
Ling	151/Psych	156A: 
Acquisition	of	Language	II

Lecture	10	
Word	meaning	I



Announcements

Review	questions	available	for	word	meaning	

Be	working	on	HW4	(due	2/12/18)	





Gavagai!

What	does	“gavagai”	mean?  



What	does	“gavagai”	mean?  

Rabbit?
Mammal?

Ears?

Is	it	gray?
Fluffy?

Carrot	eater?

Scurrying
Hopping

Thumping

Stay!

What	a	cutie!

Meal!
Rabbit	only	until	eaten!

That’s	not	a	dog!

gray	rabbit?
Animal?

vegetarian?

Long	ears?

Look!

Cheeks	and	left	ear!



What	does	“gavagai”	mean?  
hKp://www.thelingspace.com/episode-35	
https://www.youtube.com/watch?v=Ci-5dVVvf0U	
~2:03	-	2:32

http://www.thelingspace.com/episode-35
https://www.youtube.com/watch?v=Ci-5dVVvf0U


Same	problem	the	child	faces



A	little	more	context…

“Look!		There’s	a	goblin!”

Goblin	=	????



The	mapping	problem

Even	if	something	is	explicitly	labeled	in	the	input	(“Look!	
There’s	a	goblin!”),	how	does	the	child	know	what	
specifically	that	word	refers	to?	(Is	it	the	head?		The	feet?	
The	staff?		The	combination	of	eyes	and	hands?		Attached	
goblin	parts?…)

Quine	(1960):	An	infinite	number	of	
hypotheses	about	word	meaning	are	
possible	given	the	input	the	child	has.		
That	is,	the	input	underspecifies	the	
word’s	meaning.	



Wellwood,	Gagliardi,	&	Lidz	2016

“Approaching	the	queseon	first	requires	an	appreciaeon	of	the	
kinds	of	word	meanings	that	are	the	target	of	acquisieon.	Some	
words	refer	to	object	categories	(dog,	mammal)	and	others	to	
event	categories	(run,	watch):	in	acquiring	such	words,	simply	
paying	aKeneon	to	the	right	aspects	of	the	environment	could	in	
principle	provide	strong	evidence	that	a	novel	word	has	a	certain	
sort	of	meaning….”

The	mapping	problem



Wellwood,	Gagliardi,	&	Lidz	2016

“However,	this	is	only	the	very	beginning	of	
the	story;	many	words	refer	to	properees	of	
objects	or	events	(red,	fluffy,	fast,	suddenly),	
and	others	refer	to	nothing	at	all	(most,	any,	
empty).	Since	any	novel	word	could	express	
innumerably	many	things,	properees,	or	
relaeons,	understanding	how	children	decide	
what	a	novel	word	means	must	be	informed	
not	only	by	a	precise	understanding	of	the	
kinds	of	data	children	have	available	to	them,	
but	also	of	the	character	of	the	biases	and	
expectaeons	they	bring	to	the	learning	task.”

The	mapping	problem



So	how	do	children	figure	it	out?		Obviously,	they	do….

Even	by	6	to	9	months,	infants	recognize	many	familiar	words	in	
their	language,	like	body	parts	and	food	items	—	that	is,	
concrete	objects	(Bergelson	&	Swingley	2012,	2015).

eyes,	mouth,	hands,	…	

milk,	spoon,	juice,	cookie,	…	



So	how	do	children	figure	it	out?		Obviously,	they	do….

By	10	to	13	months	old,	infants		understand	words	like	“all	
gone”,	“hug”,	“bye”,	and	“wet”	(Bergelson	&	Swingley	2013)

gone,	hug,	bye…

wet



dax	=			??

Acquisition	task

kleeg	=		??	

“I	love	my	dax	and	my	kleeg.”



One	solution:	Fast	mapping

ball
bear

kitty

[unknown]

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)



One	solution:	Fast	mapping

ball
bear

kitty

[unknown]

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)
“Can	I	have	the	ball?”



One	solution:	Fast	mapping

ballbear
kitty

[unknown]

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)
“Can	I	have	the	ball?”



One	solution:	Fast	mapping

ball
bear

kitty

[unknown]

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)
“Can	I	have	the	zib?”



One	solution:	Fast	mapping

ball
bear

kitty

[unknown]

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)
“Can	I	have	the	zib?”

