Psych215L:
 Language Acquisition

Lecture 18
Complex Systems II
Computational Problem:
Figure out the order of words (syntax)

English
Subject Verb Object

Jareth juggles crystals
Subject Verb Object

Remember:
Children only see the output of the system (the observable word order of Subject Verb Object) and have to reverse engineer the generative process behind it.

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic
elements (parameters) would yield the observable
languages (similar to the way different combinations of different basic elements in chemistry yield many differentseeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic
systems.

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic
elements (parameters) would yield the observable
languages (similar to the way different combinations of
different basic elements in chemistry yield many different-

Similarities \& Differences: Parameters

seeming substances).
Chomsky: Different combinations of different basic
elements (parameters) would yield the observable
languages (similar to the way different combinations of
different basic elements in chemistry yield many differentseeming substances).

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems.

5 different
 parameters of variation

Similarities \& Differences: Parameters

Chomsky: Different combinations of different basic
elements (parameters) would yield the observable
languages (similar to the way different combinations of
different basic elements in chemistry yield many different-

Similarities \& Differences: Parameters

Big Idea: A relatively small number of syntax parameters yields a large number of different languages' syntactic systems
substances).

Big Idea: A relatively small number of syntax parameters
yields a large number of different languages' syntactic
systems

Learning Language Structure

Chomsky: Children are born knowing the parameters
of variation (and also potentially what values that can have). This is part of Universal Grammar. Input from the native linguistic environment determines what

Learning Language Structure

Chomsky: Children are born knowing the parameters
of variation (and also potentially what values that can have). This is part of Universal Grammar. Input from the native linguistic environment determines what values these parameters should have.

Learning Language Structure

Chomsky: Children are born knowing the parameters of variation (and also potentially what values that can have). This is part of Universal Grammar. Input from the native linguistic environment determines what

values these parameters should have.

Learning Language Structure

Chomsky: Children are born knowing the parameters of variation (and also potentially what values that can
have). This is part of Universal Grammar. Input from
the native linguistic environment determines what
values these parameters should have.

Yang (2004):

Learning Complex Systems Like Language

Only humans seem able to learn human
languages
Something in our biology must allow us to

do this.

This is what Universal Grammar is: innate biases for learning language that are available to humans because of our biological makeup (specifically, the biology of our brains).

Yang (2004):
Learning Complex Systems Like Language
But obviously language is learned, so children can't know everything beforehand. How does this fit with the idea of innate biases/knowledge?

Observation: we see constrained variation across languages in their sounds, words, and structure. The knowledge of the ways in which languages vary is children's innate knowledge.

Yang (2004)

Learning Complex Systems Like Language
The big point: even if children have innate knowledge of
language structure, we still need to understand how they learn
what the correct structural properties are for their particular
language. One idea is to remember that children are good at tracking statistical information (like transitional probabilities) in the language data they hear.

English

00000
Navajo
łanguage variation... which they use
otearn-their native language

Yang (2004): Learning Complex Systems

The linguist-psychologist breakdown
Linguists
Characterize "scope and limits of innate principles of Universal Grammar that govern the world's languages".

Noam Chomsky

Stephen Crain

Psychologists
Emphasize the "role of experience and the child's domain-general learning ability".

Elizabeth Bates

Yang (2004): Learning Complex Systems

Statistics for word segmentation (remember Gambell \& Yang (2006))
"Modeling shows that the statistical learning (Saffran et al. 1996) does not reliably segment words such as those in child-directed English.
Specifically, precision is 41.6%, recall is 23.3%. In other words, about 60\% of words postulated by the statistical learner are not English words, and almost 80% of actual English words are not extracted. This is so even under favorable learning conditions".

Unconstrained (simple) statistics: not so good

If statistical measure is
constrained by language-specific
knowledge (words have only one
main stress), performance
increases dramatically: 73.5\%
precision, 71.2% recall.

Yang (2004): Learning Complex Systems

Combining statistics with Universal Grammar

A big deal:
"Although infants seem to keep track of statistical information, any conclusion drawn from such findings must presuppose that children know what kind of statistical information to keep track of.'

