

The CHILDES Project

Tools for Analyzing Talk – Electronic Edition
Volume 2: Transcription Format and Programs

Part 2: The CLAN Programs

Brian MacWhinney
Carnegie Mellon University

March 29, 2010

Citation for last printed version:

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk. 3rd Edition.
Mahwah, NJ: Lawrence Erlbaum Associates

CLAN Manual 2

1 Getting Started... 8
1.1 Learning CLAN... 8
1.2 Installing CLAN...8

2 Tutorial..9
2.1 The Commands Window... 9
2.2 Typing Command Lines.. 13
2.3 Sample Runs.. 15

2.3.1 Sample FREQ Runs.. 15
2.3.2 Sample MLU Run... 16
2.3.3 Sample COMBO Run... 17
2.3.4 Sample KWAL Run..17
2.3.5 Sample GEM Run .. 18

3 The Editor... 20
3.1 Text Mode vs. CHAT Mode.. 20
3.2 File, Edit, and Font Menus...21
3.3 Default Window Positioning and Font Control... 21
3.4 CA Styles... 21
3.5 Setting Special Colors..22
3.6 Searching..23
3.7 Keyboard Commands...23
3.8 Exclude Tiers... 23
3.9 Send to Sound Analyzer. ...23
3.10 Tiers Menu... 24
3.11 Running CHECK Inside the Editor ...24
3.12 Preferences and Options.. 24

4 Linkage... 26
4.1 Sonic Mode.. 27
4.2 Transcriber Mode...28

4.2.1 Linking to an already existing transcript.. 28
4.2.2 To create a new transcript... 29
4.2.3 Sparse Annotation...29

4.3 Video Linking.. 30
4.4 SoundWalker..31
4.5 Export to Partitur Editors... 32
4.6 Playback Control..32

4.6.1 Forced Skipping.. 33
5 Coder Mode.. 34

5.1.1 Entering Codes..34
5.1.2 Setting Up Your Codes File..35

6 Exercises... 37
6.1 Contrasting Four Measures.. 37
6.2 MLU50 Analysis..38

CLAN Manual 3

6.3 MLU5 Analysis..40
6.4 MLT Analysis.. 42
6.5 TTR Analysis... 42
6.6 Generating Language Profiles..43
6.7 Further Exercises... 45

7 Features... 46
7.1 Shell Commands.. 46
7.2 Online Help..47
7.3 Testing CLAN..47
7.4 Bug Reports... 47
7.5 Feature Requests.. 48

8 Analysis Commands... 49
8.1 CHAINS...50

8.1.1 Sample Runs... 50
8.1.2 Unique Options... 53

8.2 CHECK.. 54
8.2.1 How check Works...54
8.2.2 CHECK in CA Mode.. 54
8.2.3 Running check.. 55
8.2.4 Restrictions on Word Forms... 55
8.2.5 Some Hints..56
8.2.6 Unique Options... 56

8.3 CHIP.. 57
8.3.1 The Tier Creation System... 57
8.3.2 The Coding System...58
8.3.3 Word Class Analysis...59
8.3.4 Summary Measures...60
8.3.5 Unique Options... 62

8.4 COMBO...63
8.4.1 Composing Search Strings..63
8.4.2 Examples of Search Strings.. 64
8.4.3 Referring to Files in Search Strings.. 65
8.4.4 Cross-tier Combo.. 66
8.4.5 Cluster Pairs in combo.. 66
8.4.6 Searching for Clausemates..67
8.4.7 Tracking Final Words... 67
8.4.8 Tracking Initial Words..67
8.4.9 Adding Excluded Characters.. 68
8.4.10 Limiting with combo...68
8.4.11 Adding Codes with COMBO..69
8.4.12 Unique Options... 69

8.5 COOCUR...71
8.5.1 Unique Options... 71

8.6 DIST...72
8.6.1 Unique Options .. 72

8.7 DSS.. 73

CLAN Manual 4

8.7.1 CHAT File Format Requirements...73
8.7.2 Selection of a 50-sentence Corpus..73
8.7.3 Automatic Calculation of DSS..74
8.7.4 Interactive Calculation.. 74
8.7.5 dss Output... 76
8.7.6 dss Summary...76
8.7.7 DSS for Japanese.. 78
8.7.8 How DSS works..80
8.7.9 Unique Options... 81

