
Psych 215L:
Language Acquisition

Lecture 5
Word Segmentation

Computational Problem

Divide spoken speech into words

húwzəfréjdəvðəbɪ ́gbQ ́dwəĺf

Computational Problem

Divide spoken speech into words

who‘s  afraid   of     the  big   bad   wolf
húwz   əfréjd  əv   ðə  bɪ ́g   bQ́d  wə́lf

húwzəfréjdəvðəbɪ ́gbQ ́dwəĺf

Word Segmentation

“One task faced by all language learners is the
segmentation of fluent speech into words.  This
process is particularly difficult because word
boundaries in fluent speech are marked inconsistently
by discrete acoustic events such as pauses…it is not
clear what information is used by infants to discover
word boundaries…there is no invariant cue to word
boundaries present in all languages.”

- Saffran, Aslin, & Newport (1996)



Statistical Information Available

Maybe infants are sensitive to the statistical patterns
contained in sequences of sounds.

“Over a corpus of speech there are measurable statistical
regularities that distinguish recurring sound sequences that
comprise words from the more accidental sound sequences
that occur across word boundaries.” - Saffran, Aslin, &
Newport (1996)

to the castle beyond the goblin city

Statistical Information Available

Maybe infants are sensitive to the statistical patterns
contained in sequences of sounds.

“Over a corpus of speech there are measurable statistical
regularities that distinguish recurring sound sequences that
comprise words from the more accidental sound sequences
that occur across word boundaries.” - Saffran, Aslin, &
Newport (1996)

Statistical regularity: ca + stle is a common sound sequence

to the castle beyond the goblin city

Statistical Information Available

Maybe infants are sensitive to the statistical patterns
contained in sequences of sounds.

“Over a corpus of speech there are measurable statistical
regularities that distinguish recurring sound sequences that
comprise words from the more accidental sound sequences
that occur across word boundaries.” - Saffran, Aslin, &
Newport (1996)

No regularity: stle + be is an accidental sound sequence

word boundary

to the castle beyond the goblin city

Transitional Probability

“Within a language, the transitional probability from one
sound to the next will generally be highest when the two
sounds follow one another in a word, whereas transitional
probabilities spanning a word boundary will be relatively low.”
- Saffran, Aslin, & Newport (1996)

Transitional Probability = Conditional Probability

TrProb(AB)  = Prob( B | A)

Transitional probability of sequence AB is the conditional
probability of B, given that A has been encountered.

TrProb(“gob” ”lin”) = Prob(“lin” | “gob”)

Read as “the probability of ‘lin’, given that 
‘gob’ has just been encountered”



Transitional Probability

“Within a language, the transitional probability from one
sound to the next will generally be highest when the two
sounds follow one another in a word, whereas transitional
probabilities spanning a word boundary will be relatively low.”
- Saffran, Aslin, & Newport (1996)

Transitional Probability = Conditional Probability

TrProb(“gob” ”lin”) = Prob(“lin” | “gob”)

Example of how to calculate TrProb:
gob…

…ble, …bler, …bledygook, …let, …lin, …stopper
  (6 options for what could follow “gob”)

TrProb(“gob” “lin”) = Prob(“lin” | “gob”) = 1/6

Idea: Prob(“stle” | ”ca”) = high

Transitional Probability

“Within a language, the transitional probability from one
sound to the next will generally be highest when the two
sounds follow one another in a word, whereas transitional
probabilities spanning a word boundary will be relatively low.”
- Saffran, Aslin, & Newport (1996)

