
Psych 215L:
Language Acquisition

Lecture 6
Word Segmentation

Computational Problem

Divide spoken speech into words

húwzəfréjdəvðəbɪ ́gbQ ́dwəĺf

Computational Problem

Divide spoken speech into words

who‘s  afraid   of     the  big   bad   wolf
húwz   əfréjd  əv   ðə  bɪ ́g   bQ́d  wə́lf

húwzəfréjdəvðəbɪ ́gbQ ́dwəĺf

Word Boundaries or Lexicon Items?

Gambell & Yang (2006): Identify
boundaries with USC + TrProb,
identify boundaries with USC +
Algebraic learning (though also
identify lexical items with algebraic
learning)

Fleck (2008): Identify boundaries
with phonotactic constraints

Hewlett & Cohen (2009): Identify
boundaries with phonotactic
constraints

Identify word boundaries Identify/optimize lexical items
Goldwater et al. (2009): bias for
shorter & fewer lexicon items (ideal
learner)

Johnson & Goldwater (2009): bias
for shorter & fewer lexicon items +
phonotactic constraints (ideal
learner)

Pearl et al. (2011): bias for shorter &
fewer lexicon items (constrained
learner)

Blanchard et al. (2010): bias for
lexicon items obeying phonotactic
constraints (constrained learner)

McInnes & Goldwater (2011):
extract from acoustic data
(constrained learner)



Looking for lexicons?

Frank et al. (2010 Cognition): examining the predictions of several word
segmentation models on human experimental data.  The Bayesian model
(which explicitly optimized a lexicon) usually was a better fit.

The exception: All models failed to predict human difficulty when there were
more lexical items, suggesting that memory limitations are important to include.

Frank et al. (2010 CogSci proceedings): more support that (adult) human
learners look to optimize lexicons

Modeling learnability vs. modeling acquirability

 Modeling learnability
 “Can it be learned at all by a simulated learner?”
 “ideal”, “rational”, or “computational-level” learners
 what is possible to learn

 Modeling acquirability (Johnson 2004)
 “Can it be learned by a simulated learner that is constrained in the

ways humans are constrained?”
 more “realistic” or “cognitively inspired” learners
 what is possible to learn if you’re human

Language acquisition computation as
induction

Input

(specific linguistic
observations)

Abstract internal
representation/generalization

Output

(specific linguistic
productions)

Probabilistic models for induction

• Typically an ideal observer approach asks what the
optimal solution to the induction problem is, given
particular assumptions about knowledge representation
and available information.

• Constrained learners implement ideal learners in more
cognitively plausible ways.
– How might limitations on memory and processing affect

learning?



Word segmentation
• One of the first problems infants must solve when learning

language.

• Infants make use of many different cues.
– Phonotactics, allophonic variation, metrical (stress)

patterns, effects of coarticulation, and statistical
regularities in syllable sequences.

 Statistics may provide initial bootstrapping.
 Used very early (Thiessen & Saffran, 2003)
 Language-independent, so doesn’t require children to know

some words already

language-dependent

Bayesian inference: model goals
• The Bayesian learner seeks to identify an explanatory linguistic

hypothesis that
– accounts for the observed data.
– conforms to prior expectations.

   Ideal learner: Focus is on the goal of computation, not the
procedure (algorithm) used to achieve the goal.
   Constrained learner: Use same probabilistic model, but
algorithm reflects how humans might implement the computation.

Bayesian segmentation

• In the domain of segmentation, we have:
– Data: unsegmented corpus (transcriptions)
– Hypotheses: sequences of word tokens

= 1 if concatenating words forms corpus,
= 0 otherwise.

Corpus: “lookatthedoggie” P(d|h) =1 P(d|h) = 0
loo k atth ed oggie i like penguins
lookat thedoggie look at thekitty
look at the doggie a b c

= 1 if concatenating words forms corpus,
= 0 otherwise.