8.8 FREQ... 81
8.8.1 What freq Ignores... 81
8.8.2 Studying Lexical Groups.. 82
8.8.3 Building Concordances with FREQ..82
8.8.4 Using Wildcards with freq ... 83
8.8.5 FREQ on the %mor line..85
8.8.6 Lemmatization.. 86
8.8.7 Directing the Output of freq..87
8.8.8 Limiting in freq... 87
8.8.9 TTR for Lemmas...88
8.8.10 Studying Unique Words and Shared Words... 89
8.8.11 Unique Options... 90

8.9 FREQMERG..91
8.10 FREQPOS.. 91

8.10.1 Unique Options... 92
8.11 GEM...92

8.11.1 Sample Runs... 92
8.11.2 Limiting With gem..93
8.11.3 Unique Options... 94

8.12 GEMFREQ.. 94
8.12.1 Unique Options... 95

8.13 GEMLIST.. 95
8.14 KEYMAP...96

8.14.1 Sample Runs... 96
8.14.2 Unique Options... 97

8.15 KWAL..97
8.15.1 Tier Selection in kwal... 97
8.15.2 Unique Options... 98

8.16 MAXWD..99
8.16.1 Unique Options .. 100

8.17 MLT... 101
8.17.1 mlt Defaults...101
8.17.2 Breaking Up Turns..102
8.17.3 Sample Runs... 102
8.17.4 Unique Options... 102

8.18 MLU...104
8.18.1 Including and Excluding in mlu and mlt ..107

CLAN Manual 5

8.18.2 Unique Options... 108
8.19 MODREP...109

8.19.1 Exclusions and Inclusions...110
8.19.2 Using a %mod Line.. 111
8.19.3 modrep and combo -- Cross-tier combo... 111
8.19.4 Unique Options... 111

8.20 PHONFREQ.. 112
8.20.1 Unique Options... 113

8.21 RELY... 113
8.21.1 Unique Options... 114

8.22 STATFREQ... 114
8.23 TIMEDUR... 116
8.24 VOCD.. 116

8.24.1 Origin of the Measure... 117
8.24.2 Calculation of D..118
8.24.3 Sample Size...119
8.24.4 Preparation of Files... 119
8.24.5 The Output from VOCD... 119
8.24.6 Lemma-based Analysis...120
8.24.7 Unique Options... 120

8.25 WDLEN... 122
9 Options ...123

9.1 +F Option...123
9.2 +K Option.. 124
9.3 +P Option...124
9.4 +R Option.. 125
9.5 +S Option...126
9.6 +T Option...128
9.7 +U Option.. 129
9.8 +V Option.. 129
9.9 +W Option... 129
9.10 +Y Option.. 130
9.11 +Z Option...130
9.12 Metacharacters for Searching.. 131

10 MOR – Morphosyntactic Analysis... 133
10.1 Analysis by Transcript Scanning... 134
10.2 Analysis by Lexical Tracking.. 134
10.3 Analysis by MOR, POST, and GRASP... 135
10.4 Configuring MOR..137

10.4.1 Grammar and Lexicon Files..138
10.4.2 Disambiguation Rules...139
10.4.3 Unique Options... 140
10.4.4 mor Lexicons.. 140
10.4.5 Lexicon Building.. 142
10.4.6 A Formal Description of the Rule Files..143
10.4.7 Interactive Mode... 149

CLAN Manual 6

10.4.8 Disambiguator Mode.. 151
10.5 The Workings of MOR.. 151

10.5.1 Compounds and Complex Forms..155
10.5.2 Lemmatization.. 157
10.5.3 Errors and Replacements.. 157
10.5.4 Affixes and Control Features.. 158
10.5.5 Building MOR Grammars...159

