

Announcements
Review questions available for introductory material
Be working on HW1

Linguistic Productivity Means We Need Rules
Infinite number of phrases \& sentences
Large but finite number of words
Smaller amount of morphemes (ex: -ing, -s)
Several dozens of sounds (phonemes) (ex: /s/, /z/)

The argument for mental grammar

"In short, in order for us to be able to speak and understand novel sentences, we have to store in our heads not just the words of our language but also the patterns of sentences possible in our language. These patterns, in turn, describe not just patterns of words but also patterns of patterns. Linguists refer to these patterns as the rules of language stored in memory; they refer to the rules as the mental grammar of the language, or grammar for short." - Jackendoff (1994)

Possible objections to a mental rule set

"Why should I believe I store a set of rules unconsciously in my mind? I just understand sentences because they make sense."

Possible objections to a mental rule set

Why can we recognize patterns even when some of the words are unknown?
'Twas brillig, and the slithy toves did gyre and gimble in the wabe...

Possible objections to a mental grammar

"What about people who speak ungrammatically, who say things like 'We ain't got no bananas'? They obviously don't have grammars in their heads."

Prescriptive vs. Descriptive Grammar
Prescriptive: what you have to be taught in school, what is prescribed by some higher "authority", what you don't learn by listening to native speakers having conversations
"Don't end a sentence with a preposition."
" 'Ain't' is not a word."

Possible objections to an unconscious rule set

"When I talk, the talk just comes out - l'm not consulting any rule set."

Possible objections to an unconscious rule set

"When I talk, the talk just comes out - l'm not consulting any rule set."

Analogy: wiggling your fingers
When you want to wiggle your fingers,
you "just wiggle them".
But your finger-wiggling intention was turned into commands sent by your brain to your muscles, and you're never conscious of the process unless something interferes with it. Nonetheless, there is a process, even if you're not aware of it.

Learning hard things

Suppose we have mental grammars in our heads - how did they get there?
"Many people immediately assume that the parents taught it. To be sure, parents often engage in teaching words to their kids: "What this, Amy? It's a BIRDIE! Say
'birdie,' Amy!" But language learning can't entirely be the result of teaching words. For one thing, there are lots of words that it is hard to imagine parents teaching, notably those one can't point to: "Say 'from', Amy!" "This is ANY, Amy!" - Jackendoff (1994)

Learning hard things	
Some other things that are hard to teach: interpretations Joan	Moira
Joan appeared to Moira to like herself Joan appeared to Moira to like her. Joan appealed to Moira to like herself. Joan appealed to Moira to like her.	M thinks J likes J M thinks J likes M J wants M to like M J wants M to like J

Learning hard things

Some other things that are hard to teach: interpretations

Joan

Moira
"How do we come to understand these sentences this way? It obviously depends somehow on the difference between ordinary pronouns such as "her" and reflexive pronouns such as "herself," and also on the differences between the verbs "appear" and "appeal." But how?...sure no one is ever taught contrasts like this by parents or teachers..." -
Jackendoff (1994)

Learning patterns

Not so clear that children learn grammatical patterns from their parents
(From Martin Braine)
Child: Want other one spoon, Daddy.
Father: You mean, you want the other spoon.
Child: Yes, I want other one spoon, please Daddy.
Father: Can you say "the other spoon"?
Child: Other...one...spoon.
Father: Say "other".
Child: Other.
Father: "Spoon."
Child: Spoon.
Father: "Other spoon."
Child: Other...spoon. Now give me other one spoon?

Children don't just imitate what they've heard			
From Edward Klima \& Ursula Bellugi			
	Use of pas (U-shaped	e verbs of performance)	
Stage 1 walked played came			Stage 4 walked played came
went	Stage 2 walked played comed goed	Stage 3 walked played camed wented	went held
Time/Age	holded		

Children don't just imitate what they've heard
From Edward Klima \& Ursula Bellugi

Main points

Children learn (hard) things about language that are not easy to explain.

The patterns they produce during learning are often stripped-down versions of the adult pattern, but they make mistakes that cannot be attributed directly to the input.

Children don't just imitate what they've heard - they're trying to figure out the patterns of their native language. Also, they may not notice or respond to explicit correction.

Describing vs. Explaining in Vision

"...it gradually became clear that something important was missing ...neurophysiology and psychophysics have as their business to describe the behavior of cells or of subjects but not to explain such behavior....What are the problems in doing it that need explaining, and what level of description should such explanations be sought?" - Marr (1982)

On Explaining (Marr 1982)
"But the important point is that if the notion of different types of understanding is taken very seriously, it allows the study of the information-processing basis of perception to be made rigorous. It becomes possible, by separating explanations into different levels, to make explicit statements about what is being computed and why..."

On Explaining (Marr 1982)

"But the important point is that if the notion of different types of understanding is taken very seriously, it allows the study of the information-processing basis of perceptionto be made rigorous. It becomes possible, by separating explanations into different levels, to make explicit statements about what is being computed and why..."

