Psych 215L.:
Language Acquisition

Lecture 8
Word-Meaning Mapping

Computational Problem

“Look! There’s a goblin!”
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Smith & Yu (2008)

Learning in cases of referential ambiguity:

Why? “...not all opportunities for word learning are as uncluttered as the
experimental settings in which fast-mapping has been demonstrated. In
everyday contexts, there are typically many words, many potential
referents, limited cues as to which words go with which referents, and
rapid attentional shifts among the many entities in the scene.”

Also, “...the evidence indicates that 9-, 10-, and certainly 12-month-old
infants are accumulating considerable receptive lexical knowledge ...Yet
many studies find that children even as old as 18 months have difficulty in
making the right inferences about the intended referents of novel
words...infants as young as 13 or 14 months...can link a name to an
object given repeated unambiguous pairings in a single session. Overall,
however, these effects are fragile with small experimental variations often
leading to no learning.”

Smith & Yu (2008)

New approach: infants accrue statistical evidence across multiple trials that
are individually ambiguous but can be disambiguated when the
information from the trials is aggregated.




Smith & Yu (2008)

A more complicated example: Requirements:

Trial 1: A=a (.5), b (5)? B=a(5),b(.5)? (1) Learner notices absence
Trial 2: C = ¢ (.5),d (5)? D =c(.5),d(.5)? °2f bL'” Trial 4 N
Trial 3: E=e (5),f(5)? F=e(5),f(5)? (63) LLeEnmEr EmEmEEs

absence of g in Trial 1

Trial 4: (3) Learner registers
A=g(3),a(3),b(3)? G=g(5) a(5)? occurrences & non-
(but wait! b isn’'t present, so A = b has prob 0) occurrences

A=g(.5),a(5)? (4) Learner calculates

(but wait! G wasn't present in trial 1, A = g has prob 0) Correct statistics based off
A=a G=g this information

Smith & Yu (2008)

Yu & Smith (2007): Adults seem able to
accomplish this.

Requirements:

(1) Learner notices absence
of b in Trial 4

(2) Learner remembers
absence of g in Trial 1

(3) Learner registers
occurrences & non-
occurrences

(4) Learner calculates
correct statistics based off
this information

Smith & Yu ask: Can 12- and 14-month-old
infants do this? (Relevant age for
beginning word-learning.)

Smith & Yu (2008): Experiment

Six novel words obeying phonotactic probabilities of English:
bosa, gasser, manu, colat, kaki, regli

Six brightly colored shapes (sadly greyscale in the paper)

Smith & Yu (2008): Experiment

Training: 30 slides with 2 objects named with two words (total time: 4 min)

manu
colat

Testing: 12 trials with one word repeated 4 times and 2 objects (correct one
and distracter) present

manu
manu
manu
manu




Smith & Yu (2008): Experiment

Results: Infants preferentially look at target over distracter, and 14-month-
olds looked longer than 12-month-olds.

Smith & Yu (2008)

Interesting point: More ambiguity within trials may lead to better learning
overall

“Yu and Smith (2007; Yu et al., 2007), using a task much like the infant task
used here, showed that adults actually learned more word-referent pairs
when the set contained 18 words and referents than when it contained
only 9. This is because more words and referents mean better evidence
against spurious correlations. Although much remains to be discovered
about the relevant mechanisms, they clearly should help children learn
from the regularities that accrue across the many ambiguous word-scene
pairings that occur in everyday communication.”

Smith & Yu (2008)

This kind of statistical learning vs. transitional probability learning

“The statistical regularities to which infants must attend to learn word-
referent pairings are different from those underlying the segmentation of a
sequential stream in that word-referent pairings require computing co-
occurrence frequencies across two streams of events (words and
referents) simultaneously for many words and referents. Nonetheless, the
present findings, like the earlier ones showing statistical learning of
sequential probabilities, suggest that solutions to fundamental problems
in learning language may be found by studying the statistical patterns in
the learning environment and the statistical learning mechanisms in the
learner (Newport & Aslin, 2004; Saffran et al., 1996)”

Also, Ramscar et al. (2011)

Kids vs. adults: word-meaning mapping in cases of ambiguity

“These findings...are consistent with other cross-situational approaches to
word learning (Yu & Smith, 2007; Smith & Yu, 2008), which have
established that in word learning tasks, both children and adults can
“rapidly learn multiple word-referent pairs by accruing statistical evidence
across multiple and individually ambiguous word-scene pairings”....
However, in this experiment, we explicitly tested for children’s sensitivity
to the information provided by cues, rather than their co-occurrence
rates...pattern of children’s responses indicates that they can and do use
informativity in learning to use words...what a child learns about any
given word is dependent on the information it provides about the
environment, in relation to other words...it is quite clear that the adults we
tested did not place the same value on informativity in their learning that
the children did...”