Encodes assumptions or
biases in the learner.

Bayesian segmentation

 Optimal solution is the segmentation with highest
probability.

• In the domain of segmentation, we have:
– Data: unsegmented corpus (transcriptions)
– Hypotheses: sequences of word tokens



An ideal Bayesian learner for word segmentation

 Model considers hypothesis space of segmentations,
preferring those where
 The lexicon is relatively small.
 Words are relatively short.

 The learner has a perfect memory for the data
 The entire corpus is available in memory.

Goldwater, Griffiths, and Johnson (2007, 2009)

 Note:
 only counts of lexicon items are required to compute highest

probability segmentation.
 Assumption: phonemes are relevant unit of representation

Investigating learner assumptions
• If a learner assumes that words are independent units, what is

learned from realistic data? [unigram model]

• What if the learner assumes that words are units that help predict
other units? [bigram model]

Approach of Goldwater, Griffiths, & Johnson (2007, 2009): use a
Bayesian ideal observer to examine the consequences of making
these different assumptions.

Generative process: Unigram model

• Choose next word in corpus using a Dirichlet Process (DP)
with concentration parameter α and base distribution P0:
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• Base distribution P0 is the probability of generating a new word:

Walkthrough: Unigram model

Assumes word wi is generated as follows:
1.  Is wi a novel lexical item?

Fewer word types =
Higher probability
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Assume word wi is generated as follows:
2.  If novel, generate phonemic form x1…xm :

Otherwise, choose lexical identity of wi from
previously occurring words:

Shorter words =
Higher probability

Power law =
Higher probability
for more frequent

words
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Walkthrough: Unigram model
Generative process: Bigram model

• Bigram model is a hierarchical Dirichlet process (Teh et
al., 2005):
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Choose word based on previous word’s identity and all previous words
(base distribution P1, concentration parameter β)

Base distribution for
generating novel bigrams

Walkthrough: Bigram model

Assume word wi is generated as follows:
1. Is (wi-1,wi) a novel bigram?

2. If novel, generate wi using unigram model (almost).

Otherwise, choose lexical identity of wi from words
previously occurring after wi-1.
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Search through hypothesis space of segmentations

Model defines a distribution over hypotheses.  Can use
Gibbs sampling to find a good hypothesis.

• Iterative procedure produces samples from the posterior
distribution of hypotheses.

P(h|d)

h



Gibbs sampling

• Compares pairs of hypotheses differing by a single word
boundary:

• Calculate the probabilities of the words that differ, given
current analysis of all other words in the corpus.

• Sample a hypothesis according to the ratio of probabilities.

whats.that
the.doggie
yeah
wheres.the.doggie
…

whats.that
the.dog.gie
yeah
wheres.the.doggie
…

Corpus: child-directed speech samples

• Bernstein-Ratner corpus:
– 9790 utterances of phonemically transcribed child-

directed speech (19-23 months), 33399 tokens and
1321 unique types.

– Average utterance length: 3.4 words
– Average word length: 2.9 phonemes

• Example input:

youwanttoseethebook
looktheresaboywithhishat
andadoggie
youwanttolookatthis
...

yuwanttusiD6bUk
lUkD*z6b7wIThIzh&t
&nd6dOgi
yuwanttulUk&tDIs
...

≈

Results: Ideal learner (Standard MCMC)

Correct segmentation: “look at the doggie. look at the kitty.”
Best guess of learner: “lookat the doggie. lookat thekitty.”

Precision:  #correct / #found, “How many of what I found are right?”

Recall: #found / #true, “How many did I find that I should have found?”