Ex: Transitional Probability
..of rhyming syllables?
..of syllables with nasal consonants?
... of syllables of the form CV (ba, ti)?

Linguistic Knowledge for Learning Structure

Parameters = constraints on language variation. Only certain rules/patterns are possible. This is linguistic knowledge.

A language's grammar
= combination of language rules
$=$ combination of parameter values

$0<10<10$
(1000(s) (entento
Idea: use statistical learning to learn which value (for each parameter) that the native language uses for its grammar. This is a combination of using linguistic knowledge \& statistical learning

Yang (2004): Variational Learning

Idea taken from evolutionary biology:
In a population, individuals compete against each other. The fittest individuals survive while the others die out

How do we translate this to learning language structure?

Yang (2004): Variational Learning

Idea taken from evolutionary biology:
In a population, individuals compete against each other. The fittest individuals survive while the others die out.

How do we translate this to learning language structure?

Individual = grammar (combination of parameter values that represents the structural properties of a language)

Fitness = how well a grammar can analyze the data the child encounters

Yang (2004): Variational Learning

Intuition: The most successful (fittest) grammar will be the native language grammar because it can analyze all the data the child encounters. This grammar will "win", once the child encounters enough native language data because none of the other competing grammars can analyze all the data.
Native language data point

This grammar can analyze the data point while the other two can't.

Variational Learning Details

At any point in time, a grammar in the population will have a probability associated with it. This represents the child's belief that this grammar is the correct grammar for the native language.

Variational Learning Details

Before the child has encountered
any native language data, all
grammars are equally likely. So,
initially all grammars have the same
probability, which is 1 divided the
number of grammars available.
Prob $=1 / 3$
Prob $=1 / 3(2) 000()$
Prob=1/3
(2xisio
If there are 3 grammars, the initial probability for any given grammar = 1/3

Variational Learning Details

As the child encounters data from the native language, some of the grammars will be more fit because they are better able to account for the structural properties in the data.

Other grammars will be less fit
because they cannot account for
some of the data encountered.
Grammars that are more
compatible with the native
language data will have their
probabilities increased while
grammars that are less
compatible will have their
probabilities decreased over
time.

Variational Learning Details

After the child has encountered enough data from the native language, the native language grammar should have a probability near 1.0 while the other grammars have a probability near 0.0.

Variational Learning Details

How do we know if a grammar can successfully analyze a data point or not?

Example: Suppose is the subject-drop parameter.
is +subject-drop, which
means the language may
optionally choose to leave out
the subject of the sentence, like
in Spanish.
Prob $=1 / 3$
Prob $=1 / 3(x) 000()$
0000 Prob $=1 / 3$
$((x)(x)(x)$
() is -subject-drop, which
means the language must
always have a subject in a sentence, like English.

[^0]
Variational Learning Details

How do we know if a grammar can successfully analyze a data point or not?

Example data: Vamos = coming-1st-pl = "We're coming"

The +subject-drop grammar
is able to analyze this data point $\operatorname{Prob}=1 / 3 \quad$ ($)=0$,
as the speaker optionally
as the speaker optionally
dropping the subject.

Prob=1/3
(5) (S) N0
C) The -subject-drop grammars
cannot analyze this data point since
they require sentences to have a
subject

Variational Learning Details

Important idea: From the perspective of the subject-drop parameter, certain data will only be compatible with + subject-drop grammars. These data will always reward grammars with +subject-drop and always punish grammars with -subject-drop.

These are called unambiguous data for the + subject-drop parameter value because they unambiguously indicate which parameter value is correct (here: +subject-drop) for the native language.

Variational Learning Details

How do we know if a grammar can successfully analyze a data point or not?

Example data: Vamos = coming-1st-pl = "We're coming"

The +subject-drop grammar
would have its probability
increased if it tried to analyze
the data point.

- The -subject-drop grammars would
have their probabilities decreased if either of them tried to analyze the data point.

The Power of Unambiguous Data

Unambiguous data from the native language can only be analyzed by grammars that use the native language's parameter value.

