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Abstract

The Poverty of the Stimulus (PoS) Hypoth-
esis holds that children acquire complex lin-
guistic knowledge despite receiving limited
and ambiguous input, implying innate con-
straints. Neural language models, which lack
such domain-specific priors, offer a computa-
tional testbed for this claim. Prior results have
been mixed due to variation in data, model
architecture, and evaluated phenomena. We
present a systematic and developmentally real-
istic investigation with our new training-and-
evaluation suite, PoOSH-Bench. Transformer
models are trained on input reflecting the quan-
tity and quality of children’s linguistic experi-
ence and evaluated on five phenomena central
to acquisition research. We find that models
generalize to these phenomena with as little as
10M words but remain less efficient than chil-
dren. Examining three inductive biases from
cognitive and training-dynamics literature, we
show that although these biases improve overall
linguistic competence, they do not enhance per-
formance on PoS-related phenomena. These
findings reveal a dissociation between linguis-
tic competence and structural generalization,
indicating that even cognitively grounded in-
ductive biases in neural networks may operate
differently from the mechanisms underlying
human generalization. PoSH-Bench thus estab-
lishes a framework for bridging computational
and cognitive approaches to language science.'

1 Introduction

Human language acquisition poses a central ques-
tion: how do learners consistently generalize far be-
yond their experience? Even toddlers infer abstract
structural rules from sparse evidence (Koulaguina
and Shi, 2013), highlighting the efficiency of hu-
man generalization. Understanding this capacity
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has long motivated both linguistic theory and com-
putational modeling. One proposal is the Poverty
of the Stimulus (PoS) hypothesis, which holds that
children’s reliable acquisition from limited and am-
biguous input implies the presence of language-
specific innate constraints (Chomsky et al., 1976).

Recent advances in artificial neural networks
(ANNSs) allow these theoretical claims to be tested
under controlled conditions. A growing line of
work treats ANNs as cognitive models which train
them on human-scale input and evaluate with
human-style experimental probes to inform and
refine theories of human intelligence (e.g., Frank
and Goodman, 2025). This view motivates a central
question in both NLP and CogSci: can human-like
generalization emerge in language models trained
on developmentally plausible input? If weakly bi-
ased, domain-general learners acquire key linguis-
tic structures from input comparable in quantity
and quality to that available to children, then at
least some aspects of linguistic competence may
arise without extensive innate constraints.

Despite recent progress, two key gaps remain.
First, most prior work trains or evaluates mod-
els on adult-directed or artificial data (Oba et al.,
2024; Patil et al., 2024; Wilcox et al., 2024; Mc-
Coy et al., 2020; Ahuja et al., 2025). Such data
differ markedly in size, register, and complexity
from the input available to children. Studies using
child-directed speech (CDS) offer valuable insights
(e.g., Huebner et al., 2021) but remain limited in
size (typically under 8M words), below children’s
cumulative early exposure (10M-50M). Second,
existing syntactic evaluation suites such as BLiMP
(Warstadt et al., 2020), Zorro (Huebner et al., 2021),
SLOG (Li et al., 2023), and COGS (Kim and
Linzen, 2020) probe generalization broadly but not
along the canonical PoS dimensions emphasized in
acquisition research. The field therefore lacks a uni-
fied benchmark spanning multiple PoS phenomena,
which would allow systematic comparison across
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constructions and between human and model gen-
eralization.

To address these issues, we introduce POSH-
BENCH (Poverty of the Stimulus Hypothesis
Benchmark), a controlled training-and-evaluation
suite for examining PoS-related learning. The
training datasets contain developmentally plausi-
ble input (child-directed and other age-appropriate
sources) at scales of 10M, 30M, 50M, and 100M
words, approximating the linguistic exposure of
early learners. The models are evaluated on canon-
ical PoS phenomena, including question formation,
anaphoric one, binding, wanna-contraction, and
island constraints. We further manipulate the avail-
ability of positive direct evidence (PDE) and incor-
porate cognitively motivated inductive biases (e.g.,
recency, hierarchical constraints) to test how these
factors shape generalization.

We ask three questions: (1) To what extent can
transformer models acquire PoS-related phenom-
ena from developmentally plausible input? (2)
How do input type, data scale, and positive direct
evidence affect learnability? (3) Do (cognitively
grounded) inductive biases facilitate or constrain
such learning?

Our findings show that transformer models can
partially acquire PoS-related phenomena even with-
out positive direct evidence, achieving above-
chance generalization from as little as 10M words
(approximately the lower bound of linguistic input
experienced by 3-5-year-old children). Increas-
ing data size improves performance, though the
gains are shallower than those observed in human
learners. Models trained on simpler, speech-like
input outperform those trained on more complex
text, and cognitively inspired inductive biases en-
hance overall linguistic competence but hinder PoS-
related generalizations. Together, our approach
provides a framework for evaluating structural gen-
eralization under developmentally realistic condi-
tions, advancing empirical inquiry toward a closer
alignment between human and neural learners.

2 Background: The Learnability Puzzle

2.1 The Heart of the Learnability Debate

Children acquire complex linguistic knowledge
from limited data that is, in principle, compatible
with multiple hypotheses in the learner’s hypothesis
space. Yet, they consistently and rapidly converge

on the correct generalization.”> Two main theoret-
ical approaches aim to explain this success. Fol-
lowing Pearl (2022), we refer to these approaches
as linguistic nativism and non-linguistic nativism.>
The debate centers on two interrelated questions:
(i) whether the inductive biases that guide acqui-
sition are domain-specific or cognitively general,
and (ii) whether the input available to children is
truly impoverished or sufficiently informative when
processed by powerful learning mechanisms.