20	months



A	slight	problem…
“…not	all	opportunities	for	word	learning	are	as	

uncluttered	as	the	experimental	settings	in	which	fast-
mapping	has	been	demonstrated.	In	everyday	contexts,	
there	are	typically	many	words,	many	potential	
referents,	limited	cues	as	to	which	words	go	with	which	
referents,	and	rapid	attentional	shifts	among	the	many	
entities	in	the	scene.”	-	Smith	&	Yu	(2008)



A	slight	problem…
	 “…many	studies	find	that	children	even	as	old	as	18	months	have	difficulty	

in	making	the	right	inferences	about	the	intended	referents	of	novel	
words…infants	as	young	as	13	or	14	months…can	link	a	name	to	an	object	
given	repeated	unambiguous	pairings	in	a	single	session.	Overall,	
however,	these	effects	are	fragile	with	small	experimental	variations	often	
leading	to	no	learning.”	-	Smith	&	Yu	(2008)



Cross-situational	learning
Different	approach:	infants	accrue	statistical	evidence	across	multiple	trials	that	are	

individually	ambiguous	but	can	be	disambiguated	when	the	information	from	the	
trials	is	aggregated.



Cross-situational	learning
Accruing	statistical	evidence	across	multiple	trials

This	can	be	implemented	with	Bayesian	inference.



Cross-situational	learning
Accruing	statistical	evidence	across	multiple	trials
A	Bayesian	model	assumes	the	learner	has	some	space	of	hypotheses	H…

h1

“ball”	refers	to…

h2 h3



Cross-situational	learning

A	Bayesian	model	assumes	the	learner	has	some	space	of	hypotheses	H,	each	of	which	
represents	a	possible	explanaeon	for	how	the	data	D	in	the	data	intake	were	generated.

h1

“ball”	refers	to…

h2 h3

Accruing	statistical	evidence	across	multiple	trials



Cross-situational	learning

A	Bayesian	model	assumes	the	learner	has	some	space	of	hypotheses	H,	each	of	which	
represents	a	possible	explanaeon	for	how	the	data	D	in	the	data	intake	were	generated.

h1

“ball”	refers	to…

h2 h3

Accruing	statistical	evidence	across	multiple	trials

“ball”	occurred	because	
is	present



Cross-situational	learning

A	Bayesian	model	assumes	the	learner	has	some	space	of	hypotheses	H,	each	of	which	
represents	a	possible	explanaeon	for	how	the	data	D	in	the	data	intake	were	generated.

“ball”	refers	to…

h2

h3

Accruing	statistical	evidence	across	multiple	trials

“ball”	occurred	because	
is	present

h1



Cross-situational	learning

h1

“ball”	refers	to…

h2

h3

Accruing	statistical	evidence	across	multiple	trials

Given	D,	the	modeled	child’s	goal	is	to	determine	the	probability	of	each	possible	
hypothesis	h	∈	H,	wriKen	as	P	(h|D)	-	the	posterior	for	that	hypothesis.



Cross-situational	learning

h1

“ball”	refers	to…

h2

h3

Accruing	statistical	evidence	across	multiple	trials

This	depends	on	a	few	different	aspects	(which	have	their	own	probabiliees).



Cross-situational	learning

h1

“ball”	refers	to…

h2

h3

Accruing	statistical	evidence	across	multiple	trials

P	(D|h)	represents	the	likelihood	of	the	data	D	
given	hypothesis	h,	and	describes	how	
compaeble	that	hypothesis	is	with	the	data.	



Cross-situational	learning

h1

“ball”	refers	to…

h2

h3

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1	*	1	=	1✔
Given	these	data,	h1	
would	predict	that	“ball”	
should	be	said	in	both	
scene	1	and	scene	2	—	
which	it	is.

Moreover,	because	it’s	the	
only	object	in	h1,	that	object	
occurring	when	“ball”	is	said	
is	1/1	=	1.



Cross-situational	learning

“ball”	refers	to…

h2

h3

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h2)	=	1	*	0	=	0

Given	these	data,	h2	
would	predict	that	“ball”	
should	be	said	only	in	
scene	1	but	not	in	scene	2.	
This	makes	the	likelihood	
of	generating	the	data	in	
the	second	scene	0	for	this	
hypothesis.

