Syntactic Island and Learning Biases: Combining Experimental Syntax and Computational Modeling to Investigate the Language Acquisition Problem

Lisa Pearl & Jon Sprouse

Outline of the Paper:

- 1. Intro: Framework of Types of Learning Biases
- 2. Background on Syntactic Islands
- 3. Creation/Analysis of Corpora with Syntax Annotations
- 4. A statistical algorithm for learning Syntactic Islands
- 5. Performance of the Algorithm
- 6. Rationales and Revelations of Algorithm's Biases
- 7. Impact of research on Syntactic Theory

Intro: Features of Learning Biases

- 1. Are they domain-specific or domain-general?
- 2. Are they innate or derived from prior experience?
- 3. Are they a constraint on the **hypothesis space** or a constraint on the **learning mechanism**?

	Domain- specificity	Innateness	Scope of constraint
Universal Grammar	Language- specific	Innate	Often hypothesis space, could be learning mechanism

Syntactic Island Effects English Wh-word dependencies

- No adjacency between verbs and the pronoun (NP) the verb acts on
 - Does Jack think that? vs.
 - What does Jack think ___?
- However, there is still a syntactic/semantic dependency between the verb and the pronoun
- These dependencies are stable over long distances <u>What</u> does Jack think that Lily said that Sarah heard that David stole __?

Syntactic Island Effects English Wh-word dependencies

- Syntactic rules do not prohibit dependencies from spanning long distances
- But wh- dependencies are prohibited from appearing in some syntactic constructions

Do you think the joke about that offended Jane? vs.

*<u>What</u> do you think the joke about ____ offended Jane?

Syntactic Island Effects

Syntactic constructions that disrupt dependencies are called syntactic islands.

- Other constructions in English that encounter island effects are
 - Relative-clause formation
 - Topicalization
 - Adjective-through constructions

Syntactic Island Effects

Sprouse, Wagers & Phillips (2012a) collected real adult acceptability judgments of sentences constructed with syntactic islands

- Four island types investigated
- Semantically intelligible but syntactically ungrammatical
- Ratings on a magnitude scale instead of binary judgments
- Most importantly: 2x2 design of sentences for each island type highlights if there is an island effect

Sprouse, Wagers & Phillips (2012a)

- (8) Whether islands
 - a. Who _____ thinks that Jack stole the necklace?
 - b. What does the teacher think that Jack stole ? EMBEDDED | NON-ISLAND
 - c. Who ____ wonders whether Jack stole the necklace?
 - d. *What does the teacher wonder whether Jack stole __ ?

MATRIX | NON-ISLAND EMBEDDED | NON-ISLAND MATRIX | ISLAND

EMBEDDED | ISLAND

Sprouse, Wagers & Phillips (2012a)

FIGURE 2 Experimentally derived acceptability judgments for the four island types from Sprouse, Wagers & Phillips (2012a) (N = 173).

Annotated Corpora Creation Needed structurally annotated corpora to assess the frequency of the island structures in speech to children.

- 5 well known corpora
- Child-directed speech for children 1-5 years old
- Utterances with Sprouse (2012) type dependencies were quite rare

	Syntactic Island Conditions*										
- Island Type	MATRIX NON-ISLAND	EMBEDDED NON-ISLAND	MATRIX ISLAND	EMBEDDED ISLAND							
Complex NP	7	295	0	0							
Subject	7	29	0	0							
Whether	7	295	0	0							
Adjunct	7	295	15	0							

TABLE 1 The Corpus Analysis of the Child-Directed Speech Samples

Note. These are the child-directed speech samples from CHILDES, given the experimental stimuli used in Sprouse, Wagers & Phillips et al. (2012a) for the four island types examined. The syntactic island condition (which is Ungrammatical) is bolded.

*Note that the number of MATRIX | NON-ISLAND data are identical for all four island types since that control structure was identical for each island type (a *wh*-dependency linked to the subject position in the main clause, with the main clause verb (e.g., *thinks*) taking a tensed subordinate clause (e.g., *Lily forgot the necklace*). Similarly, the number of EMBEDDED | NON-ISLAND data are identical for Complex NP, Whether, and Adjunct islands since that control structure was identical for those island types (a *wh*-dependency linked to the object position in the embedded clause, with the main clause verb taking a tensed subordinate clause).

Learning Algorithm

Pearl & Sprouse (2013) designed a (non-Bayesian) statistical learning algorithm to work over this type of structural input and attempt to learn that syntactic islands are ungrammatical.

- 1. Type and quantity of learning input for a child
- 2. The structure of the hypothesis space
- 3. The learning process

Algorithm: Input

The algorithm must have access to phrase structure information to track the dependency of a *Wh*-sentence.

Therefore, learning must take place at the same level of abstraction.

The algorithm works over the **container nodes** of a sentence.

(11) a. $[_{CP}$ Who did $[_{IP}$ she $[_{VP}$ think $[_{CP}$ $[_{IP}$ $[_{NP}$ the gift] $[_{VP}$ was $[_{PP}$ from __]]]]]]? b. IP VP CP IP VP PP c. IP-VP-CP-IP-VP-PP

Algorithm: Input

The possible container nodes are specified.