Linguistic nativism holds that these inductive
biases are domain-specific. It distinguishes four
kinds of evidence based on two dimensions: pos-
itive vs. negative and direct vs. indirect (Pearl,
2022). Positive evidence signals which forms
are grammatical, while negative evidence signals
which are not. Direct evidence explicitly targets the
correct hypothesis, whereas indirect evidence re-
quires inference from context or co-occurrence pat-
terns. Because negative evidence (e.g., explicit cor-
rection) and positive direct cues (typically complex
sentences) are often ignored (e.g., Brown, 1970;
Bowerman, 1988) and rare (Legate and Yang, 2002;
Lidz et al., 2003), learners rely primarily on abun-
dant yet indirect positive input, which may be com-
patible with multiple hypotheses, giving rise to the
so-called “poverty” of the stimulus.

Non-linguistic nativism, in contrast, argues that
the input is sufficiently rich when processed by
powerful, domain-general mechanisms such as dis-
tributional learning, analogy, and pragmatic infer-
ence (Ambridge and Lieven, 2011). Under this
view, linguistic structure emerges from the exploita-
tion of regularities in the environment rather than
from language-specific innate constraints. This the-
oretical divide motivates the computational inquiry:
by implementing learners with different inductive
assumptions, we can test whether domain-general
mechanisms suffice to recover the linguistic gener-
alizations observed in human learners.

2.2 Formalizing the Poverty of the Stimulus
Hypothesis

Following the linguistic nativist tradition, the PoS
hypothesis Chomsky 1965 can be formally defined
as below, drawing on Pearl (2022); Pullum and

2A person might go through much or all of his life without
ever having been exposed to relevant evidence, but he will
nevertheless unerringly employ [the structure-dependent gen-
eralization] on the first relevant occasion. (Piattelli-Palmarini,
1980)

30ften also referred to as empiricism or usage-based learn-
ing.



The Poverty of the Stimulus Argument

(1) Goal: Learners L aim to acquire the target linguis-

tic knowledge 7" by identifying the correct generaliza-

tion ho from a hypothesis space
H = {ho,h1,...,hn}.

(2) Constraint: The linguistic input available to learn-

ers is finite, noisy, and sometimes misleading or am-

biguous (Pearl, 2022), providing insufficient evidence

to eliminate most competing hypotheses in H.

(3) Observation: Despite this underdetermination,

learners consistently and reliably acquire hg.

(4) Inference: Therefore, language acquisition cannot

proceed purely in a data-driven manner.

(5) Conclusion: Learners must possess innate biases

(e.g., Universal Grammar) that guide them systemati-

cally toward hy.

Scholz (2002); Perfors et al. (2011).

3 PoS-related Phenomena Studied

This section introduces the linguistic phenomena
covered in POSH-BENCH evaluation set (Table 1)
and the linguistic principles each phenomenon tests.
For each case, we briefly describe its core syntac-
tic properties, discuss why direct evidence for the
relevant generalization is scarce in naturalistic in-
put, and summarize empirical findings from both
human learners and computational models.

Yes/No Question Formation Yes/no question
formation is a classic PoS case concerns how chil-
dren learn to form yes/no questions by moving the
main auxiliary rather than the first one (Chomsky,
1965; Pullum and Scholz, 2002). (e.g., Chomsky,
1965; Lightfoot, 1991; Pullum and Scholz, 2002).
To learn the correct hypothesis, children would
need sentences containing multiple auxiliaries with
the main auxilary following the subordinate aux-
ilary, which are extremely rare in CDS (less than
0.1%; Legate and Yang, 2002). Nevertheless, chil-
dren older than 4;7 consistently apply the hierarchi-
cal rule (Crain and Nakayama, 1987). By contrast,
computational models show mixed results: simple
n-gram learners capture surface patterns but not
hierarchical generalization (Reali and Christiansen,
2004; Kam et al., 2008); Bayesian models succeed
only in idealized hypothesis spaces (Perfors et al.,
2011); and neural networks trained on CDS or arti-
ficial data often fail without strong inductive biases
(McCoy et al., 2020; Yedetore et al., 2023; Ahuja
et al., 2025; Murty et al., 2023; Qin et al., 2024).
In the benchmark, we test three types of relative
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Figure 1: Syntactic trees for this cup of tea (left) and
this cup with straw (right), illustrating that one replaces
the higher N’ constituent rather than the head noun.

clauses being the subordinate clause: subject, ob-
ject, and reduced relative clause.

