

Experimental Study:

Dietrich, Swingley \& Werker (2007)
Testing children's perception of contrastive sounds

Dutch and English contrastive features differ.
In English, the length of the vowel is not contrastive
"cat" = "caat"

In Dutch, the length of the vowel is contrastive
"cat" = "caat"
(Japanese also uses this feature)

More about contrastive sounds

There are a number of acoustically salient features for sounds. All it takes for sounds to be contrastive is for them to have "opposite" values for one feature.

Example:
English sounds " k " and " g " differ only with respect to voicing. They are pretty much identical on all other features. Many contrastive sounds in English use the voicing feature as the relevant feature of contrast ($\mathrm{p} / \mathrm{b}, \mathrm{t} / \mathrm{d}, \mathrm{s} / \mathrm{z}$, etc.). However, there are other features that are used as well (air flow, manner of articulation, etc.).

Task for the child: Figure out which features are used contrastively by the language. Contrastive sounds for the language will usually vary with respect to one of those features.

Does the data distribution show this?
Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch vowel length used
Frequency
of sound in

input | contrastively; vowels tend to be |
| :--- |
| either very short or very long |

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English.'

English vowel length not used
Frequency of sound in input contrastively; vowels tend to be less short and less long (comparatively)

English

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch = bimodal distribution?
English = unimodal distribution?
Frequency of sound in input

Learning from real data distributions
How do we know that children are
sensitive to distributional information?

Back to Dietrich, Swingley, \& Werker (2007)
Dutch and English vowel sounds in the native language
environment also seem to differ
"...studies suggest that differences between the long and
short vowels of Dutch are larger than any analogous
differences for English."
Dutch = bimodal distribution?

Maye, Werker, \& Gerken (2002)

Back to Dietrich, Swingley, \& Werker (2007)

Prediction if children are sensitive to this distribution
Dutch children interpret vowel duration as a meaningful contrast because the distribution is more bimodal

Implication: Change to vowel duration = new word
English children should not interpret vowel duration as a meaningful contrast because the distribution is more unimodal Implication: Change to vowel duration = same word as before

Dietrich, Swingley, \& Werker (2007)
Tests with 18-month-old children who know some words (and so have figured out the meaningful sounds in their language)
"Switch" Procedure: measures looking time ..this is a tam...look at the tam

Habituation
 (8.2))
,

Same:	Switch:
look at the tam!	look at the taam!

Switch: look at the taam!
\square
(8): (sis)

Dietrich, Swingley, \& Werker (2007)
Experiment 1: Testing English and Dutch kids on Dutch vowel durations
Frequency of
sound in input

Dutch kids $5.04 \mathrm{sec} \quad 9.23 \mathrm{sec}$
difference

English kids
$6.66 \mathrm{sec} \quad 7.15 \mathrm{sec}$ Same Switch: look at the tam!
Test
no difference
\qquad
look at the taam!

Test

Dietrich, Swingley, \& Werker (2007)
Experiment 1: Testing English and Dutch kids on vowel quality contrast (a/e)

Dietrich, Swingley, \& Werker (2007)
Implications of experiments 1, 2, and 3: Dutch children recognize
vowel duration as contrastive for their language while English
children do not. This can only be due to the data encountered by
each set of children in their language.
Dutch children have a category
boundary approximately here.
English children do not.

Discovering contrastive sounds: What's the point of it again?

The idea is that once children discover the meaningful sounds in their language, they can begin to figure out what the words are.

Ex: An English child will know that "cat" and "caat" are the same word (and should have the same meaning).

As adults, we can look at a language and figure out what the contrastive sounds are by looking at what changes a word's meaning. But children can't do this - they figure out the contrastive sounds before they figure out words and word meanings.

Dietrich, Swingley, \& Werker (2007)
One small caveat: It turns out that Dutch vowel duration data isn't as bimodally distributed as previously believed. So, the Dutch data probably isn't as informative to Dutch children by itself...Dutch children must also use other cues in the data. (Research still under way to identify those cues and how children use them.)
Dutch children have a category
boundary approximately here.

Frequency | But Dutch data looks more like |
| :--- |
| of sound in |
| input |

English data in its distribution...
wel duration