However...

See Medina, Snedecker, Trueswell,

& Gleitman (2011) for evidence
against learners having multiple
meaning hypotheses and cross-
tabulating them via statistical
procedures. (One issue - the
sheer number of items in real
world situations, and the different
perceptual instances of the items
in question.)

Instead, learners “appear to use a

one-trial ‘fast-mapping’ procedure,
even under conditions of
referential uncertainty.”

Frank, Goodman, & Tenenbaum (2009)

Redefining the problem: (It's harder)

Not just about learning stable lexicon of word-meaning mappings, but also
about the intention of the speaker at the moment.

“Social theories suggest that learners rely on a rich understanding of the
goals and intentions of speakers...once the child understands what is
being talked about, the mappings between words and referents are
relatively easy to learn (St. Augustine, 397/1963; Baldwin, 1993; Bloom,

2002; Tomasello, 2003). These theories must assume some mechanism

for making mappings, but this mechanism is often taken to be
deterministic, and its details are rarely specified. In contrast, cross-
situational accounts of word learning take advantage of the fact that
words often refer to the immediate environment of the speaker, which
allows learners to build a lexicon based on consistent associations
between words and their referents (Locke, 1690/1964; Siskind, 1996;
Smith, 2000; Yu & Smith, 2007).”

[How different are these accounts, really?]

Frank, Goodman, & Tenenbaum (2009)

Problems for learning based on cross-situational idea that referents are

present:

...speakers often talk about objects that are not visible and about actions

that are not in progress at the moment of speech (Gleitman, 1990),
adding noise to the correlations between words and objects.”

Solution: appeal to external social/communication cues

.cross-situational and associative theories often appeal to external social

cues, such as eye gaze (Smith, 2000; Yu & Ballard, 2007), but these are
used as markers of salience (the “warm glow” of attention), rather than as
evidence about internal states of the speaker, as in social theories.”

Frank, Goodman, & Tenenbaum (2009)

Task: Identify lexicon items for
object nouns




Frank, Goodman, & Tenenbaum (2009)

Assumption:

What people intend to say (l) is a function of the world
around them (specifically, the objects O present).

Assumption:

The words people say (W) are a function of what people
intend to say (I = objects intended) and how those
intentions can be translated with the language they
speak (using lexicon items L)

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Prior P(L) favors parsimony (fewer lexical items): exponentially
penalized for each additional lexical item, using constant a

P(L) o< el

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Likelihood P(CJL) is product of the words, objects, and intentions given
the lexicon L for all situations in C:

Model

>

Model learns a probability distribution over unobserved

lexicons L (one L = set of lexicon items), given an
© observed corpus C of situations.

W & O are conditionally independent, so P(W,, O, /| L) can be
rewritten...




Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

...as the product of the words given the speaker’s intended objects and
lexicon (P(W,]| I, L)...

P(W,| I, L)*...

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

...times the probability of the speaker’s intended objects (I) given the
objects present (P(l; | O;).

PWs1 s, L) *P(ls | O)

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Since we can’'t observe speaker’s intended referent directly, we sum
over all possible values of intended referent /, assuming the object is
present (/ € O,).

ZI;O P(Wsl Is! L) * P(’s | Os)

Note that /; can be empty if speaker is not
referring to an object that is present.

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Simplicity assumption: P(l | O) o< 1
(all intentions equally likely)

Remaining term: P(W, | I;,L)




Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

00 0

Assumption: words are generated as a bag of words (no order or
dependencies, so can multiply them together)
Assumption: words are generated because

(1) they are referential to some item present [Pg]

(2) they are non-referential [Py]

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Y = probability a word is used referentially, given context
(1 —Y) = probability word is not used referentially (specifically, not
referring to objects: function words, adjectives, verbs)

Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Pr(w|o, L) = probability of word used referentially for an object =
probability of word being chosen, given the object and the lexicon

Uniform over words linked to object in the lexicon. If a word is not linked
to an object, its referential probability is O for that object.

Averaged over all possible intended referents ([;).




Model

Model learns a probability distribution over unobserved
lexicons L (one L = set of lexicon items), given an
observed corpus C of situations.

Pyr(W|L) = probability of word used non-referentially w.r.t objects = probability of
word being chosen, given lexicon.