Island Constraints Island constraints (Ross,
1967) restrict syntactic movement, preventing con-
stituents from being extracted out of certain struc-
tural domains such as complex noun phrases, wh-
clauses, and adjunct clauses. They are classic PoS
cases because their acquisition requires negative ev-
idence: children must infer that certain movements
are ungrammatical despite the lack of explicit cor-
rection. Empirical studies show that children ac-
quire sensitivity to island constraints by around age
3 (De Villiers et al., 1990; De Villiers and Roeper,
1995; Goodluck et al., 1992; Hirzel, 2022), demon-
strating early mastery of hierarchical dependen-
cies. From a computational perspective, island con-
straints remain challenging. Pretrained language
models capture some basic island effects (Chowd-
hury and Zamparelli, 2018; Wilcox et al., 2024;
Howitt et al., 2024) but fail in more complex config-
urations such as parasitic gaps and across-the-board
movement (Lan et al., 2024). Recent BabyLM-
scale experiments (Chang et al., 2025) further show
that models trained on 10—100M words of devel-
opmentally plausible data fail to acquire wh- and
adjunct islands. In our benchmark, we include
three major subcategories, Complex NP, Wh-, and
Adjunct Islands, to assess whether models can gen-
eralize hierarchical movement restrictions under
realistic input conditions.

Anaphoric One Anaphoric one (Baker, 1978)
refers to an anaphor that substitutes for an N’ con-
stituent rather than merely the head noun. For ex-
ample, one can replace a modified noun phrase
(this cup with a straw — this one with a straw)
but not a complement (this cup of tea — *this one
of tea) (see Figure 1). Although direct evidence
for this distinction is vanishingly rare in CDS (less
than 0.002%), 18-month-old infants show sensi-



Phenomenon \ #Pos.DE \ Age of Acquisition Cats. Minimal Pairs
SubjR Will the man who did read the book __ leave?
S - N
<0.2% 3:2-5:11 (Crain and Did the man who __ read the table will leave?
Question Formation Nakayama, 1987); 3-5  ObjR Will the man who the boy did see __ leave?
(Legate and | (Nakayama, 1987) *Did the man who the boy __ see will leave?
Yang, 2002)
Reduced ObjR  Can the man the boy did see __ explain?
*Did the man the boy __ see can explain?
Complex NP W{lat did she [yp claim that he likes T]?

3 (De Villiers et al.,
1990; Hirzel, 2022;

*What did she make [xp the claim that he likes __]?
A )( T

3;1-6;1 (De Villiers and
Roeper, 1995); 4-5
(Fetters and Lidz,

Island Constraints NA

Goodluck et al., 1992);  wh

W{lat did she think [+ that he likes T]?
*W{lat did she wonder [wy whether he likes T]?

2017); after 6 Adjunct W{lat did she think [ that he likes T]7
ggg‘;g"“ka etal, *What did she worry X[ADV if he likes __1?
- - - - o
Anaphoric one O.QZ% 1:6 (Lidz et al., 2003) Syntactic I see a piece of pizza. Did you see another one?
(Lidz et al.,
2003)
*I see a piece of pizza. Did you see another one of pizza?
0.067% . Principle-A-L  The boy said the girl likes herself.
3-5 (Crain and McKee, s . Lo .
Binding 1985): 4-6:6 (Chien The boy said the girl likes himself.
and Wexler, 1990) Principle-A-C  The boy said the girl’s dad likes himself.
*The boy said the girl’s dad likes herself.
?
Wanna NA 3:11 (Hwang, 2024) Wanna When do you wanna go?

*Who do you wanna go?

Table 1: Phenomena included in the POSH-BENCH. # Pos.DE refers to the stats for the amount of positive direct
evidence. Age of Acquisition lists exisiting studies that confirm children’s acquisition within a age range. The
benchmark covers 5 phenomena with 10 subcategories in total. We show one example for each subcategory.

tivity to the hierarchical rule (Lidz et al., 2003).
Bayesian models reproduce this behavior under
idealized assumptions (Regier and Gahl, 2004;
Foraker et al., 2009; Pearl and Mis, 2011, 2016),
making anaphoric one a paradigm case where ab-
stract structure emerges from impoverished data.

Binding Under Principle A of the Binding The-
ory (Chomsky, 1993), an anaphor must be c-
commanded and co-indexed by its antecedent
within a local domain. To identify this rule, chil-
dren need positive direct evidence that contains a
reflexive pronoun and has more than one preceding
antecedent. Such configurations are extremely rare
in CDS (approximately 0.07%; see Appendix B).
Behavioral studies show that by age 6, children
achieve near-adult accuracy (Chien and Wexler,
1990), with even earlier mastery in other languages
(McKee, 1992; Emond and Shi, 2025). Although
binding is often included as part of broader syn-
tactic evaluation benchmarks, there has been little
work testing whether models can generalize this
dependency directly. We include two subtypes of
Principle A (locality and c-command) to assess
sensitivity to structural binding constraints.

Wanna-Contraction In English, want to can con-
tract to wanna, except when the subject of the infini-
tival clause has been extracted. This subtle restric-
tion highlights hierarchical dependencies between
movement and contraction. Children show adult-
like acceptability by 3;11 (Hwang, 2024), though
production errors persist (Getz, 2019; Zukowski
and Larsen, 2011). To our knowledge, no computa-
tional studies have directly modeled this alternation.
We include the wanna construction in our bench-
mark as a minimal-pair test of structural abstraction
in contraction.

Summary Across these five categories, children
demonstrate early mastery despite minimal/absent
positive evidence, whereas current computational
models show limited or inconsistent generalization.

