Psych 156A/ Ling 150: Acquisition of Language II

Lecture 11 Syntactic categorization II

Computational problem

Determine that there are syntactic categories like Noun and Verb that behave similarly with respect to their syntax (the way they go together with other words).

Noun = \{penguin, goblin, glitter, cheese $\}$

Morphosyntax: Nouns can take determiners like "the" and "a" \{the penguin, a goblin, the glitter, a king\}

Announcements

Lisa's office hours on $5 / 17$ will be 2-3pm (instead of the usual time).

HW2 graded and returned via EEE. Please review your results to see what you may have missed, as this is an excellent study guide for the final.

HW3 available (due 5/26/16)

Computational problem

Determine that there are syntactic categories like Noun and Verb that behave similarly with respect to their syntax (the way they go together with other words).

Verb $=\{$ swim, dance, flutter, smell $\}$
Morphosyntax: Verbs can take adverbs that modify them, like "really" \{really swim, really dance, really flutter, really smell\}

Assessing child knowledge

How do we know when children achieve adult-like knowledge?

Charles Yang, 2010

"Language use is the composite of linguistic, cognitive and perceptual factors many of which, in the child's case, are still in development and maturation. It is therefore difficult to draw inferences about the learner's linguistic knowledge from his linguistic behavior."

But

"...child language [can] be interpreted in terms of adult-like grammatical devices..."

Example adult-like grammatical device: Categories like Noun and Verb

Syntax of nouns

This is thought to involve knowledge of the category Noun

- Impact: Rules for combining nouns together with other words to generate utterances involve this symbol (along with other symbols), rather than individual lexical items.

$N P \rightarrow$ Det Noun	NP \rightarrow Adj Noun	
rather than		
$N P \rightarrow$ the kitty		

Syntax of nouns

Nouns can combine with certain types of words in the input to make larger units (ex: Noun Phrases).

Adjective + Noun ("cute penguins")

Syntax of verbs

Verbs can also combine with certain types of words in the input to make larger units (ex: Verb Phrases [VP]).

Verb + Object ("hug the kitty")
$[\mathrm{VP} \rightarrow \quad$ Verb $+\operatorname{Det}+\mathrm{N}$]

Auxiliary + Verb ("can hug")
[VP \rightarrow Aux + Verb]

Syntax of verbs

This is thought to involve knowledge of the category Verb

- Impact: Rules for combining verbs together with other words to generate utterances involve this symbol (along with other symbols), rather than individual lexical items.

VP \rightarrow Verb Det \mathbf{N}
VP \rightarrow Aux Verb Det \mathbf{N}
rather than
VP \rightarrow hug the kitty VP \rightarrow can hug the kitty

Assessing knowledge of syntactic categories

When do children first develop knowledge of the abstract category of Noun?

Combinatorial power

- Why do we believe this is what (adult) rules look like?
- Expressive power: The ability to generate novel utterances, composed of recognizable pieces (words). Since the utterances haven't been heard before, they must be generated based on rules whose primitives are more abstract than individual lexical items.
- This kind of combinatorial diversity is sometimes called productivity.

Assessing knowledge of syntactic categories

When do children first develop knowledge of the abstract category of Verb?

Development of syntactic categories

Some studies suggest that syntactic category knowledge may already be in place around the age of two

- Determiners, Nouns: Valian 1986, Valian, Solt, \& Stewart 2008
- Auxiliary verbs: Stromswold 1989, Rispoli, Hadley, \& Holt 2009, Rissman, Legendre, \& Landau 2013
- Verbs: Kowalski \& Yang 2012

Assessing knowledge of syntactic categories

How can we tell?

One indicator:
Knowledge about how one word (noun or verb) combines with other words is transferred within the category.

...could think...

Development of syntactic categories

Other studies suggest that it may appear significantly later:

- Determiners, Nouns: Pine \& Lieven 1997
- Auxiliary verbs: Wilson 2003, Theakston \& Lieven 2005, Theakston, Lieven, Pine, \& Rowland 2005, Theakston \& Lieven 2008, Theakston \& Rowland 2009
- Verbs: Tomasello 1992, Tomasello 2006

Assessing knowledge of syntactic categories

How can we tell?

One indicator:
Knowledge about how one word (noun or verb) combines with other words is transferred within the category.

Assessing knowledge of syntactic categories

How can we tell?
One indicator:
Knowledge about how one word (noun or verb) combines with other words is transferred within the category.

...could think...

Assessing knowledge of syntactic categories

How can we tell?
One indicator:
Knowledge about how one word (noun or verb) combines with other words is transferred within the category.

