
Psych	156A/	Ling	150: 
Acquisition	of	Language	II

Lecture	8	
Word	meaning	I

Announcements

Review	questions	available	for	word	meaning	

HW1	returned	

Be	working	on	HW2	(due	5/5/16)	

Midterm	review	in	class	on	4/28/16	

Midterm	exam	during	class	on	5/3/16

Gavagai!

What	does	“gavagai”	mean?  



What	does	“gavagai”	mean?  

Rabbit?
Mammal?

Ears?

Is	it	gray?
Fluffy?

Carrot	eater?

Scurrying
Hopping

Thumping

Stay!

What	a	cutie!

Meal!
Rabbit	only	until	eaten!

That’s	not	a	dog!

gray	rabbit?
Animal?

vegetarian?

Long	ears?

Look!

Cheeks	and	left	ear!

What	does	“gavagai”	mean?  
hNp://www.thelingspace.com/episode-35	
https://www.youtube.com/watch?v=Ci-5dVVvf0U	
~2:03	-	2:32

Same	problem	the	child	faces
A	little	more	context…

“Look!		There’s	a	goblin!”

Goblin	=	????



The	mapping	problem

Even	if	something	is	explicitly	labeled	in	the	input	(“Look!	There’s	a	
goblin!”),	how	does	the	child	know	what	specifically	that	word	refers	
to?	(Is	it	the	head?		The	feet?	The	staff?		The	combination	of	eyes	and	
hands?		Attached	goblin	parts?…)

Quine	(1960):	An	infinite	number	of	hypotheses	about	word	meaning	are	
possible	given	the	input	the	child	has.		That	is,	the	input	
underspecifies	the	word’s	meaning.	

So	how	do	children	figure	it	out?		Obviously,	they	do….

Even	by	6	to	9	months,	infants	recognize	many	familiar	words	in	
their	language,	like	body	parts	and	food	items	—	that	is,	
concrete	objects	(Bergelson	&	Swingley	2012,	2015).

eyes,	mouth,	hands,	…	

milk,	spoon,	juice,	cookie,	…	

So	how	do	children	figure	it	out?		Obviously,	they	do….

By	10	to	13	months	old,	infants		understand	words	like	“all	
gone”,	“hug”,	“bye”,	and	“wet”	(Bergelson	&	Swingley	2013)

gone,	hug,	bye…

wet

dax	=			??

Computational	problem

kleeg	=		??	
“I	love	my	dax	and	my	kleeg.”



One	solution:	Fast	mapping

ball
bear

kitty

[unknown]

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)

One	solution:	Fast	mapping

ball
bear

kitty

[unknown]

“Can	I	have	the	ball?”

Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	
they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)

One	solution:	Fast	mapping
Children	begin	by	making	an	initial	fast	mapping	between	a	new	word	

they	hear	and	its	likely	meaning.		They	guess,	and	then	modify	the	
guess	as	more	input	comes	in.

ball
bear

kitty

[unknown]

“Can	I	have	the	zib?”

20	months

Experimental	evidence	of	fast	mapping		
	 (Carey	&	Bartlett	1978,	Dollaghan	1985,	Mervis	&	Bertrand	1994,	

Medina,	Snedecker,	Trueswell,	&	Gleitman	2011)

A	slight	problem…
“…not	all	opportunities	for	word	learning	are	as	uncluttered	as	the	

experimental	settings	in	which	fast-mapping	has	been	demonstrated.	In	
everyday	contexts,	there	are	typically	many	words,	many	potential	
referents,	limited	cues	as	to	which	words	go	with	which	referents,	and	
rapid	attentional	shifts	among	the	many	entities	in	the	scene.”	-	Smith	&	
Yu	(2008)



A	slight	problem…
	 “…many	studies	find	that	children	even	as	old	as	18	months	have	difficulty	

in	making	the	right	inferences	about	the	intended	referents	of	novel	
words…infants	as	young	as	13	or	14	months…can	link	a	name	to	an	object	
given	repeated	unambiguous	pairings	in	a	single	session.	Overall,	
however,	these	effects	are	fragile	with	small	experimental	variations	often	
leading	to	no	learning.”	-	Smith	&	Yu	(2008)

Cross-situational	learning
Different	approach:	infants	accrue	statistical	evidence	across	multiple	trials	that	are	

individually	ambiguous	but	can	be	disambiguated	when	the	information	from	the	
trials	is	aggregated.