4 PoSH-Bench: A Training and
Evaluation Suite

4.1 Training Data

POSH-BENCH provides developmentally realistic
training input that approximates both the quantity
and diversity of linguistic experience available to
children. Empirical estimates of children’s cumu-



Data Source | 10M 30M 50M 100M  Phenomenon | Existing Benchmarks

Speech Transcriptions Question Formation | McCoy et al. (2020); Yedetore et al.
CHILDES 4M ™ oM oM (2023)

OpenSubtitles M oM 20M 20M Anaphoric one None

BNC 1M M &M M Island Constraints Warstadt et al. (2020); Huebner et al.
Switchboard 0.5M M 1M 1M (2021); Wilcox et al. (2018); McCoy
Subtotal 7.5M  22M  38M 38M and Griffiths (2025)

Written Texts Binding Warstadt et al. (2020); Huebner etal.
TinyStories M 3M 4M 2M ggﬁi) MeCoy and Griffiths (2025)
Project Gutenberg M M 4M 26M

Simple English Wikipedia | 0.5M 2M 4M 14M

Subtotal 2.5M SM  12M 62M Table 3: Existing benchmarks that contain the phenom-

Table 2: Word counts (in millions) by data source and
total target size for each training dataset.

lative exposure range from 2-60M words by age
five (Hart and Risley, 1992; Gilkerson et al., 2017;
Frank, 2023). Balancing these findings with com-
putational feasibility, we construct three develop-
mentally motivated scales - 10M (lower bound),
30M (midrange), and 50M (upper bound) - plus
a 100M-word extension representing early adoles-
cence (MacWhinney, 2000).

Children’s linguistic input is not limited to CDS:
they also overhear conversations (Casillas et al.,
2020; Cristia et al., 2019; Floor and Akhtar, 2006;
Akhtar, 2005), television programs (Linebarger and
Walker, 2005), and shared book reading (Mon-
tag et al., 2015). Therefore, we sample a broad
range of speech transcriptions rather than restrict-
ing to strictly child-directed utterances. Speech
data makes up roughly 76% of the 50M dataset
(BABY-50M), a proportion kept constant for the
10M and 30M splits for fair comparisons. The
remaining portion draws from simplified written
sources (e.g., Simple English and TinyStories (El-
dan and Li, 2023)) to approximate shared reading
and media exposure.*

Building on this base corpus (see Table 2), we
design three controlled variants to probe the effects
of input register and the availability of positive
direct evidence. These variants allow us to separate
the influence of data source (WIKI) and the absence
of direct evidence (BABY-F).

WIKI A Wikipedia-based version of comparable
size provides an adult-oriented baseline with denser
syntax and more abstract content. Detailed statis-
tics are provided in Appendix A.

“The 100M split is based on the BabyLM 2025 corpus
(Charpentier et al., 2025), excluding children’s own utterances
in CHILDES and replacing them with TinyStories.

ena of interest

BABY-F A filtered version of BABY that removes
all PDE sentences, simulating a learner exposed
only to indirect evidence. The 100M corpus re-
mains unfiltered since exposure at this scale sur-
passes early developmental input ranges. The filter-
ing details can be found in Appendix B.

BABY Similar to BABY-F, but with a small propor-
tion of PDE sentences (approximately 0.2% com-
plex questions and 0.07% binding) reintroduced
by randomly replacing existing sentences. This
reflects the presence of rare yet potentially informa-
tive examples in children’s natural linguistic input.

4.2 Evaluation Suite

For the target phenomena, several existing bench-
marks partially overlap with our focus (Table 3).
However, POSH-BENCH differs in explicitly tar-
geting syntactic constructions central to the PoS
debate, providing a theoretically motivated and cog-
nitively grounded evaluation of language models.
The benchmark comprises five major categories
and ten subcategories drawn from the acquisition
literature. Each subcategory includes 500 manually
verified minimal pairs designed to ensure both syn-
tactic contrast and semantic plausibility. To enable
fair comparison across input conditions (WIKI vs.
BABY), all lexical items are sampled from the inter-
section of the top 5K most frequent words shared
between the WIKI-100M and BABY-100M corpora.

S Method: Training and Evaluation

5.1 Models and Training

All models follow the GPT-2 architecture (Radford
et al., 2019). For each dataset split, we train a
separate tokenizer to account for register and vo-
cabulary differences between WIKI and BABY. Al-
though the WikI-100M and BABY-100M corpora
contain a comparable number of words, the result-
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Figure 2: Poverty of the Stimulus Category-wise average for each benchmark. The long dashed line represent
chance level performance and the star represent the performance of pretrained GPT2-small. The shadow/error bar

represent SD across 3 random seeds.

ing token counts vary substantially with different
vocabulary sizes. We experiment with five common
vocabulary sizes and select 32,768, which mini-
mizes the discrepancy in compression rate across
datasets (See Table 10 in Appendix C).

A pilot study comparing model capacities shows
that gpt2-mini performs best on the 10M-scale
data, while gpt2-small achieves lower loss for
larger datasets. Accordingly, we adopt gpt2-mini
for 10M experiments and gpt2-small for 30M,
50M, and 100M. Each model is trained with three
random seeds for robustness.

Training proceeds for up to 100k steps with
early stopping (patience = 6k) and a 4k-step linear
warmup following Padovani et al. (2025) to miti-
gate early overfitting. Optimization uses AdamW
with a learning rate of 1 x 10~% and weight decay
0.01. Full hyperparameter and model architecture
details are provided in Appendix D.