Our goal: Substitute "language learning" for "perception".

The three levels

Computational

What is the goal of the computation? What is the
logic of the strategy by which is can be carried out?

Algorithmic
How can this computational theory be implemented?
What is the representation for the input and output, and what is the algorithm for the transformation?

Implementational
How can the representation and algorithm be realized physically?

The three levels:

An example with the cash register

Computational

What does this device do?
Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another number.
$(3,4) \longrightarrow 7 \quad$ (often written $(3+4=7)$)
Properties: $(3+4)=(4+3)$ [commutative], $(3+4)+5$ numbers are represented: $=3+(4+5)$ [associative], $(3+0)=3$ [identity this is what is being $=3+(4+5)$ [associative], $(3+0)=3$ [identity computed
element], $(3+-3)=0$ [inverse element]

True no matter how

The three levels:

An example with the cash register
Computational
What does this device do?
Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another number.

Algorithmic
What is the input, output, and method of transformation?
Input: arabic numerals ($0,1,2,3,4 \ldots$)
Output: arabic numerals $(0,1,2,3,4 \ldots)$
Method of transformation: rules of addition, where least
significant digits are added first and sums over 9 have their next digit carried over to the next column

99

+5
$+\quad$

The three levels:
An example with the cash register
Computational
What does this device do?
Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another number.

Algorithmic
What is the input, output, and method of transformation?
Input: arabic numerals ($0,1,2,3,4 \ldots$)
Output: arabic numerals ($0,1,2,3,4 \ldots$)
Method of transformation: rules of addition, where least
significant digits are added first and sums over 9 have their next digit carried over to the next column

99
$\begin{array}{r}+\quad 5 \\ \hline 14\end{array}$

The three levels:

An example with the cash register

Computational

What does this device do?
Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another number.

Algorithmic

What is the input, output, and method of transformation?
Input: arabic numerals ($0,1,2,3,4 \ldots$)
Output: arabic numerals $(0,1,2,3,4 \ldots)$
Method of transformation: rules of addition

Implementationa

How can the representation and algorithm be realized physically? A series of electrical and mechanical components inside the cash
register

Mapping the Framework:

 Algorithmic Theory of Language LearningGoal: Understanding the "how" of language learning
First, we need a computational-level description of the learning problem.

Computational Problem: Divide sounds into contrastive categories

Mapping the Framework:
Algorithmic Theory of Language Learning
Goal: Understanding the "how" of language learning
First, we need a computational-level description of the learning
problem.
Computational Problem: Divide spoken speech into words
húwzəf.éjdəvðəbbígbǽdwálf
húwz af.éjd əv đə bíg bǽd wólf who's afraid of the big bad wolf

Mapping the Framework:

 Algorithmic Theory of Language LearningGoal: Understanding the "how" of language learning
First, we need a computational-level description of the learning problem.

Computational Problem: Identify grammatical categories

DAX = noun

Mapping the Framework:

 Algorithmic Theory of Language LearningGoal: Understanding the "how" of language learning
First, we need a computational-level description of the learning problem.

Computational Problem: Map word forms to speaker-invariant forms

Mapping the Framework:

 Algorithmic Theory of Language LearningGoal: Understanding the "how" of language learning

First, we need a computational-level description of the learning problem.

Computational Problem: Identify word affixes that signal meaning.
What do you have to change about the verb to signal the past tense in English? (There are both regular and irregular patterns.)
$\begin{array}{ll}\begin{array}{l}\text { blink~blinked } \\ \text { blınk blınkt }\end{array} & \begin{array}{l}\text { confide~confided } \\ \text { kənfajd kənfajdəd }\end{array}\end{array}$
drink~drank
d.ııjk d.ıejyk
Mapping the Framework:
Algorithmic Theory of Language Learning
Goal: Understanding the "how" of language learning
First, we need a computational-level description of the learning
problem.
Computational Problem: Identify the rules of word order for
sentences.
Kannada
Subject $t_{\text {object }}$ Verb Object
Recap: Levels of Representation
Language acquisition can be viewed as an information-processing task
where the child takes the native language input encountered and
uses it to construct the adult rule system (grammar) for the language.
Main idea: The point is not just to describe what children know about
their native language and when they know it, but also how they
learned it.
Three levels:
computational: what is the problem to be solved
algorithmic: what procedure will solve the problem, transforming input
to desired output form
implementational: how is that procedure implemented/instantiated in
the available medium

Mapping the Framework:

 Algorithmic Theory of Language LearningGoal: Understanding the "how" of language learning

Second, we need to be able to identify the algorithmic-level description:

Input = sounds, syllables, words, phrases, ...
Output = sound categories, words, words with affixes, grammatical categories, sentences, ...
Method = statistical learning, algebraic learning, prior knowledge about how human languages work, ...

