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Does Gold’s Theorem relate to language
acquisition?

One path from the Logical Problem of Language
Acquisition (LPLA) to innate knowledge:

Language learners never get negative evidence, so it is
logically possible for them to a language just like the
one they’re learning, but containing a few extra
sentences, like *John Mary kicked.  (LPLA) It’s
claimed that Gold’s Theorem provides a nice formal
proof of this.

So how is it that children don’t learn languages like this?
Answer: They must have some sort of (presumably)

innate language-learning mechanism that helps them
limit the possible languages they can learn.

But does the argument from LPLA get support from
Gold’s theorem?

Gold’s Theorem: A class of languages is unlearnable
if it has Gold’s Property

There have been many inaccurate statements made
about Gold’s theorem from both sides of the
debate, if one understands Gold’s theorem and its
proof, it is clear that the theorem does not support
nor dismantle the argument from LPLA, the two
claims are independent, and only look similar
when one is confused about the notion of
learnability.

Structure of the Paper
 First we look at the formal proof of Gold’s Theorem.

 We will pay special attention to the formal definitions
within the theorem, as they come up later in the paper.

 Then we will examine some of the false claims made
about Gold’s Theorem by people on both sides of the
innate knowledge debate.
 The point isn’t that one side is right and the other is wrong,

but that all the authors cited misunderstand the applicability
of the theorem to natural language acquisition.

 Finally we will examine just  what significance
Gold’s Theorem has for natural language acquisition.
 Not very much, we will see that it’s only when the notion

of learnability is ambiguous that the theorem looks
interesting to cognitive science.
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Gold’s Theorem Proof
Definitions:

 Language: A language L is any subset of Σ* where Σ* is the set of all finite
sequences of some finite alphabet Σ (notice that we have not specified what
this finite alphabet consists of).
 So, Σ={a1,a2,…an}, and Σ*={〈a1〉, 〈a27,a 32,a3〉, …,〈a2,a3〉},

and L={〈a1〉, 〈a27,a32〉, …, 〈a2〉}
 Environment: an infinite sequence of sentences from the target language to

be learned, with the provision that all sentences from the target language
appears at least once in the sequence.

 Learner: A learner is a function φ that takes finite initial segments of the
environment into the set of languages.
 Intuitively, a learner gets some information about its environment, and

makes a guess about the language it’s speaking.
 φ(〈a1,a2,…,an 〉)=Lm

Gold’s Theorem Proof

More Definitions:

 A learner learns a language L given an environment E iff at some
time, and for all times afterward, the learner correctly outputs the
target language. (identification in the limit)

 A learner learns L iff the learner learns L given any Environment
E (of sentences of L) whatsoever.

 A learner learns a class C iff the learner learns every language L
such that L∈C

 A class of languages C is learnable iff there is a learner that learns
C
 Notice, that if a class of languages fails to be learnable then there is

no single learner that learns all the languages in L, this does not imply
that all learners fail to learn all languages in C.

Gold’s Property: A class C of languages has Gold’s property
iff C contains an infinite subset of languages {L∞, L1, L2,
…}

such that L1 ⊂ L2 ⊂ L3 ⊂ …

and, for all sentences a,  a∈ L∞ iff a∈Li for some i>0

Gold’s Theorem: Any class of languages with the Gold
Property is unlearnable.

Gold’s Theorem Proof The Proof
 Basically we pick any arbitrary learner φ, and give
φ sentences from L1, until it converges on L1, then
we give it sentences from L2, until it converges on
L2, and so on.  So, φ either converges on a
language in C, and doesn’t learn any new
languages, or it does not.  If it does not, it doesn’t
learn a language, by definition.  If it does
converge, one of two things is true, either φ
converges on Li for some i>0, or it converges on
L∞.  If it converges on Li, then it cannot learn Li+1
and if it converges on L∞, then there was some Li
that it failed to learn.



3

Misinterpretations of Gold’s
Theorem

 They come in many flavors:
 Confusion about Language
 Confusion about Learners
 Confusion about Environment
 Taking Gold’s Theorem to apply only to ‘external’

languages, and not ‘states of mind’
 Claiming Gold’s Theorem ignores the constituent structure

of language
 Basically these criticisms try to show that the results of

Gold’s Theorem don’t successfully disprove whatever it
is that the authors want to argue, and in the process they
show a fundamental misunderstanding of the theorem.

Confusions about the language
Deacon 1997:

“[Gold] proved that, without explicit error correction, the rules of a
logical system with the structural complexity of a natural language
could not be inductively discovered, even in theory.  What makes
them unlearnable is not just their complexity but the fact that the
rules are not directly mapped to the surface forms of the
sentences.”