X



Cross-situational	learning

“ball”	refers	to…

h3

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=	0	*	1	=	0

Similarly,	given	these	data,	
h3	would	predict	that	
“ball”	should	be	said	only	
in	scene	2	but	not	in	scene	
1.	This	makes	the	
likelihood	of	generating	
the	data	in	the	first	scene	
0	for	this	hypothesis.

X

P(D	|	h2)	=		0X

h2



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3

P	(h)	represents	the	prior	of	the	hypothesis	h,	and	represents	the	probability	of	the	hypothesis	
before	any	data	have	been	encountered.	Intuievely,	this	corresponds	to	how	plausible	the	
hypothesis	is,	irrespeceve	of	any	data.	

If	there’s	no	reason	to	consider	
one	hypothesis	more	complex	
than	another,	the	hypotheses	
will	typically	receive	uniform	
probability	(all	of	them	have	the	
same	probability).	

This	is	typically	1	over	the	total	
hypotheses	available.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3

P	(h)	represents	the	prior	of	the	hypothesis	h,	and	represents	the	probability	of	the	hypothesis	
before	any	data	have	been	encountered.	Intuievely,	this	corresponds	to	how	plausible	the	
hypothesis	is,	irrespeceve	of	any	data.	

This	is	typically	1	over	the	total	
hypotheses	available.

uniform	probability

P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

P(D)	represents	the	probability	of	the	data	irrespeceve	of	any	hypothesis.	It	serves	
as	a	normalizing	factor	so	that	the	posterior	probabiliees	sum	to	1.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

P(D)	is	calculated	by	summing	over	all	possible	hypotheses	the	following:



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

P(D)	is	calculated	by	summing	over	all	possible	hypotheses	the	following:

the	likelihood	of	the	
hypothesis	*	the	prior	of	
the	hypotheses.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

P(D)	is	calculated	by	summing	over	all	possible	hypotheses	the	following:

the	likelihood	of	the	
hypothesis	*	the	prior	of	
the	hypotheses.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.

Why	is	this	so?



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

P(h1	|	D)	=	
1/3

1/3
=	1

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

P(h1	|	D)	=	1

P(h2	|	D)	=	
1/3
0

=	0

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

P(h1	|	D)	=	1

P(h3	|	D)	=	
1/3
0

=	0

P(h2	|	D)	=	0

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

P(h1	|	D)	=	1

P(h3	|	D)	=	0

P(h2	|	D)	=	0

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

P(h1	|	D)	=	1

P(h3	|	D)	=	0

P(h2	|	D)	=	0

Conclusion:	

h1	is	the	only	
one	leY	with	any	
probability

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3
P(h1)	=	1/3

P(h2)	=	1/3

P(h3)	=	1/3

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

sum:	1/3	+	0	+	0	=	1/3

P(h1	|	D)	=	1

P(h3	|	D)	=	0

P(h2	|	D)	=	0

…which	is	
exactly	what	we	
knew	before	we	
normalized.

When	we	only	care	about	how	one	hypothesis	compares	to	
another	(as	we	do	here),	calculaOng	P(D)	can	be	skipped	over.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

P(D	|	h1)	=	1✔

h1

P(D	|	h3)	=		0X
P(D	|	h2)	=		0X

h2

h3

The	determining	factor	here	is	data	coverage	—	that	is,	the	
likelihood.	Can	the	hypothesis	account	for	the	data	or	not?

likelihood	*	prior

1	*	1/3	=	1/3

0	*	1/3	=	0

0	*	1/3	=	0

Only	hypothesis	1	can	
account	for	the	data	in	both	
these	scenes.



Cross-situational	learning

“ball”	refers	to…

Accruing	statistical	evidence	across	multiple	trials

h1

h2

h3

So,	can	very	young	children	reason	like	this?



Smith	&	Yu	(2008)
Yu	&	Smith	(2007):	Adults	seem	able	to	reason	like	this	in	cross-

situational	learning	(in	experimental	setups).	

Smith	&	Yu	(2008)	ask:	Can	12-	and	14-month-old	infants	do	this?	
(Relevant	age	for	beginning	word-learning.)	



