reasoning—and that frequency in children’s input explains any
ordering effects seen in children’s learning of logical concepts.

All agree that children correctly interpret and before or; and is also much more frequent
than or in children’s input, and, furthermore, they are exposed to more instances of exclu-
sive or than inclusive or (Jasbi et al., 2018; Morris, 2008). There is, however, some debate
about the order in which children acquire possible meanings of or and what the underly-
ing meaning of this logical connective may be in children’s representations. Given its higher
frequency, Morris (2008) suggests that children initially learn exclusive or. Similarly, early
nativist approaches argued that children’s early understanding of or was as a simple choice,
making it compatible with exclusivity (Neimark, 1970). Following Grice’s (1975) proposal
that exclusive interpretations are the result of generalized conversational implicature, others
have instead advocated that or is underlyingly inclusive and that children eventually learn
exclusive or via pragmatic reasoning (Chierchia, Crain, Guasti, Gualmini, & Meroni, 2001;
Chierchia et al., 2004; Jasbi & Frank, 2021). Interestingly, some have also found the chil-
dren often mistakenly interpret or as conjunction (Braine & Rumain, 1981; Singh, Wexler,
Astle-Rahim, Kamawar, & Fox, 2016; Tieu et al., 2017), though it has been suggested that
this finding may be an artifact to the specific experimental task designs used in these studies
(Paris, 1973; Skordos, Feiman, Bale, & Barner, 2020).

All of the experimental results show that children understand or inclusively still leave unan-
swered the question of how they came to learn the meaning of this word in the first place.
Crain (2008, 2012) argues that these results are in fact evidence in favor of a logical nativist
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explanation since, though children are exposed to more instances of exclusive interpretations
of or, they seem to instead favor inclusive interpretations initially. Currently, there is little
evidence showing that inclusive or is learnable from more general learning mechanisms that
would support a usage-based approach.

1.2.2. “Behind” / “in front of”

Children learn the meaning of the locative preposition behind before they do in front of
(Johnston, 1984; Johnston & Slobin, 1979). There have been a few proposals for explain-
ing this asymmetry, all sharing a common thread: that children do not initially encode the
meaning of these words in geometric spatial terms. The semantic misanalysis hypothesis for
the asymmetry in children’s early understanding of these expressions suggests that children
struggle to incorporate the perspective of the observer in analyzing the meanings of these
words (Piaget & Inhelder, 1967), so they erroneously define the concepts of front and back in
terms of visibility and occlusion (Johnston, 1984). Grigoroglou et al. (2019) also suggest that
children analyze these words in terms of occlusion but not as a result of semantic misanalysis,
instead as the result of pragmatic inference, where occlusion is more notable than visibility.
Much of the research on the acquisition of behind and in front of then documents the stages of
development between these early word representations and their adult-like geometric mean-
ings. They conducted experiments in both English and Greek. Some researchers have found
that this transition is aided by the eventual projection of the property of having a front or back
on objects (e.g., being behind a doll vs. being behind a block) (E. V. Clark, 1977; Kuczaj
& Maratsos, 1975; Windmiller, 1973). Again, there is currently a lack of evidence support-
ing the use of more general learning mechanisms behind the acquisition of these words, as
opposed to learning strategies specific to spatial reasoning.

1.2.3. “More” / “fewer”

Quantifiers have been found to follow quite robust acquisition ordering effects cross-
linguistically (Katsos et al., 2016, analysis over 30 languages). For the comparative quantifiers
more (than) and fewer (than), the meaning of more has repeatedly been found to be learned
earlier than fewer/less by children (Donaldson & Balfour, 1968; Donaldson & Wales, 1970;
Geurts, Katsos, Cummins, Moons, & Noordman, 2010; Palermo, 1973; Townsend, 1974).
Some have also found that children initially interpret less as a synonym of more (Donaldson
& Balfour, 1968; Palermo, 1973), but as Townsend (1974) points out, these earlier experimen-
tal studies did not have a way to truly distinguish between children interpreting less as more or
simply not knowing the meaning of /ess. A few hypotheses have been put forward to explain
the acquisition asymmetry between these two comparative quantifiers, all favoring concep-
tual explanations over frequency-based ones. Though Donaldson and Wales (1970) briefly
mention that more is much more frequent than less in children’s input, they quickly reject
the possibility that frequency is the answer, arguing that if the asymmetry was down to fre-
quency, we would expect children that do not know the meaning of less to interpret this word
in a variety of ways. However, citing previous work, they suggest that less is instead always
interpreted as more. They thus propose that there are a series of developmental stages for
the processing of comparatives, which lead to this asymmetry, where more is acquired earlier
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because children initially learn to use it in singular referent contexts like in the additive sense
of more, for which they say a counterpart with less is not possible. H. H. Clark (2018) offers a
similar proposal with slightly different developmental stages. Still, these results clearly sug-
gest that word frequency might account for developmental ordering phenomena, consistent
with usage-based accounts as well.

2. Evaluating function word knowledge using semantic probes

As a test bed for the learnability of function words, we use visual question answering
models trained on the CLEVR dataset, a standard dataset used in the broader natural lan-
guage processing community (Johnson et al., 2017). We propose a semantic probe zero-shot
evaluation task based on CLEVR to determine whether models were able to learn meaning-
ful representations for each of reasoning pairs under study: and/or, behind/in front of, and
morelfewer.”

2.1. Visual question answering and the CLEVR dataset

Visual question answering was proposed as a language learning task that is grounded in
images and requires models to develop abstract reasoning skills (Antol et al., 2015; Gao et al.,
2015; Malinowski & Fritz, 2014; Ren, Kiros, & Zemel, 2015). Models are given images and
questions about their content as input; they are then trained to answer these visually grounded
questions (example image—question pairs from the CLEVR dataset are given in Fig. 1). Gen-
erating the correct answers often requires reasoning skills, such as logical reasoning, spatial
reasoning, and numerical reasoning, which models must also learn. Since learning the mean-
ing of function words requires developing these same reasoning skills, models trained to
complete these types of tasks lend themselves well to the study of function word learning
using neural networks.

Initial visual question answering tasks used datasets that were produced by having human
annotators come up with questions for images (Antol et al., 2015; Gao et al., 2015; Krishna
et al., 2017; Malinowski & Fritz, 2014). However, as the first resulting models emerged it
became clear that they had shortcomings which prevented them from developing abstract rea-
soning, in part due to unbalanced datasets (Agrawal, Batra, & Parikh, 2016; Zhang, Goyal,
Summers-Stay, Batra, & Parikh, 2016). To avoid this problem and to help parse which reason-
ing skills models were developing and relying on, balanced datasets with explicit generative
models to produce questions (Hudson & Manning, 2019; Johnson et al., 2017) and images
(Johnson et al., 2017) were created. CLEVR is one such dataset, containing generated images
of scenes from a three-dimensional (3D) block-world and constructed questions.

We chose this dataset as it offered us the benefit of precisely defining the function words in
the dataset by associating them to explicit functional relations, giving us a better grasp over the
underlying semantics of these words. For these reasons, the CLEVR dataset (Johnson et al.,
2017) serves as a good starting point for our comparison between the Visual question answer-
ing (VQA) model and children’s acquisition of function words. Specifically, as mentioned in
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the introduction, or is defined as the inclusive logical operator, A Vv B, while and is A A B;
more is defined as greater than, |A| > |B|, while fewer is |A| < |B|; and behind is defined as
having a y-coordinate that is strictly greater than some other referent’s, y(a) > y(b), while in
front does the opposite y(a) < y(b), as in Fig. 2. Additionally, it is a well-balanced dataset
whose composition has been extensively described and well understood (Johnson et al., 2017).

