
Psych 215L:
Language Acquisition

Lecture 2
The Mechanism of Acquisition

and
Some Child Language Research Methods

Levels of Representation
Marr (1982)

Describing vs. Explaining

“…it gradually became clear that something important was
missing that was not present in either of the disciplines of
neurophysiology or psychophysics.  The key observation is
that neurophysiology and psychophysics have as their
business to describe the behavior of cells or of subjects but
not to explain such behavior….What are the problems in
doing it that need explaining, and what level of description
should such explanations be sought?” - Marr (1982)

On Explaining (Marr 1982)

“…[need] a clear understanding of what is to be computed,
how it is to be done, the physical assumptions on which the
method is based, and some kind of analysis of the algorithms
that are capable of carrying it out.”

“This was what was missing - the analysis of the problem as
an information-processing task.  Such analysis does not
usurp an understanding at the other levels - of neurons or of
computer programs - but it is a necessary complement to
them, since without it there can be no real understanding of
the function of all those neurons.”



On Explaining (Marr 1982)

“But the important point is that if the notion of different types
of understanding is taken very seriously, it allows the study of
the information-processing basis of perception to be made
rigorous.  It becomes possible, by separating explanations
into different levels, to make explicit statements about what is
being computed and why and to construct theories stating
that what is being computed is optimal in some sense or is
guaranteed to function correctly.  The ad hoc element is
removed…”

On Explaining (Marr 1982)

“But the important point is that if the notion of different types
of understanding is taken very seriously, it allows the study of
the information-processing basis of perception to be made
rigorous.  It becomes possible, by separating explanations
into different levels, to make explicit statements about what is
being computed and why and to construct theories stating
that what is being computed is optimal in some sense or is
guaranteed to function correctly.  The ad hoc element is
removed…”

Our goal: Substitute “language acquisition” for
“perception”.

The three levels

Computational
   What is the goal of the computation?  What is the
logic of the strategy by which it can be carried out?

Algorithmic
   How can this computational theory be implemented
in a procedure?  What is the representation for the
input and output, and what is the algorithm for the
transformation?

Implementational
   How can the representation and algorithm be realized
physically?

The three levels:
An example with the cash register

Computational
   What does this device do?
           Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another
number.

(3,4)        7  (often written (3+4=7))
Properties: (3+4) = (4+3) [commutative], (3+4)+5
= 3+(4+5) [associative], (3+0) = 3 [identity
element], (3+ -3) = 0 [inverse element]

True no matter how
numbers are represented:
this is what is being
computed



The three levels:
An example with the cash register

Computational
   What does this device do?
           Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another
number.

Algorithmic
  What is the input, output, and method of transformation?

Input: arabic numerals (0,1,2,3,4…)
Output: arabic numerals (0,1,2,3,4…)
Method of transformation: rules of addition, where least

significant digits are added first and sums over 9 have their next digit
carried over to the next column

   99
 +   5

The three levels:
An example with the cash register

Computational
   What does this device do?
           Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another
number.

Algorithmic
  What is the input, output, and method of transformation?

Input: arabic numerals (0,1,2,3,4…)
Output: arabic numerals (0,1,2,3,4…)
Method of transformation: rules of addition, where least

significant digits are added first and sums over 9 have their next digit
carried over to the next column

   99
 +   5

   14

The three levels:
An example with the cash register

Computational
   What does this device do?
           Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another
number.

Algorithmic
  What is the input, output, and method of transformation?

Input: arabic numerals (0,1,2,3,4…)
Output: arabic numerals (0,1,2,3,4…)
Method of transformation: rules of addition, where least

significant digits are added first and sums over 9 have their next digit
carried over to the next column

     1
   99

 +   5
     4

The three levels:
An example with the cash register

Computational
   What does this device do?
           Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another
number.

Algorithmic
  What is the input, output, and method of transformation?

Input: arabic numerals (0,1,2,3,4…)
Output: arabic numerals (0,1,2,3,4…)
Method of transformation: rules of addition, where least

significant digits are added first and sums over 9 have their next digit
carried over to the next column

     1
   99

 +   5
 104



The three levels:
An example with the cash register

Computational
   What does this device do?
           Arithmetic (ex: addition).
Addition: Mapping a pair of numbers to another
number.

Algorithmic
  What is the input, output, and method of transformation?

Input: arabic numerals (0,1,2,3,4…)
Output: arabic numerals (0,1,2,3,4…)
Method of transformation: rules of addition

Implementational
  How can the representation and algorithm be realized physically?