Word Tokens
Prec     Rec

Boundaries
Prec     Rec

Lexicon
Prec     Rec

Ideal (unigram) 61.7 47.1 92.7 61.6 55.1 66.0

Ideal (bigram) 74.6 68.4 90.4 79.8 63.3 62.6

Word Token Prec = 2/5 (0.4), Word Token Rec = 2/8 (0.25)
Boundary Prec = 3/3 (1.0), Boundary Rec = 3/6 (0.5)

Lexicon Prec = 2/4 (0.5), Lexicon Rec = 2/5 (0.4)

 The assumption that words predict other words is good: bigram model
generally has superior performance

 Note: Training set was used as test set
 Both models tend to undersegment, though the bigram model does so

less (boundary precision > boundary recall)

Results: Ideal learner (Standard MCMC)

Word Tokens
Prec     Rec

Boundaries
Prec     Rec

Lexicon
Prec     Rec

Ideal (unigram) 61.7 47.1 92.7 61.6 55.1 66.0

Ideal (bigram) 74.6 68.4 90.4 79.8 63.3 62.6

Precision:  #correct / #found, “How many of what I found are right?”

Recall: #found / #true, “How many did I find that I should have found?”



Results: Ideal learner sample
segmentations

Unigram model Bigram model

youwant to see thebook
look theres aboy with his hat
and adoggie
you wantto lookatthis
lookatthis
havea drink
okay now
whatsthis
whatsthat
whatisit
look canyou take itout
...

you want to see the book
look theres a boy with his hat
and a doggie
you want to lookat this
lookat this
have a drink
okay now
whats this
whats that
whatis it
look canyou take it out
...

How about constrained learners?

 The constrained learners use the same probabilistic
model, but process the data incrementally (one utterance
at a time), rather than all at once.

 Dynamic Programming with Maximization (DPM)
 Dynamic Programming with Sampling (DPS)
 Decayed Markov Chain Monte Carlo (DMCMC)

Considering human limitations

What if the only limitation is that the learner must
process utterances one at a time?

Dynamic Programming: Maximization

you want to see the book

0.33 yu want tusi D6bUk

0.21 yu wanttusi D6bUk

0.15 yuwant tusi D6 bUk

…  …

 Algorithm used by Brent (1999), with different model.

For each utterance:
• Use dynamic programming to compute highest

probability segmentation.
• Add counts of segmented words to lexicon.



Considering human limitations

What if humans don’t always choose the most
probable hypothesis, but instead sample among the
different hypotheses available?

Dynamic Programming: Sampling

For each utterance:
• Use dynamic programming to compute probabilities of

all segmentations, given the current lexicon.
• Sample a segmentation.
• Add counts of segmented words to lexicon.

you want to see the book

0.33 yu want tusi D6bUk

0.21 yu wanttusi D6bUk

0.15 yuwant tusi D6 bUk

…  …

Considering human limitations

What if humans are more likely to pay attention to
potential word boundaries that they have heard more
recently (decaying memory = recency effect)?

Decayed Markov Chain Monte Carlo

yuwant tusi D6 bUk
Boundaries

Probability of 
sampling boundary

Utterance 1

s samples

you want to see the book

For each utterance:
• Probabilistically sample s boundaries from all utterances
encountered so far.
• Prob(sample b) ∝ ba

-d where ba is the number of potential
boundary locations between b and the end of the current
utterance, and d is the decay rate (Marthi et al. 2002).
• Update lexicon after every sample.



Decayed Markov Chain Monte Carlo

yuwant tu si D6 bUk
Boundaries

Probability of 
sampling boundary

Utterance 2

wAtsDIs

Utterance 1

s samples

you want to see the book what’s this

For each utterance:
• Probabilistically sample s boundaries from all utterances
encountered so far.
• Prob(sample b) ∝ ba

-d where ba is the number of potential
boundary locations between b and the end of the current
utterance, and d is the decay rate (Marthi et al. 2002).
• Update lexicon after every sample.