10.6 Using MOR with a New Corpus..163
10.7 MOR for Bilingual Corpora...164
10.8 POST..166
10.9 POSTLIST... 168
10.10 POSTMODRULES..168
10.11 POSTMORTEM.. 168
10.12 POSTTRAIN..168
10.13 POSTMOD.. 172

11 GRASP – Syntactic Dependency Analysis...173
11.1 Grammatical Relations ..173
11.2 Ellision Relations... 178
11.3 GRs for Chinese...179
11.1 GRs for Japanese..180
11.2 MEGRASP...185

12 Utility Commands...186
12.1 CHAT2CA... 186
12.2 CHAT2ELAN.. 187
12.3 CHAT2XMAR...187
12.4 CHSTRING..187
12.5 COMPOUND...189
12.6 COMBTIER...190
12.7 CP2UTF... 190
12.8 DATACLEAN... 190
12.9 DATES...190
12.10 DELIM...191
12.11 ELAN2CHAT.. 191
12.12 FIXBULLETS..191
12.13 FIXIT... 192
12.14 FIXMP3S... 192
12.15 FLO.. 192
12.16 INDENT...192
12.17 INSERT..192
12.18 LIPP2CHAT.. 192
12.19 LONGTIER ...193
12.20 LOWCASE.. 193
12.21 MAKEMOD.. 193
12.22 OLAC...194
12.23 ORT..194
12.24 PRAAT2CHAT..195

CLAN Manual 7

12.25 QUOTES..195
12.26 REPEAT.. 195
12.27 RETRACE... 195
12.28 RTFIN.. 195
12.29 SALTIN... 195
12.30 SILENCE... 196
12.31 TEXTIN... 196
12.32 TIERORDER... 196
12.33 TRNFIX... 196
12.34 UNIQ..196

13 References...197

CLAN Manual 8

1 Getting Started
This manual describes the use of the CLAN program. The acronym CLAN stands for

Computerized Language ANalysis. It is a program that is designed specifically to analyze
data transcribed in the format of the Child Language Data Exchange System (CHILDES).
Leonid Spektor at Carnegie Mellon University wrote CLAN and continues to develop it.
The current version uses a graphic user interface and runs on both Macintosh and
Windows machines. Earlier versions also ran on DOS and Unix without a graphic user
interface. CLAN allows you to perform a large number of automatic analyses on
transcript data. The analyses include frequency counts, word searches, co-occurrence
analyses, MLU counts, interactional analyses, text changes, and morphosyntactic
analysis.

Chapter 1 explains how to install and learn CLAN. Chapter 2 provides a tutorial on
how to begin using CLAN. Chapter 3 explains how to use the editor. Chapter 4 explains
some additional features, how to access help, and how to report bugs. Chapter 5 provides
detailed descriptions of each of the CLAN commands. Chapter 6 provides details
regarding particular command options. Chapter 7 gives some exercises for learning
CLAN.

1.1 Learning CLAN

In order to learn CLAN, you will want to first work through the Basic Tutorial in
Chapter 2. That tutorial will give you a basic understanding of the program. After going
through these initial steps, you will want to explore the features of the editor by working
through chapter 3 on the editor. Then you will want to learn each of the various analytic
commands, concentrating first on the five basic commands illustrated in the tutorial. Then
you should move on to the Advanced Tutorial in Chapter 4.

1.2 Installing CLAN

CLAN can be retrieved from http://childes.psy.cmu.edu. Macintosh CLAN is
distributed in a StuffIt file with the extension .sit. You will need to have a copy of StuffIt
Expander™ to expand it. You drop this file onto StuffIt Expander and it will expand.
The CD-ROM version of Macintosh CLAN can be dragged onto your desktop.
Macintosh CLAN requires OS X and is not compatible with Classic or OS 9.

Windows CLAN is distributed in a file called clanwinu.exe. You can copy this file to
your hard drive from either the Internet or the CD-ROM. You then click on the file and it
will run InstallShield that then installs CLAN in c:\childes\clan. If you already have a
copy of CLAN installed, you will need to first remove it using Add/Remove Programs.
Windows CLAN is not compatible with Windows 95/98/ME.