Why? “ca” is often followed by “stle”

to the castle beyond the goblin city

Idea: Prob(“be” | ”stle”) = lower

Transitional Probability

“Within a language, the transitional probability from one
sound to the next will generally be highest when the two
sounds follow one another in a word, whereas transitional
probabilities spanning a word boundary will be relatively low.”
- Saffran, Aslin, & Newport (1996)

word boundary

Why? “stle” is not usually followed by “be”

to the castle beyond the goblin city

Prob(“yond” | ”be”) = higher

Transitional Probability

“Within a language, the transitional probability from one
sound to the next will generally be highest when the two
sounds follow one another in a word, whereas transitional
probabilities spanning a word boundary will be relatively low.”
- Saffran, Aslin, & Newport (1996)

to the castle beyond the goblin city

Why? “be” is often followed by “yond”, among other options



Prob(“be” | “stle”) < Prob(“stle” | “ca”)
Prob(“be” | “stle”) < Prob(“yond” | “be”)

Transitional Probability

“Within a language, the transitional probability from one
sound to the next will generally be highest when the two
sounds follow one another in a word, whereas transitional
probabilities spanning a word boundary will be relatively low.”
- Saffran, Aslin, & Newport (1996)

TrProb learner posits word boundary here,
at the minimum of the transitional probabilities

Important: doesn’t matter what the probability actually is, so long as
it’s a minimum when compared to the probabilities surrounding it

to the castle beyond the goblin city

Transitional Probability Example

un der stand my po

0.9 0.5 0.1 0.3

0.5 < 0.1 0.1 < 0.3

0.1 = Transitional probability minimum,
compared with surrounding transitional
probabilities (0.5, 0.3)

Word boundary is here

si tion

0.5 0.9

Saffran, Aslin, & Newport (1996)

Experimental evidence suggests that 8-month-old infants can
track statistical information such as the transitional probability
between syllables.  This can help them solve the task of word
segmentation.

Evidence comes from testing children in an artificial language
paradigm, with very short exposure time (2 minutes).

Computational Modeling Data
(Digital Children)



How good is transitional probability on real data?

Realistic data + Psychologically plausible learning algorithm
Realistic data is important to use since the experimental study of Saffran,
Aslin, & Newport (1996) used artificial language data (though see Gómez &
Gerken (2000) for the value of artificial language studies and Finn & Hudson
Kam (2008) and Onnis et al. (2005) for other issues with them)); Johnson &
Tyler (2010) show that transitional probability tracking abilities can be
disrupted by having words of varying lengths - even in an artificial language.

A psychologically plausible learning algorithm is important since we want to
make sure whatever strategy the model uses is something a child could use,
too.  (Transitional probability would probably work, since Saffran, Aslin, &
Newport (1996) showed that infants can track this kind of information in the
artificial language.)

Gambell & Yang (2006): Computational model goal

Survey of Infant Strategies

Possible strategy: learn from isolated words
Data: 9% of mother-to-child speech is isolated words

Problem: How does a child recognize that a word is isolated?

length won’t work: “I-see” vs. “spaghetti”

Possible strategy: statistical properties like transitional probability
between syllables

word boundaries postulated at local minima

pre  tty  ba  by p(tty-->ba) < p(pre-->tty), p(ba-->by)

Question: How well does this fare on real data sets (not artificial stimuli)?

Survey of Infant Strategies

Possible strategy: Metrical segmentation strategy
Children treat stressed syllable as beginning of word

- 90% of English content words are stress-initial

Problem: Stress systems differ from language to language

- the child would need to know that words are stress initial

…but to do that, the child needs words first

(though see Swingley (2005) for how a child sensitive to mutual information
could extract syllable sequences that give clues to the overall stress system of
a language before knowing too many words)

Survey of Infant Strategies

Possible strategy: phonotactic constraints (sequences of consonant
clusters that go together, e.g. str vs. *stl in English); language-specific

- Infants seem to know these by 9 months

- posit boundary at improper sequence break: stl --> st l (first light)

Problem: May just be syllable boundary (restless)

(However, see Blanchard et al. (2010) for using these kind of phonotactic
constraints successfully to accomplish word segmentation on realistic child-
directed speech data)



Survey of Infant Strategies

Possible strategy: Memory
Use previous stored words (sound forms, not meanings) to recognize new
words

- if child knows new, then can recognize one in thatsanewone

Problem: Needs to know words before can use this

Gambell & Yang say: “It seems…only language-independent strategies can
set word segmentation in motion before the establishment and application of
language-specific strategies” – though see Blanchard et al. (2010) for a
model that learns language-dependent phonotactic knowledge at the same
time word segmentation is occurring.