Decayed Markov Chain Monte Carlo

Decay rates tested: 2, 1.5, 1, 0.75, 0.5, 0.25, 0.125

Probability of
sampling within
current utterance

d = 2 .942

d = 1.5 .772

d = 1 .323

d = 0.75 .125

d = 0.5 .036
d = 0.25 .009
d = 0.125 .004

Results: unigrams vs. bigrams

DMCMC Unigram: d=1, s=20000
DMCMC Bigram: d=0.25, s=20000

Results averaged over 5 randomly generated test
sets (~900 utterances) that were separate from
the training sets (~8800 utterances), all
generated from the Bernstein Ratner corpus Note: s=20000 means DMCMC

learner samples 89% less often
than the Ideal learner.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams

Like the Ideal learner, the DPM & DMCMC bigram learners perform
better than the unigram learner, though improvement is not as great
as in the Ideal learner. The bigram assumption is helpful.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true



Results: unigrams vs. bigrams

However, the DPS bigram learner performs worse than the unigram
learner.  The bigram assumption is not helpful.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams

Unigram comparison: DPM, DMCMC > Ideal, DPS performance
Interesting: Constrained learners outperforming unconstrained learner

when words are believed to be independent units.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams

Bigram comparison: Ideal, DMCMC > DPM > DPS performance
Interesting: Constrained learner performing equivalently to unconstrained

learner when words are believed to be predictive units.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: unigrams vs. bigrams for the lexicon

Lexicon = a seed pool of words for children to use to figure out
language-dependent word segmentation strategies.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true



Like the Ideal learner, the DPM bigram learner yields a more reliable
lexicon than the unigram learner.

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

However, the DPS and DMCMC bigram learners yield less reliable
lexicons than the unigram learners.

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Unigram comparison: DMCMC > Ideal > DPM > DPS performance
Interesting: Constrained learner outperforming unconstrained learner

when words are believed to be independent units.

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Bigram comparison: Ideal > DPM > DMCMC > DPS performance
More expected: Unconstrained learner outperforming constrained learners

when words are believed to be predictive units (though not by a lot).

Results: unigrams vs. bigrams for the lexicon

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true



Results: under vs. oversegmentation

Undersegmentation: boundary precision > boundary recall
Oversegmentation: boundary precision < boundary recall

Precision:

#correct / #found

Recall:

#found / #true

The DMCMC unigram learner, like the Ideal learner, tends to
undersegment.  Based on Peters (1983), children may have a
tendency to undersegment, too.

Results: under vs. oversegmentation

Precision:

#correct / #found

Recall:

#found / #true

Results: under vs. oversegmentation

All other learners, however, tend to oversegment.

Precision:

#correct / #found

Recall:

#found / #true

Results: Exploring different performance measures

 Some positions in the utterance are more easily segmented
by infants, such as the first and last word of the utterance
(Seidl & Johnson 2006).

 If models are reasonable reflections of human behavior, their
performance on the first and last words is better than their
performance over the entire utterance. Moreover, they should perform
equally on the first and last words in order to match infant behavior.



Results: first/last vs. whole utterance

DPM and DMCMC learners have the desired behavior.  The Ideal
learner improves for both, but improves more for last words.  The
DPS learner only improves for first words.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: first/last vs. whole utterance

DPM and DPS have the desired behavior. The Ideal and DMCMC
learners only improve for the first word.

F = 2 * Prec * Rec

        Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results: main points

 A better set of cognitively inspired statistical learners
 While no constrained learners outperform the best ideal learner on

all measures, all perform better on realistic child-directed speech
data than a transitional probability learner and out-performed other
unsupervised word segmentation models.

 Implication: Learners that optimize a lexicon may work better than
learners who only are looking for word boundaries.

Results: main points

 Ideal learner behavior doesn’t always transfer
 While assuming words are predictive units (bigram model)

significantly helped the ideal learner, this assumption may not be
as useful to a constrained learner (depending on how cognitive
limitations are implemented).