Smith	&	Yu	(2008):	Experiment
Infants	were	trained	on	six	novel	words	obeying	phonotactic	probabilities	of	English:	

bosa,	gasser,	manu,	colat,	kaki,	regli	

These	words	were	associated	with	six	brightly	colored	shapes		
(sadly	greyscale	in	the	paper)

Figure	from	paper What	the	shapes	are	probably	more	like



Smith	&	Yu	(2008):	Experiment
Training:	30	slides	with	2	objects	named	with	two	words	(total	time:	4	min)

manu	
colat

bosa	
manu

Example	training	slides



Smith	&	Yu	(2008):	Experiment

Testing:	12	trials	with	one	word	repeated	4	times	and	2	objects	(correct	one	and	
distracter)	present

manu	
manu	
manu	
manu	

Which	one	does	the	infant	
think	is	manu?	That	should	be	
the	one	the	infant	prefers	to	
look	at.



Smith	&	Yu	(2008):	Experiment
Results:	Infants	preferentially	look	at	target	over	distracter,	and	14-month-olds	

looked	longer	than	12-month-olds.	This	means	they	were	able	to	tabulate	
distributional	information	across	situations.

Implication:	12	and	14-month-old	infants	can	do	cross-situational	learning	
that	relies	on	a	reasoning	process	like	Bayesian	inference



Something	to	think	about…

The	real	world	isn’t	necessarily	as	
simple	as	these	experimental	
setups	-	often	times,	there	will	
be	many	potential	referents.	

(A	similar	issue	to	the	one	fast-
mapping	has.)		



Something	to	think	about…
	 A	strategy	where	learners	hang	on	

to	one	hypothesis	at	a	time	until	
it’s	proven	incorrect	and	only	then	
switch	to	a	different	one	(called	
“Propose	But	Verify”)	may	work	
better	because	of	this.	There’s	
some	evidence	that	it	matches	
infant	and	toddler	behavioral	
results	quite	well	(Stevens,	
Trueswell,	Yang,	&	Gleitman	2013,	
Woodard,	Gleitman,	&	Trueswell	
2016)	and	may	be	more	effective	
for	navigating	the	hypothesis	
space	(Romberg	&	Yu	2014).	



Something	to	think	about…

Some	more	discussion	about	this:	http://
facultyoflanguage.blogspot.com/2013/03/
learning-fast-and-slow-i-how-children.html

     A	strategy	where	learners	hang	on	to	
one	hypothesis	at	a	time	until	it’s	
proven	incorrect	and	only	then	switch	
to	a	different	one	(called	“Propose	
But	Verify”)	may	work	better.

http://facultyoflanguage.blogspot.com/2013/03/learning-fast-and-slow-i-how-children.html
http://facultyoflanguage.blogspot.com/2013/03/learning-fast-and-slow-i-how-children.html
http://facultyoflanguage.blogspot.com/2013/03/learning-fast-and-slow-i-how-children.html
http://facultyoflanguage.blogspot.com/2013/03/learning-fast-and-slow-i-how-children.html


Something	else	to	think	about…
Having	more	referents	may	not	be	a	bad	thing.	

Why	not?	
It’s	easier	for	the	correct	associations	to	separate	from	spurious	

associations	when	there	are	more	object-referent	pairing	
opportunities.		Let’s	see	an	example	of	this.	



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

	 First,	let’s	consider	their	condition,	
where	two	objects	are	shown	at	a	
time.		Let’s	say	we	get	three	slides/
scenes	of	data.		

“manu”		
“colat”

“bosa”		
“gasser”

“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to	
	 or	 	 ?	

No	-	both	hypotheses	are	equally	
compatible	with	these	data.			

“manu”		
“colat”

“bosa”		
“gasser”

“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

	 Now,	let’s	consider	a	more	complex	
condition,	where	four	objects	are	
shown	at	a	time.		Let’s	say	we	get	
three	slides/scenes	of	data.		

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to	 				
or	 			or								or												?	

Well,	the	first	slide	isn’t	helpful	in	
distinguishing	between	these	four	
hypotheses…				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to	 				
or	 			or								or												?	

The	second	slide	suggests	“manu”	
can’t	be											-	otherwise,	that	
object	would	appear	in	the	second	
slide.				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to	 					
or	 				or							?	

The	third	slide	suggests	“manu”	can’t	
be										or								-	otherwise,	those	
objects	would	would	appear	in	the	
third	slide.				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Therefore,	“manu”	is								.		