5.2 Evaluation

Each phenomenon is tested using minimal pairs
constructed for the benchmark. Following stan-
dard syntactic evaluation protocols (Warstadt et al.,
2020; Huebner et al., 2021), for every pair, we
compute the average token-level perplexity of both
sentences and count an item as correct if the gram-
matical sentence receives lower perplexity. Ac-
curacy (proportion of correct preferences) serves
as the primary evaluation metric, averaged across
three seeds.

6 Experiment 1: Structural
Generalization without Positive
Evidence

This experiment tests whether transformer mod-
els can acquire the target PoS-related phenomena
from input that lacks all PDE. We train models of
different sizes on the BABY-F datasets and evalu-

Size Cat. AnaOne Island QF Binding Wanna
10M BABY 47.1 70.3 592 55.6 64.0
BABY-F  52.7 72.0 59.5 538 59.3
WIKI 28.3 69.7 629 495 56.1
30M BABY 64.5 77.6 56.1  59.6 43.8
BABY-F  65.7 70.7 573 625 63.3
WIKI 28.3 77.9 619 649 62.6
50M BABY 57.3 76.0 55.8 623 62.7
BABY-F  64.7 72.6 563 67.1 76.3
WIKI 355 75.1 63.0 63.0 55.2
100M BABY 56.9 79.1 585 721 90.3
WIKI 26.4 73.8 64.1 579 88.9

Table 4: Result overview with color-coded accuracy
(red: low, green: high).

ate them on POSH-BENCH. All reported results
are averaged over three random seeds. Category-
level scores are shown in Table 4, with fine-grained
subcategory results provided in Table 8.

Models trained on BABY-F consistently ex-
ceeded chance-level accuracy even with only 10M
words of training data. Performance varied across
phenomena: Islands show the strongest general-
ization, whereas Anaphoric one remains the most
difficult (52.7% accuracy). These results suggest
that, despite the absence of PDE, transformer mod-
els can extract some hierarchical regularities from
purely indirect evidence, though for some phenom-
ena, the accuracy is still relatively low.

7 Experiment 2: Effects of Input Type,
Data Scale, and Evidence Availability

The second experiment examines how input quan-
tity, register, and PDE availability jointly affect
structural generalization. We train additional mod-
els on the BABY (unfiltered) and WIKI corpora to
address three questions: (1) Does increasing input
size improve generalization and how much is the
improvement? (2) Does exposure to more complex,
adult-oriented text (WIKI) yield better syntactic ab-
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straction? (3) Does introducing a small proportion
of PDE (< 0.3%) enhance generalization?

To ensure that our conclusions are reliable and
not benchmark-specific, we evaluate each model
not only on POSH-BENCH but also on overlapping
phenomena from existing benchmarks—BLiMP
(Warstadt et al., 2020), Zorro (Huebner et al., 2021),
and SCaMP (McCoy and Griffiths, 2025). This
cross-benchmark evaluation provides a consistency
check across independently constructed test suites,
reducing the likelihood that observed effects reflect
idiosyncrasies of a single dataset.

We analyze results using a Bayesian linear
mixed-effects model: acc ~ (size + category) x
filtered + training_source + (1 |benchmark)
All predictors are sum-coded. Sampling used four
chains of 4,000 iterations each (1,000 warmup),
yielding 12,000 posterior draws.> Posterior medi-
ans and 95% credible intervals (Crl) are visualized
in Figure 3, and detailed estimates appear in Ta-
ble 7.

Main effects Larger training size reliably im-
proved overall performance (median = 0.04,
95% Crl [0.02, 0.06]). The main effect of filtering
overlapped zero (-0.02 [-0.04, 0.01]), indicating
no general benefit from the inclusion of PDE. Mod-
els trained on BABY input performed slightly better
than those trained on WIKI (0.02 [0.01, 0.04]). Per-
formance varied across linguistic categories: Bind-
ing yielded the highest relative accuracy, whereas
Anaphoric one and Question formation were lower.

SConvergence diagnostics were satisfactory (R = 1.00),

with large effective sample sizes and only two isolated diver-
gent transitions.

Interaction effects. A credible interaction was
found between Anaphoric one and filtering (-
0.07 [-0.13, —0.01]), indicating that models trained
without positive direct evidence (i.e., in the filtered
condition) related to question formation and bind-
ing performs better on this phenomenon, which is
surprising. For Question Formation and Binding,
the interaction terms showed positive posterior me-
dians, which suggests an opposite trend, but their
95% credible intervals included zero, indicating
that these effects were not credible.

Summary Taken together, these findings suggest
that increasing data size and training on simpler,
child-oriented text enhance structural generaliza-
tion. The models may gain a small benefit from
limited positive direct evidence, though this effect
is not statistically credible. Future work could fur-
ther investigate how much and what kinds of pos-
itive direct evidence are necessary for models to
achieve more human-like learning efficiency (cf.
Oba et al., 2024).

8 Experiment 3: Inductive Biases —
Helpful or Not?

The final experiment investigates whether induc-
tive biases, either implicit in training dynamics or
explicitly motivated by cognitive theories, enhance
structural generalization under impoverished input.
We test three types of biases: one implicit bias
arising from extended training (grokking), and two
cognitively plausible biases reflecting hierarchical
abstraction and limited working memory. All ex-
periments use the BABY-F 10M dataset unless oth-
erwise noted.