It is composed of questions paired with images like those illustrated in Fig. 1. The images
are all of complex scenes in a block-world involving static objects placed on a 3D gray plane.
Objects have four varying attributes: shape, color, material, and size. The number of objects
in an image varies randomly between 3 and 10, as do their relative positions and the positions
of light sources in the scenes. There are a total of 70,000 distinct images in the training set
and another 15,000 different images in the validation set.

Each image is paired with a set of questions like those in Fig. 1. In total there are 699,989
questions in the training set and 149,991 in the validation set. There are different types of
questions, including existential questions, count questions, attribute identification questions,
and comparison questions, requiring a slew of reasoning skills to answer them. Questions
can be compositional and require multiple reasoning steps to arrive at the right answer. For
a break down of all the question types and a full definition of the generative model used to
generate them, we refer the reader to the original CLEVR dataset paper (Johnson et al., 2017).

The CLEVR dataset is a standardized and highly controlled dataset intended to facilitate
progress in the development of natural language processing systems, but it is not natural
language; it does not have all the same properties as the speech children are exposed to.
The language in CLEVR is template-based* and text only; by contrast, children’s input is
composed of a much richer signal including varied syntactic frames, prosody, social cues,
and other sources of information. This fundamental difference means that our models do not
have access to much of the rich information that children leverage to learn new words. On
the other hand, natural environments are also noisier; a constrained learning environment
may inadvertently help models learn and converge on the tasks quicker. Working within a
highly controlled and simplified learning environment is a necessary first step to understand
the relations that exist between models’ input and their learning outcomes.

2.2. Semantic probes

Each semantic probe is a set of existential questions based on a simple template that con-
tains one of our function words of interest. Models must know the meaning of the relevant
word to answer probe questions correctly; otherwise, we would expect performance to be at
or below chance on probe questions overall. Each question is associated with an image from
the CLEVR validation image set that satisfies any implied presuppositions. Example image—
question pairs from each probe are presented in Fig. 3. The probes are all based on unseen
templates, though they are all composed of words which are part of the CLEVR vocabulary
and show some similarities with existing CLEVR question templates.

For each probe, given the template, we created the set of questions such that we iter-
ate through every possible combination of referents in the CLEVR universe, allowing us to
abstract away any difficulty answering questions that may be due to other content words. For
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Q: Are there small things that are cubes Q: Are there cubes that are purple or Q: Are there spheres that are small or
and green? rubber? metal?
A: yes A:no A: yes (inclusive) / no (exclusive)

Q: Is the gray thing behind the red thing? Q: Is the large sphere in front of the brown Q: Are there more of the rubber cubes than
A: no sphere? the blue spheres?
A: yes A: yes

Q: Are there fewer of the green cubes than Q: Are the red spheres the same size? Q: Are the grey thing and the small sphere
the rubber cylinders? (SAME template 1) the same material? (SAME template 2)
A:no A:yes A:no

Fig. 3. Example image—question pairs from semantic probes.

each question, we then identified all the images in the validation set that met its presuppo-
sitions. If there were more than 10 such images, we randomly sampled 10 of them. Fig. 4
illustrates this procedure. In the rest of this paper, we will use the capitalized version of a
word to refer to its respective semantic probes, for example, AND will refer to the semantic
probe for the word and.

2.2.1. AND-OR

AND-OR probes templates are “Are there Xs that are « and 87 and “Are there X's that
are « or 377, where X is a referential expression (e.g., gray sphere, metal thing, big cylinder,
cube) and o, B are properties (e.g., purple, small, metal). As previously mentioned, the probes
iterate through every possible referent combination, where a referent is a noun (thing, sphere,
cylinder, cube) optionally preceded by a modifier referring to its color, material, or size. These
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[ (things, @),
(Cubes, SHAPE),
(Cylinders, SHAPE),
(Cylinders, SHAPE) |

[2,

(blue, COLOR) ,
(grey, COLOR),
(small, SIZE),

|

Are th \ /th t d 0 [(blue, COLOR) ,
re there atare__and___ ? (s, B60m),
(cubes, SHAPE), [ — ‘yes’

Are there small things that are and 2

Are there small things that are cubes and green? —»

Fig. 4. Example probe creation procedure. Given a template, we cycle through every possible variable combination
and then sample 10 images and determine their corresponding answers.

templates do not have any presuppositions, so 10 images were randomly sampled for each
one, totaling 15,600 image—question pairs in each probe.

For the AND probe, questions which were paired with images that contained at least one X
that was both & and B—(a A B)—had “yes” as their correct answer, while questions where
this requirement was not met in the image had “no” as their answer.

We were interested in determining the prevalence of inclusive versus exclusive interpreta-
tions of the word or by models. For this reason, we used the following answer scheme for the
OR probe. Questions which were paired with images that contained at least one X that was
« but not B—(a A =) —, or not « but B—(—a A B) —, expected the correct answer “yes.”
Questions which were paired with images that contained no X's or only X's that were neither
o nor B—(—a A =pB)—had “no” as their answer. As for question—image pairs where all X's
were both o and B—(« A B)—were ambiguous, expecting a “yes” answer if or was inter-
preted as inclusive, while a “no” answer if on the other hand or was interpreted as exclusive.

2.2.2. BEHIND-IN FRONT OF

BEHIND-IN FRONT OF probes used as templates “Is the X behind the Y ?” and “Is the X
in front of the Y 7”, where both X and Y are referential expressions. These templates presup-
pose that the images contain exactly one X and one Y. Again iterating over the same complete
set of referent combinations,” we identified all the images that satisfied this presupposition. If
there were more than 10, we randomly sampled 10 of them; otherwise, we included all avail-
able images. In the end, there were a total of 24,380 image—question pairs for each probe.

Using the “scene” metadata available for each image, which contains annotations as to the
relative position of objects, we determined the correct answer to each question. These relative
positions were determined using the (x, y, z) center point coordinates of objects. Using the
underlying threshold definitions of behind and in front from CLEVR, we determined if an
object was behind or in front of another by taking the difference between their y coordinates.
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Image—question pairs where X was in fact behind Y received a “yes” answer for the BEHIND
probe and a “no” answer for the IN FRONT OF probe. If the opposite was true, the answers
were reversed. In our analyses, we additionally wanted to track probe questions performance
based on the relative distance between X and Y. For these analyses, we kept track of the
Euclidean distance between the two referent objects using all three of their (x, y, z) coordi-
nates.

2.2.3. MORE-FEWER

MORE-FEWER probes follow the forms “Are there more of the X's than the ¥Y's?” and “Are
there fewer of the X's than the Y's?” Both these templates presuppose that the images contain
at least one X and one Y. Based on this presupposition, we identified all of the compatible
images for each question and, again, if more than 10 images were found we randomly sampled
10 of them for a given question. In total, there were 24,420 image—questions pairs in each of
these probes.