This	shows	us	that	having	more	things	
appear	(and	be	named)	at	once	
actually	offers	more	opportunities	
for	the	correct	associations	to	
emerge.				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Why	more	may	not	always	be	harder…
	 Let’s	walk	through	this	scenario	

using	Bayesian	inference.
“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

	 We’ll	see	an	example	of	how	
sequential	updating	would	work	
(instead	of	calculating	the	
posterior	just	once,	based	on	all	
of	the	data).



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Since	there	are	four	hypotheses	in	the	
hypothesis	space	at	this	point,	if	we	assume	
uniform	probability	for	them,	the	priors	are:

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

We	can	also	calculate	the	likelihood	of	each	
hypothesis	generating	this	data	point	—	
specifically,	the	probability	of	“manu”	being	
said	if	that	hypothesis	was	correct.

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	of	each	hypothesis	
generating	this	data	point

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

P(D	|	H1)	=		1/1	=	1

“manu”	would	be	said	in	the	scene,	and	
“manu”	being	said	when	this	object	is	
present	is	1/1.



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	of	each	hypothesis	
generating	this	data	point

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

P(D	|	H2)	=		1/1	=	1

And	the	same	is	true	for	all	the	other	
hypotheses.

Hypothesis	1	(H1):	“manu”	=										

P(D	|	H1)	=	1

P(D	|	H3)	=		1/1	=	1
P(D	|	H4)	=		1/1	=	1



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	1

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Because	we’ll	be	using	the	
posterior	probabilities	for	
subsequent	updating,	we	need	to	
actually	do	the	normalization.



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	1

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior
(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	1	*	1/4	=	1/4



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	1

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

sum 1

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	1	*	1/4	=	1/4



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

P(H1	|	D)	=	1/4	/	1	=	1/4	
P(H2	|	D)	=	1/4	/	1	=	1/4	
P(H3	|	D)	=	1/4	/	1	=	1/4	
P(H4	|	D)	=	1/4	/	1	=	1/4

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Posterior	probability

sum 1

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	1	*	1/4	=	1/4P(D	|	H1)	=	1	

P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	1

likelihood	*	prior



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

P(H1	|	D)	=	1/4	
P(H2	|	D)	=	1/4	
P(H3	|	D)	=	1/4	
P(H4	|	D)	=	1/4

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Posterior	probability

sum 1

Interpretation:	After	this	data	point,	all	hypotheses	are	
equally	likely	still.

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	1	*	1/4	=	1/4P(D	|	H1)	=	1	

P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	1

likelihood	*	prior



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

data	point	1

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

P(H1	|	D)	=	1/4	
P(H2	|	D)	=	1/4	
P(H3	|	D)	=	1/4	
P(H4	|	D)	=	1/4

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Sequential	updating

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	1	*	1/4	=	1/4

sum 1

These	posterior	probabilities	for	data	point	1	become	
the	prior	probabilities	for	data	point	2.

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	1

likelihood	*	prior
Posterior	probability



Sequential	updating
data	point	2

P(H1)	=		
P(H2)	=	
P(H3)	=		
P(H4)	=	

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

These	posterior	probabilities	for	data	point	1	become	
the	prior	probabilities	for	data	point	2.

“bosa”		
“gasser”	
“manu”	
“colat”

P(H1	|	D)	=	1/4	
P(H2	|	D)	=	1/4	
P(H3	|	D)	=	1/4	
P(H4	|	D)	=	1/4

Posterior	probability

Sequential	updating



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

We	can	now	calculate	the	
likelihoods	for	data	point	2.

“bosa”		
“gasser”	
“manu”	
“colat”

Hypothesis	1	(H1):	“manu”	=										



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

We	can	now	calculate	the	
likelihoods	for	data	point	2.

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=		1/1	=	1

“manu”	would	be	said	in	the	scene,	and	
“manu”	being	said	when	this	object	is	
present	is	1/1.



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

We	can	now	calculate	the	
likelihoods	for	data	point	2.

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H2)	=		1/1	=	1	
P(D	|	H3)	=		1/1	=	1

The	same	is	true	for	H2	and	H3.

P(D	|	H1)	=	1

Hypothesis	1	(H1):	“manu”	=										



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	4	(H4):	“manu”	=					

We	can	now	calculate	the	
likelihoods	for	data	point	2.

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H4)	=		0/1	=	0

However,	H4	would	not	account	for	this	data	
point.	It	would	not	predict	“manu”	should	be	
said	because	the	object	isn’t	present.