How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

ðəbɪ ́gbQ ́dwə @lf

ðə  bɪ ́g  bQ́d  wə @lf

the  big   bad    wolf

How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

the  big   bad    wolf

Recall calculation:
Should have identified 4 words: the, big, bad, wolf
Identified 4 real words: the, big, bad, wolf

   Recall Score: 4/4 = 1.0

ðəbɪ ́gbQ ́dwə @lf

ðə  bɪ ́g  bQ́d  wə @lf

How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

the  big   bad    wolf

Precision calculation:
Identified 4 words: the, big, bad, wolf
Identified 4 real words: the, big, bad, wolf

   Precision Score: 4/4 = 1.0

ðəbɪ ́gbQ ́dwə @lf

ðə  bɪ ́g  bQ́d  wə @lf



How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

ðəbɪ ́gbQ ́dwə @lf

ðəbɪ ́g  bQ́d  wə @lf

thebig   bad    wolf
Error

How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

Recall calculation:
Should have identified 4 words: the, big, bad, wolf
Identified 2 real words: big, bad

   Recall Score: 2/4 = 0.5

ðəbɪ ́gbQ ́dwə @lf

ðəbɪ ́g  bQ́d  wə @lf

thebig   bad    wolf
Error

How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

Precision calculation:
Identified 3 words: thebig, bad, wolf
Identified 2 real words: big, bad

   Precision Score: 2/3 = 0.666…

ðəbɪ ́gbQ ́dwə @lf

ðəbɪ ́g  bQ́d  wə @lf

thebig   bad    wolf
Error

How do we measure
word segmentation performance?

Note: Recall and precision can be calculated over word tokens (as
done here), but also over word boundaries and lexicon items.

Word boundaries:
# identified correctly = 2
# identified = 2
# should have identified = 3

Boundary precision = 2/2 = 1.00
Boundary recall = 2/3 = 0.666

Note: Boundary precision > boundary recall
= indication of undersegmentation

ðəbQ@dbQ ́dwə @lf

ðəbQ@d bQ ́d  wə @lf

thebad   bad    wolf



How do we measure
word segmentation performance?

Note: Recall and precision can be calculated over word tokens (as
done here), but also over word boundaries and lexicon items.

Lexicon items:
# identified correctly = 2 (bad, wolf)
# identified = 3 (thebad, bad, wolf)
# should have identified = 3 (the, bad, wolf)

Lexicon item precision = 2/3 = 0.666
Lexicon item recall = 2/3 = 0.666

ðəbQ@dbQ ́dwə @lf

ðəbQ@d bQ ́d  wə @lf

thebad   bad    wolf

How do we measure
word segmentation performance?

Perfect word segmentation:
    identify all the words in the speech stream (recall)
    only identify syllable groups that are actually words (precision)

Want good scores on both of these measures
(F-score is harmonic mean)

Computational Model Goal

- real data

- psychologically plausible learning algorithm

A related point for computational vs. algorithmic-level models: it’s good
if the information is in the data (which is the way optimal or ideal
learner models operate), but we also need to know how children could
use those data.

On Psychological Plausibility

“On the one hand, previous computational models often over-estimate
the computational capacity of human learners.  For example, the
algorithm in Brent & Cartwright (1996) produces a succession of
lexicons, each of which is associated with an evaluation metric that
is calculated over the entire learning corpus.  A general
optimization algorithm ensures that each iteration yields a better
lexicon…unlikely that algorithms of such complexity are something
a human learner is capable of using.” - Gambell & Yang (2006)

Goldwater, Griffiths, & Johnson (2009) and Johnson & Goldwater
(2009) explore an ideal Bayesian learner for word segmentation -
though the same issue of adapting the probabilistic learner to
human limitations arises.