To determine the answers to each image—question pair, we once again used the “scene”
metadata, which was associated with each image. We identified all of the objects that were part
of X and Y referent categories and then compared their cardinality. Based on our underlying
CLEVR definitions, if the number of X's was greater than the number of Y's, (|X| > |Y|), then
the answer to a question in the MORE probe was “yes”, while the answer to a question in the
FEWER probe was “no”. If on the other hand, the number of X's was less than the number
of Ys, (|X| < |Y]), then the opposite answering pattern applied, MORE questions had “no”
for an answer, while FEWER questions - “yes”. In the event that there was the exact same
number of Xs and Ys, (|X| = |Y]), both probe question types’ answer was “no.” We were
interested in tracking model performance on probe questions as a function of the difference
in cardinality between the two referent sets, (|JX| — |Y]), so we also kept track of this number
for each image—question pair.

2.3. Evaluation

In each of the experiments that follow, we use these probes to evaluate how much models
have learned about the meaning of these words and how they interpret them given different
visual contexts. We test models on all probes at each epoch during model training, allowing
us to analyze what they are learning over time. As we do these analyses, it is important to
understand certain distributional facts about the training data our models are exposed to.

The CLEVR dataset is well-balanced in terms of the relative frequency of each function
word. Table 1 shows the raw counts for words as well as their relative frequency by word
pair in the training data. The total number of word tokens is 12,868,670 words, over 699,989
training questions.

Additionally, “yes” and “no” answers to questions containing these words are also gener-
ally well balanced, the exception being questions containing the word or. Table 2 shows the
relative frequencies of these answers for questions containing each of our function words. As
evident from this table, there are no questions containing the word or which are answered
using “yes” or “no.” Or is always used as a logical conjunct connecting referents, specifically
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Table 1
Relative frequencies of each function word pair in the CLEVR training data
Word Pairs Raw Counts Frequency
and 81,506 56.32%
or 63,214 43.68%
behind 147,409 49.98%
in front of 147,506 50.02%
more 11,570 49.40%
fewer 11,851 50.60%
Table 2
Frequencies of yes and no answers for questions containing each function word in the CLEVR training data

Yes Answers No Answers
Word Pair Raw Counts Frequency Raw Counts Frequency
and 20,673 25.36 % 21,463 26.33%
or 0 0% 0 0%
behind 27,491 18.65% 28,707 19.47%
in front of 27,748 18.81% 28,563 19.36%
more 5,549 47.96 % 6,021 52.04%
fewer 5,840 49.28 % 6,011 50.72%

in count questions (e.g., “How many things are blue cubes or small cylinders?”’), which all
require a number as their answer. All the while, and is additionally used in a much wider
variety of question types, sometimes connecting prepositional phrases (e.g., “What material
is the blue cube that is behind the cylinder and left of the red thing?”). Cumulatively, about
52% of questions with and require a yes/no answer, while the rest are other words in the
vocabulary. Like and, behind and in front of show up in a variety of question types, requiring
different types of answers, while more and fewer are only used in questions that require “yes”
or “no” answers. These differences in input distributions are artifacts of the CLEVR dataset
generator and the question templates used by the original authors behind this dataset. Thus,
in the results that follow, it is difficult to fairly compare across word pairs or across AND
and OR probes; we should instead consider them somewhat independently. However, if we
observe differences in results within well-balanced pairs, these are likely due to other factors
beyond their frequency in the models’ input. We will explore some of these factors further in
the experiments that follow.

3. MAC: A recurrent reasoning model for question answering

A variety of models have been proposed for completing visual question answering tasks;
all of these include both visual and linguistic processing units. For our current experiments,
we chose to use a model that—at the time we began the project—had the top performance
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Fig. 5. The MAC model initially processes the image and question through Convolutional neural network (CNN)
and biLSTM units, respectively, and then through four recurrent MAC cells, each generating output memory and
control states. The final output unit takes the final memory state and the question representation to produce a
prediction. The model is fully differentiable.

scores on the original CLEVR task: the MAC (Memory, Attention, and Composition) model
of Hudson and Manning (2018). This model reaches an accuracy level of 98.9% on CLEVR’s
test set. Because it does so well on within-sample questions, we hoped that it could also
generalize to our probe questions as well.

Following previous approaches to the CLEVR task (R. Hu, Andreas, Rohrbach, Darrell, &
Saenko, 2017; Perez, Strub, De Vries, Dumoulin, & Courville, 2018; Santoro et al., 2017),
the MAC model preprocesses images using ResNet-101 (He, Zhang, Ren, & Sun, 2016), pre-
trained on ImageNet (Russakovsky et al., 2015). The conv4 layer features from ResNet-101
are then used to represent each image.

The MAC model is a recurrent reasoning model, which we illustrate in Fig. 5 and describe
in what follows. It first processes the preprocessed image and question separately. The pre-
processed image goes through a two-layered convolutional neural network resulting in a 3D
matrix (preprocessed image width x preprocessed image height x number of channels in
final convolutional layer) representing what Hudson and Manning call the knowledge base,
I. As for question Q, each word is converted to an embedding vector and then processed
through a single-layered bidirectional long-short-term memory (biLSTM) network. The biL-
STM yields two outputs for a question Q of length N words: (1) a vector of contextual-
ized word embeddings [le, e w]%], where each w,? is the models output state for w,; (2)
a question representation ¢ which is the concatenation of the final states of both the for-

“— —

ward and backward passes of the biLSTM, ¢ = [w?, wg]. Once the image and question are

processed as I, [le, R wg], and ¢, they are used as input for a set of recurrent reasoning
steps.

The MAC model uses custom recurrent cells (MAC cells) which each represent one reason-
ing step ¢. The best version of the MAC model as originally reported used 12 recurrent MAC
cells before the final output layer. Hudson and Manning, however, found that very similar
performance could be achieved with as few as four recurrent reasoning steps (test accuracy
97.9%). Thus, we chose to use this smaller and more efficient version of the model for our
experiments—see Fig. 5 for a visualization of our version of the model.® For each reasoning
step ¢ between 1 and 4, the MAC cell takes as input the processed image representation I, the

contextualized word embeddings [w?, cee, wg], and the processed question representation g.
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Fig. 6. Example attention maps produced by MAC model at each reasoning step taken from Hudson and Manning
(2018).

Additionally, as these are recurrent cells, it also considers two hidden states as input: (1) one
representing a soft attention map over the question, ¢y (called the control state in Hud-
son & Manning, 2018); (2) the other representing soft attention map over the image, m_1
(called the memory state), where ¢(, my would be randomly initialized dummy vectors. The
output of a recurrent cell at reasoning step ¢ is then ¢, and m,, which can then be used as the
hidden states for the next reasoning step. At the final step 4, the model integrates the final soft
attention map over the image representation m, with the question representation g through
a basic multilayer perceptron (MLP) to predict an answer, which always consists of a single
word from the model’s shared question and answer vocabulary.

The control state ¢, is a weighted distribution over the contextualized word embeddings.
In other words, it indicates which words are most important to attend to in a given rea-
soning step. The memory state m, is a weighted distribution over regions in the processed
image which is conditioned on ¢,. Intuitively, it encodes which parts of the image to attend
to given the parts of the question being considered at a given reasoning step. Example out-
puts of both memory and control states 1-4 for a given question image pair can be seen in
Fig. 6.