3.1 Implicit Bias from Prolonged Training
Murty et al. (2023); Power et al. (2022) report
that moderately deep transformers (46 layers) can
exhibit grokking which is a late-emerging gener-
alization phase after overfitting when trained for
very long durations. This behavior has been inter-
preted as an implicit bias resulting from the dy-
namics of optimization. While Chang et al. (2025)
found little benefit with gpt2-small when test-
ing on island constraints, we follow Murty et al.
(2023) test a shallower 6-layer, 4-head configura-
tion (gpt2-xxs) trained for 300k steps, compared
to an early-stopped baseline at 50k.

®However, it is also possible that the observed benefit
arises from the diversity of genres, as suggested by Feng et al.
(2024).
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As shown in Figure 4, extended training gener-
ally reduced performance rather than improving it.
Unlike most PoSH-Bench phenomena, whose ac-
curacies declined stably after 50k steps, island con-
straints were less affected. A modest improvement
was observed for Complex-NP islands (+20% be-
tween 50k and 80k), and wh-islands also showed
slight increases even after overfitting. However, as
this experiment was conducted with a single seed,
these results should be interpreted with caution.

3.2 Hierarchical Bias via Pre-Pretraining. To
test whether an explicitly hierarchical inductive
bias improves syntactic abstraction, we follow Hu
et al. (2025) and pre-pretrain gpt2-mini on a shuf-
fled k-Dyck language for 2k steps before training
on BABY-F. This manipulation provides models
with prior experience in recursive hierarchical struc-
ture, an inductive bias that is cognitively plausible
and supported by PoS hypothesis and syntactic
bootstrapping theories (Fisher et al., 2010).
Results in Figure 5 show that, while pre-
pretraining improves average accuracy on general
benchmarks (BLiMP, Zorro, SCaMP), it does not

transfer to PoOSH-Bench. A closer analysis reveals
that only Anaphoric one benefits modestly and
Wanna does too but with relativly less reliable im-
provement, whereas Island, Binding and Question
formation decline. In short, although hierarchi-
cal pre-pretraining enhances linguistic competence
overall, it fails to promote human-like structural
generalization and may even hinder it in some
cases.

3.3 Dynamic Recency Bias from Limited Work-
ing Memory. Finally, we test a cognitively moti-
vated bias derived from the Less-is-More Hypoth-
esis (Newport, 1990), which posits that children’s
limited working memory facilitates abstraction dur-
ing early learning. Following Mita et al. (2025), we
implement a dynamic attention bias based on AL-
iBi (Press et al., 2021), where the recency weight
decays over training epochs:

Attention Score = softmax (quT +rt. B) , (D

B=[-(i—-1) —(i—-2) --- 0].
@

where ¢; K ' represents the conventional atten-
tion score and r* - B represents a dynamic update of
arecency bias as the number of epoch ¢ increases.
The update rate is determined by the decay rate 7.

We train gpt2-mini on BABY-F 10M for 20
epochs, setting r = 0.6 and the recency bias van-
ishes around epoch 10.

As shown in Figure 6 (bottom), models with
dynamic recency bias achieve higher average ac-
curacy than those without, particularly on general
benchmarks after epoch 5. However, this advan-
tage does not extend to PoS-related phenomena:
on PoSH-Bench, models trained without dynamic
recency perform better. After zooming into spe-
cific PoS-related phenomena (Figure 6, top), we
find that despite overall gain in these benchmarks,
adding dynamic recency biases hurts on these PoS-
related phenomena across all benchmarks.

9 Discussion

Returning to our central question: fo what extent
can artificial neural networks reproduce human-
like structural generalization when trained on de-
velopmentally plausible input?, our findings sug-
gest a nuanced answer. With approximately the
linguistic input available to a 3—5-year-old child
(around 10M words), transformer models achieve
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non-trivial but limited learning of PoS-related phe-
nomena. In some cases, such as Binding, their
accuracy roughly matches that of children around
age four: Chien and Wexler (1990) report that chil-
dren begin to exceed chance on reflexive interpre-
tation only after age four, similar to our models
at 10M words. However, unlike human learners,
who rapidly approach ceiling performance by age
six, models show much slower progress: even with
100M words, which is roughly twice the estimated
input available by age six, their accuracy plateaus
around 0.7.

As Samet (2008) noted, although [innateness]
is an easy doctrine to attack, it is a hard one to
kill. Our goal is not to refute the PoS Hypothesis
but to refine its scope. Specifically, our results
challenge the assumption that the input available to
children is as impoverished as traditionally claimed.
Developmentally realistic data alone enables above-
chance structural generalization in neural learners.
At the same time, the persistent gap between model
and human learning efficiency indicates that richer
inductive biases, or broader multimodal experience,
remain necessary for robust generalization.

Experiment 3 further demonstrates that intro-
ducing inductive biases improves models’ overall
linguistic competence but not their structural gen-
eralization on PoS-related phenomena. This disso-
ciation raises three possibilities. First, cognitively
grounded biases may aid human learners but fail
to translate to current ANNs, suggesting that (i)
data-driven architectures like transformers might

have already reached their ceiling in exploiting dis-
tributional cues; or (ii) the learning mechanisms
are so different in ANNs from humans that such
biases are not testable. Second, such biases might
benefit both humans and models, but only under
specific architectural or developmental constraints
(e.g., memory capacity, data size, data content, cur-
riculum structure) not yet explored here. Third,
some hypothesized biases may be mis-specified or
incomplete, underscoring the need for more precise
computational formulations of human learning con-
straints. Distinguishing among these possibilities
will be an important direction for future research.

