Psych 156A/ Ling 150: Acquisition of Language II

Lecture 12

Poverty of the Stimulus I

Announcements

Review questions available for poverty of the stimulus

Be working on HW3 (due: 5/29/12)

Pick up your HW1 if you haven't already done so

About Language

One way to think about how to classify the knowledge that you have when you know a language:

You know what items (sounds, words, sentences, questions, etc.) are part of the language. You can tell whether or not a given item is grammatical in the language.

Hoggle is definitely an ornery dwarf. [grammatical] * Hoggle an dwarf definitely ornery is. [ungrammatical]

About Language

One way to think about how to classify the knowledge that you have when you know a language:

You know what items (sounds, words, sentences, questions, etc.) are part of the language. You can tell whether or not a given item is grammatical in the language.

Hoggle is definitely an ornery dwarf. [part of English]

* Hoggle an dwarf definitely ornery is. [not part of English]

About Language

One way to think about how to classify the knowledge that you have when you know a language:

You know what items (sounds, words, sentences, questions, etc.) are part of the language. You can tell whether or not a given item is grammatical in the language.

The reason you can do this is because you know the rules \& patterns that generate the items that are part of the language. (mental grammar)

About Children Learning Language

Adult knowledge: rules \& patterns that generate the items that are part of the language. (mental grammar)

The child's job: figure out the rules that generate the items that belong in the language and that don't generate items that don't belong in the language.

For example, the child wants rules to generate
"Hoggle is definitely an ornery dwarf" but not

* "Hoggle an dwarf definitely ornery is".

So what's the problem?

One solution: children generalize
But how do they generalize?

So what's the problem?

The problem is that children must make the right generalization from data that are compatible with multiple generalizations. In this sense, the data (stimulus) encountered are impoverished. They do not single out the correct generalization by themselves.

So what's the problem?

One solution: children generalize
But how do they generalize?

A numerical analogy

Suppose you encounter the numbers 3,5 , and 7 .
What set are these numbers drawn from? That is, what is the right "number rule" for this language that will allow you to predict what numbers will appear in the future?

Poverty of the Stimulus: Logic

A rational learner would consider all compatible hypotheses, and perhaps choose the wrong hypothesis in the end, or at least make errors during acquisition.

Poverty of the Stimulus: Logic

Specifically, the data encountered are compatible with both the correct hypothesis and other, incorrect hypotheses about the rules and patterns of the language.

Poverty of the Stimulus: Logic

Expectation for rational learners: errors in performance. Children will behave as if they think ungrammatical items are part of the language at some point in their development.

Specific Example: Yes/No Question Formation	
Jareth can alter time.	To turn the sentence into a yes/ no question, move the auxiliary verb ("can") to the front. Other examples of auxiliary verbs: could, should, might, would, will, did, do, may
The child's task: figure out a rule that will form yes/no	
questions from their corresponding sentences.	

Argument about prior knowledge

Conclusion: children have some prior knowledge that causes them never to consider the incorrect hypotheses. Instead, they only consider the correct hypothesis for what the rules and patterns of the language might be.

Specific Example: Yes/No Question Formation
Jareth can alter time. Can Jareth alter time?

Specific Example: Yes/No Question Formation

Jareth can alter time. \quad Rule: Move first auxiliary? Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it. Would anyone who can wish away their brother be tempted to do it?

Specific Example: Yes/No Question Formation
Jareth can alter time. \quad Rule: Move first auxiliary?
Can Jareth alter time?
Rule: Move last auxiliary?
Anyone who can wish away their brother would be tempted to do it. Would anyone who can wish away their brother be tempted to do it?

Specific Example: Yes/No Question Formation	
Jareth can alter time. Rule: Move first auxiliary?	
	Rule: Move last auxiliary?
Anyone who can wish away their brother would be tempted to do it. Would anyone who can wish away their brother be tempted to do it?	
Someone who can solve the labyrinth can show someone else who can't how. Can someone who can solve the labyrinth show someone else who can't how?	

Specific Example: Yes/No Question Formation	
Jareth can alter time. Can Jareth alter time?	Rule: Move first auxiliary?
	Rule: Move last auxiliary?
Anyone who can wish away their brother would be tempted to do it. Would anyone who can wish away their brother be tempted to do it?	
	Rule???
Someone who can solve the labyrinth can show someone else who can't how. Can someone who can solve the labyrinth show someone else who can't how?	
Need a rule that is compatible with all of these, since they're all grammatical English questions.	

Specific Example: Yes/No Question Formation

 Jareth can alter time. \quad Rule: Move first auxiliary? Can Jareth alter time?Rule: Move last auxiliary?
Anyone who can wish away their brother would be tempted to do it. Would anyone who can wish away their brother be tempted to do it? Rule???

Someone who can solve the labyrinth can show someone else who can't how.
Can someone who can solve the labyrinth show someone else who can't how?

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone who can wish away their brother would be tempted to do it. Would anyone who can wish away their brother be tempted to do it?

Someone who can solve the labyrinth can show someone else who can't how.
Can someone who can solve the labyrinth show someone else who can't how?

Idea: Try looking at the sentence structure, not just the linear order of the words in the sentences.

Specific Example: Yes/No Question Formation
Jareth can alter time. \quadembedded clauses = additional Can Jareth alter time? descriptive sentences that are not part of the main clause Anyone who can wish away their brother would be tempted to do it. Would anyonewho can wish away their brother be tempted to do it? Someone who can solve the labyrinth)can show someone elsewho can't how. Can someonewho can solve the labyrinthshow someone elsewho can't how? Idea: Try looking at the sentence structure, not just the linear order of the words in the sentences.