Assessing knowledge of syntactic categories

How can we tell?
One indicator:
Knowledge about how one word (noun or verb) combines with other words is transferred within the category.

Assessing knowledge of syntactic categories

How can we tell?

This causes the child to combine words of the same category with similar words, so that there's overlap in usage within a category.

Assessing knowledge of syntactic categories

How can we tell?

This overlap (which is combinatorial diversity) is something we can quantitatively assess to gauge productivity with respect to categories. In particular, we can look at the lexical substitution for a category (Tomasello 1992, Pine \& Lieven 1997, Naigles, Hoff, \& Vear 2009, Yang 2010, 2011, 2013).

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb? Let's think this through for Verb.

For example, should we expect every verb to combine with every auxiliary?

Assessing knowledge of syntactic categories

Premise: If children's noun or verb usage shows enough combinatorial diversity (productivity), as measured by the lexical substitution (overlap), this suggests they have rules that are based on the more abstract symbols Noun and Verb, rather than rules that are lexically-based.

..the Noun..
...could Verb...

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb? Let's think this through for Verb.

For example, should we expect every verb to combine with every auxiliary?

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb? Let's think this through for Verb.

In fact, it turns out naturalistic linguistic output shows power law behavior (a Zipfian distribution)...

verb	freq	rank
get	101	1
go	100	2
\ldots		
feel	8	58
\ldots		
dream	1	251
\ldots		

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb? Let's think this through for Verb.

In fact, it turns out naturalistic linguistic output shows power law behavior (a Zipfian distribution), where a few things are said very frequently and most things are said very infrequently.

rank

verb	freq	rank
get	101	1
go	100	2
\ldots		
feel	8	58
\ldots		
dream	1	251

... 251

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb? Let's think this through for Verb.

In fact, it turns out naturalistic linguistic output shows power law behavior (a Zipfian distribution), where a few things are said very frequently...

rank

verb	freq	rank
get	101	1
go	100	2
\ldots		
feel	8	58
\ldots		251
dream	1	
..		

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb? Let's think this through for Verb.

In fact, it turns out naturalistic linguistic output shows power law behavior (a Zipfian distribution), where a few things are said very frequently and most things are said very infrequently.

Naturalistic linguistic output

Checking the Zipfian distribution on the Brown corpus
(adult-generated speech and text)

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb?

One implication: We can't expect much overlap in combinatorial usage for nouns or verbs that only are used a few times (and certainly not for those that are only used once).
\log

Naturalistic linguistic output

Checking the Zipfian distribution on the Brown corpus
(adult-generated speech and text)

"The lower line is plotted by taking 'words' to be any sequence of letters between e's (Chomsky 1958). The two straight dotted lines are linear functions with the slope -1 , which illustrate the goodness of the Zipfian fit." (Yang 2010)

Even "unnatural" linguistic output has a Zipfian distribution.

Expected productivity

How much overlap do we expect to see if a child knows the category Noun or Verb?

We need to somehow factor in that a child may know that combinatorial usage transfers to other nouns or verbs, but just doesn't choose to say those other nouns or verbs with other words.

A formal definition of productivity

Yang 2010, 2011, 2013

Expected overlap: How much overlap do we expect to see if a child knows the category Noun or Verb?

A formal definition of productivity

Yang 2010, 2011, 2013

Expected overlap: How much overlap do we expect to see if a child knows the category Noun or Verb?

\{hug, give, take, read, want, think, ...\} = ???

A formal definition of productivity

Yang 2010, 2011, 2013

Expected overlap: How much overlap do we expect to see if a child knows the category Noun or Verb?

A formal definition of productivity

Yang 2010, 2011, 2013

Expected overlap: How much overlap do we expect to see if a child knows the category Noun or Verb?

The proportion of observed lexical items in the vocabulary that are expected to have some overlap: 0.0-1.0

A formal definition of productivity

Yang 2010, 2011, 2013

Expected overlap: How much overlap do we expect to see if a child knows the category Noun or Verb?

Comparison with child data

Yang 2010, 2011, 2013

Once we know this expected overlap, we can look at the overlap we actually observe in the empirical data and see if they match.

Comparison with child data

Yang 2010, 2011, 2013

Once we know this expected overlap, we can look at the overlap we actually observe in the empirical data and see if they match.

The proportion of observed lexical items in the vocabulary that are expected to have some overlap: 0.0-1.0

```
Calculating observed overlap:
``` If word is used with more than one lexical item within the lexical class (ex: auxiliaries), overlap for that word \(=1\). Otherwise, overlap for word \(=0\).
...could give...
...could give... overlap for give \(=0\)
...could give...
...could give..