How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 	 P(D)

How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 	 P(D)

Posterior	probability	of	hypothesis	H,	given	that	data	D	have	been	observed



How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 	 P(D)

Posterior	probability

Likelihood	of	seeing	data	D,	given	that	H	is	true

How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 	 P(D)

Posterior	probability

Likelihood
Prior	probability	of	hypothesis	H

How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 	 P(D)

Posterior	probability

Likelihood
Prior

Probability	of	observing	the	data,	no	
matter	what	hypothesis	is	true

How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 Σ P(D|h)*P(h)

Posterior	probability

Likelihood
Prior

Probability	of	observing	the	data,	no	
matter	what	hypothesis	is	true:	
Calculate	by	summing	over	all	hypotheses

h



How	does	learning	work?
Bayesian	inference	is	one	way.	

In	Bayesian	inference,	the	belief	in	a	particular	hypothesis	(H)	(or	the	probability	of	
that	hypothesis),	given	the	data	observed	(D)	can	be	calculated	the	following	
way:	

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 Σ P(D|h)*P(h)

Posterior	probability

Likelihood
Prior

datah

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

Posterior	probability	that	“ball”	refers	to	

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Since	there	are	two	hypotheses	in	the	hypothesis	
space	at	this	point	
P(H1)	=		1/2	=	0.5	
P(H2)	=		1/2	=	0.5	



Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

P(D	|	H1)	=	would	this	be	observed	if	H1	were	
true?		Yes.		Therefore	p(D	|	H1)	=	1.0.	

P(D	|	H2)	=	would	this	be	observed	if	H2	were	
true?		Yes.		Therefore	p(D	|	H2)	=	1.0.

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

P(D)	=	Σ P(D	|	h)	P(h)	=		

P(D	|	H1)	*	P(H1)	=	1.0	*	0.5	=	0.5		
P(D	|	H2)	*	P(H2)	=	1.0	*	0.5	=	0.5	

so		
Σ P(D	|	h)	P(h)	=	0.5	+	0.5	=	1.0

h

h

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

	 	 	=	P(D	|	H1)	*	P(H1)	
	 	 	 P(D)	

	 	 =	1.0	*	0.5		=	0.5	
	 	 						1.0

This	feels	intuitively	right,	since	“ball”	could	refer	to	either	object,	given	this	data	
point.

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

Since	there	are	three	hypotheses	in	the	hypothesis	
space	at	this	point	
P(H1)	=		1/3	=	0.33	
P(H2)	=		1/3	=	0.33	
P(H3)	=		1/3	=	0.33Hypothesis	3	(H3):	“ball”	=					

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					



Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

P(D	|	H1)	=	would	this	be	observed	if	H1	were	
true?		Yes.		Therefore	p(D	|	H1)	=	1.0.	

Hypothesis	3	(H3):	“ball”	=					

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

P(D	|	H2)	=	would	this	be	observed	if	H2	were	
true?		No.	(Why	would	“ball”	be	said	in	the	second	
scene?)		Therefore	p(D	|	H2)	=	0.0.	

P(D	|	H3)	=	would	this	be	observed	if	H3	were	
true?		No.	(Why	would	“ball”	be	said	in	the	first	
scene?)		Therefore	p(D	|	H3)	=	0.0.

Hypothesis	3	(H3):	“ball”	=					

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

P(D)	=	Σ P(D	|	h)	P(h)	=		

P(D	|	H1)	*	P(H1)	=	1.0	*	0.33	=	0.33		
P(D	|	H2)	*	P(H2)	=	0.0	*	0.33	=	0.0	
P(D	|	H3)	*	P(H3)	=	0.0	*	0.33	=	0.0	

so		
Σ P(D	|	h)	P(h)	=	0.33	+	0.0	+	0.0	=	0.33

h

h

Hypothesis	3	(H3):	“ball”	=					

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					

Cross-situational	learning
Let’s	apply	Bayesian	inference	to	this	scenario.

If	this	is	the	only	data	available,	

	 	 	=	P(D	|	H1)	*	P(H1)	
	 	 	 P(D)	

	 	 =	1.0	*	0.33		=	1.0	
	 	 						0.33

This	feels	intuitively	right,	since	“ball”	could	only	refer	to	the	ball,	when	these	two	
scenes	are	reconciled	with	each	other.

