# Cognitively PL



#### **Stephen Bennett**

### Overview

- Types of constraints
- Explicit application of these constraints

### Overview



- Types of constraints
- Explicit application of these constraints
- Synergies from constraining several things at once







# Algorithmic Constrains Computational



- Hypothesis space: Established theory and modern modeling inform which hypothesis spaces are possible
  - Modeling has to explicitly define the hypothesis space and therefore make large assumptions about what universal assumptions children use in learning language

- Inference: Computational and Algorithmic diverge here
  - Computational takes the optimal inference given the problem & data



• Algorithmic takes the most "appropriate" inference based on our knowledge of humans

### Input/Output Constraints

• Input: Match as closely as possible with the input representation of the child

- Output: Instead of comparing against adult-level knowledge, compare the output against child-level trends.
  - Endgoal: Produce a representation of word segmentation in-line with children's representations based on background literature



## **Our Bayesian Strategy**

 $P(h|d) \propto P(d|h)P(h)$ 

- Ideal Learner-type model (Goldwater et al., 2009)
- Infer the simplest plausible lexicon
  - Smaller lexicon, shorter words in the lexicon
- Two implementations:
  - Unigram: No relationship between types of words that occur in sequence
  - Bigram: The preceding word informs which word is likely to follow

### Our Bayesian Strategy: Model #1

- Generative Rule:  $P(w_i|w_1, ..., w_{i-1}) = \frac{n_{i-1}(w_i) + \alpha P_0(w_i)}{i 1 + \alpha}$
- $n_{i-1}(w_i)$  is the number of times  $w_i$  occurs in the previous i-1 words
- α relates the likelihood of a novel word (and is free to vary, so we have to consider its prior, which is presumably concentrated around low values)
- P<sub>0</sub> is the specifications for the composition of a novel word how likely it is to be composed of certain phonemes or syllables
  - Enforces parsimony
  - Infers rules about the language (assuming  $P_0$  is free to vary, which was not 100% clear)

$$P_0 = P(w = x_1, \ldots, x_m) = \prod_j P(x_j)$$

# Our Bayesian Strategy: Model #2

$$P(w_i|w_{i-1} = w', w_1, \dots, w_{i-2}) = \frac{n_{i-1}(w', w_i) + \beta P_1(w_i)}{n_{i-2}(w') + \beta}$$

- $P_1$  is equivalent to the equation on the previous slide:  $P(w_i)$
- n<sub>i-1</sub>(w',w<sub>i</sub>) is the number of times the bigram w',w<sub>i</sub> occurs in the previous i words
- n<sub>i-2</sub>(w') is the number of times w' occurs
- β is a free parameter that controls how strong of a bias towards few bigrams the model has

### Input

- Infants use a mix of inputs:
  - Syllables (earliest use 2-3 months) for the model
  - Phonemes (earliest use ~9 months?)
  - Lexical Stress Patterns (earliest use ~8 months)
- Model Assumptions/Concessions:
  - Adult Syllabification & Maximum-Onset Principle vs ???
  - Phoneme-based model vs Phones
  - Syllabification occurs within words





# Output

- Useful Oversegmentations The "All," "Right," "Alright," "-ly," "-ing," lexicon
  - Lead to better segmentation elsewhere because they serve as markers you get the beginning and the end of two other words every time they appear
- Useful Undersegmentations The "couldi" "isthata" "lookatthekitty" lexicon
  Help produce syntactic rules
- In the end, we fudge things in the models favor as long as it fits a "useful" pattern
  - In this sense, the paper is very exploratory



### Inference

- Ideal "BatchOpt" (MCMC algorithm)
- Incremental Processing "OnlineOpt"
- Sub-optimal Decision Making "OnlineSubOpt" (Probability Matching)
- Recency Effect "OnlineMem" (Decayed MCMC)
  - Probability of sampling a boundary proportional to b<sub>a</sub><sup>-d</sup>
    - b<sub>a</sub> is the number of boundaries until the end of the current utterance
    - d is the decay rate



### **Model Evaluations**

$$Precision = \frac{\#correct}{\#guessed} = \frac{\#true \ positives}{\#true \ positives + \#false \ positives}$$
$$Recall = \frac{\#correct}{\#true} = \frac{\#true \ positives}{\#true \ positives + \#false \ negatives}$$
$$F-score = \frac{2 * Precision * Recall}{Precision + Recall}$$

- Word Tokens used as Unit (*the penguin eats the fish* = 5)
- Separate Training & Test Sets

### Model Evaluations

|          |              | Unigram    |            | Bigram     |            |
|----------|--------------|------------|------------|------------|------------|
|          |              | Phoneme    | Syllable   | Phoneme    | Syllable   |
| Bayesian | BatchOpt     | 55.0 (1.5) | 53.1 (1.3) | 69.6 (1.6) | 77.1 (1.4) |
|          | OnlineOpt    | 52.6 (1.5) | 58.8 (2.5) | 63.2 (1.9) | 75.1 (0.9) |
|          | OnlineSubOpt | 46.5 (1.5) | 63.7 (2.8) | 41.0 (1.3) | 77.8 (1.5) |
|          | OnlineMem    | 60.7 (1.2) | 55.1 (0.3) | 71.8 (1.6) | 86.3 (1.2) |
| Other    | Lignos 2012  | 7.0 (1.2)  | 87.0 (1.4) |            |            |
|          | TPminima     | 52.6 (1.0) | 13.0 (0.4) |            |            |

• When compared to adults

### **Model Evaluations**

|              | Unigram |       |      | Bigram |       |      |
|--------------|---------|-------|------|--------|-------|------|
|              | Real    | Morph | Func | Real   | Morph | Func |
| BatchOpt     | 0.73    | 0.13  | 4.40 | 4.19   | 0.69  | 6.37 |
| OnlineOpt    | 2.15    | 0.47  | 3.17 | 6.44   | 0.90  | 4.85 |
| OnlineSubOpt | 2.59    | 0.45  | 3.38 | 8.77   | 2.08  | 2.87 |
| OnlineMem    | 2.19    | 0.31  | 5.02 | 14.41  | 3.20  | 3.64 |
| Lignos 2012  | 19.00   | 3.59  | 0.03 |        |       |      |
| TPminima     | 0.01    | 0.00  | 7.33 |        |       | 0    |

- "Real" and "Morph" represent Oversegmentations
- "Func" represents Undersegmentations

### Modeling Human Performance - Frank et al., 2010

3

4

8

number of types

• Facets of the data that ought to be more challenging for a human to "solve" word segmentation make it more difficult for Bayesian, but not other, models