For a detailed breakdown of the MAC cell’s internal structure and how these attention maps
are derived, we refer the reader to Hudson and Manning (2018). For the purpose of this paper,
we note that the cell has a relatively simple and straightforward structure composed of sepa-
rate MLPs for processing the control ¢; and m, memory states. It was designed “to capture the
inner workings of an elementary, yet general-purpose reasoning step” and to “encourage the
network to solve problems by decomposing them into a sequence of attention-based reasoning
operations that are directly inferred from the data, without resorting to any strong supervision”
(Hudson & Manning, 2018). The model’s generic and simple structure eliminates the possi-
bility of it introducing any form of symbolic structural biases, which is important since it will
serve as an example of non-symbolic learning for our hypotheses testing.

4. Experiment 1: Learning to interpret and represent function words
How do visually grounded question answering models learn to represent and interpret func-

tion words? Do the representations they learn for words like and, or, behind, in front of, more,
and fewer generalize to unseen linguistic and visual contexts?
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Fig. 7. Experiment 1: Mean F1 score on AND-OR probes overall in non-ambiguous questions, shading represents
the standard deviation across five models.

4.1. Setup

We trained five MAC models on the original CLEVR training data for 25 epochs, initial-
ized using different random seeds. Models learn and update using backpropagation with the
addition of variational dropout on 15% of parameters across the model at each pass. Models
reached an average prediction accuracy of 98.84% on the training data and of 97.74% on
the validation set, reproducing the performances originally reported by Hudson and Manning
(2018) for four-step MAC models. Since our probes are based on never seen question tem-
plates, we expect models’ performance on probes to be lower than their performance on the
CLEVR’s validation set which was created using the same question templates as the train-
ing data. We report the mean F1 score and standard deviation across all five models for each
probe at each epoch throughout training. Chance performance is, in theory, a near 0 F1 score,
since models can produce any word in their vocabulary as the answer to probe questions.
However, models very quickly learn after only a couple of batches that existential questions
are always answered with either “yes” or “no.” significantly reducing the number of answers
they actually consider.

4.2. Results

4.2.1. AND-OR

Probe questions were all of the form “Are there Xs that are o and/or 87 As a reminder,
there are four possible truth conditions associated with the images the questions are paired
with: (@ A B), (¢ A =8), (—a A B), and (—a A —8). First, let us consider the overall scores
of models on probes in non-ambiguous contexts in Fig. 7—in other words, excluding OR
probe questions in (o A B) contexts, where inclusive and exclusive interpretations of or have
opposing answers. As seen in the figure, models perform better than chance on both the AND
and OR probes.

Next, Fig. 8 shows the mean F1 score reported in the previous figure as a function of the
answer type—"‘yes” or “no”’—expected for each question for these probes. There is a clear
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Fig. 8. Experiment 1: Mean F1 score on AND—-OR probes by answer type in non-ambiguous questions.
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Fig. 9. Experiment 1: Average proportion of exclusive (vs, inclusive) interpretations of OR probe in ambiguous
contexts, (o A B). Overall standard deviation is = 0.36, 3/5 runs learning to favor exclusive interpretation more
than 50% of the time.

asymmetry for both probes between questions in contexts requiring a “no” answer versus
a “yes,” and, second, models performance in “yes” contexts then seems to drop after the
second epoch. For AND, “yes” is expected in (a A ) contexts and “no” otherwise. For OR,
“yes” is expected in (¢ A —f) and (—a A B) contexts, while “no” is expected in (—a A —f)
contexts. Though models have no issue recognizing the answer in (—a A —f), they struggle
more when OR and AND expect opposing answers. This drop seems to also coincide with the
rise of exclusive interpretations for OR in (o A B) contexts as we see in Fig. 9.

In Fig. 9, we consider the proportion of inclusive versus exclusive interpretations of OR
questions in the contexts where (o A 8) are both true. Importantly, the CLEVR dataset gen-
erative model hard-codes or to be interpreted inclusively; in other words, all answers in the
training data assume an inclusive or. As we might expect, the models initially learn to favor
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Fig. 10. Experiment 1: Mean F1 score on BEHIND-IN FRONT OF probes overall, shading represents the standard
deviation across five models.

inclusive interpretations. However, as learning progresses they start to interpret OR as exclu-
sive more and more.

The differences in performance as a function of the answer types across AND-OR probes
suggest that the models struggle more in contexts where AND questions and OR questions
have conflicting answers, specifically, in (¢ A =) and (—a A 8) contexts. On the other hand,
the results in contexts where (o A 8) are both true and both AND and OR should have the
same answer (assuming an inclusive interpretation of or), initially models seem to have no
issues, but over time they start to favor exclusive interpretations for or and struggle more with
and questions in the “yes” answer contexts. These results suggest that when determining the
answer to a question containing and or or, models are also considering alternative questions
that contain the other logical connective. In the cases where opposite answers for AND versus
OR questions are expected, this attention to alternatives could lead to more uncertainty about
the right answer. While in the case where the same answer is expected, it may instead be
leading to a process akin to “reasoning about alternatives” where opposing logical operators
should also have opposing answers, resulting in the rise of exclusive or. We explore this
hypothesis further in Experiment 2 (see Section 5).

4.2.2. BEHIND-IN FRONT OF

Probe questions are all of the form “Is the X behind/in front of the Y ?” and expect opposing
answers as a function of the relative position of X to Y. Fig. 10 shows the overall F1 scores
of the models on both probes. There is more variation across random seed runs, though both
BEHIND and IN FRONT OF seem to be learned equally well within runs and performance is
generally above chance.” Unlike for AND and OR, Table 2 shows us that behind and in front
of are used in a similar number of questions and expect “yes/no” answers at equal frequencies;
we can, therefore, fairly compare models’ relative performance on these words.

As with the previous probes, we also consider models’ performance as a function of the
answer type. Whether the context required a “yes” or “no” answer did not seem to matter for
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Fig. 11. Experiment 1: Mean F1 score on BEHIND-IN FRONT OF probes as a function of the Euclidean distance
between referents.

these probes as much as it did for others; models performed just as well in either context over-
all.

In Fig. 11, we look at how well models predict the correct answer to our BEHIND-IN
FRONT OF probe questions as a function of the Euclidean distance between X and Y ref-
erents. The distances were calculated based on the coordinates of the center of each object
provided in the metadata of each image. We then rounded the distances to the closest inte-
ger to bin our data into distance levels. Objects that have an Euclidean distance of 1 are so
close that we expect one to partially occlude the other, while distances of 8 are as far apart as
objects can be within a CLEVR image. As we can see from the figure, there is a very clear
gradience in performance based on the distance between X and Y, such that the further apart
two objects are, the easier it is for the model to correctly interpret behind and in front of.

These results suggest the models can learn meaningful representations behind and in front
of such that they can interpret them in novel contexts. Furthermore, when these preposi-
tions are equally frequent in models’ input, they are learned at the same rate. Importantly,
models seem to learn a gradient semantic representation for the words as a function of the
distance between referents, rather than the strict threshold-based meaning which the CLEVR
generative model uses.

4.2.3. MORE-FEWER

Probes are composed of questions of the form “Are there more/fewer of the Xs than the
Y's?” For this analysis, we consider three contexts: when |X| > |Y|, |X| < |Y|, and |X| = |Y|.
In the first two contexts, MORE and FEWER questions expect opposite answers, while in the
third context where there is no difference in the number of Xs and Y's, they expect the same
answer, “no.” Fig. 12 presents the overall F1 scores of models on both probes. This initial
plot suggests that MORE is learned first and may be overall easier than FEWER.