If word not in lexicon already, probability of choosing word o< 1.
If word in lexicon already, probability of choosing word o< k.

When k < 1, words in lexicon less likely to be uttered non-referentially than
words not in lexicon.

Testing the Model: Corpus Evaluation

Input Corpus: Rollins videos of parents interacting with preverbal infants
Annotated with all mid-size objects judged to be visible to the infant.

Other word-learning models evaluated on same data, and all models judged on
the accuracy of the lexicons learned and inferences on speaker intentions

Lexicons: Each model produced
association probability between word
& object. Chose lexicon that
maximized F-score (harmonic mean
of precision & recall).

Note: Intentional model with “one
parameter” is when a is the only free
parameter.

Testing the Model: Corpus Evaluation

Best lexicon found by intentional model

Testing the Model: Corpus Evaluation

Input Corpus: Rollins videos of parents interacting with preverbal infants
Annotated with all mid-size objects judged to be visible to the infant.

Other word-learning models evaluated on same data, and all models judged on
the accuracy of the lexicons learned and inferences on speaker intentions

Speaker Intentions:

Intentional model = intention with
highest posterior probability given
lexicon

Other models = objects for which
matching words in best lexicon had
been uttered

Note: Intentional model with “one
parameter” is when a is the only free
parameter.




Testing the Model: Corpus Evaluation

Why did the intentional model work so well?

“The high precision of the lexicon found by our model was likely due to
two factors. First, the distinction between referential and nonreferential
words allowed our model to exclude from the lexicon words that were
used without a consistent referent. Second, the ability of the model to
infer an empty intention allowed it to discount utterances that did not
contain references to any object in the immediate context.”

O

Using the model to explain experimental results

Cross-situational word-learning (Yu & Smith 2007, Smith & Yu 2008)

All models (even the non-intentional ones) successfully learned the
word-meaning mappings, given those experimental stimuli.

Doesn'’t help to differentiate — just shows that all these models can use
statistical information like this.

Using the model to explain experimental results

Mutual Exclusivity
“Can you give me the dax?” (“bird” = BIRD already known)

Children give novel object, presumably
assuming bird can’t also be called “dax”.

Intentional model has soft preference for one-to-one mappings already,
since having multiple words for object reduces consistency of word use
with that object.

(Though note that some of the other comparison models can also show
this behavior, such as the conditional probability models.)

Using the model to explain experimental results

Mutual Exclusivity
“Can you give me the dax?” (“bird” = BIRD already known)

Children give novel object, presumably
assuming bird can’t also be called “dax”.

Intentional model scoring
for four potential word-
referent mappings.
Mapping to novel object
is the best.

Note also that this is a
case of one-trial learning
(Carey 1978, Markson &
Bloom 1997).




Using the model to explain experimental results
Object Individuation
Xu 2002: Infants use words to individuate objects

Habituation: toys coming out
from behind screens

(figure shows two-word
habituation, where words are
“duck” and “ball” - alternative is
one-word habituation, where
both objects would be labeled

Using the model to explain experimental results
Object Individuation
Xu 2002: Infants use words to individuate objects

Habituation:
“Look, a duck!” “Look, a ball!”

Test: screen removed to reveal...

Infant reaction:
Infants didn’t look as long.
(not surprised)

VS.

Habituation:
“Look, a toy!” “Look, a toy!”

Infant reaction:
Infants looked longer.
(surprised to see two objects)

Using the model to explain experimental results
Object Individuation

Xu 2002: Infants use words to individuate objects

Interpretation: Infants expect words to be used referentially. One object

= one label, two objects = two labels.

Intentional model: Simulate looking time with surprisal (negative log
probability) and get equivalent results.

Using the model to explain experimental results
Intention Reading

Baldwin 1993: Children sensitive to intentional labeling, not just timing of
labeling.

Children told the name of a toy that was unseen and given a second toy
to play with. Children learned to label the first toy with the name.

Easy to simulate in intentional model: Instead of intended objects being
unknown, intended objects are known.

Note: Perceptual salience models cannot capture this.




Frank, Goodman, & Tenenbaum (2009)

“Our model operates at the “computational theory” level of explanation
(Marr, 1982). It describes explicitly the structure of a learner's assumptions
in terms of relationships between observed and unobserved variables.
Thus, in defining our model, we have made no claims about the nature of
the mechanisms that might instantiate these relationships in the human
brain.”

“The success of our model supports the hypothesis that specialized
principles may not be necessary to explain many of the smart inferences
that young children are able to make in learning words. Instead, in some
cases, a representation of speakers’ intentions may suffice.”