• Eg. NP, VP, IP, CP

However, to differentiate between certain kinds of sentences used in Sprouse (where humans rate different grammaticality judgments) CP must be further subdivided

• Eg Cp_{that} vs CP_{whether}

Algorithm: Hypothesis Space

The algorithm operates in a hypothesis space that is made of sequences of trigrams of container nodes

(13) a. $[_{CP}$ Who did $[_{IP}$ she $[_{VP}$ think $[_{CP} [_{IP} [_{NP}$ the gift] $[_{VP}$ was $[_{PP}$ from __]]]]]]? b. IP VP CP_{null} IP VP PP c. start-IP-VP-CP_{null}-IP-VP-PP-end = start-IP-VP IP-VP-CP_{null}-IP CP_{null}-IP-VP IP-VP-PP VP-PP-end

Algorithm: Learning Process The learner parses all the available data into sequences of trigrams.

Each trigram has a probability

 $\frac{\text{total observations of } t + \alpha}{\text{total observations of all N trigrams } + N\alpha}$

Algorithm: Judgments

To calculate a grammaticality judgment, the algorithm simply multiplies the probability of each container node trigram in an utterance together.

```
(14) "Where does the reporter think Jack stole from?"
      [CP Where does [IP [NP the reporter] [VP think [CP
                                                                  [IP [NP Jack] [VP stole [PP
      from ____]]]]]]?"
                                                            CP<sub>null</sub> IP
                         IP
                                                 VP
                                                                                   VP
                                                                                              PP
      Sequence: start-IP-VP-CP<sub>null</sub>-IP-VP-PP-end
      Trigrams: start-IP-VP
                         IP-VP-CP<sub>null</sub>
                             VP-CP<sub>null</sub>-IP
                                 CP<sub>null</sub>-IP-VP
                                         IP-VP-PP
                                             VP-PP-end
      Probability(IP-VP-CP_{null}-IP-VP-PP) =
      p(start-IP-VP)*p(IP-VP-CP<sub>null</sub>)*p(VP-CP<sub>null</sub>-IP)*p(CP<sub>null</sub>-IP-VP)*p(IP-VP-
      PP)*p(VP-PP-end)
```

Acquisition Process

Grammaticality Preferences

FIGURE 3 Steps in the acquisition process and calculation of grammaticality preferences (color figure available online).

Corpora Results

	Bas	sic Cor	npo	osit	ion	of th	e (Child	/T Dird-bi	ABI	_E 2 ted an	d A	٩du	ılt-D	Dire	cte	d lı	npu	ıt C	orp	oora	l		
				С	hild	-Dire	ecte	d: S	peec	h	A	\du	lt-L	Dire	cted	l:Sp	peed	ch		1	Adu	lt-Di	recte	ed:Text
Total Utterand Total <i>wh</i> -Dep	otal Utterances10otal wh-Dependencies2			01838 20923				74576 8508							24243 4230									
Proportion of wh-utterances	$1.0 - \cdot child-directed speech$ $a dult-directed speech$ $a dult-directed text$ $0.6 - \cdot IP-VP$ $0.6 - \cdot IP-VP$ $0.4 - \cdot IP - VP$ $0.4 - $		Proportion of wh-utterances	0.010 - 0.008 - 0.006 - 0.004 - 0.002 - 0.002 -	6						d spe d spe d text d text	eech t P_null-IP B 0 J 14 15												
		1 2	3	4 Fre	5 quen	6 7 cy rank	8	39	10			6	7	8	9 Fr	10 eque	11 ncy r	12 ank	13	14	15			

FIGURE 4 The 15 most frequent *wh*-dependency types in the three corpora types. The left panel displays the 10 most frequent *wh*-dependency types for each of the three corpora types, with IP-VP and IP dominating all three corpora types (IP-VP: rank 1, IP: rank 2). The right panel displays the 6th–15th most frequent *wh*-dependency types on a smaller y-axis scale (0-.01) in order to highlight the small amount of variation between corpora types for these dependency types.

5

Learner Probability Results

TABLE 3 Inferred Grammaticality of Different *Wh*-Dependencies from Sprouse, Wagers & Phillips (2012a), Represented with Log Probability

		Child-Directed	Adult-Directed
		speech	speech & Text
Grammatical Dependencies			
Matrix Subject	IP	-1.21	-0.93
Embedded Subject	IP-VP-CP _{null} -IP	-7.89	-7.67
Embedded Object	IP-VP-CP _{that} -IP-VP	-13.84	-11.00
Island-Spanning Dependencie	es		
Complex NP	IP-VP-NP-CPthat-IP-VP	-19.81	-18.93
Subject	IP-VP-CP _{null} -IP-NP-PP	-20.17	-20.36
Whether	IP-VP-CP _{whether} -IP-VP	-18.54	-18.46
Adjunct	IP-VP-CP _{if} -IP-VP	-18.54	-18.46

Child Directed Speech Results:

FIGURE 5 Log probabilities derived from a learner using child-directed speech.

5

Adult Directed Results:

FIGURE 6 Log probabilities derived from a learner using adult-directed speech and text.

5

Relation to Syntactic Theory

The paper discusses a few scenarios that this algorithm cannot account for

These scenarios primarily arise due to the use of container node trigrams without further specificity

- Parasitic gaps & Across-the-Board
- Italian *Wh* question dependencies
- Compartmentalizer That behavior

Relation to Syntactic Theory In summary:

Everything is an empirical question