Psych 215L:
 Language Acquisition

Lecture 3

Speech Perception

Sounds of Language (Speech Perception)

Learner's job: Identify phonemes (contrastive big vs. pig sounds that signal a change in meaning)

Phonemes are language-specific - r / l is a phonemic contrast in English but not in Japanese

Kids of the world require knowledge of phonemes before they can figure out what different words are - and when different meanings are signaled by different words

About Speech Perception

Important: Not all languages use the same contrastive sounds.
Languages draw from a common set of sounds (which can be represented by the International Phonetic Alphabet (IPA)), but only use a subset of that common set.

Child's task: Figure out what sounds their native language uses contrastively.
meaningful sounds in the language: "contrastive sounds" or phonemic contrasts

Speech Perception: Computational Problem

Real world data are actually much harder than this... (from Swingley 2009)

Categorical Perception

Categorical perception occurs when a range of stimuli that differ continuously are perceived as belonging to only a few categories with no degrees of difference within a given category.

Actual stimuli

Acoustic-Level Information

Includes: timing and frequency Tones: frequency (close-up)

Acoustic-Level Information
Language sounds
Vowels combine acoustic energy at a number of different frequencies

Different vowels ([a] "ah", [i] "ee", [u] "oo" etc.) contain acoustic energy at
different frequencies
Listeners must perform a frequency analysis of vowels in order to identify them (Fourier Analysis)

Discrimination Task ＂Are these two sounds the same or different？＂

D 20 ms 估 淂 40 ms T

T 40ms 的荗 60 ms T
Across－Category Discrimination is Easy
Within－Category Discrimination is Hard

	Cross－language Differences					
		A		䀠		
		R		L		
陦	明	昨	4	朗	楽	樶
R						L

Cross－Language Differences	
Identification task： English speakers can discriminate r and l ，and seem to show a similar pattern of categorical perception to what we saw for dvs．t	

Cross－Language Differences

Discrimination task：
English speakers have higher performance at the r / l category boundary， where one sound is perceived as r and one sound is perceived as 1 ．
Japanese speakers generally perform poorly（at chance），no matter what sounds are compared because r and 1 are not contrastive for them．

Miyawaki et al． 1975

Cross－Language Differences

Hindi	埤
dental［d］	明
（tip of tongut tounhes back of teeth）	明
	4，
retroflex［D］	樶
（tongue curred so tip is behind alveolar ridge）	做
（longue curred so ip is beemind aveolar rige）	
English［d］is usually somewhere	明

Infant Speech Perception

How do we tell what infants know，or use，or are sensitive to？
Researchers use indirect measurement techniques．
Some information from the High Amplitude Sucking（HAS）paradigm （Eimas et al．1971）

Infants have sophisticated discrimination abilities，but they don＇t abstract sounds into categories the way that adults do．

昨
作 脸
作

Infant Speech Perception

How do we tell what infants know，or use，or are sensitive to？
Researchers use indirect measurement techniques．
Some information from the High Amplitude Sucking（HAS）paradigm （Eimas et al．1971）

Infants have sophisticated discrimination abilities，but they don＇t abstract sounds into categories the way that adults do．

Infant perception

＂dæ 1＂＂dæ 2＂＂tæ 1＂

Speech Perception of Non-Native Sounds Comparing perceptual ability
Werker et al. 1981: English-learning 6-8 month olds compared against English \& Hindi adults on English \& Hindi contrasts

Werker (1995): Speech Perception

But when after 6-8 months is the ability to lost? Werker \& Tees (1984)
Key into "critical period" hypothesis for language (Lenneberg 1967) - when language can be learned natively
"To test for this critial period, children of 12 and 8 years were tested, with the expectation that the 8-year-olds but not the 12 -year-olds would be able to discriminate nonnative contrasts. English-speaking children of both ages, however, performed like English-speaking adults...study was extended to 4year old children, who actually performed most year old children, who actually performed most
poorly of all on nonnative contrasts...findings poorly of all on nonnative contrasts....findings
revealed that experience must begin to influence revealed that experience must begin to influence
speech perception long before 4 , certainly well
speech perception long before 4, certainly well
before the critical period suggested by Lenneberg."

Speech Perception of Non-Native Sounds

But when after 6-8 months is the ability to lost? Werker \& Tees (1984)

Salish \& Hindi contrasts

Change happens somewhere around 8-10 months,
depending on the sound
contrast.
See Yoshida et al. (2010) for
See Yoshida et al. (2010) for evidence that infants have some malleability still at 10 months, but it's much le
than at 6 or 8 months.

Discovering contrastive sounds: What's the point of it again?

The idea is that once children discover the meaningful sounds in their language, they can begin to figure out what the words are.

Ex: An English child will know that "cat" and "caat" are the same word (and should have the same meaning).

