

Part of Speech Learning

Two ideas:
Semantic Bootstrapping Hypothesis
PoS matches (roughly) real world semantics
nouns \rightarrow objects, states
verbs \rightarrow actions
adjectives \rightarrow properties
But only roughly...
a kick (verb-like, but a noun)
function words (a, the, of, but...)

Part of Speech Learning
Two ideas:
Semantic Bootstrapping Hypothesis
Pos matches (roughly) real world semantics
nouns \rightarrow objects, states
verbs \rightarrow actions
adjectives \rightarrow properties
But only roughly...
a kick (verb-like, but a noun)
function words (a, the, of, but...)

Final Exam

Final Exam: 6/14/2012
1:30-3:30pm

HH178 (this room) OR SBSG G241

We will be holding office hours next week at our normal times

Part of Speech Learning

Another idea:
Frequent Frames
the___ is
a____ is
that___ was
\qquad
they ___ her
can ___ him

Proposed in Mintz (2003), simulated in Wang \& Mintz (2008)

Parameters

Review Questions: Structure
Question \#10:
Suppose we have a parameter Q , we don't know what structures match that parameter though. We think maybe A, B, C \& D connect to Q, but aren't sure. Q can only take two values, $x 1$ and x 2
a) A, B, and C tend to show $x 1$ while D shows $z 1$, which structures are connected to parameter Q ?
Parameters
Review Questions: Structure
Question \#10:
Suppose we have a parameter Q, we don't know what structures
match that parameter though. We think maybe A, B, C \& D
connect to Q, but aren't sure. Q can only take two values, x1
and $x 2$
b) If Q really does have value $x 1$ which structures (A, B, C, D) are
likely to also have value $x 1$?

Experiments

Dewar \& Xu (2010)
Examine overhypotheses (abstract generalizations based on limited data with apparent regularities)

Gerken (2006)
How do children generalize?
Children don't generalize from AAdi stimuli to AAB

Pearl \& Mis (2011)
Baker (1978) assumes only unambiguous data is informative
Can learn anaphoric one using all ambiguous data if we include data from other pronouns too!

Parameters

Review Questions: Structure
Question \#10:
Suppose we have a parameter Q, we don't know what structures match that parameter though. We think maybe A, B, C \& D connect to Q, but aren't sure. Q can only take two values, $x 1$ and $x 2$
c) Children rarely see structure C, but often see A, B and D. If A \& B show $x 1$, and D shows $z 1$, given your answer to (b) what value should the infant suppose for structure C ?

Experiments

Thompson \& Newport (2007)
Adults can learn phrases using transitional probability (TP)

Hudson, Kam \& Newport (2005)
Adults match inconsistent input with inconsistent output
Children generalize to the most frequent input type

Hudsom, Kam \& Newport (2009)
Adults will generalize if one input is dominant
But children in this case generalize one determiner and use it almost always

Marr's 3 Levels

Any problem can be decomposed into 3 levels: Computational level

What's the problem to be solved?
Algorithmic level
What (abstract) set of rules solves the problem? Implementational level

How are those rules physically implemented?

Computational Level

Algorithmic Level

What kind of rules can we use?
Let Lane go whenever X cars are waiting?
Let Lane go every X minutes?
Let 1 car at a time go through the intersection?
Make one direction always yield to the other?

Implementational Level
How do we physically implement the rule?
Set up a stop light
Set up a blinking stop light
Put up a stop sign
Have someone direct traffic
Put up nothing and have drivers implement the rules
themselves!

Every time the TP is at "low tide" we put a boundary

Precision \& Recall

I wonder how well I can segment this sentence today Iwonder how well Ican seg ment this sen tencetoday

Precision \& Recall

I wonder how well I can segment this sentence today

Iwonder how well Ican seg ment this sen tencetoday
Precision:
\# of correct / \# guessed

3 correct / 9 guessed

Stress-based Segmentation

how WELL can a STRESS based LEARNER SEGment THIS?

If we assume Stress-INITIAL syllables:

How WELLcana STRESSbased LEARNER SEGment THIS?

Precision $=3 / 6$
Recall $=3 / 9$

Precision \& Recall

I wonder how well I can segment this sentence today Iwonder how well Ican seg ment this sen tencetoday Recall:
\# of correct / \# true words

3 correct / 10 true

Stress-based Segmentation

how WELL can a STRESS based LEARNER SEGment THIS?

If we assume Stress-FINAL syllables:

HowWELL canaSTRESS basedLEARNER SEG mentTHIS?
Precision $=0 / 5 \quad$ Recall $=0 / 9$
Bayesian Learning
All (statistical) learning is a form of INFERENCE
We have data...

But which hypothesis is true?
$P(H \mid D) ?$ $P(H \mid D)$ posterior $\quad P(D \mid H) * P(H) / P(D)$ likelihood prior prob. of data

Cross-Situational Learning

Use information across trials to identify a word/meaning mapping			
Scene 1:	"dugme"	"lutka"	"prozor"
	Object 1	Object 2	Object 3
Scene 2:	"lutka" Object 1	"zid" Object 3	"prozor"

Cross-Situational Learning			
Scene 1:	"dugme"	"lutka"	"prozor"
	Object 1	Object 2	Object 3
Scene 2:	"lutka"	"zid"	"prozor"
	Object 1	Object 3	Object 4
$P(H \mid D)=P(D \mid H) * P(H) / P(D)$			
Posterior = likelihood * prior / prob. of data			
$P($ lutka $==1)=1 / 4 \quad$ Prior (let's call this H1)			
$P(\mathrm{D} \mid \mathrm{H} 1)=1 \quad$ Likelihood			
$P(D)=P(H 1)^{*} P(D \mid H 1)+P(H 2)^{*} P(D \mid H 2)+P(H 3){ }^{*} P(D \mid H 3) \ldots$			
$P(H 1 \mid D)=P(D \mid H 1) * P(H 1) / P(D)$			

Suspicious Coincedence

Contrastive Sounds
A pair of sounds are contrastive if: Switching the sounds changes the MEANING
In English: "food": $[\mathrm{f} u \mathrm{~d}]$ \leftarrow Contrastive "rude": $[\mathrm{r} u \mathrm{~d}]$
In German: "street": [s t R a s e] "street": [s tras e]

Learning Sounds

Maintenance \& Loss Theory:
If you use a distinction in your language Keep it
If you don't use it
Ignore the distinction
Functional Reorganization:
Create a filter between acoustics and phonemes
If you hear a language sound
Impose filter to ignore non-native distinctions
If you hear a non-language sound
Don't impose the filter