Next, we plot accuracy on probes as a function of the absolute difference between the num-
ber of Xs and Y's, absolute(|X| — |Y|) (Fig. 13). Models clearly struggle with both MORE
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Fig. 12. Experiment 1: Mean F1 score on MORE-FEWER probes overall, shading represents the standard devia-
tion across five models.
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Fig. 13. Experiment 1: Mean F1 score on MORE-FEWER probes by absolute difference in the number of objects
in each referent class.

and FEWER questions specifically when the difference is 0, or |X| = |Y |, performing below
chance in this context. In all other cases, whether the answer is “yes” or “no,” models cor-
rectly answer questions over 75% of the time. Yet again, performance for these probes is
gradient. Models correctly interpret both more and fewer more often as a function of the dif-
ference in number between the two referent classes. The larger the difference, the easier it
is for the model to correctly judge whether there are more or fewer of a given class of ref-
erents. Additionally, models poorer performance on FEWER probe questions overall seen in
the previous plot seems to be isolated to the contexts where |X| = |Y]|.

In fact, if we remove all probe questions where | X | = |Y| and consider the overall of models
again in Fig. 14, we see a very different picture than our original Fig. 12. Models have almost
equally high performance on both probes, still learning more slightly earlier than fewer.

These results suggest that models learn reasonable meaning representations for both more
and fewer and, furthermore, that these representations are gradient as a function of the dif-
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Fig. 14. Experiment 1: Mean F1 score on MORE-FEWER probes overall excluding context where |X| = |Y]|,
shading represents the standard deviation across five models.

ference in number between two referent categories, rather than being based on strict thresh-
olds, which the CLEVR generative model uses. However, models struggled in contexts where
|X| = |Y| specifically. We hypothesize that this may be because they are exposed to a third
alternative numerical reasoning expression during training, equal/same number. This alter-
native expression expects an opposing answer in these contexts. Like with AND and OR,
models may be considering the existence of alternative propositions when trying to answer
these questions, leading to more uncertainty in the context where the difference in number
between X's and Y's is the smallest. We explore this hypothesis further in the next experiment.

4.3. Interim conclusion

Our first experiment examined the first research question: How do visually grounded ques-
tion answering models learn to represent and interpret function words and do the represen-
tations they learn generalize to unseen linguistic and visual contexts? We found that models
learned gradient interpretations for function words requiring spatial and numerical, behind, in
front of, more, and fewer. Additionally, we found early evidence that models consider alter-
native logical connectives when determining the meaning of expressions containing and and
or. This behavior may be leading models to interpret or as exclusive in an increasing number
of contexts. Further experimentation is necessary to test this hypothesis.

5. Experiment 2: The effect of alternatives on reasoning

Does the existence of alternative expressions in each reasoning pair affect their acquisition
or are the meanings of function words acquired in isolation? Following our results from the
previous experiment, we hypothesized that models could be considering alternative questions
and answers that use opposing or parallel function words when they compute the probability
of the answer to a given question. This process akin to “reasoning about alternatives” could
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then explain the performance patterns we observed specifically for the AND-OR probes as
well as the MORE-FEWER probes. Unlike BEHIND-IN FRONT OF which always expects
opposing answers, AND-OR and MORE-FEWER pairs both have contexts where they
expect the same answer and others where they do not.

The existence of alternative expressions may lead to uncertainty in model predictions in
one of two ways. First, if models observe that and and or are interpreted the same in a set
of contexts, then they may begin to expect them to also mean something similar in contexts
where they actually should have opposing answers. Second, if models instead observe that
they have opposing answers in a set of contexts, then they may instead begin to expect them
to mean something different also in contexts where in fact they should be interpreted the same
way. In either case, the existence of the alternative expression (and in the case of or, and or in
the case of and) is what leads models to answer incorrectly, showing evidence of this process.
Our second experiment tests our theory and answers our second research question.

5.1. Setup

As in Experiment 1, we train five MAC models initialized using different random seeds.
Unlike the previous experiment, however, we manipulate the training data to remove alterna-
tive function words which we believe affected the probe performance for OR, AND, MORE,
and FEWER. Specifically, we remove all questions from the training data which contain the
word and and then evaluate model performance on the OR probe. We repeat this process and
create a version of CLEVR where we remove all instances of or and then evaluate models on
the AND probe. Finally, we create a version without an equal/same number of and evaluate
the models on MORE and LESS probes. By removing and, we want to see if the model will
correctly learn the semantics of or and favor inclusive interpretations when the alternative
logical connective is not present. By removing or, we want to make sure models learn to
correctly interpret and regardless of the answer context. Finally, by removing the equal/same
number of and its derivatives, we would like to see if the models can correctly learn to use
more and fewer in contexts where |X| = |Y |, when the alternative proposition that there is an
equal amount of them is no longer available. For each of these different subsampled training
datasets and evaluation probes, we train models for 25 epochs and evaluate the performance
of probes at each epoch.

5.2. Results

Since the results for the OR probe and AND probe come from different models trained on
different subsampled datasets, we report their results separately for this experiment.

5.2.1. OR

Models reach a higher overall mean F1 score on unambiguous OR probe questions when
trained on data without and. Comparing model performance when trained with and without
and as a function of the answer type expected in Fig. 15, it is clear that when we remove the
alternative expression models no longer struggle in contexts expecting a “yes” answer as they
did in Experiment 1.
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Fig. 15. Experiment 2: Mean F1 score on OR probe by answer type in non-ambiguous questions when trained on
data with the alternative expression and from Experiment 1 versus without this alternative in Experiment 2.
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Fig. 16. Experiment 2: Proportion of exclusive (vs, inclusive) interpretations of OR probe in ambiguous contexts,
(o A B), when trained on data with the alternative expression and from Experiment 1 versus without this alternative
in Experiment 2. Overall standard deviation for Experiment 2 is &= 0.3, 4/5 runs favoring inclusive interpretations.

As for probe questions containing or in ambiguous contexts where inclusive-or and
exclusive-or interpretations predict opposing answers, we no longer see as strong of a pro-
gressive rise in exclusive interpretations, instead settling on average with around 70% of
ambiguous questions being answered with inclusive “yes” answers (Fig. 16).

When the alternative logical connective and is not present, models have no difficulty learn-
ing the semantics of or. Since the CLEVR generative model defines or as inclusive, when no
pragmatic alternative is present, models also learn to interpret or inclusively. These results
support the hypothesis that the rise in exclusive interpretations seen in Experiment 1 is due to
some form of competition between or and the available alternative and.
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Fig. 17. Experiment 2: Mean F1 score on AND probe by answer type when trained on data with the alternative
expression or from Experiment 1 versus without this alternative in Experiment 2.

5.2.2. AND

Probe results come from models trained on a subsampled version of CLEVR where all
instances of or have been removed. Models had better F1 scores on AND probe questions
when the alternative logical connective was removed than when both were present in Experi-
ment 1. In the absence of or, models learned to correctly interpret and regardless of the truth
value context (Fig. 17).

Models can learn the meaning of the logical connective and correctly and then generalize
it to interpret this word in novel contexts. If the alternative logical connective for disjunction
is present, like in Experiment 1, then the models may struggle more, as they seem to consider
the existence of this alternative when trying to determine the intended meaning of and. This
difficulty disappears if the alternative is no longer present.