 But, the internal structure of the language is irrelevant-
all Gold needs for his theorem is that a class of
languages has Gold’s property, the complexity of the
language is irrelevant.

 Deacon takes Gold’s Theorem to be saying something
about the complexity of a language, rather than saying
something about the relations between languages.

Confusions about the Language

Elman et al 1996
“Interestingly, sentences with relative clauses possess

exactly the sort of structural features which may make
(according to Gold 1967) a language unlearnable”

But Gold’s theorem is about classes of languages, an not
individual language.  After all, a class containing one
language is trivial to learn- there exists the constant
function that always chooses that language.

Further, what is meant by a “learnable language?”  Gold
only defines learnability for classes of languages.

Confusions about the Learner
 Hirsh-Pasek and Golinkoff 1996

 “Gold’s learner was an unbiased learner”
 Cowie 1999

 “children are not Gold-style learners: they do not test
every logically possible grammar against the data.”

 These authors suggest that human learners don’t
learn languages like Gold’s learning functions, so
they can safely get around the implications of
Gold’s theorem.

 But, the results of Gold’s theorem apply to all
learners, in the proof there were no constraints put
on the learner at all.  We showed that every
learner could not learn an infinite class of
languages with Gold’s Property.
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Confusions about the Environment
 Hirsh-Pasek and Golinkoff 1996

 “Gold’s learner heard a series of sentence strings and
had to induce the units and rules of language, as if in a
vacuum”

 But, the only constraint Gold puts on the learner’s
environment is that all the elements of the
language be finite sequences drawn from a finite
set- we can think of these as words, or phonemes,
or anything we like.  We can even include context
or semantics in the sequence.
 A ‘sentence’ could code information about whatever

we like,  〈a1l, …, a1n, a2m, …, a2p, … ajk〉 where syntax
is described with the sequence a1l to a1n, and semantics,
and other information relevant to understanding the
sentence’s meaning is described with a2m to ajk.

Gold’s theorem is about sets of
sentences, not minds

 Chomsky claims that Gold-style models concern
only E-languages, not I-languages.

 But, there is no reason that we can’t interpret
Gold-style learning models as being about the
mind.
 A learner looks like:

Φ(〈s1,…sn〉)=L
 An acceptable interpretation: Φ represents a learning

strategy for a particular learner such that when
presented with an environment 〈s1,…sn〉, her brain is
configured (all things being equal) so as to
instantiate language L- that is, to ‘think’ L is the
language she’s learning

Gold’s theorem ignores the constituent
structure of language

 Chomsky claims that Gold’s theorem only
concerns the surface structure of grammar, and
ignores the constituent structure of natural
language.  (Weak vs. Strong generative capacity.)
 Ex. The rule X→aXa is different from the rule X→Xaa

but both can produce the string aaaa, but one’s
constituent structure looks like [a[aa]a] and the other
looks like [[aa]aa].  Gold’s theorem, claims Chomsky
only concerns the level that produces aaaa, and is not
sensitive to the distinction between [a[aa]a] and
[[aa]aa].
 So, here we see a difference between strong and weak

generative capacity- a language with strong generative
capacity can discriminate between [a[aa]a], and aaaa, while a
language with weak generative capacity cannot.

 But, Gold’s theorem can be interpreted to be
“directly” about classes of languages with
the strongly generative feature.  There is no
reason why the learner couldn’t get
sentences that contain information about its
constituent structure, or its generative
history.  This solution is a lot like the one
we saw in response to the objection that
Gold-style learners get less information
about their environment than real kids.
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Gold’s Theorem shows us that if a class C has Gold’s Property, and
the languages in C are differentiated by their weak generative
capacity, then C is unlearnable.

If C is unlearnable and C ⊆ C*, then C* is unlearnable
C is learnable when the languages are individuated by their strong

generative capacity, only if C is learnable when they are
individuated by their weak generative capacity.
That is, all learners that can learn strongly generative 
languages can learn weakly generative languages.

Hence, if for each language in C, there are several languages in C*
differentiated by their strong generative capacity, then C* is
unlearnable.

Basically, the weakly generative languages are a subset of the
strongly generative ones, so this response won’t help get around
Gold’s theorem.

Another Response Claims about Gold’s theorem
we’ve seen

 Yang 2008
 It is well known that under the Gold framework,

context-free languages are not learnable…One
conclusion does emerge convincingly from both
frameworks : learning is not possible unless the
hypothesis space is tightly constrained by prior
knowledge, which can be broadly identified as
Universal Grammar.

 Elman 1999
 “Gold (1967) was able to show that formal languages

of the class which allow embeddings…cannot be
learned inductively on the basis of positive input only.”