\section*{Comparison with child data}

\section*{Yang 2010, 2011, 2013}

Once we know this expected overlap, we can look at the overlap we actually observe in the empirical data and see if they match.

The proportion of
observed lexical items in the vocabulary that are expected to have some overlap: 0.0-1.0

\section*{Calculating observed overlap:}

If word is used with more than one lexical item within the lexical class (ex: auxiliaries), overlap for that word \(=1\). Otherwise, overlap for word \(=0\).

Observed overlap \(=\frac{\text { total overlap from all words }}{\text { total number of words }}\)

\section*{Comparison with child data}

\section*{Yang 2010, 2011, 2013}

Once we know this expected overlap, we can look at the overlap we actually observe in the empirical data and see if they match.

The proportion of observed lexical items in the vocabulary that are expected to have some overlap: 0.0-1.0
Calculating observed overlap:
If word is used with more than one lexical item within the
lexical class (ex: auxiliaries), overlap for that word \(=1\).
Otherwise, overlap for word \(=0\).

Example:
Suppose we have 4 words (give, eat, tell, hug)
Suppose the overlap scores are (\(1,0,1,1\)).
Observed overlap \(=(1+0+1+1) / 4=3 / 4=0.75\)

\section*{Comparison with child data}

\section*{Yang 2010, 2011, 2013}

Once we know this expected overlap, we can look at the overlap we actually observe in the empirical data and see if they match.

If observed overlap = expected overlap, this child's output is compatible with knowing the syntactic category (Noun or Verb).

Individual words are used as if they were part of the same category.

\section*{Comparison with child data}

\section*{Yang 2010, 2011, 2013}

Once we know this expected overlap, we can look at the overlap we actually observe in the empirical data and see if they match.

If observed overlap < expected overlap, this child's output is not compatible with knowing the syntactic category (Noun or Verb).

Individual words are used as if they were not part of the same category.

\section*{When do children know Noun?}

\section*{Yang 2010, 2011}

One aspect of Noun knowledge =
Nouns can be used with determiners \(a\) and the

NP \(\rightarrow\) Det Noun
\begin{tabular}{lcc|}
\hline & Observed Overlap & Expected Overlap \\
\hline First 100 utterances & 21.8 & 22.4 \\
First 300 utterances & 29.1 & 29.1 \\
First 500 utterances & 34.2 & 33.9 \\
\hline
\end{tabular}

Observed overlap \(=\) Expected overlap

\section*{When do children know Noun?}

\section*{Yang 2010, 2011}

One aspect of Noun knowledge \(=\)
Nouns can be used with determiners \(a\) and the
```

NP }->\mathrm{ Det Noun

```

Data: Child-produced utterances from the six American English corpora of the CHILDES database (age range 1;1 to 5;1).

First 100,300 , and 500 productions from all children to capture earliest stage of language production which should (presumably) be the least productive.

\section*{When do children know Noun?}

\section*{Yang 2010, 2011}

One aspect of Noun knowledge =
Nouns can be used with determiners \(a\) and the

NP \(\rightarrow\) Det Noun
Implication: Very early child language consistent with knowing Noun (at least with respect to combining these Determiners and Nouns)

When do children know Verb?

\section*{Bates, Pearl, \& Braunwald in prep.}

Aspects of Verb knowledge =
Verbs can be used with subjects

Sentence \(\rightarrow\) Subject Verb
"I hug"

\section*{When do children know Verb?}

Bates, Pearl, \& Braunwald in prep.
Aspects of Verb knowledge =
Verbs can be used with non-object phrases, like indirect objects, predicate adjectives, prepositional phrases, locatives

VP \(\rightarrow\) Verb Non-Object
"give birdie a hug"
"be happy"

"give a hug to birdie"
"go home"

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Aspects of Verb knowledge =
Verbs can be used with objects

VP \(\rightarrow\) Verb Object
"hug birdie"

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Aspects of Verb knowledge =
Verbs can be used with negations

VP \(\rightarrow\) Negation Verb
"don't cry"

When do children know Verb?

\section*{Bates, Pearl, \& Braunwald in prep.}

Aspects of Verb knowledge =
Verbs can be used with auxiliary verbs

VP \(\rightarrow\) Auxiliary Verb
"will hug"

\section*{When do children know Verb?}

Bates, Pearl, \& Braunwald in prep.
Aspects of Verb knowledge =
Verbs can be used with embedded clauses

VP \(\rightarrow\) Verb Embedded-Clause
"look what I did"

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Aspects of Verb knowledge =
Verbs can be used with wh-words when asking questions

Question \(\rightarrow\) Wh-word... Verb
"what do you want?"