5.2.3. MORE-FEWER

Probe results from Experiment 1 showed that models struggled to correctly interpret more
and fewer in the context where there were an equal number of the two referent categories
being compared. We hypothesized that models may have struggled in this context because
there existed alternative questions that asked whether there were an equal number of X's and
Y's in the training data. To test this hypothesis, we trained models on a subsampled version of
CLEVR where we removed all questions that asked about number equality. Fig. 18 shows the
overall performance of these models on both probes when trained with and without this alter-
native equal expression. F1 scores on FEWER questions have definitely risen in comparison
to Experiment 1, though results for MORE look quite similar.

However, when we consider model performance on questions as a function of the abso-
lute difference in number between the compared referent categories in Fig. 19, models still
struggle in contexts where |X| = |Y|. They do better overall in all other contexts.

Unlike with AND and OR, removing the pragmatic alternative did not solve our issue with
FEWER and MORE. After carefully scrutinizing the training data from CLEVR, it became
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Fig. 18. Experiment 2: Mean F1 score on MORE-FEWER probes overall when trained on data with the alterna-
tive expression equal from Experiment 1 versus without this alternative in Experiment 2. Shading represents the
standard deviation across five models.
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Fig. 19. Experiment 2: Mean F1 score on MORE-FEWER probes by absolute difference in the number of objects
in each referent class when trained without the alternative equal expression.

apparent that more/fewer rarely appeared in contexts where |X| = |Y| and only when they
were part of more complex question templates. Fig. 20 shows example questions with more
in the context where |X| = |Y| taken from the CLEVR train data. Thus, the issues we see
with probe performance in this context may simply be due to our choice of template and the
idiosyncrasies in the distribution of more and fewer in the CLEVR training data.

5.3. Interim conclusion

This experiment examined our second research question: Does the existence of alternative
expressions in each reasoning pair affect their acquisition or are the meanings of function
words acquired in isolation? We found that in the absence of a logical alternative, models
correctly learned to generalize the meaning of conjunction and disjunction. Our findings
confirm our hypothesis that the presence, or absence, of a pragmatic alternative, can affect
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Q: Are there more cylinders that are behind Q: Are there more big cyan blocks in front Q: Are there more balls that are in front of
the large purple shiny cylinder than tiny of the large cyan thing than blue cylinders? the brown rubber object than tiny cyan
yellow cylinders? A:no (0=0) things?

A:no(1=1) A:no(1=1)

Fig. 20. Example CLEVR training questions with the word more in the context where |X| = |Y|.

how models learn to interpret logical connectives and and or. Next, we will evaluate how the
frequency of different function words may also affect how models learn their meanings.

6. Experiment 3: The effect of frequency on learning

Our third and final experiment considers the effect of word frequency on the order in which
function words are learned. We address our third research question: Does the order in which
function words are acquired by models resemble that of children—and are some of these
ordering effects simply the result of frequency in the input or are there other conceptual
factors at play?

6.1. Setup

We again trained five MAC models initialized using different random seeds for a total of
25 epochs and considered their performance on semantic probes throughout training. Our
main manipulation that differentiates this experiment from the others is the training data.
As in Experiment 2, we use a subsampled version of the CLEVR training questions. This
time, we created a version of CLEVR where the relative frequencies of the target function
words matched their relative frequencies across all English child-directed utterances from the
CHILDES repository (MacWhinney, 2000).

The CHILDES repository is a collection of open-source transcripts, recordings, and videos
of child-caregiver/experimenter interactions from a wide range of studies dating as far back as
the 1950s. Children in these studies vary in age between 9 months and 5 years old, the median
being about 3 years. Using the childes-db API (Sanchez et al., 2019) to access the data, we
isolated all of the English transcript corpora available. We then filtered each to isolate all
utterances that were not said by the child, representing a sample of the linguistic input the
child was exposed to. We used this corpus to calculate the relative frequencies in children’s
input of the function words we are interested in. The corpus contained a total of 16,062,386
word tokens.
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Table 3
Relative frequencies of each function word pair in the CHILDES and subsampled CLEVR training data for Exper-
iment 3
CHILDES CLEVR Subsampled
Word Pair Raw Counts Frequency Raw Counts Frequency
and 217,497 90.45% 81,506 90.45%
or 22,975 9.55% 8,610 9.55%
behind 2,954 79.62% 113,881 74.36%
in front of 756 20.38% 39,260 25.64%
more 23,406 99.10% 11,570 99.10%
fewer/less 212 0.90% 105 0.90%
With CLEVR frequencies With CHILDES frequencies
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Fig. 21. Experiment 3: Mean F1 score on AND-OR probes overall in non-ambiguous questions when trained on
the original CLEVR dataset and the subsampled version with CHILDES-like frequencies. Shading represents the
standard deviation across five models.

We considered the relative frequencies of our function words within each contrasting pair
rather than their relative frequencies overall as it would not have been possible to extract a
reasonably sized subsampled version of the CLEVR training data otherwise. One of the main
difficulties we ran into when trying to subsample from the CLEVR dataset was that these
function words often appeared in overlapping sets of questions, so changing the frequency of
one word by subsampling questions would inadvertently affect another’s frequency. Nonethe-
less, we managed to create a version of the CLEVR training data that almost reproduced the
relative frequencies of the CHILDES data and was of a reasonable size, containing 545,681
training questions (9,652,086 tokens). Table 3 shows the exact word counts and frequencies
of both the CHILDES and subsampled CLEVR training datasets.

6.2. Results

6.2.1. AND-OR
Fig. 21 compares the overall performance of the models on each of these probes in non-
ambiguous questions (i.e., excluding OR questions in o« A 8 contexts) in Experiment 1 with
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Fig. 22. Experiment 3: Mean F1 score on AND—OR probes by answer type in non-ambiguous questions when
trained of subsampled CLEVR.

the original CLEVR dataset frequencies and the current experiment with CHILDES-like rel-
ative frequencies. These words have a very uneven distribution in the subsampled CLEVR
version like CHILDES, and are much more prominent than or in children’s input. Interest-
ingly, even with this frequency imbalance, models seem to do quite well on both our AND
and OR semantic probes, suggesting that even with a reduced number of training examples
containing or, they are still learning a reasonable representation for this word that allows them
to generalize its meaning to unseen contexts.

This observation is confirmed when we consider the current models’ mean F1 score by
answer type, “yes” or “no,” where OR probe performance is the same regardless of context
(Fig. 22). As for the AND probe, models seem to be performing as it did in Experiment 1,
struggling more in contexts requiring “yes” as an answer.

In the case of ambiguous OR questions, in o A B contexts, models clearly prefer inclusive
answers; we see no rise in exclusive interpretations like the one seen in Experiment 1 (see
Fig. 23).