A series of electrical and mechanical components inside the cash
register.

The three levels

Marr (1982)

“Although algorithms and mechanisms are empirically more
accessible, it is the top level, the level of computational theory,
which is critically important from an information-processing
point of view.  The reason for this is that the nature of the
computations that underlie perception depends more upon the
computational problems that have to be solved than upon the
particular hardware in which their solutions are implemented.
To phrase the matter another way, an algorithm is likely to be
understood more readily by understanding the nature of the
problem being solved than by examining the mechanism (and
the hardware) in which it is embodied.”

Mapping the Framework:
Algorithmic Theory of Language Learning

Goal: Understanding the “how” of language learning

First, we need a computational-level description of the learning problem.

Computational Problem: Divide sounds into contrastive categories
(Speech perception, phoneme identification)
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Mapping the Framework:
Algorithmic Theory of Language Learning

Goal: Understanding the “how” of language learning

First, we need a computational-level description of the learning problem.

Computational Problem: Divide spoken speech into words
(Word segmentation)

hu@wz´f®e@jd´vD´bI@gbQ@dw´@lf

who‘s  afraid   of  the  big   bad   wolf
hu@wz   ´f®e@jd  ´v  D´  bI@g   bQ@d  w´@lf



Mapping the Framework:
Algorithmic Theory of Language Learning

Goal: Understanding the “how” of language learning

First, we need a computational-level description of the learning problem.

Computational Problem: Identify word classes that behave similarly
(Grammatical categorization)

“This is a DAX.”

DAX = noun

Mapping the Framework:
Algorithmic Theory of Language Learning

Goal: Understanding the “how” of language learning

First, we need a computational-level description of the learning problem.

Computational Problem: Identify the concept a word is associated with
(Word-meaning mapping)

“I love my daxes.”

Dax = that specific toy, teddy bear, stuffed animal, toy, object, …? 

Mapping the Framework:
Algorithmic Theory of Language Learning

Goal: Understanding the “how” of language learning

First, we need a computational-level description of the learning problem.

Computational Problem: Identify the rules of word order for sentences.
(Syntax: grammatical rules of the language)

Subject   Verb   Object

Subject   Verb   Object

Subject   Verb   tSubject    Object  tVerb

English
GermanKannada

Subject    tObject  Verb  Object

Jareth   juggles   crystals

Mapping the Framework:
Algorithmic Theory of Language Learning

Goal: Understanding the “how” of language learning

Second, we need to be able to identify the algorithmic-level description:

  Input =  sounds, syllables, words, phrases, …
  Output = sound categories, words, grammatical categories, sentences, …
  Method = statistical learning, algebraic learning, prior knowledge about how

human languages work, …



Framework for language learning
(algorithmic-level)

 What are the hypotheses available (for generating the output from the input)?
Ex: general word order patterns

Input: words (adjective and noun)
Output: ordered pair

Adjective before noun (ex: English)
red apple

Noun before adjective (ex: Spanish)
manzana roja
apple       red

Framework for language learning
(algorithmic-level)

 What are the hypotheses available (for generating the output from the input)?
Ex: general word order patterns

What data are available, and should the learner use all of them?
    Ex: exceptions to general word order patterns

Ignore special use of adjective before noun in Spanish
Special use: If the adjective is naturally associated with the noun:
la blanca nieve 
the white snow 

Why not usual order? Snow is naturally white.

Framework for language learning
(algorithmic-level)

 What are the hypotheses available (for generating the output from the input)?
Ex: general word order patterns

What data are available, and should the learner use all of them?
    Ex: exceptions to general word order patterns

How will the learner update beliefs in the competing hypotheses?
  Ex: shifting belief in what the regular word order of adjectives and
nouns should be

This usually will involve some kind of probabilistic updating function.

Experimental Methods:
What, When, and Where



Another useful indirect measurement

Head Turn Preference Procedure

Infant sits on caretaker’s lap.  The
wall in front of the infant has a
green light mounted in the center
of it. The walls on the sides of the
infant have red lights mounted in
the center of them, and there are
speakers hidden behind the red
lights.

Sounds are played from the two
speakers mounted at eye-level
to the left and right of the infant.
The sounds start when the infant
looks towards the blinking side
light, and end when the infant
looks away for more than two
seconds.

Head Turn Preference Procedure

Another useful indirect measurement

Thus, the infant essentially
controls how long he or she hears
the sounds. Differential
preference for one type of sound
over the other is used as
evidence that infants can detect a
difference between the types of
sounds.