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Because	again	we’ll	be	using	the	posterior	
probability	for	subsequent	updating,	we	
need	to	do	the	normalization.

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	0



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	0

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	0	*	1/4	=	0



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	0

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	0	*	1/4	=	0

sum 3/4



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	0

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	0	*	1/4	=	0

sum 3/4

P(H1	|	D)	=	1/4	/	3/4	=	1/3	
P(H2	|	D)	=	1/4	/	3/4	=	1/3	
P(H3	|	D)	=	1/4	/	3/4	=	1/3	
P(H4	|	D)	=	0/	3/4	=	0

Posterior	probability



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	0

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	0	*	1/4	=	0

sum 3/4

P(H1	|	D)	=	1/3	
P(H2	|	D)	=	1/3	
P(H3	|	D)	=	1/3	
P(H4	|	D)	=	0

Posterior	probability

H4	has	been	ruled	out,	but	the	other	
three	are	equally	possible.



Sequential	updating
data	point	2

P(H1)	=		1/4	
P(H2)	=		1/4	
P(H3)	=		1/4	
P(H4)	=		1/4

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

“bosa”		
“gasser”	
“manu”	
“colat”

P(D	|	H1)	=	1	
P(D	|	H2)	=	1	
P(D	|	H3)	=	1	
P(D	|	H4)	=	0

(D	|	H1)	*	P(H1)	=	1	*	1/4	=	1/4	
(D	|	H2)	*	P(H2)	=	1	*	1/4	=	1/4	
(D	|	H3)	*	P(H3)	=	1	*	1/4	=	1/4	
(D	|	H4)	*	P(H4)	=	0	*	1/4	=	0

sum 3/4

P(H1	|	D)	=	1/3	
P(H2	|	D)	=	1/3	
P(H3	|	D)	=	1/3	
P(H4	|	D)	=	0

Posterior	probability

These	posteriors	become	the	priors	
for	data	point	3.



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

These	posteriors	become	the	priors	
for	data	point	3.

“manu”	
“gasser”	
“kaki”		
“regli”



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

We	can	now	calculate	the	
likelihoods	for	data	point	3.

P(D	|	H1)	=		0/1	=	0

“manu”	would	not	be	said	in	the	scene	if	
H1	were	correct.



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	2	(H2):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

We	can	now	calculate	the	
likelihoods	for	data	point	3.

P(D	|	H3)	=		0/1	=	0

The	same	is	true	for	H3.

P(D	|	H1)	=		0

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	4	(H4):	“manu”	=					



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

Hypothesis	2	(H2):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

We	can	now	calculate	the	
likelihoods	for	data	point	3.

P(D	|	H2)	=		1/1	=	1

However,	"manu"	would	be	said	if	either	
H2	or	H4	were	true. P(D	|	H1)	=		0	

P(D	|	H3)	=		0

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	4	(H4):	“manu”	=					

Hypothesis	3	(H3):	“manu”	=					

P(D	|	H4)	=		1/1	=	1



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

“manu”	
“gasser”	
“kaki”		
“regli”

Since	this	is	the	last	data	point,	we	don’t	actually	
need	to	do	the	normalization	step	unless	we	want	to	
get	a	probability	rather	than	a	relative	sense	of	how	
much	more	likely	one	hypothesis	is	than	another.	

But	we	can,	just	for	practice.

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

P(D	|	H1)	=	0	
P(D	|	H2)	=	1	
P(D	|	H3)	=	0	
P(D	|	H4)	=	1

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

“manu”	
“gasser”	
“kaki”		
“regli”

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

P(D	|	H1)	=	0	
P(D	|	H2)	=	1	
P(D	|	H3)	=	0	
P(D	|	H4)	=	1

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

(D	|	H1)	*	P(H1)	=	0	*	1/3	=	0	
(D	|	H2)	*	P(H2)	=	1	*	1/3	=	1/3	
(D	|	H3)	*	P(H3)	=	0	*	1/3	=	0	
(D	|	H4)	*	P(H4)	=	1	*	0					=	0



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

“manu”	
“gasser”	
“kaki”		
“regli”