 Speculation: Some of the constrained learners are unable to
successfully search the larger hypothesis space that exists for the
bigram model



 Constraints on processing are not always harmful
 Decayed MCMC learner can perform well even with more than 99.9%

less processing than the unconstrained ideal learner

Results: main points

 Constraints on processing are not always harmful
 Decayed MCMC unigram learner out-performs Ideal learner when

both sample the same number of times – suggests something special
about the way DMCMC approximates its inference process. (This is
not true for the bigram learner, though.)

Results: main points

 Constraints on processing are not always harmful
 Constrained unigram learners can sometimes outperform the

unconstrained unigram learner (“Less is More” Hypothesis: Newport
1990).  This behavior persists when tested on a larger corpus of
English child-directed speech (Pearl-Brent), suggesting it’s not just a
fluke of the Bernstein corpus.

 The issue turns out to be that the Ideal learner makes many more
errors on frequent lexical items than the DMCMC learner.

Results: main points

 Constraints on processing are not always harmful
 The reason why the unigram DMCMC learner might fare better has to

do with the Ideal learner’s superior memory capacity and processing
abilities.

 The Ideal learner (because it can see everything all the time and
update anything at any point) can notice that certain short items (e.g.,
actual words like it’s and a) appear very frequently together.

 The only way for a unigram learner to represent this dependency is as
a single lexicon item.  The Ideal learner can fix its previous “errors”
that it made earlier during learning when it thought these were two
separate lexical items.  The DMCMC does not have the memory and
processing power to make this same mistake.

Results: main points



 Constraints on processing are not always harmful
 Related to Newport (1990)’s “Less is More” hypothesis: limited

processing abilities are advantageous for acquisition
 “…the more limited inference process of the DMCMC learner focuses its

attention only on the current frequency information and does not allow it to
view the frequency of the corpus as a whole. Coupled with this learner’s more
limited ability to correct its initial hypotheses about lexicon items, this leads to
superior segmentation performance. We note, however, that this superior
performance is mainly due to the unigram learner’s inability to capture word
sequence predictiveness; when it sees items appearing together, it has no
way to capture this behavior except by assuming these items are actually one
word. Thus, the ideal unigram learner’s additional knowledge causes it to
commit more undersegmentation errors. The bigram learner, on the other
hand, does not have this problem – and indeed we do not see the DMCMC
bigram learner out-performing the ideal bigram learner.” - Pearl et al. 2011

Results: main points

 About infants’ tendencies to segment edge-words better
 “Seidl and Johnson (2006) review a number of proposed explanations of why

utterance edges are easier, including perceptual/prosodic salience, cognitive
biases to attend more to edges (including recency effects), or the pauses at
utterance boundaries. In our results, we find that all of the models find
utterance-initial words easier to segment, and most of them also find
utterance-final words easier. Since none of the algorithms include models of
perceptual salience, our results suggest that this explanation is probably
unnecessary to account for the edge effect, especially for utterance-initial
words. Rather, it seems simpler to assume that the pauses at utterance
boundaries make segmentation easier by eliminating the ambiguity of one of
the two boundaries of the word.” - Pearl et al. 2011

Results: main points

Where to go from here: exploring acquirability

 Explore robustness of constrained learner performance across different
corpora and different languages
 Is it just for this language that we see these effects?

 In progress: Spanish to children a year or younger (portion of
JacksonThal corpus (Jackson-Thal 1994) containing ~3600 utterances)

 Investigate other implementations of constrained learners
 Imperfect memory: Assume lexicon precision decays over time, assume

calculation of probabilities is noisy
 Knowledge representation (in progress): assume syllables are a relevant unit

of representation (Jusczyk et al. 1999), assume stressed and unstressed
syllables are tracked separately (Curtin et al. 2005, Pelucchi et al. 2009),
assume infants have certain phonotactic knowledge beforehand and/or are
acquiring it at the same time segmentation happens (Blanchard et al. 2010),
assume acoustic level information is the right level of granularity (McInnes &
Goldwater 2011)


