Using Speakers' Referential Intentions to Model Early Cross-Situational Word Learning

Frank, Goodman & Tenenbaum

presented by: Colin Kupitz

The Chicken or the Egg?

- When learning their first words, children face a joint-inference problem: trying to infer meaning and lexicon simultaneously
- Computationally hard without knowing one piece first

Accounts of Word Learning

- Social theories:
 - Depend on a rich understanding of the goals/intentions of speakers
- Cross-Situational:
 - Focus on the fact that words often refer to immediate environment of speaker

The Chicken *and* the Egg

 Current study presents a model that attempts to capture both aspects of the word-learning task it simultaneously infers attempted communication and lexicon

The Intentional Model

- What speakers intend to say is a function of the physical world around them
- Utterances are a function of what the speakers intend to say / how those intentions can be translated into language

Assumptions

- Simple intentions refer to objects at hand
- Basic-level objects / categories (no 'aspect' level references)
- L = Lexicons
- C = Corpus of Situations

 $P(L|C) \propto P(C|L)P(L).$

All about dat Bayes

Likelihood

 Product over situations of the probability components of the corpus (Words W, Objects O, Intentions I) - given the lexicon

$$P(C|L) = \prod_{s \in C} P(W_s, O_s, I_s|L).$$

Likelihood 2

- Words W and Objects O are independent (given Intentions I)
- Rewrite eqn 1 as the probability of the words given intentions and lexicon * probability of intentions given the physical context

$$P(C|L) = \prod_{s \in C} \sum_{I_s \subseteq O_s} P(W_s|I_s, L) \cdot P(I_s|O_s).$$

Likelihood 3

Assume words W are independent (no syntax)

- 2 causes for utterance: Referential or nonreferential
- \circ γ = probability a word is used referentially in given context
- \circ P_R = prob. of word utterance if it's used referentially
- P_{NR}^{n} = prob. a word picked from lexicon at random

$$P(W_s|I_s,L) = \prod_{w \in W_s} \left[\gamma \cdot \sum_{o \in I_s} \frac{1}{|I_s|} P_{\mathrm{R}}(w|o,L) + (1-\gamma) \cdot P_{\mathrm{NR}}(w|L) \right].$$

JUDGING!

- Compare Intentional model to several other models
- Evaluate on the accuracy of lexicon and inferences regarding speakers' intent
- Each model produced a single summary statistic linking Words-> Objects

Still Judging!

- Chose the threshold for the summary stat. that maximized *F* score
 - The harmonic mean of precision (proportion of correct pairing) and recall (proportion of total correct pairings found)
- Compute scores relative to a goldstandard lexicon and gold-standard set of intentions from a human coder

Annnd Judged.

- Intentional Model beat the crap out of the others in 'Best Lexicon'
- The more basic models had a large number of spurious lexical items.

A baby is required in every presentation right? Well, here's SuperBaby

Annnd Judged.

TABLE 1

Precision, Recall, and F Score of the Best Lexicon Found by Each Model When Run on the Annotated Data From the Child Language Data Exchange System

Model	Precision	Recall	F score
Association frequency	.06	.26	.10
Conditional probability (object/word)	.07	.21	.10
Conditional probability (wordlobject)	.07	.32	.11
Mutual information	.06	.47	.11
Translation model (objectlword)	.07	.32	.12
Translation model (wordlobject)	.15	.38	.22
Intentional model	.67	.47	.55
Intentional model (one parameter)	.57	.38	.46

Words, words, words.

TABLE 3

The Best Lexicon Found by the Intentional Model

Word	Object	Word	Object
bear	bear	lamb	lamb
bigbird	bird	laugh	COW
bird	duck	meow	baby
birdie	duck	mhmm	hand
book	book	mirror	mirror
bottle	bear	moocow	cow
bunnies	bunny	oink	pig
bunnyrabbit	bunny	on	ring
hand	hand	pig	pig
hat	hat	put	ring
hiphop	mirror	ring	ring
kittycat	kitty	sheep	sheep

One parameter Intentional Model?

 κ, how likely in-lexicon words were to be used NR, and γ , the prob. of using words R, were set to their maximum a posteriori values. • Uhh, is this cheating?

Intentions?

- - Leci n'est pas une image

- Intentional Model similarly the best overall for Intentions
- Not the best at Recall
 - Recall = proportion of total correct pairing that were found
 - Likely due to more 'shotgun' approach that arises with a gigantor lexicon as in the Associate Frequency model (highest Recall)

Intentions

TABLE 2

Precision, Recall, and F Score for the Referential Intentions Found by Each Model, Using the Lexicons Scored in Table 1

Model	Precision	Recall	F score
Association frequency	.27	.81	.40
Conditional probability (objectlword)	.59	.36	.45
Conditional probability (wordlobject)	.32	.79	.46
Mutual information	.36	.37	.37
Translation model (objectlword)	.57	.41	.48
Translation model (wordlobject)	.40	.57	.47
Intentional model	.83	.45	.58
Intentional model (one parameter)	.77	.36	.50

Intentional Model Advantages

- Distinguish between referential / nonreferential words.
- Allow for 'empty' intentions.
- Model prefers sparse, one-to-one lexicons.

Mutual Exclusivity

1-to-1 = Soft
 support for
 the concept of
 mutual
 exclusivity

One-Trial Learning

 The model captures one-trial learning well; most of the baseline models do as well, so they're not too excited about it.

Object Individuation

Similarly, the model predicts object individuation.

 model simulation on right

End Main Article

Cognitive Development in LangAc

- LangAc one equation, 2 unknowns?
 - Maybe one equation, 2 *partially* unknown variables
- Children are strange, and we don't account for that often enough
 - We may be focusing on too many explanations that speak in 'adult' centric terms - children's observations and understandings may be more unintuitive than we think