Head Turn Preference Procedure

Another useful indirect measurement

For procedures that involve measuring where children
prefer to look (such as head turn preference), sometimes
children seem to have a “familiarity preference” where
they prefer to look at something similar to what they
habituated to.  Other times, children seem to have a
“novelty” preference where they prefer to look at
something different to what they habituated to.

Kidd, Piantadosi, & Aslin (2010) provide some evidence
that this may have to do with the informational content of
the test stimulus.  There may be a “Goldilocks” effect
where children prefer to look at stimuli that are neither to
boring nor too surprising, but are instead “just right” for
learning, given the child’s current knowledge state.

Note on infant attention:

Familiarity vs. Novelty Effects



Computational Methods:
How

Computational Methods

Why use computational modeling?
“Given a model of some aspect of language acquisition, implementing it as a
computational system and evaluating it on naturally occurring corpora has a
number of compelling advantages. First of all by implementing the system,
we can be sure that the algorithm is fully specified, and the acquisition
model does not resort to hand-waving at crucial points. Secondly, by
evaluating it on real linguistic data, we can see whether naturally occurring
distributions of examples in corpora provide sufficient information to support
the studied claims across a divergent range of acquisition theories. Thirdly,
study of the system can identify the mechanisms that cause changes in the
algorithm’s hypotheses during the course of acquisition. Finally, the
computational resources required of the model can be concretely assessed
and (not so concretely) compared against the resources that might be
available to a human language learner.” - Clark & Sakas 2011

Computational Methods

Control over the entire learning mechanism:
- what hypotheses the (digital) child considers

    - what data the child learns from
- how the child updates beliefs in different hypotheses

Ground with empirical data available
- want to make this as realistic as possible (ex: use actual data
distributions, cognitively plausible update procedures)
- a good source of empirical data: CHILDES database

http://childes.psy.cmu.edu/

Download annotated transcripts from the
database.

Download the program to search
these transcripts, and its manual.



Back to modeling

Gauges of modeling success & contributions to science

Formal sufficiency: does the model learn what it’s supposed to
learn when it’s supposed to learn it from the data it’s supposed
to learn it from?

Developmental compatibility: Does it learn in a psychologically
plausible way?  Is this something children could feasibly do?

Explanatory power: what’s the crucial part of the model that
makes it work? How does this impact the larger language
acquisition story?

Sample learning models

Phoneme acquisition (Vallabha et al . 2007, Feldman, Griffiths, &
Morgan 2009, Dillon et al. 2011 Ms., Feldman et al. 2011): learning
contrastive sounds from acoustic data

Word segmentation (Swingley 2005, Gambell & Yang 2006, Goldwater
et al. 2009, Johnson & Goldwater 2009, Blanchard et al. 2010, Jones
et al. 2010, Pearl et al. 2011): learning to identify words in fluent
speech from streams of syllables

Categorization (Mintz 2003, Wang & Mintz 2008, Chemla et al. 2009,
Liebbrandt & Powers 2010): learning to identify what category a word
is (noun, verb) from segmented speech

Sample learning models

Morphology (Rumelhart & McClelland 1986, Yang 2002, Albright &
Hayes 2002, Yang 2005, Chan & Lignos 2011): learning to identify
word affixes from segmented speech

Learning the interpretation of referential elements (Regier & Gahl 2004,
Foraker et al. 2007, 2009, Pearl & Lidz 2009, Pearl & Mis 2011):
learning to identify syntactic category and semantic referent of one
from segmented speech and referents in the world

Syntactic acquisition (Yang 2004, Reali & Christiansen 2005, Kam et al.
2008, Pearl & Weinberg 2007, Perfors, Tenenbaum, & Regier 2011,
Pearl & Sprouse 2011): learning to identify correct word order (rules)
from speech segmented into words

Stress (Pearl 2008, Pearl 2011, Legate & Yang 2011 forthcoming):
learning to identify correct stress patterns (and rules behind them)
from words with stress contours

General Modeling Process

(1) Decide what kind of learner the model represents (ex: normally
developing 6-month-old child learning first language)

(2) Decide what data the child learns from (ex: Bernstein corpus from
CHILDES) and how the child processes that data (ex: data divided
into syllables)

(3) Decide what hypotheses the child has (ex: what the words are) and
what information is being tracked in the input (ex: transitional
probability between syllables)