CLAN is also available for Unix. However, the Unix version of CLAN only provides
the CLAN commands and does not provide the CLAN editor.

CLAN Manual 9

2 Tutorial
Once you have installed CLAN in accord with the instructions in the previous

chapter, you start it by double-clicking on its icon. After this, a window titled
Commands opens up and you can type commands into this window. If the window does

not open automatically, then just type Control-d (Windows) or ⌘-d (Macintosh). Here is
what the Commands window looks like on Macintosh. The Windows version is similar.

2.1 The Commands Window

This window controls many of the functions of CLAN. It remains active in the back-
ground until the program is terminated. The main components of the Commands
window are the command box in the center and the several buttons. The first thing you
need to do when running CLAN is to set the working and lib directories.

Setting the Working Directory

The working directory is the place where the files you would like to work with are lo-
cated. For this tutorial, we will use the CLAN library directory as both our Working
directory and our Library directory. To set the working directory:

1. Press the working button in the Command window (see screen grab above).

2. Locate the directory that contains the desired files. For this tutorial, please use
the lib/samples directory inside the CLAN directory.

CLAN Manual 10

3. Press the Select Current Directory button (see next screen image).

After selecting the current directory, you will automatically return to the Commands
window. The directory you selected will be listed to the right of the working button. This
is useful because you will always know what directory you are working in without having
to leave the Commands window.

After you have set the working directory, go through the same process to set the
library directory. You do not need to worry about setting the output directory. By default,
it is the same as the working directory. Also, for now, you do not need to worry about
the “mor lib”. Once you have set your working and lib directories, your commands
windows should look more or less like the picture below. Of course the actual paths will
be different on the top levels, but the bottom levels should say “samples” and “lib”.

Now, to test out your installation, type the command “freq sample.cha” into the
Commands window. Then either hit the return key or press the Run button. You should
get the following output:

> freq sample.cha
freq sample.cha
Tue Aug 7 15:51:12 2007
freq (03-Aug-2007) is conducting analyses on:
 ALL speaker tiers
**
From file <sample.cha>
 1 a

CLAN Manual 11

 1 any
 1 are
 5 chalk
 1 delicious
 1 don't
 1 eat
 1 good
 1 hey
 1 i
 1 is
 1 it's
 1 mommy
 1 more
 2 neat
 1 nicky
 1 not
 2 oh
 1 other
 3 see
 1 some
 2 that
 1 that's
 2 there
 3 to
 3 toys
 3 want
 1 what
 2 what's
 1 wonderful
 2 yeah
 2 you

 32 Total number of different word types used
 51 Total number of words (tokens)
0.627 Type/Token ratio

The output continues down the page. The exact shape of this window will depend on
how you have sized it.

The Recall Button

If you want to see some of your old commands, you can use the recall function. Just
hit the Recall button and you will get a window of old commands. The Recall window
contains a list of the last 20 commands entered into the Commands window. These
commands can be automatically entered into the Commands window by double-clicking
on the line. This is particularly useful for repetitive tasks and tracking command strings.
Another way to access previously used commands is by using the ↑ arrow on the
keyboard. This will enter the previous command into the Commands window each time
the key is pressed.

The HELP Button

The Help button can also give you some basic information about file and directory

CLAN Manual 12

commands that you may find useful. You enter these commands into the command box.
To test these out, just try typing dir into the Commands window. You should get
something like this in the CLAN Output window:

You may want to resize this window if text is being cut off.

The CLAN Button

The CLAN button gives you a list of CLAN analytic commands you can run. If you
already know which command you want to run, you may find it faster just to type the
name in the Commands window. However, just for practice, try clicking this button and
then selecting the FREQ command. The name of the command will then be inserted into
the Commands window.

The File In Button

Once you have selected the FREQ command, you now see that the Files In button will be
available. Click on this button and you will get a dialog that asks you to locate some input
files in your working directory. It should look like this the screenshot on the next page.
Scroll down to the file sample.cha and double-click on it to move it to the right. The files
on the right will be the ones used for analysis. The Remove button that appears under the
Files for Analysis scrolling list is used to eliminate files from the selected data set. The
Clear button removes all the files you have added. The Filter text box shows the file
extension of the selected data set. Those files with an extension other than the one shown
will not be visible to the user. In order to see all available files, you will want to have the
* symbol in the filter box. When you are finished adding files for analysis, hit Done.
After the files are selected and you have returned to the Commands window, an @ is
appended onto the command string. This symbol represents the set of files listed.