On Psychological Plausibility

“On the other hand, previous computational models often under-
estimate the human learner’s knowledge of linguistic
representations.  Most of these models are ‘synthetic’….the raw
material for segmentation is a stream of segments…assumption
probably makes the child’s job unnecessarily hard in light of the
evidence that it is the syllable, rather than the segment, that makes
up the primary units of perception” - Gambell & Yang (2006)

Where does the realistic data come from?

CHILDES
Child Language Data Exchange System
http://childes.psy.cmu.edu/

Large collection of child-directed speech data transcribed
by researchers.  Used to see what children’s input is
actually like.

Where does the realistic data come from?

Gambell & Yang (2006)
Looked at Brown corpus files in CHILDES (226,178 words
made up of 263,660 syllables).

Converted the transcriptions to pronunciations using a
pronunciation dictionary called the CMU Pronouncing
Dictionary.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Where does the realistic data come from?

Converting transcriptions to pronunciations

Given “the big bad wolf”, the pronouncing dictionary
produces output like this (which maps to the phonemic
representation):

ðə           bɪ ́g          bQ ́d         wə @lf

DH AH0 .  B IH1 G .   B AE1 D .    W UH1 L F .



Segmenting Realistic Data

Gambell and Yang (2006) tried to see if a model learning
from transitional probabilities between syllables could
correctly segment words from realistic data.

ðə          bɪ ́g        bQ ́d         wə @lf

DH AH0 .  B IH1 G .   B AE1 D .    W UH1 L F .

Segmenting Realistic Data

Gambell and Yang (2006) tried to see if a model learning
from transitional probabilities between syllables could
correctly segment words from realistic data.

DH AH0 .  B IH1 G .   B AE1 D .    W UH1 L F .

the       big          bad           wolf

ðə          bɪ ́g        bQ ́d         wə @lf

Modeling Statistical Learning With TrProb

“The model consists of two stages: training and testing.  During the training
stage, the learner gathers transitional probabilities over adjacent syllables
in the learning data.  The testing stage does not start until the entire
learning data has been processed, and statistical learning is applied to the
same data used in the training stage.”

“There is a word boundary AB and CD if
TP(A --> B) > TP(B-->C) < TP(C --> D).
The conjectured word boundaries are then compared against the target
segmentation.”

Modeling Results for Transitional Probability

A learner relying only on transitional probability does not reliably
segment words such as those in child-directed English.

About 60% of the words posited by the transitional probability
learner are not actually words (41.6% precision) and almost 80%
of the actual words are not extracted (23.3% recall).

(Even assuming perfect syllabification of the speech and
neutralization of the effects of stress, and using the same data for
training and testing.)

Precision: 41.6%

Recall: 23.3%



Why such poor performance?

“We were surprised by the low level of performance. Upon close
examination of the learning data, however, it is not difficult to
understand the reason. A necessary condition … is that words
must consist of multiple syllables.  If the target sequence of
segmentation contains only monosyllabic words, it is clear that
[this kind of] statistical learning will fail. A sequence of
monosyllabic words requires a word boundary after each syllable;
a statistical learner, on the other hand, will only place a word
boundary between two sequences of syllables for which the TPs
within are higher than that in the middle… Saffran et al. (1996)…
the pseudowords are uniformly three syllables long.”- Gambell &
Yang (2006)

Why such poor performance?

ðə          bɪ ́g        bQ ́d         wə @lf

TrProb1 TrProb2 TrProb3

A brief demonstration

Why such poor performance?

ðə          bɪ ́g        bQ ́d         wə @lf

0.6 0.3 0.7

A brief demonstration

ðə          bɪ ́g        bQ ́d         wə @lf

Why such poor performance?