(4) Decide how belief in different hypotheses is updated (ex: based on
transitional probability minima between syllables)



General Modeling Process

(5) Decide what the measure of success is
- precision and recall (ex: finding the right words in a word
segmentation task)

- matching an observed performance trajectory (ex: English past
tense acquisition often has a U-shaped curve)

- achieving a certain knowledge state by the end of the learning
period (ex: knowing there are 4 vowel categories at the end of a
phoneme identification task)

- making correct generalizations (ex: preferring a correctly formed
sentence over an incorrectly formed one)

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Statistical learning long considered part of acquisition
process (Chomsky 1955, Hayes & Clark 1970, Wolff 1977,
Pinker 1984, Goodsitt, Morgan, & Kuhl 1993, among
others), but traditionally viewed as playing secondary role
rather than primary one.

Why? Children were not believed to be capable of tracking
statistical information in language input to the extent that
they would need to for learning linguistic knowledge
(Chomsky 1981, Fodor 1983, Bickerton 1984, Gleitman
and Newport (1995), among others).

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Saffran, Aslin, & Newport (1996): groundbreaking study
showing experimental support for infant ability to track
statistical probability between syllables when trying to
segment words from fluent speech.  (See Romberg &
Saffran (2010) for a review of infant statistical learning
abilities.)

Saffran et al. proposed that some aspects of acquisition were
“best characterized as resulting from innately biased
statistical learning mechanisms rather than innate
knowledge”.

Denison et al. (2011): evidence for probabilistic reasoning
abilities in 6-month-olds

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Question 1: What kinds of statistical patterns are human
language learners sensitive to?

Thiessen & Saffran (2003): 7-month-olds prefer syllable transitional
probability cues over language-specific stress cues when
segmenting words, while 9-month-olds show the reverse
preference.

Graf Estes, Evans, Alibali, & Saffran (2007): word-like units that are
segmented using transitional probability are viewed by 17-
month-olds as better candidates for labels of objects.

Thompson & Newport (2007): adults can use transitional probability
between grammatical categories to identify word sequences that
are in the same phrase, a precursor to more complex syntactic
knowledge.



Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Question 1: What kinds of statistical patterns are human
language learners sensitive to?

Other statistics involving relationships of adjacent units: backward
transitional probability (Perruchet & Desaulty 2008, Pelucchi,
Hay, & Saffran 2009b) and mutual information (Swingley 2005).

Non-adjacent dependencies:
Newport & Aslin (2004):  non-adjacent statistical dependencies

between consonants and between vowels, but not between
entire syllables

Mintz (2002, 2003, 2006): frequent frames used to categorize
words. (ex: the___one is a frame that could occur with big,
other, pretty, etc.).

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Question 1: What kinds of statistical patterns are human
language learners sensitive to?

More sophisticated statistics/inferences:
Yu & Smith (2007) and Smith & Yu (2008): Both adults and 12- to

14-month-old infants can track probabilities of word-meaning
associations across multiple trials where any specific word
within a given trial was ambiguous as to its meaning.

Xu & Tenenbaum (2007):  investigated how humans learn the
appropriate set of referents for basic (cat), subordinate (tabby),
and superordinate (animal) words. Both adults and children
between the ages of 3 and 5 are capable of integrating the
likelihood of an event occurring into their internal models of
word-meaning mapping in a way easily predicted by standard
Bayesian inference techniques.

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Question 2: To what extent are these statistical learning
abilities specific to the domain of language, or even to
humans?

Not specific to language:
Saffran et al. (1999):  both infants and adults can segment non-

linguistic auditory sequences (musical tones) based on the
same kind of transitional probability cues that were used in the
original syllable-based studies. Similar results have been
obtained in the visual domain using both temporally ordered
sequences of stimuli (Kirkham et al., 2002) and spatially
organized visual “scenes” (Fiser and Aslin, 2002).

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Question 2: To what extent are these statistical learning
abilities specific to the domain of language, or even to
humans?

Not specific to humans:
Hauser et al. (2001): cotton-top tamarins can segment the same

kind of artificial speech stimuli used in the original Saffran et al.
(1996) segmentation experiments as well as human infants.

 Saffran et al. (2008):  tamarins could also learn some simple
grammatical structures based on statistical information, but were
unable to learn patterns as complex as those learned by infants.



Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

Question 3: What kinds of knowledge can be learned from
the statistical information available?

Something more easily investigated through computational
modeling studies rather than traditional experimental
techniques.