Hypothesis	3	(H3):	“ball”	=					

Observable	data

Hypothesis	1	(H1):	“ball”	=										

Hypothesis	2	(H2):	“ball”	=					



Smith	&	Yu	(2008)
Yu	&	Smith	(2007):	Adults	seem	able	to	do	cross-situational	learning	

(in	experimental	setups).	

Smith	&	Yu	(2008)	ask:	Can	12-	and	14-month-old	infants	do	this?	
(Relevant	age	for	beginning	word-learning.)	

Smith	&	Yu	(2008):	Experiment
Infants	were	trained	on	six	novel	words	obeying	phonotactic	probabilities	of	English:	

bosa,	gasser,	manu,	colat,	kaki,	regli	

These	words	were	associated	with	six	brightly	colored	shapes		
(sadly	greyscale	in	the	paper)

Figure	from	paper What	the	shapes	are	probably	more	like

Smith	&	Yu	(2008):	Experiment
Training:	30	slides	with	2	objects	named	with	two	words	(total	time:	4	min)

manu	
colat

bosa	
manu

Example	training	slides

Smith	&	Yu	(2008):	Experiment

Testing:	12	trials	with	one	word	repeated	4	times	and	2	objects	(correct	one	and	
distracter)	present

manu	
manu	
manu	
manu	

Which	one	does	the	infant	
think	is	manu?	That	should	be	
the	one	the	infant	prefers	to	
look	at.



Smith	&	Yu	(2008):	Experiment
Results:	Infants	preferentially	look	at	target	over	distracter,	and	14-month-olds	

looked	longer	than	12-month-olds.	This	means	they	were	able	to	tabulate	
distributional	information	across	situations.

Implication:	12	and	14-month-old	infants	can	do	cross-situational	learning

Something	to	think	about…

The	real	world	isn’t	necessarily	as	
simple	as	these	experimental	
setups	-	often	times,	there	will	
be	many	potential	referents.	

(A	similar	issue	to	the	one	fast-
mapping	has.)		

Something	to	think	about…

	 A	strategy	where	learners	hang	on	
to	one	hypothesis	at	a	time	until	
it’s	proven	incorrect	and	only	then	
switch	to	a	different	one	may	work	
better	because	of	this.	There’s	
some	evidence	that	it	matches	
infant	behavioral	results	quite	well	
(Stevens,	Trueswell,	Yang,	&	
Gleitman	2013)	and	may	be	more	
effective	for	navigating	the	
hypothesis	space	(Romberg	&	Yu	
2014).	

Some	more	discussion	about	this:	http://facultyoflanguage.blogspot.com/2013/03/learning-
fast-and-slow-i-how-children.html

Something	else	to	think	about…
Having	more	referents	may	not	be	a	bad	thing.	

Why	not?	
It’s	easier	for	the	correct	associations	to	emerge	from	spurious	

associations	when	there	are	more	object-referent	pairing	
opportunities.		Let’s	see	an	example	of	this.	



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

	 First,	let’s	consider	their	condition,	
where	two	objects	are	shown	at	a	
time.		Let’s	say	we	get	three	slides/
scenes	of	data.		

“manu”		
“colat”

“bosa”		
“gasser”

“kaki”		
“regli”

Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to
	 	 or	 	 ?	

No	-	both	hypotheses	are	equally	
compatible	with	these	data.			

“manu”		
“colat”

“bosa”		
“gasser”

“kaki”		
“regli”

Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

	 Now,	let’s	consider	a	more	compex	
condition,	where	four	objects	are	
shown	at	a	time.		Let’s	say	we	get	
three	slides/scenes	of	data.		

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to
	 				or	 			or								or												?	

Well,	the	first	slide	isn’t	helpful	in	
distinguishing	between	these	four	
hypotheses…				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”



Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to
	 				or	 			or								or												?	

The	second	slide	suggests	“manu”	
can’t	be											-	otherwise,	that	
object	would	appear	in	the	second	
slide.				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Can	we	tell	whether	“manu”	refers	to
	 					or	 				or							?	