Specific Example: Yes/No Question Formation
Jareth can alter time.
Can Jareth alter time?
Anyone would be tempted to do it.
Would anyone be tempted to do it?
Someone can show someone else how.
Can someone show someone else how?
Let's look just at the main clauses in these examples

Specific Example: Yes/No Question Formation
Jareth can alter time. \quadembedded clauses = additional Can Jareth alter time? descriptive sentences that are not part of the main clause Anyone who can wish away their brother would be tempted to do it. Would anyone(who can wish away their brother be tempted to do it?
Someone who can solve the labyrinth)can show someone elsewho
can'thow.
Can someone who can solve the labyrinth/show someone elsewho
can'thow?
Let's look just at the main clauses in these examples

Specific Example: Yes/No Question Formation

Jareth can alter time.
Can Jareth alter time?

Anyone would be tempted to do it.
Would anyone be tempted to do it?

Someone can show someone else how.
Can someone show someone else how?

Rule that works for all of these examples (and all English examples): Move the auxiliary verb in the main clause to make a yes/no question.

This is a rule dependent on the structure of the sentences, since it refers to "main clause"

Children's Knowledge

Children seem to know this rule by the age of 3 . (Crain \& Nakayama 1987)

Learning problem: Children don't encounter all the examples we saw. They encounter a subset of the possible yes/no questions in English.

Most of the data they encounter (particularly before the age of 3) consists of simple yes/no questions.

Jareth can alter time.
Can Jareth alter time?

Learning Difficulties: Yes/No Questions

Rational learner prediction: if children considered all these hypotheses, they should make mistakes on more complex yes/no questions. Let's look at two hypotheses in detail.

> Rule: Move first auxiliary?

Rule: Move main clause auxiliary?

Learning Difficulties: Yes/No Questions

The problem is that these simple yes/no questions are compatible with a lot of different rules.

> Jareth can alter time.

Rule: Move main clause auxiliary?

Rule: Move auxiliary in even-numbered position in sentence?
Rule: Move auxiliary closest to a noun?

Learning Difficulties: Yes/No Questions

The girl who can solve the labyrinth is happy.

Predictions of questions generated
Rule: Move first auxiliary?

* Can the girl who solve the labyrinth is happy?

Learning Difficulties: Yes/No Questions

The girl who can solve the labyrinth is happy.

Predictions of questions generated
Rule: Move first auxiliary?

* Can the girl who solve the labyrinth is happy?

Rule: Move main clause auxiliary?
Correct rule $=$ grammatical question Is the girl who can solve the labyrinth happy?

Learning Difficulties: Yes/No Questions

But the simple questions they see are compatible with both of these hypotheses (along with many others). How do children choose the right rule from all the possible rules that are compatible? That is, how do they generalize the right way from the subset of the data they encounter?

Rule: Move main clause auxiliary?

Is the girl who can solve the labyrinth happy?

Learning Difficulties: Yes/No Questions
But the simple questions they see are compatible with both
of these hypotheses (along with many others). How do
children choose the right rule from all the possible rules that
are compatible? That is, how do they generalize the right
way from the subset of the data they encounter?
Rule: Move main clause auxiliary?
Is the girl who can solve the labyrinth happy?

Learning Difficulties: Yes/No Questions

Crain \& Nakayama (1987) showed that children as young as 3 years old don't make these mistakes. They use the right rule for this complex yes/no question.

Predictions of questions generated
Rule: Move first auxiliary?

* Can the girl who solve the labyrinth is happy?

Rule: Move main clause auxiliary?
Is the girl who can solve the labyrinth happy?

Learning Difficulties: Yes/No Questions

Nativist position: Children have an innate bias to look for rules that make use of sentence structure. Specifically, they only consider rules that are structure-dependent.

Another example of
children's constrained generalization
Crain \& McKee (1985): pronoun interpretation
While he danced around the throne room, Jareth smiled. (Adults: he $=$ Jareth) (Children: he $=$ Jareth $)$

Another example of
children's constrained generalization
Crain \& McKee (1985): pronoun interpretation
While Jareth danced around the throne room, he
smiled.
(he = Jareth)
He smiled while Jareth danced around the throne
room.

| Another example of
 children's constrained generalization
 Crain \& McKee (1985): pronoun interpretation |
| :--- | :--- |
| While Jareth danced around the throne room, he |
| (he $=$ Jareth) |
| He smiled while Jareth danced around the throne |
| Heom. |
| (Adults: he \neq Jareth) |

Another example of
children's constrained generalization
Crain \& McKee (1985): pronoun interpretation
While Jareth danced around the throne room, he
(he = Jareth)
He smiled while Jareth danced around the throne (Aduilts: he \neq Jareth) (Children: he \neq Jareth) Possible generalization fails: Order of pronoun and name matters. Children seem to know this without being taught it. Why?

Another example of
children's constrained generalization
Crain \& McKee (1985): pronoun interpretation
While Jareth danced around the throne room, he
smiled.
(he = Jareth)

He smiled while Jareth danced around the throne
(Adults: he \neq Jareth)
(Children: he \neq Jareth)
Answer: Prior knowledge about interpreting
pronouns in sentences. This constraint is structure-
depend, it turns out.

Another example of children's constrained generalization Crain \& McKee (1985): Summary While he danced around the throne room, Jareth smiled. (he = Jareth) Jareth smiled while he danced around the throne room. (he = Jareth) While Jareth danced around the throne room, he smiled. (he = Jareth) He smiled while Jareth danced around the throne room. (he \neq Jareth)

Poverty of the Stimulus leads to Prior Knowledge

 about Language: Summary of Logic1) Suppose there are some data.
2) Suppose there is at least one incorrect hypothesis compatible with the data.
3) Suppose children behave as if they never entertain incorrect hypotheses.

Conclusion: Children possess prior (innate) knowledge ruling out the incorrect hypotheses from consideration.