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
- offers a concrete way to examine what knowledge is required for

acquisition, and whether that required knowledge is domain-
specific or domain-general, without committing to either view a
priori .

- has led to the investigation of a new set of questions that
previous approaches have not considered: whether human
language learners can be viewed as being optimal statistical
learners (i.e., making optimal use of the statistical information in
the data), and in what situations.

- can potentially address the question of why they make the
generalizations they do, i.e., because these generalizations are
statistically optimal given the available data and any learning
biases, innate or otherwise.

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach

- Also, may be different ways to approximate Bayesian inference
that are not so resource-intensive.  Bonawitz, Denison, Chen,
Gopnik, & Griffiths (2011) discuss a simple sequential algorithm
called Win-Stay, Lose-Shift that matches human behavior
consistent with Bayesian inference.

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
- Makes the space of hypotheses considered by the language

learner explicit (doesn’t matter whether they are based on
domain-specific or domain-general cognitive constraints)

- Encodes the learner's biases by assigning an explicit probability
distribution over these hypotheses.

- Can operate over the kinds of highly structured representations
that many linguists believe are correct (e.g., Regier & Gahl
2004, Foraker et al. 2009, Pearl & Lidz 2009, Pearl & Mis 2011,
Perfors et al. 2011).



Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach

P(hypothesis | data) = P(data | hypothesis) * P(hypothesis)
P(data)posterior likelihood of hypothesis 

likelihood of observed data prior belief in hypothesis

likelihood of data period, no matter what hypothesis

“The product of priors and likelihoods often has an intuitive interpretation in
terms of balancing between a general sense of plausibility based on
background knowledge and the data-driven sense of a “suspicious
coincidence.” In other words, it captures the tradeoff between the complexity
of an explanation and how well it fits the observed data.” – Perfors et al.
2011, Bayesian tutorial

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
Generative framework: observed data are assumed to be
generated by some underlying process or mechanism explaining
why the data occurs in the patterns it does.
Ex: words in a language may be generated by a grammar

Bayesian learner evaluates different hypotheses about the
underlying nature of the generative process, and makes predictions
based on the most likely ones.

Probabilistic model =  a specification of the generative processes at
work, identifying the steps (and associated probabilities) involved in
generating data.

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach

From Perfors et al. 2011, Bayesian Tutorial

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
Usual three steps of a Bayesian model:

1) Define hypothesis space – which hypotheses are under
consideration?

2) Define prior distribution over hypotheses – which are more/less
likely?

3) Define likelihood update – how does data affect learner’s belief?



Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
Hypothesis space can contain multiple levels of representation –

shows power of bootstrapping (using preliminary or uncertain
information in one part of the grammar to help constrain learning
in another part of the grammar, and vice versa)

Goldwater et al. (2006, 2009): two levels of representation -- words and
phonemes -- though only one of these (words) is unobserved in the
input and must be learned.

Johnson (2008): learning both syllable structure and words from
unsegmented phonemic input improved word segmentation in a
Bayesian model similar to that of Goldwater et al.

Feldman et al. (2009): simultaneously learning phonetic categories and the
lexical items containing those categories led to more successful
categorization than learning phonetic categories alone.

Yuan et al. (2011): simultaneously learning individual word meaning and
more abstract features involved in word meaning

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
A note on hierarchical Bayesian models: Allow generalizations at

multiple levels. (Dewar & Xu (2010): 9-month-olds can do this.)

From Kemp, Perfors, & Tenenbaum (2007)

Learner uses
observable data to learn
about properties of bags
in general (ex: uniform
vs. mixed distribution),
not just properties of
individual bags.

Analogy:
bags = language
properties

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
Note: intended to provide a declarative description of what is being

learned, not necessarily how the learning is implemented.

Instead: only assume that the human mind implements some type of
algorithm (perhaps a very heuristic one) that is able to approximately
identify the posterior distribution over hypotheses.

Some studies looking at how Bayesian inference might be implemented:
- Pearl, Goldwater, and Steyvers (2010, 2011): implementing Bayesian
inference in constrained learners with limitations on memory and
processing
- Shi, Griffiths, Feldman, & Sanborn (2010): exemplar models may
provide a possible mechanism for implementing Bayesian inference,
and have identifiable neural correlates.

Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach
A main contribution: provide a way to formally evaluate claims about

children’s hypothesis space.
- Can indicate if certain constraints or restrictions are required in order to

learn some aspect of linguistic knowledge (e.g., Regier & Gahl 2004,
Perfors, Tenenbaum, & Regier 2011, Foraker et al. 2009, Pearl & Lidz
2009, Pearl & Mis 2011, Perfors et al. 2011).