10 Conclusion and Future Work

Language acquisition involves the interaction be-
tween the learner, its inductive biases, and the in-
put environment (Warstadt and Bowman, 2022). In
this work, we revisited the Poverty of the Stimu-
lus Hypothesis through the lens of modern neural
language models and a developmentally grounded
benchmark, POSH-BENCH. Across three experi-
ments, we find that transformers trained on child-
scale data partially acquire core linguistic general-
izations but remain less data-efficient than human
learners; that additional exposure to direct evidence
or adult-oriented text does not substantially im-
prove performance; and that cognitively motivated
inductive biases enhance surface competence but
not structural generalization.

Together, these findings suggest that develop-



mentally plausible input is more informative than
previously assumed, yet current inductive biases,
whether implicit or cognitively inspired, do not
fully capture the mechanisms underlying human-
like generalization. Future work will extend POSH-
BENCH to multilingual and multimodal settings,
integrate psycholinguistic developmental data, and
explore more cognitively plausible hypotheses.
Such work will bring us closer to understanding
not only how much data matters, but what kind
of learner makes that data meaningful. A further
promising direction is to examine why ANN learn-
ers fail to generalize and how such failures can
inform more human-like learning mechanisms.

Limitations

We acknowledge several limitations of the present
study. First, our investigation is confined to syn-
tactic phenomena. The Poverty of the Stimulus hy-
pothesis, however, has been explored across multi-
ple linguistic domains—including phonology (Wil-
son, 2006), syntax (e.g., Lidz et al., 2003; Crain and
Nakayama, 1987; De Villiers et al., 1990; Crain,
1991; Yedetore et al., 2023; Perfors et al., 2011),
lexical learning (Braine et al., 1990; Scott and
Fisher, 2009), and semantics (Crain et al., 2000;
Falmagne, 2013; Papafragou and Musolino, 2003).
We focused on syntactic constructions that are both
theoretically central and empirically well-attested,
leaving other domains, such as raising and passive
constructions (Becker, 2006; Hirsch et al., 2007;
Choe and Deen, 2016; Armon-Lotem et al., 2016),
for future work due to ongoing debates over their
experimental reliability.

Second, our models receive linguistic input
solely in textual form, whereas human learners ex-
perience multimodal input rich in prosody, gesture,
and social interaction. Due to the current limita-
tions of multimodal language models, we defer a
systematic exploration of these channels to future
work.

Third, the quality of our filtered corpus depends
on the accuracy of automatic syntactic parsing. We
employ the Stanza combined parser, but residual
parsing errors may introduce noise in identifying
and removing positive direct evidence, potentially
attenuating the effects we report.

Additionally, our experiments are limited to En-
glish and GPT-2-style architectures; whether these
findings extend to languages with different typo-
logical properties or to architectures with explicit

memory mechanisms remains to be tested.

Finally, the inductive biases tested here repre-
sent only a subset of the possible design space.
Architectural, training-dynamic, and attentional bi-
ases (e.g., Sartran et al., 2022; Oba et al., 2023;
Yamakoshi et al., 2025) could influence structural
generalization in ways not captured by our current
manipulations. Exploring these broader classes of
biases remains an important direction for future
research.
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A Statistics of the BABY and WIKI
datasets

The detailed statistics for our WIKI BABY-F, and
BABY datasets can be found in Table 9.

B Filtering the Corpus

This section details the procedure used to remove
sentences containing positive direct evidence (PDE)
for the target PoS phenomena. Among the five
main constructions examined, three (Question For-
mation, Anaphoric one, and Binding) have identi-
fiable PDE that could directly support the correct
generalization. Our goal is to construct a conserva-
tive filtering procedure that minimizes the risk of
leaving potential PDE in the training corpus, even
at the cost of including some false positives.

Parsing and General Strategy All sentences in
the BABY corpus were parsed using Stanza (Qi
et al., 2020). For the filtered condition (BABY-F),
we applied rule-based heuristics over dependency

parses and POS tags. To ensure coverage, rules
were deliberately designed to err on the side of
over-filtering (i.e., allowing more false positives
rather than false negatives).

Question Formation Sentences were removed
if they (i) contained a relative clause modifying
the subject, or (ii) were interrogative. For (i), we
identified sentences containing both acl:relcl
and nsubj dependencies where the token labeled
nsubj precedes that labeled acl:relcl. For (ii),
we detected questions based on the presence of a fi-
nal question mark, a wh-word, or an auxiliary verb
among the first two tokens.

Anaphoric one Direct evidence for anaphoric
one requires discourse contexts with repeated com-
plex noun phrases. Since such configurations are
rare, we further disrupted potential co-reference
cues by randomly shuffling word order within the
relevant noun phrases, thereby eliminating patterns
that could support the correct substitution rule.
These examples were not restored in the unfiltered
(BABY) version.

Binding To remove PDE for reflexive binding,
we excluded sentences containing a reflexive end-
ing in self that was preceded by at least two noun
or pronoun tokens. POS tags for identifying reflex-
ives and potential antecedents were extracted from
Stanza parses.

C Corpus Token Count

The corpus token count with different vocabluary
sizes can be found in Table 10.

D Hyperparameter setting

We experiment with models with 4 different archi-
tectures, which we call GPT2-small, GPT2-mini,
and GPT2-xs and GPT2-xxs. We list their architec-
ture information in Table 5.