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

P(D	|	H1)	=	0	
P(D	|	H2)	=	1	
P(D	|	H3)	=	0	
P(D	|	H4)	=	1

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

(D	|	H1)	*	P(H1)	=	0	*	1/3	=	0	
(D	|	H2)	*	P(H2)	=	1	*	1/3	=	1/3	
(D	|	H3)	*	P(H3)	=	0	*	1/3	=	0	
(D	|	H4)	*	P(H4)	=	1	*	0					=	0

sum 1/3



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

“manu”	
“gasser”	
“kaki”		
“regli”

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

P(D	|	H1)	=	0	
P(D	|	H2)	=	1	
P(D	|	H3)	=	0	
P(D	|	H4)	=	1

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

(D	|	H1)	*	P(H1)	=	0	*	1/3	=	0	
(D	|	H2)	*	P(H2)	=	1	*	1/3	=	1/3	
(D	|	H3)	*	P(H3)	=	0	*	1/3	=	0	
(D	|	H4)	*	P(H4)	=	1	*	0					=	0

sum 1/3

P(H1	|	D)	=	0	/	1/3	=	0	
P(H2	|	D)	=	1/3	/	1/3	=	1	
P(H3	|	D)	=	0	/	1/3	=	0	
P(H4	|	D)	=	0	/	1/3	=	0

Posterior	probability



Sequential	updating
data	point	3

P(H1)	=		1/3	
P(H2)	=		1/3	
P(H3)	=		1/3	
P(H4)	=		0

“manu”	
“gasser”	
“kaki”		
“regli”

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	3	(H3):	“manu”	=					

P(D	|	H1)	=	0	
P(D	|	H2)	=	1	
P(D	|	H3)	=	0	
P(D	|	H4)	=	1

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

likelihood	*	prior

(D	|	H1)	*	P(H1)	=	0	*	1/3	=	0	
(D	|	H2)	*	P(H2)	=	1	*	1/3	=	1/3	
(D	|	H3)	*	P(H3)	=	0	*	1/3	=	0	
(D	|	H4)	*	P(H4)	=	1	*	0					=	0

sum 1/3

P(H1	|	D)	=	0	
P(H2	|	D)	=	1	
P(H3	|	D)	=	0	
P(H4	|	D)	=	0

Posterior	probability

Only	hypothesis	2	is	left!



The	utility	of	probabilities

	 Partial	knowledge	of	some	
words	appears	to	be	very	
helpful	for	learners	figuring	out	
the	meaning	of	words	they	
don’t	know	yet	(Yurovsky,	
Fricker,	&	Yu	2013).	

“bosa”		
“gasser”	
“manu”	
“colat”

     This	may	relate	to	the	priors	they	give	
some	hypotheses.	For	example,	if	they	
know	“manu”	=							,	then	they	would	
set	the	prior	for	other	words	referring	
to						as	0.



Some	other	factors	in	cross-situational	learning

	 Even	if	there	are	more	
referents,	cross-situational	
learning	is	more	successful	
when	some	referents	are	
immediately	repeated	from	
situation	to	situation	
(Kachergis,	Yu,	&	Shiffrin	
2012).	

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Some	other	factors	in	cross-situational	learning

	 The	child’s	perspective	of	real	
world	events	may	make	cross-
situational	learning	more	
feasible,	as	compared	to	a	
neutral	third	party	(the	way	a	
photograph	represents	the	
world).	This	is	likely	because	
certain	things	are	more	salient	
from	a	child’s	perspective	due	to	
object	foregrounding	and	
degree	of	clutter	in	line	of	sight	
(Yurovsky,	Smith,	&	Yu	2013).

Samuelson	&	McMurray	2017



Recap:	Word-meaning	mapping
Cross-situational	learning,	which	relies	on	distributional	
information	across	situations,	can	help	children	learn	which	
words	refer	to	which	things	in	the	world.

One	way	to	implement	the	reasoning	process	behind	cross-
situational	learning	is	Bayesian	inference.	It	can	be	done	in	a	
batch	over	all	the	data	observed,	or	sequentially	as	the	data	
are	observed	one	by	one.

Experimental	evidence	suggests	that	infants	are	capable	of	
this	kind	of	reasoning	in	controlled	experimental	setups,	
which	may	or	may	not	resemble	real	life	contexts	with	
respect	to	how	many	referents	are	available.



Questions?

You	should	be	able	to	do	up	through	question	1	on	HW4	and	up	through	
question	6	on	the	word	meaning	review	questions.