If performance on these probes were solely a function of the frequency of these words
in models’ input, we would expect their performance on the OR probe to decrease between
Experiment 1 and Experiment 3, but as we saw in Fig. 21 this is not what happens. Further-
more, if the effect of being sensitive to possible alternative expressions was also proportional
to the frequency of these alternatives, we might also expect to see a stronger effect of the
alternative and on OR probe results and an increase in inclusive interpretations for or, but
again, we do not see this effect. It seems to have been stronger in Experiment 1 when and and
or were about equally frequent. The more uniform distribution between these words in Exper-
iment 1 could have led to more uncertainty overall. This explanation is further supported by
the smaller standard deviations we see in Fig. 21 for models trained on the CHILDES-like
frequencies versus those trained on the original CLEVR dataset. Another possible explana-
tion that should not be discounted is that in downsampling questions containing or in the
training set, we may have simply reduced the diversity of contexts seen for or in favor of con-
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Fig. 23. Experiment 3: Proportion of exclusive versus inclusive interpretations of OR probe in ambiguous contexts,
(o A B), when trained of subsampled CLEVR. The overall standard deviation is = 0.19, all runs favoring inclusive
interpretations.

texts that resembled our probe template more, such that the models now had less uncertainty
specifically about the meaning of or.

As for AND, models’ performance in Experiment 1 and this experiment is very similar,
albeit with a little less variation across runs in the current experiment. Models still struggle
in contexts where “yes” answers are expected. The fact that they seem to do better on the OR
probe than the AND probe in this experiment does not necessarily mean that or is easier to
learn than and, since as we noted in Section 2.3, unlike with the other two contrasting function
word pairs, and and or have very different input distributions. Or is always used as a logical
conjunct connecting referents in count questions, while and is used in a much wider variety of
question types, connecting different types of phrases. Some of the difficulty with AND probe
questions in “yes” contexts may simply be due to the distribution over input questions the
models see for and and how different these questions are from our out-of-distribution probe
questions. Frequency is clearly not the only factor at play in determining how and when
models come to learn these words.

6.2.2. BEHIND-IN FRONT OF

These words are also not evenly distributed in children’s input in CHILDES and conse-
quently in our subsampled dataset. Both the number of instances of behind and in front of had
to be reduced to create the training data used in this experiment, but we had to decrease the
number of in front of instances significantly more to reproduce their relative frequencies from
CHILDES. As we can see in Fig. 24, these changes had an effect on the overall performance
of models on the IN FRONT OF probe which now finds itself on average around chance with
much more variation across runs. The performance on the BEHIND probe is about the same
in both conditions.

The most interesting results can be seen in Fig. 25 where we have plotted model perfor-
mance on probe questions as a function of the Euclidean distance between the two referents in
probe questions. Again, the results from Experiment 1 for the BEHIND probe are reproduced,
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Fig. 24. Experiment 3: Mean F1 score on BEHIND-IN FRONT OF probes overall when trained on the original
CLEVR dataset and the subsampled version with CHILDES-like frequencies. Shading represents the standard
deviation across five models.
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Fig. 25. Experiment 3: Mean F1 score on BEHIND-IN FRONT OF probes as a function of the Euclidean distance
between referents when trained of subsampled CLEVR.

showing a clear gradience in interpretations of behind as a function of distance. However, in
the case of IN FRONT OF, the gradience has completely disappeared.

All of these results suggest that when models are trained on a CLEVR training dataset that
reproduces the relative frequencies of behind and in front of seen in children’s input, they
learn the most frequent word of the pair, behind, but struggle to learn the meaning of the less
frequent opposing word, in front of. This pattern differs from that of and and or, since for
behind and in front of, frequency does seem to be the most important factor in determining
their relative learning order and difficulty.

6.2.3. MORE-FEWER

These words are an interesting case to consider because fewer is extremely rare in children’s
input while more is quite common. There are few different senses of the word more, the most
common in children’s input being its adverbial form as in “do you want more?”’, which is quite
different from the comparative quantifier more seen in CLEVR as in “more than.” Since we
could not easily differentiate all the senses of more, we decided to also include its counterpart
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Fig. 26. Experiment 3: Mean F1 score on MORE-FEWER probes overall when trained on the original CLEVR
dataset and the subsampled version with CHILDES-like frequencies. Shading represents the standard deviation
across five models.
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Fig. 27. Experiment 3: Mean F1 score on MORE-FEWER probes by absolute difference in the number of objects
in each referent class when trained of subsampled CLEVR.

less in addition to fewer when determining their relative frequencies. Nonetheless, more was
much more frequent than fewer and less combined (see Table 3).

Fig. 26 compares the overall performance of models on both probes when trained on the
original CLEVR dataset and the subsampled version with CHILDES-like frequencies. Per-
formance on MORE is about the same, while on FEWER seems a little lower in the cur-
rent experiment.

Further probing with Fig. 27 shows that errors are isolated specifically to contexts where
|X | = |Y|—yet again. Surprisingly given the very small number of exemplars of fewer seen
during training—only 105 cases—models still seem to learn to use fewer in unseen contexts
as long as the absolute difference in number between referent classes is greater than zero.
Additionally, unlike our results for in front of, models still show some gradience in interpre-
tation for fewer as a function of number difference. Questions with fewer are all answered
with “yes” or “no,” while questions with in front of expect a much broader set of answers in

35UBD |7 SUOWILLOD BA[IaID 3|aedt|dde ayy Aq pausenob are sajpnte WO ‘8sn Jo SanJ 1o Akelq 1 8UljUQ 431 UO (SUO I IPUOD-pUR-SWIBILIY" B | IMAReiq 1 PU L UO//SANY) SUORIPUOD pue SWS | 3} 39S *[G202/60/TT] Uo ARIqiT auluQ 481 ‘BUIAI] -eILIo}IRD JO AisAIUN AQ 8iPET SB0O/TTTT OT/I0p/W00" A3 | IM A Reiq 1ol uo// SNy WOy papeojumod 'S ‘1202 ‘60L9TSST



E. Portelance, M. C. Frank, D. Jurafsky/Cognitive Science 48 (2024) 33 of 41

With CLEVR frequencies With CHILDES frequencies

//I Probe type
= FEWER
= MORE

0O 5 10 15 20 25 0 5 10 15 20 25
Epoch

Mean F1 score
(=)
(9]
()
1

Fig. 28. Experiment 3: Mean F1 score on MORE-FEWER probes overall excluding context where |X| = |Y]|,
when trained on the original CLEVR dataset and the subsampled version with CHILDES-like frequencies. Shading
represents the standard deviation across five models.

the original CLEVR dataset (see Tables 1 and 2). This difference in input distribution might
explain why models can still learn a reasonable representation for fewer with so few examples.

By removing the probe questions where |X| = |Y| and replotting models’ F1 scores for
all other cases in Fig. 28, we can clearly see that they learn to properly use both MORE
and FEWER most of the time, though the performance on FEWER questions has definitely
decreased in comparison to the results from Experiment 1 when trained on the original
CLEVR data.

Even with only a few exemplars of fewer, models are able to learn reasonable meaning
representations for this word, showing gradient interpretation as a function of the difference
in number between compared classes. Models are not as accurate on the FEWER probe as
they are on MORE questions. Once again, in contexts where |X| = |Y|, models struggle to
answer both MORE and FEWER questions correctly. These results suggest that relative word
frequency in the input also affects how models learn these function words.

6.3. Interim conclusion

With this experiment, we addressed our third research question: Do models learn these
function words in a similar order to children and are these ordering effects the results of their
frequency or do they follow from other conceptual explanations? When trained on a corpus
with similar relative frequencies to children’s input, the MAC models had difficulty learning
less frequent function words. For our logical reasoning targets, however, there are factors
beyond frequency that influenced our models’ ability to learn the meanings of and and or.
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7. General discussion

How children learn “hard” words like and/or, behind/in front of, and more/fewer is still
an open question. Proposals for their acquisition range along a spectrum between children
having innate knowledge of the reasoning skills required to understand these words (a nativist
perspective) to having to learn them from scratch using general learning mechanisms (a usage-
based perspective). In this paper, we used a recurrent neural network model exposed to the
visually grounded language as a test bed to evaluate the learnability of these function words,
providing a proof of concept that such words can be learned from data.