ðə          bɪ ́g        bQ ́d         wə @lf

0.6 0.3 0.7

0.6 > 0.3, 0.3 < 0.7

A brief demonstration

ðə          bɪ ́g        bQ ́d         wə @lf



Why such poor performance?

ðə          bɪ ́g        bQ ́d         wə @lf

learner posits one word boundary at minimum TrProb

0.6 > 0.3, 0.3 < 0.7

0.6 0.3 0.7

A brief demonstration

ðə          bɪ ́g        bQ ́d         wə @lf

Why such poor performance?

ðə          bɪ ́g        bQ ́d         wə @lf

…but nowhere else

0.6 > 0.3, 0.3 < 0.7

0.6 0.3 0.7

A brief demonstration

ðə          bɪ ́g        bQ ́d         wə @lf

Why such poor performance?

ðə          bɪ ́g        bQ ́d         wə @lf

…but nowhere else

A brief demonstration

Why such poor performance?

        ðəbɪ ́g        bQ ́dwə @lf

…but nowhere else

Word token & lexicon item precision: 0/2 = 0
Word token & lexicon item recall: 0/4 = 0

A brief demonstration

Boundary precision: 1/1 = 1
Boundary recall: 1/3 = .33

Note: undersegmentation



Why such poor performance?

“More specifically, a monosyllabic word is followed by another
monosyllabic word 85% of the time.  As long as this is the case,
[this kind of] statistical learning cannot work.” - Gambell & Yang
(2006)

Would more data help? Probably not…

point of stabilization ≈ 100,000 syllables
(children hear over 1,000,000 words in 6 months)

What about other models that have had success
on data like this (Swingley 2005)?

“It is true that overall precision may be quite high for certain
values of θ but it is worth noting that most of the three-syllable
words determined by Swingley’s criteria are wrong: the
precision is consistently under 25-30%…regardless of the
value of θ.  Moreover, statistical criteria….produce very low
recall…at best 22-27%.” - Gambell & Yang (2006)

Additional Learning Bias

Gambell & Yang (2006) idea
   Children are sensitive to the properties of their native language
like stress patterns very early on.  Maybe they can use those
sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

ðə        bɪ ́g        bQ ́d           wə @lf

stress stress stressno stress



Additional Learning Bias

Gambell & Yang (2006) idea
   Children are sensitive to the properties of their native language
like stress patterns very early on.  Maybe they can use those
sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

Learner gains knowledge: These must be separate words

ðə        bɪ ́g        bQ ́d           wə @lf

Additional Learning Bias

Gambell & Yang (2006) idea
   Children are sensitive to the properties of their native language
like stress patterns very early on.  Maybe they can use those
sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

húwz  ə fréjd  əv  ðə bɪ ́g   bQ́d  wə @lf

Get these boundaries because stressed (strong) syllables are next
to each other.

Additional Learning Bias

Gambell & Yang (2006) idea
   Children are sensitive to the properties of their native language
like stress patterns very early on.  Maybe they can use those
sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

húwz  ə fréjd  əv  ðə bɪ ́g   bQ́d  wə @lf

Can use this in tandem with transitional probabilities when there
are weak (unstressed) syllables between stressed syllables.

Additional Learning Bias

Gambell & Yang (2006) idea
   Children are sensitive to the properties of their native language
like stress patterns very early on.  Maybe they can use those
sensitivities to help them solve the word segmentation problem.

Unique Stress Constraint (USC)
A word can bear at most one primary stress.

húwz  ə fréjd  əv  ðə bɪ ́g   bQ́d  wə @lf

??

There’s a word boundary at one of these two: use
minimum TrProb to figure out where.



USC + Transitional Probabilities

A learner relying only on transitional probability but who also has
knowledge of the Unique Stress Constraint does a much better job
at segmenting words such as those in child-directed English.