The	third	slide	suggests	“manu”	can’t	
be										or								-	otherwise,	those	
objects	would	would	appear	in	the	
third	slide.				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

Why	more	may	not	always	be	harder…
Suppose	there	are	six	objects	total,	the	

amount	used	in	the	Smith	&	Yu	
(2008)	experiment.			

Therefore,	“manu”	is								.		

This	shows	us	that	having	more	things	
appear	(and	be	named)	at	once	
actually	offers	more	opportunities	
for	the	correct	associations	to	
emerge.				

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

Why	more	may	not	always	be	harder…
	 Let’s	walk	through	this	scenario	

using	Bayesian	inference.
“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

P(H	|	D)	=			 P(D	|	H)	*	P(H)	
	 	 	 Σ P(D|h)*P(h)

	 We’ll	see	an	example	of	how	
sequential	updating	would	work	
(instead	of	calculating	the	
posterior	just	once,	based	on	all	
of	the	data).



Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Since	there	are	four	hypotheses	in	the	hypothesis	
space	at	this	point,	the	priors	are:	

P(H1)	=		1/4	=	0.25	
P(H2)	=		1/4	=	0.25	
P(H3)	=		1/4	=	0.25	
P(H4)	=		1/4	=	0.25	

data	point	1
Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

We	can	calculate	the	likelihoods,	given	this	data	point:	

P(D	|	H1)	=		1	
P(D	|	H2)	=		1	
P(D	|	H3)	=		1	
P(D	|	H4)	=		1	

data	point	1

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

We	can	calculate	the	likelihood	*	prior	for	each	hypothesis:	

P(D	|	H1)*P(H1)	=		1*0.25	=	0.25	
P(D	|	H2)*P(H2)	=		1*0.25	=	0.25	
P(D	|	H3)*P(H3)	=		1*0.25	=	0.25	
P(D	|	H4)*P(H4)	=		1*0.25	=	0.25	

The	sum	(which	we’ll	need	for	the	denominator	of	the	posterior)	=	1

data	point	1

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

Σ P(D|h)*P(h)

Sequential	updating

“manu”		
“colat”	
“bosa”	
“regli”

We	can	now	calculate	the	posterior	for	each	hypothesis:	

P(H1	|	D)	=		0.25/1	=	0.25	
P(H2	|	D)	=		0.25/1	=	0.25	
P(H3	|	D)	=		0.25/1	=	0.25	
P(H4	|	D)	=		0.25/1	=	0.25	

data	point	1

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					



Sequential	updating

These	become	the	priors	for	the	next	data	point.	

P(H1)	=	0.25	
P(H2)	=	0.25	
P(H3)	=	0.25	
P(H4)	=	0.25	

data	point	2Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					 “bosa”		
“gasser”	
“manu”	
“colat”

Sequential	updating

We	can	calculate	the	likelihoods,	given	this	data	point:	

P(D	|	H1)	=		1	
P(D	|	H2)	=		1	
P(D	|	H3)	=		1	
P(D	|	H4)	=		0	(																	doesn’t	appear)	

data	point	2Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					 “bosa”		
“gasser”	
“manu”	
“colat”

Sequential	updating

We	can	calculate	the	likelihood	*	prior	for	each	
hypothesis:	

P(D	|	H1)*P(H1)	=		1*0.25	=	0.25	
P(D	|	H2)*P(H2)	=		1*0.25	=	0.25	
P(D	|	H3)*P(H3)	=		1*0.25	=	0.25	
P(D	|	H4)*P(H4)	=		0*0.25	=	0	

The	sum	(which	we’ll	need	for	the	denominator	of	the	
posterior)	=	0.75	

data	point	2Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					 “bosa”		
“gasser”	
“manu”	
“colat”

Σ P(D|h)*P(h)

Sequential	updating

We	can	now	calculate	the	posterior	for	each	hypothesis:	

P(H1	|	D)	=		0.25/0.75	=	0.33	
P(H2	|	D)	=		0.25/0.75	=	0.33	
P(H3	|	D)	=		0.25/0.75	=	0.33	
P(H4	|	D)	=		0/0.75		 	=	0	

data	point	2Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					 “bosa”		
“gasser”	
“manu”	
“colat”



Sequential	updating

These	become	the	priors	for	the	next	data	point.	