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Data:
Longitudinal data from a typically developing child (Laura) in naturalistic contexts

Focusing on 20 to 24 months of age.

Total verb vocabulary items (types): 254
All verbs, \(20-24\) months
Total verb usages (tokens): 2157

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Data:
Longitudinal data from a typically developing child (Laura) in naturalistic contexts

Focusing on 20 to 24 months of age.

Total verb vocabulary items (types): 254
Total verb usages (tokens): 2157

This is similar to estimates of children's transitive verb usage that are based on larger corpora (1.1 million words from CHILDES)
 done by Yang (2010).

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

20 to 24 months CHILDES
Total verb types: 322
Total verb tokens: 10432

20 most frequent verbs

be, put, get, go, want, see, have, open, take sit, do, close, look, eat, fix, come, read, make, write, fall

Laura uses 15 of their top 20.

Laura's 20 most frequent verbs
get, go, have, is, see, do, want, like, come, open, look it, sit, take, made, write, eat,

The other children use 16 of Laura's top 20.

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Data:
Laura's verb usage appears to be typical, compared against a group of 93 children between 20 and 24 months from the American English CHILDES database

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Laura's word order also appears adult-like, with respect to Subjects, Verbs, and Objects.

Total verb uses with subjects, objects, or both: 1688
Verbs with Subjects only Verbs with Objects only

\begin{tabular}{llll}
SV & VS & VO & OV \\
499 & 9 & 477 & 6 \\
\(98.2 \%\) & & \(98.8 \%\) &
\end{tabular}

Verbs with Subjects and Objects
\begin{tabular}{llllll}
SVO & SOV & VSO & VOS & OSV & OVS \\
689 & \(\mathbf{2}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{1}\) & \(\mathbf{2}\) \\
\(98.9 \%\) & & & & &
\end{tabular}

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

If observed overlap = expected overlap, productions are compatible with a productive system at 20-24 months of age.

If observed overlap < expected overlap, they are not.

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Observed - Expected \(=0.0 \rightarrow\) Could be productive, could know Verb at 20-24 months of age.

Observed - Expected \(<0.0 \rightarrow\) Not productive, does not know Verb at 20-24 months of age.

Observed
overlap
Expected
overlap
Obs - Exp

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Comparing observed to expected overlap for 7 classes, it doesn't seem like verbs combine freely with words from different lexical classes for this child at 20-24 months.

Lexical substitution knowledge is not transferring across different verbs.
\begin{tabular}{|lccccccc|}
\hline & subj & obj & non-obj & neg & aux & wh & emb cla \\
\hline \begin{tabular}{l}
Observed \\
overlap
\end{tabular} & 0.50 & 0.50 & 0.54 & 0.36 & 0.48 & 0.13 & 0.60 \\
\hline \begin{tabular}{l}
Expected \\
overlap
\end{tabular} & \(\mathbf{0 . 7 2}\) & 0.76 & 0.64 & 0.45 & 0.52 & 0.56 & 0.72 \\
\hline Obs - Exp & -0.22 & -0.26 & -0.10 & -0.09 & -0.04 & -0.43 & -0.12 \\
\hline
\end{tabular}

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Comparing observed to expected overlap for 7 classes, it doesn't seem like verbs combine freely with words from different lexical classes for this child at 20-24 months.

Lexical substitution knowledge is not transferring across different verbs.

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Maybe later...

\section*{When do children know Verb?}

\section*{Bates, Pearl, \& Braunwald in prep.}

Despite the number of verbs this child is producing (254 verb vocabulary items) and the regularity of word order (>98\% SVO, SV , or VO), development of the grammatical category knowledge of Verb does not occur until after 24 months for this child.

\section*{Recap: Syntactic categorization}

Productivity, as measured by the lexical overlap of words within a syntactic category, is one way to assess whether children seem to have knowledge of a particular syntactic category.

Natural language use seems to have a Zipfian distribution, where many combinations are rarely (or never) heard. This can make it hard to learn (more on this next time), but it can also make it hard to figure out what knowledge children have.

Yang \((2010,2011,2013)\) offered a formal metric for figuring out exactly how much overlap words should have, given that language use has a Zipfian distribution.

Based on this metric, it seems like children may attain knowledge of Noun earlier than they attain knowledge of Verb.
```