Only about 25% of the words posited by the transitional probability
learner are not actually words (73.5% precision) and about 30% of
the actual words are not extracted (71.2% recall).

“In fact, these figures are comparable to the highest performance
in the literature.” (Though see Goldwater et al. (2009), Johnson &
Goldwater (2009)), and Blanchard et al (2010).)

Precision: 73.5%

Recall: 71.2%

Another Strategy

Subtraction process of figuring out unknown words.

“Look, honey - it’s a big goblin!”

Algebraic Learning (Gambell & Yang (2003))

bÍggáblIn

bÍg = big (familiar word)

bÍg

gáblIn = (new word)

bÍggáblIn

Evidence of Algebraic Learning in Children

“Behave yourself!”
“I was have!”
(be-have = be + have)

“Was there an adult there?”
“No, there were two dults.”
(a-dult = a + dult)

“Did she have the hiccups?”
“Yeah, she was hiccing-up.”
(hicc-up = hicc + up)

Experimental Evidence of Algebraic Learning

Experimental studies show young infants can use familiar
words to segment novel words from their language

-Bortfeld, Morgan, Golinkoff, & Rathbun 2005:
6-month-old English infants use their own name or Mommy/Mama

-Hallé, Durand, Bardies, & de Boysson 2008
11-month-old French infants use French articles like le, les, and la

-Shi, Werker, & Cutler 2006
11-month-old English infants use English articles like her, its, and
the

-Shi, Cutler, Werker, & Cruickshank 2006
11-month-old English infants (but not 8-month-old English infants)
use the English article the



Using Algebraic Learning + USC

StrongSyl   WeakSyl1   WeakSyl2   StrongSyl
     ma                ny               can             come

“Many can come…”

Using Algebraic Learning + USC

StrongSyl   WeakSyl1   WeakSyl2   StrongSyl
     ma                ny               can             come

“Many can come…”

Familiar word: “many”

Using Algebraic Learning + USC

StrongSyl   WeakSyl1   WeakSyl2   StrongSyl
     ma                ny               can             come

“Many can come…”

Familiar word: “come”

Using Algebraic Learning + USC

StrongSyl   WeakSyl1   WeakSyl2   StrongSyl
     ma                ny               can             come

“Many can come…”

This must be a word:
add it to memory



Algebraic Learner, More Generally

“However, USC may not resolve the word boundaries
conclusively. This happens when the learner encounters
S1W1

nS2: the two S’s stand for strong syllables, and there are n
syllables in between, where Wi

j stands for the substring that
spans from the ith to the jth weak syllable.”

S1   W1   W2  … Wn   S2

Algebraic Learner, More Generally

“However, USC may not resolve the word boundaries
conclusively. This happens when the learner encounters
S1W1

nS2: the two S’s stand for strong syllables, and there are n
syllables in between, where Wi

j stands for the substring that
spans from the ith to the jth weak syllable.”

S1   W1   W2  … Wn   S2

“If both S1W1
i-1 and Wj+1

nS2 are, or are part of, known words on
both sides of S1W1

nS2, then Wi
j must be a word, and the learner

adds Wi
j as a new word into the lexicon.”

Known words
New word added to lexicon

Algebraic Learner, More Generally

“However, USC may not resolve the word boundaries
conclusively. This happens when the learner encounters
S1W1

nS2: the two S’s stand for strong syllables, and there are n
syllables in between, where Wi

j stands for the substring that
spans from the ith to the jth weak syllable.”

S1   W1   W2  … Wn   S2

“Otherwise…somewhat more complicated.”
“Agnostic: the learner ignores the string S1W1

nS2 altogether and
proceeds to segment the rest of utterance.  No word is added.”

Ignore this entire syllable string

Algebraic Learner, More Generally

“However, USC may not resolve the word boundaries
conclusively. This happens when the learner encounters
S1W1

nS2: the two S’s stand for strong syllables, and there are n
syllables in between, where Wi

j stands for the substring that
spans from the ith to the jth weak syllable.”