P(H1)	=	0.33	
P(H2)	=	0.33	
P(H3)	=	0.33	
P(H4)	=	0	

data	point	3

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

Sequential	updating

We	can	calculate	the	likelihoods,	given	this	data	point:	

P(D	|	H1)	=		0	(																	doesn’t	appear)	
P(D	|	H2)	=		1	
P(D	|	H3)	=		0	(																	doesn’t	appear)	
P(D	|	H4)	=		1

data	point	3

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

Sequential	updating

We	can	calculate	the	likelihood	*	prior	for	each	
hypothesis:	

P(D	|	H1)*P(H1)	=		0*0.33	=	0	
P(D	|	H2)*P(H2)	=		1*0.33	=	0.33	
P(D	|	H3)*P(H3)	=		0*0.33	=	0	
P(D	|	H4)*P(H4)	=		1*0							=	0	

The	sum	(which	we’ll	need	for	the	denominator	of	the	
posterior)	=	0.33

data	point	3

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

Σ P(D|h)*P(h)

Sequential	updating

We	can	now	calculate	the	posterior	for	each	hypothesis:	

P(H1	|	D)	=		0/0.33	 	=	0	
P(H2	|	D)	=		0.33/0.33		=	1	
P(H3	|	D)	=		0/0.33		 	=	0	
P(H4	|	D)	=		0/0.33		 	=	0

data	point	3

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”



Sequential	updating

We	can	now	calculate	the	posterior	for	each	hypothesis:	

P(H1	|	D)	=		0/0.33	 	=	0	
P(H2	|	D)	=		0.33/0.33		=	1	
P(H3	|	D)	=		0/0.33		 	=	0	
P(H4	|	D)	=		0/0.33		 	=	0

data	point	3

Hypothesis	3	(H3):	“manu”	=					

Hypothesis	1	(H1):	“manu”	=										

Hypothesis	2	(H2):	“manu”	=					

Hypothesis	4	(H4):	“manu”	=					

“manu”	
“gasser”	
“kaki”		
“regli”

The	utility	of	probabilities

	 Partial	knowledge	of	some	
words	appears	to	be	very	
helpful	for	helping	learners	
figure	out	the	meaning	of	
words	they	don’t	know	yet	
(Yurovsky,	Fricker,	&	Yu	
2013).	

P(H1	|	D)	=		0.25/0.75	=	0.33	
P(H2	|	D)	=		0.25/0.75	=	0.33	
P(H3	|	D)	=		0.25/0.75	=	0.33	
P(H4	|	D)	=		0/0.75		 	=	0	

“bosa”		
“gasser”	
“manu”	
“colat”

Some	other	factors	in	cross-situational	learning

	 Even	if	there	are	more	
referents,	cross-situational	
learning	is	more	successful	
when	some	referents	are	
immediately	repeated	from	
situation	to	situation	
(Kachergis,	Yu,	&	Shiffrin	
2012).	

“manu”		
“colat”	
“bosa”	
“regli”

“bosa”		
“gasser”	
“manu”	
“colat”

“manu”	
“gasser”	
“kaki”		
“regli”

Some	other	factors	in	cross-situational	learning

	 The	child’s	perspective	of	real	
world	events	may	make	cross-
situational	learning	more	
feasible,	as	compared	to	a	
neutral	third	party	(the	way	a	
photograph	represents	the	
world).	This	is	likely	because	
certain	things	are	more	salient	
from	a	child’s	perspective	due	to	
object	foregrounding	and	
degree	of	clutter	in	line	of	sight	
(Yurovsky,	Smith,	&	Yu	2013).



Recap:	Word-meaning	mapping

Cross-situational	learning,	which	relies	on	distributional	information	
across	situations,	can	help	children	learn	which	words	refer	to	
which	things	in	the	world. 
 
One	way	to	implement	the	reasoning	process	behind	cross-
situational	learning	is	Bayesian	inference.	It	can	be	done	in	a	batch	
over	all	the	data	observed,	or	sequentially	as	the	data	are	observed	
one	by	one.  
 
Experimental	evidence	suggests	that	infants	are	capable	of	this	kind	
of	reasoning	in	controlled	experimental	setups. 

Questions?

You	should	be	able	to	do	up	through	question	7	on	HW2	and	up	through	
question	5	on	the	word	meaning	review	questions.