Significance of Gold’s Theorem

 “In sum, Gold’s Theorem appears interesting to
cognitive science when identifiability and
acquirability are confused. When we distinguish
these notions, we undermine the argument that
Gold’s Theorem is supposed to support.”

 “In general, the relation of Gold’s Theorem to
normal child language acquisition is analogous to
the relation between Gödel’s first incompleteness
theorem and the production of calculators.”

Identifiability vs. Acquirability
 A class of languages is identifiable iff there exists

a function Φ such that for any environment E for
any language L in C, Φ permanently converges on
the target L after some finite time.
 ∀e∃t(a learner learns L for any environment e in some

time t)
 A class C of natural languages is acquirable iff

given almost any normal human child and almost
any normal linguistic environment for any
language L in C, the child will acquire L (or
something sufficiently similar to L) as a native
language between the ages of one and five years.
 ∃t∀e(a learner learns L at time t given any environment

e)
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Identifiability vs. Acquirability
 In some respects it is easier for a class of languages to be

identifiable than acquirable.
 There is a larger class of learners able to identify languages, than

acquire them.  Acquirability quantifies only over normal human
children, whereas Identifiability quantifies over all learners.

 In other respects, it’s easier for a class of languages to be
acquirable than identifiable
 Identifiability quantifies over all environments, so it’s easier for a

problematic environment to crop up for identifiability than
acquirability.

Argument to innate knowledge revealed!

 1. If there are no constraints on language
acquisition, then either children have access to
negative data or natural languages are unlearnable.

 2. If they exist, the constraints in question must be
innate.

 3. Children don’t have access to negative data.
 4. Natural languages are learnable.
 5. :.There are innate constraints on language

acquisition.

Where this argument fails:
 “We can now see the dilemma for interpreting (1)-(5):

should learnability be interpreted as identifiability or
acquirability? If we use acquirability, then (4) looks true,
but no argument whatsoever has been offered for (1). (1) is
suggested by Gold’s Theorem, but Gold’s Theorem is
about identifiability, which we’ve seen is strikingly
different from acquirability. If we interpret (1) and (4) in
terms of identifiability, then it’s unclear why (4) should be
true. Just because a class C of (natural) languages is
acquirable by children doesn’t mean that there couldn’t
exist a collection of logically possible but highly abnormal
environments that would fool all learning functions... In
general, the relation of Gold’s Theorem to normal child
language acquisition is analogous to the relation between
Gödel’s first incompleteness theorem and the production
of calculators.”

Gold’s Theorem vs. LPLA
 Indirect negative evidence:

 Failed predictions might be able to serve as indirect
negative evidence to help get around LPLA, but it’s
irrelevant for Gold’s Theorem.

 On the other hand, direct negative evidence is
relevant for Gold’s Theorem, and it would also
help get around LPLA, so Gold’s theorem is
stronger in this respect.

 So, we see that Gold’s Theorem is a different
beast than LPLA, and not, in fact a logical
formulation of the problem.
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Appendix
 (A1) Gold’s classes of languages: Finite ⊂ Superfinite ⊂ Regular ⊂

Context-free ⊂ Context-sensitive ⊂ Primitive Recursive ⊂ Recursive
⊂ Recursively Enumerable.

 (A2) If C⊆C`, then if C` is learnable, so is C. Similarly, if C is not
learnable, neither is C`.

 (A3) If a learner learns a class of languages with the tester naming
relation (characteristic function), then there is a learner who learns it
with the generator naming relation (the turing machine that spits out a
list of all the sentences in a language).

Appendix
 (A4) A learner learns a language using a class E of environments only

if it learns it using any subset of E.
 (A5) Learning with informant: Using any form of informant and either

form of learner (i.e. ones that guess with testers or generators), the
class of Primitive Recursive languages is identifiable in the limit, but
the class of Recursive languages is not.

 (A6) Learning with text: Using any form of text and either form of
learner except the combination of Primitive Recursive text and the
generator naming relation, the class of finite languages is identifiable
in the limit, but the superfinite class of languages is not.

 (A7) An anomaly: Using Primitive Recursive text and the generator
naming relation, the class of Recursively Enumerable languages is
identifiable in the limit.

Appendix
 (A8) Theorem I.8. Using information presentation by Recursive text

and the generator-naming relation, any class of languages which
contains all finite languages and at least one infinite language L is not
identifiable in the limit. (Gold 1967, 470)

 (A9) A class C of Recursively Enumerable languages is identifiable
using arbitrary text iff every language L in C has a finite subset T such
that for all L` ∈ C, if T ⊆ L` then L` ⊄ L (Angluin 1980, 121- 22).