S1   W1   W2  … Wn   S2

“Otherwise…somewhat more complicated.”
“Random: the learner picks a random position r (1 ≤ r ≤ n) and

splits W1
n into two substrings W1

r and Wr+1
n…no word is added

to the lexicon.”

Guess r = 2, and split.



Algebraic Learning + USC

“It may seem a bit surprising that the random algebraic learner
yields the best segmentation results but this is not unexpected.
The performance of the agnostic learner suffers from deliberately
avoiding segmentation in a substring where word boundaries lie.
The random learner, by contrast, always picks out some word
boundary, which is very often correct.  And this is purely due to the
fact that words in child-directed English are generally short.”

Agnostic
Precision: 85.9%
Recall: 89.9%

Random
Precision: 95.9%
Recall: 93.4%

Gambell & Yang (2006) Conclusions:
Still true today?

“The segmentation process can get off the ground only through
language-independent means: experience-independent linguistic
constraints such as the USC and experience-[in]dependent statistical
learning are the only candidates among the proposed strategies.”

“Statistical learning does not scale up to realistic settings.”

“Simple principles on phonological structures such as the USC can
constrain the applicability of statistical learning and improve its
performance.”

“Algebraic learning under USC, which has trivial computational cost and
is in principle universally applicable, outperforms all other segmentation
models.”

Gambell & Yang (2006) Conclusions

“It is worth reiterating that our critical stance on statistical learning refers
only to a specific kind of statistical learning that exploits local minima
over adjacent linguistic units…we simply wish to reiterate the conclusion
from decades of machine learning research that no learning, statistical
or otherwise, is possible without the appropriate prior assumptions
about the representation of the learning data and a constrained
hypothesis space…present work, then, can be viewed as an attempt to
articulate the specific linguistic constraints that might be built in for
successful word segmentation to take place.”

Willits, Seidenberg, & Saffran (2009): performance is greatly
affected by what units are statistically tracked

Extension: Other Languages

What about other languages besides English?
-English has predictable word order.  Some languages don’t.  Would that
destroy a transitional probability learner?  What about other statistical
learners (see Blanchard et al. (2010))?

- English words are easily separable - but what about languages where the
syntax is less separable from the morphology? (Specifically, what happens
when “words” are longer?)



Additional Material

8-month-old statistical learning

Familiarization-Preference Procedure (Jusczyk & Aslin 1995)
Saffran, Aslin, & Newport 1996

Habituation:

   Infants exposed to auditory material that serves as potential
learning experience

Test stimuli (tested immediately after familiarization):

   (familiar) Items contained within auditory material

   (novel) Items not contained within auditory material, but
which are nonetheless highly similar to that material

8-month-old statistical learning

Familiarization-Preference Procedure (Jusczyk & Aslin 1995)
Saffran, Aslin, & Newport 1996

Measure of infants’ response:

   Infants control duration of each test trial by their sustained
visual fixation on a blinking light.

   Idea: If infants have extracted information (based on
transitional probabilities), then they will have different looking
times for the different test stimuli.

Artificial Language

4 made-up words with 3 syllables each
Saffran, Aslin, & Newport 1996

Condition A:

tupiro, golabu, bidaku, padoti

Condition B:

dapiku, tilado, burobi, pagotu



Artificial Language

Infants were familiarized with a sequence of these words
generated by speech synthesizer for 2 minutes.  Speaker’s
voice was female and intonation was monotone.  There were
no acoustic indicators of word boundaries.

Saffran, Aslin, & Newport 1996

Sample monotone speech:

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

http://whyfiles.org/058language/images/baby_stream.aiff

Artificial Language

The only cues to word boundaries were the transitional probabilities
between syllables.