This makes unambiguous data very influential data for the child to encounter, since it is incompatible with the parameter value that is incorrect for the native language.

Ex: the -subject-drop parameter value is not compatible with sentences that drop the subject. So, these sentences are unambiguous data for the +subject-drop parameter value.

Important to remember: To use the information in these data, the child must know the subject-drop parameter exists.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

Added perk: Learning is then gradual (probabilistic)

Problem: Do unambiguous data exist for entire grammars?
This requires data that are incompatible with every other possible parameter of every other possible grammar.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

Parameterized Grammars
This algorithm can take advantage of the fact that grammars are really sets of parameter values

Parameter values can be probabilistically accessed.

000 Prob $=.2^{\star} \cdot 3^{*} \cdot 2^{\star} \cdot 3^{\star} \cdot 1$

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Learning Algorithm

For each data point d encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Learning Algorithm
For each data point d encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

If this grammar can analyze the data point, increase the probability of all participating parameters values slightly (reward)

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

The Learning Algorithm

For each data point d encountered in the input
Choose a grammar probabilistically from available grammars by probabilistically accessing the parameter values.

If this grammar can analyze the data point increase the probability of all participating parameters values slightly (reward)

Else

decrease the probability of all participating parameters values slightly (punish)

Yang (2004): Learning Complex Systems

Learning Parametric Systems: Variational Learning
Grammars compete against each other to see which can best analyze the available data.

Problem ameliorated: unambiguous data much more likely to exist for individual parameter values instead of entire grammars.

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case

Null subjects:
Parameter 1: Pro-drop, rely on unambiguous subject-verb agreement Ex: Spanish, Italian (+pro-drop) Ex: English (-pro-drop)

```
\sqrt{}{\mathrm{ Yo puedo cantar}}\mathbf{}\mathrm{ (})
    I can-1st-sg sing-inf
    I can sing'
\sqrt{}{Puedo}
    can-1st-sg
    'I can sing
        cantar.
        sing-inf
            a.
        X * Is rain
        Is-3rd-sg rain
        There is rain"
            V There is rain.
```


Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects:
Parameter 1: Topic-drop, drop subject/object if discourse topic Ex: Chinese (+topic-drop) Ex: English (-topic-drop)
(Topic $=$ Jareth $)$
$\sqrt{ }$ Mingtian guiji hui xiayu.
Tomorrow estimate will rain
It is tomorrow that Jareth believes
it will rain'

X *It is tomorrow that believes will rain.

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars
Warlpiri, American Sign Language
Warlpiri, American Sign Language

-pro-drop, +topic-drop

Chinese

What happens for an English-learning child?

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars

What happens for an English-learning child?

Pro-drop languages usually depend on rich subject-verb agreement morphology. English doesn't have that, which is something a child will easily notice. Knock out + pro-drop grammars.

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: 2 binary parameters, 4 grammars

-pro-drop, +topic-drop

Chinese

Yang (2004): Learning Complex Systems

Variational Learning: Sample Case
Null subjects: Prediction if kids take awhile to notice English is -topic-drop
English kids use +topic-drop (Chinese-style) grammar until they encounter enough expletives to notice that English does not optionally drop topics.

Property of Chinese-style grammar: Can drop both subjects and objects
Prediction: When English children use +topic-drop grammar, they will drop subjects and objects at the same relative rate that +topic-drop (Chinese) children do

What happens for an English-learning child?
But this still leaves the +topic-drop option. What data will rule that out?
Answer: Expletive subjects. (Can't topic-drop them.
"There's a goblin in the castle.
"It's raining outside."

$$
\text { But this only occurs in } 1.2 \% \text { of the }
$$

data. (fairly rare)

Same rate: English children using Chinese grammar?

Yang (2004): Learning Complex Systems
Variational Learning: General Predictions
The time course of when a parameter is set depends on how frequent the necessary evidence is in child-directed speech.

Parameters set early: more unambiguous data
Parameters set late: less unambiguous data
Parameters set at the same time: equal quantity of unambiguous data

[^0]: Here, one grammar is +subject-drop while two grammars are -subject-drop.