Parameter MINI XS XXS SMALL
Hidden size 512 512 512 768
#Heads 8 8 4 12
#Layers 4 6 6 12
FFN dim 2048 2048 2048 3072

Table 5: Model configurations used in experiments.

In Experiment 3, the dynamic recency bias con-
dition was trained and evaluated by epochs rather
than by gradient steps, due to the implementation
of the time-dependent bias update. We adopted our
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Hyperparameter | Setting

learning rate le-4
batch size 32
context length 512
warmup steps 4,000
steps 100,000
patience 6,000
dropout 0.1
weight decay 0.1
learning rate scheduler linear

Table 6: Hyperparameter settings for the experiments

standard GPT-2 mini architecture but followed the
hyperparameter configuration of Mita et al. (2025)
for comparability. Specifically, the maximum con-
text length was set to 32 and the batch size to 512,
as these settings yielded stable learning and posi-
tive performance in their reported experiments.

E Bayesian mixed model results

The Baysian mixed model results are reported in
Table 7.

Predictor Estimate 95% Crl
Intercept 0.61 [0.56, 0.66]
Size (z) 0.04 [0.02, 0.06]
Category: Anaphoric one -0.11  [-0.17,-0.04]
Category: Binding 0.12 [0.09, 0.16]
Category: Island 0.00  [-0.03,0.04]
Category: Question formation -0.04 [-0.08, -0.00]
Filtered (no vs. yes) -0.02 [-0.04, 0.01]
Source (baby vs. wiki) 0.02 [0.01, 0.04]

Interaction Effects

Size (z) x Filtered -0.01 [-0.04, 0.01]
Anaphoric one x Filtered -0.07 [-0.13,-0.01]
Binding X Filtered 0.01 [-0.01, 0.04]
Island x Filtered 0.02 [-0.01, 0.05]
Question formation X Filtered 0.03 [-0.01, 0.07]

Group-level standard deviations

Dataset intercept SD 0.04 [0.01, 0.12]
Residual SD (o) 0.19 [0.18, 0.20]

Table 7: Bayesian linear mixed-effects model with ran-
dom intercepts for dataset. Entries are posterior esti-
mates with 95% credible intervals. For two-level fac-
tors, positive estimates indicate higher values for the
first level (no vs. yes; baby vs. wiki).

F Fine-grained Results

The subcateogry-wise results can be found in Ta-
ble 8.



10M 30M 50M 100M

Category Phenomenon BABY-F BABY WIKI BABY-F BABY WIKI BABY-F BABY WIKI BABY WIKI
Anaphoric One anaphoric-one-syntax 527 47.1 283 65.7 64.5 29.5 64.7 573 355 49.2 28.8
island-adjunct 719 68.2 69.7 83.1 82.9 70.7 89.7 88.2 78.7 90.6 89.4

Island island-complex-np 51.1 532 535 459 62.3 71.8 46.1 53.1 625 71.8 55.4
island-wh 92.9 89.4 86.1 83.2 87.7 86.6 82.0 86.6 84.1 83.0 83.2

question-formation_or 61.3 61.4 65.4 54.7 55.7 61.4 51.8 49.9 58.0 51.2 59.6

Question Formation question-formation_rr 54.9 56.4 63.2 56.3 53.8 64.9 55.5 56.0 65.5 61.6 70.8
question-formation_sr 62.4 59.8 60.2 61.1 58.9 60.2 61.7 61.5 65.4 63.8 63.6

Bindin principle_a_command 425 46.7 30.5 45.6 39.5 45.6 50.8 412 415 55.6 33.0
e principle_a_locality 65.0 64.5 68.6 79.3 79.7 81.7 833 83.5 84.5 92.4 83.2
Wanna wanna 59.3 64.0 56.1 63.3 438 56.6 76.3 62.7 552 89.0 96.8
Average 61.4 61.1 582 63.8 62.9 62.9 66.2 64.0 63.1 70.8 66.4

Table 8: Category-wise results grouped by training size (columns) and category (rows).

Dataset | 10M | 30M | 50M | 100M

| #Sents #Words/Sent | #Sents #Words/Sent | #Sents #Words/Sent | #Sents ~#Words/Sent
WIKI 430k 23.2 1.3M 23.52 2.1M 23.41 4.3M 23.51
BABY 1.4M 7.13 4.0M 7.53 6.6M 7.46 11.6M 8.55
BABY-F 1.4M 7.11 4.0M 7.50 6.6M 7.43 NA NA

Table 9: Statistics of training corpora by data size. Each size group reports the number of sentences and average
sentence length.

Vocab size | Dataset 10M 30M 50M 100M

WIKI 17,341,898 54,230,974 90,741,059 181,490,178
baby 16,216,427 50,045,572 83,924,585 159,613,479

WIKI 14,442,880 45,544,347 76,384,301 153,006,220

8192

32768 baby  153,18.669 46.823.177 78.091.016 146,768,608
19152 WIKI 13,989,838 44,114,584 74020389 148,359,082

baby 15181258 46370173 77.257.389  144.939.275
65536 WIKI 13741202 43308251 72,687,684 145,743,672

baby 15,114,124 46,128,756 76,809,625 143,962,866

Table 10: The corpus token count (CTC) of BPE tokenizers with different vocab size trained with different datasets
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