   Within words, transitional probability of syllables = 1.0

   Across word boundaries, transitional probability of syllables = 0.33

Saffran, Aslin, & Newport 1996

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

Artificial Language

The only cues to word boundaries were the transitional probabilities
between syllables.

   Within words, transitional probability of syllables = 1.0

   Across word boundaries, transitional probability of syllables = 0.33

Saffran, Aslin, & Newport 1996

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

TrProb(“tu” “pi”) = 1.0

Artificial Language

The only cues to word boundaries were the transitional probabilities
between syllables.

   Within words, transitional probability of syllables = 1.0

   Across word boundaries, transitional probability of syllables = 0.33

Saffran, Aslin, & Newport 1996

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

TrProb(“tu” “pi”) = 1.0 = TrProb(“go” “la”), TrProb(“pa” “do”)



Artificial Language

The only cues to word boundaries were the transitional probabilities
between syllables.

   Within words, transitional probability of syllables = 1.0

   Across word boundaries, transitional probability of syllables = 0.33

Saffran, Aslin, & Newport 1996

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

TrProb(“ro” “go”) < 1.0 (0.3333…)

Artificial Language

The only cues to word boundaries were the transitional probabilities
between syllables.

   Within words, transitional probability of syllables = 1.0

   Across word boundaries, transitional probability of syllables = 0.33

Saffran, Aslin, & Newport 1996

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

TrProb(“ro” “go”), TrProb(“ro” “pa”) = 0.3333… <
1.0 = TrPrb(“pi” ro”), TrProb (“go” “la”), TrProb(“pa” “do”)

word boundary word boundary

Testing Infant Sensitivity

Expt 1, test trial:

   Each infant presented with repetitions of 1 of 4 words

      2 were “real” words

         (ex: tupiro, golabu)

      2 were “fake” words whose syllables were jumbled up

         (ex: ropitu, bulago)

Saffran, Aslin, & Newport 1996
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Testing Infant Sensitivity

Expt 1, results:

   Infants listened longer to novel items (non-words)

      (7.97 seconds for real words, 8.85 seconds for non-words)

Implication: Infants noticed the difference between real words and
non-words from the artificial language after only 2 minutes of
listening time!
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Testing Infant Sensitivity

Expt 1, results:

   Infants listened longer to novel items (non-words)

      (7.97 seconds for real words, 8.85 seconds for non-words)

Implication: Infants noticed the difference between real words and
non-words from the artificial language after only 2 minutes of
listening time!

But why?

   Could be that they just noticed a familiar sequence of sounds
(“tupiro” is familiar while “ropitu” never appeared), and didn’t notice
the differences in transitional probabilities.

Saffran, Aslin, & Newport 1996

Testing Infant Sensitivity

Expt 2, test trial:

   Each infant presented with repetitions of 1 of 4 words

      2 were “real” words

         (ex: tupiro, golabu)

      2 were “part” words whose syllables came from two different
words in order

         (ex: pirogo, bubida)
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   Each infant presented with repetitions of 1 of 4 words

      2 were “real” words

         (ex: tupiro, golabu)

      2 were “part” words whose syllables came from two different
words in order

         (ex: pirogo, bubida)
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Testing Infant Sensitivity

Expt 2, test trial:

   Each infant presented with repetitions of 1 of 4 words

      2 were “real” words

         (ex: tupiro, golabu)

      2 were ““partpart”” words words whose syllables came from two different
words in order

         (ex: pirogo, bubida)

Saffran, Aslin, & Newport 1996

tu pi ro go la bu bi da ku pa do ti go la bu tu pi ro pa do ti…

Testing Infant Sensitivity

Expt 2, results:

   Infants listened longer to novel items (part-words)

      (6.77 seconds for real words, 7.60 seconds for part-words)

   Implication: Infants noticed the difference between real words and
part-words from the artificial language after only 2 minutes of
listening time!  They are sensitive to the transitional probability
information.

Saffran, Aslin, & Newport 1996