As adults, we can look at a language and figure out what the contrastive sounds are by looking at what changes a word's meaning. But children can't do this - they figure out the contrastive sounds before they figure out words and word meanings.

More about contrastive sounds

There are a number of acoustically salient features for sounds. All it takes for sounds to be contrastive is for them to have "opposite" values for one feature.

Example:

English sounds " k " and " g " differ only with respect to voicing. They are pretty much identical on all other features. Many contrastive sounds in English use the voicing feature as the relevant feature of contrast ($\mathrm{p} / \mathrm{b}, \mathrm{t} / \mathrm{d}, \mathrm{s} / \mathrm{z}$, etc.). However, there are other features that are used as well (air flow, manner of articulation, etc.).

Task for the child: Figure out which features are used contrastively by the language. Contrastive sounds for the language will usually vary with respect to one of those features.

Experimental Study:

Dietrich, Swingley \& Werker (2007)
Testing children's perception of contrastive sounds

Dutch and English contrastive features differ.
In English, the length of the vowel is not contrastive
"cat" = "caat"

In Dutch, the length of the vowel is contrastive
"cat" \neq "caat"
(Japanese also uses this feature)

Does the data distribution show this?
Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch vowel length used
Frequency
of sound in input

contrastively; vowels tend to be	Dutch
either very short or very long	English

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."
Frequency
of sound in

input | English vowel length not used |
| :--- |
| contrastively; vowels tend to be less |
| short and less long (comparatively) |

Does the data distribution show this?

Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch = bimodal distribution?
English = unimodal distribution?
Frequency of sound in input

Maye, Werker, \& Gerken (2002)

- Familiarized 6 to 8 -month-old infants to one of two sets - Bimodal Set: Sounds on the ends near [da] and [ta]. - Unimodal Set: Sounds in the middle.
- Test preference for:
- 363 6... (Alternating) vs. 333 3... (Non-alternating) stimuli

Back to Dietrich, Swingley, \& Werker (2007)
Dutch and English vowel sounds in the native language environment also seem to differ
"...studies suggest that differences between the long and short vowels of Dutch are larger than any analogous differences for English."

Dutch = bimodal distribution?

Maye, Werker, \& Gerken (2002)

Infants trained on the
Unimodal data did not
prefer/disprefer one over the
other. The did not seem to
learn any expectation.

	Alternating trials (s)		Non-Alternating trials (s)
6 months Unimodal	4.85 (0.47)	=	4.53 (0.51)
8 months Unimodal	4.98 (0.63)	$=$	5.20 (0.56)
6 months Bimodal	5.66 (0.44)	$<$	6.41 (0.32)
8 months Bimodal	5.45 (0.52)	$<$	6.15 (0.56)

Back to Dietrich, Swingley, \& Werker (2007)

Prediction if children are sensitive to this distribution

Dutch children interpret vowel duration as a meaningful contrast because the distribution is more bimodal

Implication: Change to vowel duration = new word

English children should not interpret vowel duration as a meaningful contrast because the distribution is more unimodal

Implication: Change to vowel duration = same word as before

Dietrich, Swingley, \& Werker (2007)
Tests with 18-month-old children who know some words (and so have figured out the meaningful sounds in their language)
"Switch" Procedure: measures looking time ..this is a tam...look at the tam

Habituation

Test
Same:
Switch: look at the taam!

Dietrich, Swingley, \& Werker (2007)
Experiment 1: Testing English and Dutch kids on Dutch vowel durations
Frequency of
sound in input

Dutch kids $5.04 \mathrm{sec} \quad 9.23 \mathrm{sec}$
difference

English kids
6.66 sec
7.15 sec
no difference Same Switch:

Test
s.

Dietrich, Swingley, \& Werker (2007)
Experiment 3: Testing English and Dutch kids on vowel quality contrast (a/e)

sound in input

(This is a control condition to make sure English kids can do the task when the sound is contrastive for them)
Switch:
Test
look at the taam!
look at the tam!
会
Test
look at the tem!

What drives children to learn the distinction?
"One frequently raised hypothesis...is that it is driven by contrast in the vocabulary. Dutch children might learn that [a] and [a:] are different because the words [stat] ...and [sta:t]...mean different things....however, children that young do not seem to know many word pairs that could clearly indicate a distinction between [a] and [a:],"

Dietrich, Swingley, \& Werker (2007)
Implications of experiments 1, 2, and 3: Dutch children recognize vowel duration as contrastive for their language while English children do not. This can only be due to the data encountered by each set of children in their language.

> Dutch children have a category boundary approximately here.
> English children do not.

Frequency
of sound in input

Dietrich, Swingley, \& Werker (2007)
"The other current hypothesis is that children begin to induce phonological categories "bottom-up", based on their discovery of clusters of speech sounds in phonetic space...undoubtedly implicated in infants' early phonetic category learning, which begins before infants know enough words for vocabulary-based hypotheses to be feasible..."