First, we asked whether models were able to learn the meaning of these words using their
non-symbolic general learning mechanisms. We found that they did learn to interpret function
words along the way to succeeding in the visual question answering task they were trained
on, the CLEVR dataset. Models favored learning linguistic and visual representations that
allowed for gradient interpretations for function words requiring spatial and numerical rea-
soning rather than threshold-based interpretations, showing that gradience in meaning may
emerge from exposure to language in visually grounded contexts. Models also learned to
interpret logical connectives and and or without any prior knowledge of logical reasoning.
Additionally, in answer to our second question, we found that models showed evidence of
being sensitive to alternative possible expressions when inferring the meaning of these words,
which led to a rise in exclusive interpretations for or in Experiment 1. Finally, we wondered
whether the relative difficulty of acquisition of words for children could be replicated in mod-
els and if it varied as a function of frequency rather than conceptual factors. We found that
word learning difficulty was indeed dependent on word frequency in models’ input, with more
frequently seen words generally being easier to learn in the case of spatial and numerical rea-
soning expressions. When exposed to these words at similar frequencies to children, models
showed similar ordering effects for both behind/in front of and more/fewer word pairs. As for
our logical reasoning targets, there seemed to be factors beyond frequency that influence our
models’ ability to learn them. One possible explanation for this difference may be that it is
an artifact of the CLEVR dataset, which presented very different context distributions for and
and or as opposed to other function word pairs.

We acknowledge that this work has its limitations. First, the CLEVR dataset is template-
based and has a limited vocabulary. Its relative distribution of function words to content
words like nouns and verbs is different from natural language, which may change the essence
of what it means to be a function word or closed-class word. Additionally, the function words
in question appear in a much wider variety of syntactic and semantic contexts in natural
language. Though the dataset remains a good test bed for considering the acquisition of
the reasoning skills necessary for interpreting these particular words in context, children
acquiring these words may face challenges in naturalistic contexts that cannot be modeled
with CLEVR data. Second, our probes do not allow us to determine where gradience in
interpretations originates. We can only conclude that gradience arises from the integration
of both visual and linguistic representations in the model. Third, our probes are a zero-shot
evaluation looking at model generalization for a limited number of templates. To strengthen
our conclusions, we would need to see the models response patterns extended to more tem-

35UBD |7 SUOWILLOD BA[IaID 3|aedt|dde ayy Aq pausenob are sajpnte WO ‘8sn Jo SanJ 1o Akelq 1 8UljUQ 431 UO (SUO I IPUOD-pUR-SWIBILIY" B | IMAReiq 1 PU L UO//SANY) SUORIPUOD pue SWS | 3} 39S *[G202/60/TT] Uo ARIqiT auluQ 481 ‘BUIAI] -eILIo}IRD JO AisAIUN AQ 8iPET SB0O/TTTT OT/I0p/W00" A3 | IM A Reiq 1ol uo// SNy WOy papeojumod 'S ‘1202 ‘60L9TSST



E. Portelance, M. C. Frank, D. Jurafsky/Cognitive Science 48 (2024) 35 0f 41

plates. Still, this work exemplifies how we can probe the nuanced linguistic interpretations
of visually grounded models for future studies.

It is possible to learn these complex and abstract reasoning skills and to map them to
interpretations of function words without any prior knowledge. Our results offer proof-of-
concept evidence that sophisticated statistical learning mechanisms, when applied to visually
grounded language, may be enough to explain the acquisition of these function words and
related reasoning skills supporting more usage-based theories. Congruently, word learning
difficulty was found to be mainly affected by frequency of exposure rather than concep-
tual factors.

Our work converges with other recent work suggesting that a variety of non-symbolic neu-
ral networks can learn logical operators from sufficiently rich data. For example, Geiger,
Carstensen, Frank, and Potts (2023) showed that the logical operator “same” could be learned
from data. Although our work here focused on a supervised learning regime, Geiger et al.
showed learning successes across supervised and unsupervised contexts, supporting the idea
that supervision does not necessarily play a key role in the emergence of symbolic struc-
ture. More broadly, the successes of large language models on large-scale reasoning tasks (T.
Brown et al., 2020; Kojima, Gu, Reid, Matsuo, & Iwasawa, 2022; Wei et al., 2022) suggest
that unsupervised learning may be sufficient for the emergence of functional representations
supporting reasoning, though more work is needed to probe such models (Mahowald et al.,
2023).

The unprecedented success of neural network models offers an opportunity for cognitive
science researchers to reevaluate questions about the learnability of language (Lappin, 2021;
Piantadosi, 2023; Warstadt & Bowman, 2023) and provides a new set of tools for compar-
isons between machine learning and child learning (Frank, Monaghan, & Tsoukala, 2019;
Portelance & Jasbi, 2023). We hope that our work here contributes to this broader enterprise.

Open Research Badges

0 This article has earned Open Data and Open Materials badges. Data and materials are
available at https://github.com/evaportelance/vqa-function-word-learning.

Notes

1 All of the data, models, and experiment code presented in this paper are publicly available
at https://github.com/evaportelance/vqa-function-word-learning.

2 In Appendix C in the Supporting Information, we also include some experiments with
relational reasoning and the adjective same.

3 The CLEVR dataset also contains a test set, but since this dataset was designed as a
benchmarking task, the meta-information for test images is not publicly available, nor
are the answers to the test questions. We tried contacting the authors of the original paper
to gain access to the test images’ meta-information in order to use them for our probe
design, but we were unsuccessful. For these reasons, the images from the validation set
were used in designing our semantic probe-testing task.
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4 Examples of the templates in question containing our function words are given in
Appendix A in the Supporting Information.

5 There is an exception for the noun “thing” in the case of BEHIND-IN FRONT OF and
MORE-FEWER probe templates which obligatorily requires a modifier, for example,
“Is the blue thing behind the sphere?” We must include some modifier like blue or the
referent cannot be uniquely identified.

6 We kept all other hyperparameters the same as the ones used in the main version of
the MAC model in Hudson and Manning (2018) (see Appendix B in the Supporting
Information).

7 We note that there is a slight drop in mean performance at the six epoch mark. Two of
the five random seed runs seem to be causing this drop, while the other three continue
increasing. In run O, the model’s performance on both BEHIND and IN FRONT OF
drops specifically in the context of questions requiring “yes” answers, while in run 4
the opposite is true, dropping in the context of “no” answers. We do not know why this
might be happening in these specific runs, but since most runs do not seem to have this
problem, it may be safe to assume that these drops are due to the randomness introduced
by different model initializations.
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Figure S1: Mean F1 score on previous SAME probes
overall. Shading represents standard deviation across
3 models.

Figure S2: Mean F1 score on previous SAME probes
by answer type.

Figure S3: Mean F1 score on SAME probe overall.
Shading represents standard deviation across 5 models.

Figure S4: F1 score on SAME probe by answer type.
Shading represents standard deviation across 5 models
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