- If a Bayesian learner looking for the optimal hypothesis given the data
cannot converge on the correct hypothesis, this suggests that the
current conception of the hypothesis space cannot be correct.
Required knowledge may take the form of an additional constraint on
the hypothesis space that gives preference to certain hypotheses over
others, or eliminates some hypotheses entirely.



Statistical Learning, Inductive Bias, & Bayesian Inference
in Language Acquisition Research

The Bayesian approach in many different linguistic domains
- Phonetics & perceptual learning: Feldman, Griffiths, & Morgan 2009, Feldman

et al. 2011, Dillon et al. 2011

- Word segmentation: Goldwater, Griffiths, & Johnson 2009, Johnson &
Goldwater 2009, Pearl, Goldwater, & Steyvers 2010, 2011

- Word-meaning mapping: Xu & Tenenbaum 2007, Frank, Goodman, &
Tenenbaum 2009

- Syntax-semantics mapping: Regier & Gahl 2004, Pearl & Lidz 2009, Foraker,
Regier, Khetarpal, Perfors, & Tenenbaum 2009, Pearl & Lidz 2011

- Syntactic structure: Perfors, Tenenbaum, Gibson, & Regier 2010, Perfors,
Tenenbaum, & Regier 2011

Extra slides

Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS)

Infants are awake and in a quietly alert state.  They are placed in a
comfortable reclined chair and offered a sterilized pacifier that is connected
to a pressure transducer and a computer via a piece of rubber tubing.
Once the infant has begun sucking, the computer measures the infant’s
average sucking amplitude (strength of the sucks).

Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS)

A sound is presented to the infant every time a strong or “high amplitude”
suck occurs.  Infants quickly learn that their sucking controls the sounds,
and they will suck more strongly and more often to hear sounds they like
the most.  The sucking rate can also be measured to see if an infant
notices when new sounds are played.



Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS) Control
(baseline)

Test
Condition 2

Test
Condition 1

Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS) Control
(baseline)

Test
Condition 2

Test
Condition 1

Difference
when
compared to
baseline

Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS) Control
(baseline)

Test
Condition 2

Test
Condition 1

No
difference

Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS)
Infants have sophisticated
discrimination abilities, but they don’t
abstract sounds into categories the
way that adults do.

Adult perception“dQ” “tQ”

phonemic category phonemic category



Experimental Methods

How do we tell what infants know, or use, or are sensitive to?How do we tell what infants know, or use, or are sensitive to?

Researchers use indirect measurement techniques.

High Amplitude Sucking (HAS)
Infants have sophisticated
discrimination abilities, but they don’t
abstract sounds into categories the
way that adults do.

Infant perception

“dQ 1” “dQ 2” “tQ 1”
“tQ 2”

Eyetracking: measures fixations on target picture
“Where’s the baby?”

“Where’s the baby?”
Eyetracking: measures fixations on target picture

“Where’s the vaby?

“Where’s the baby?

ERPs: Event-related brain potentials, gauged via electrode caps.
The location of ERPs associated with different mental activities
is taken as a clue to the area of the brain responsible for those
activities.

Good: non-invasive, relatively
undemanding on the subject,
provide precise timing on brain
events

Bad: poor information on exact location
of ERP since just monitoring the
scalp

Looking at children’s brains



Brain-imaging techniques: gauge what part of the brain is active
as subjects perform certain tasks

PET scans: Positron emission topography scans
- subjects inhale low-level radioactive gas or injected with
glucose tagged with radioactive substance

    - experimenters can see which parts of the brain are using
more glucose (requiring the most energy)

fMRI scans: functional magnetic resonance imaging
    - subjects have to be very still inside MRI machine, which is

expensive to operate
    - experimenters can see which parts of the brain are getting

more blood flow or consuming more oxygen

Looking at children’s brains

Brain-imaging techniques: gauge what part of the brain is active
as subjects perform certain tasks

MEG: Magnetoencephalography
    - subjects have to be very still
    - experimenters can see which parts of the brain are active

Looking at children’s brains

Brain-imaging techniques: gauge what part of the brain is active
as subjects perform certain tasks

Optical Topography: Near-infrared spectroscopy (NIRS)
- transmission of light through the tissues of the brain is

affected by hemoglobin concentration changes, which can
be detected

Looking at children’s brains