CLAN Manual 13

2.2 Typing Command Lines

There are two ways to build up commands. You can build commands using buttons
and menus. However, this method only provides access to the most basic options, so we
only recommend it when you are beginning. Alternatively, you can just type in
commands directly to the Commands window. Let’s try entering a command just by typ-
ing. Suppose we want to run an MLU analysis on the sample.cha file. Let us say that we
also want to restrict the MLU analysis so that it looks only at the child’s utterances. To do
this, we enter the following command into the window:

mlu +t*CHI sample.cha

In this command line, there are three parts. The first part gives the name of the command;
the second part tells the program to look at only the *CHI lines; and the third part tells the
program which file to analyze as input.

If you press the return key after entering this command, you should see a CLAN Out-
put window that gives you the result of this particular MLU analysis. This analysis is
conducted, by default, on the %mor line which was generated by the MOR program. If a
file does not have this %mor line, then you will have to use other forms of the MLU
command that only count utterances in words. Also, you will need to learn how to use
the various options, such as +t or +f. One way to learn the options is to use the various
buttons in the graphic user interface as a way of learning what CLAN can do. Once you
have learned these options, it is often easier to just type in this command directly.
However, in other cases, it may be easier to use buttons to locate rare options that are
hard to remember. The decision of whether to type directly or to rely on buttons is one
that is left to each user.

CLAN Manual 14

What if you want to send the output to a permanent file and not just to the temporary
CLAN Output window? To do this you add the +f switch:

mlu +t*CHI +f sample.cha

Try entering this command, ending with a carriage return. You should see a message in
the CLAN Output window telling you that a new file called sample.mlu.cex has been

created. If you want to look at that file, type Control-O (Windows) or ⌘-o (Mac) for
Open File and you can use the standard navigation window to locate the sample.mlu.cex
file. It should be in the same directory as your sample.cha file.

You do not need to worry about the order in which the options appear. In fact, the
only order rule that is used for CLAN commands is that the command name must come
first. After that, you can put the switches and the file name in any order you wish.

Wildcards

A wildcard uses the asterisk symbol (*) to take the place of something else. For
example, if you want to run this command across a group of ten files all ending with the
extension .cha, you can enter the command in this form:

mlu +tCHI +f *.cha

Wildcards can be used to refer to a group of files (*.cha), a group of speakers (CH*), or a
group of words with a common form (*ing). To see how these could work together, try
out this command:

freq *.cha +s”*ing”

This command runs the FREQ program on all the .cha files in the LIB directory and
looks for all words ending in “-ing.” The output is sent to the CLAN Output window
and you can set your cursor there and scroll back and forth to see the output. You can
print this window or you can save it to a file.

Output Files

When you run the command

mlu +f sample.cha

the program will create an output file with the name sample.mlu.cex. It drops the .cha ex-
tension from the input file and then adds a two-part extension to indicate which command
has run (.mlu) and the fact that this is CLAN output file (.cex). If you run this command
repeatedly, it will create additional files such as sample.ml0.cex, sample.ml1.cex, sam-
ple.ml2.cex, and the like. You can add up to three letters after the +f switch, as in:

mlu +fmot sample.cha

CLAN Manual 15

If you do this, the output file will have the name “sample.mot.cex.” As an example of a
case where this would be helpful, consider how you might want to have a group of output
files for the speech of the mother and another group for the speech of the father. The
mother’s files would be named *.mot.cex and the father’s files would be named *.fat.cex.

Redirection

Instead of using the +f switch for output, you may sometimes want to use the redirect
symbol (>). This symbol sends all of the output to a single file. The individual analysis of
each file is preserved and grouped into one output file that is named in the command
string. The use of the redirect syntax is illustrated in the following examples:

freq sample.cha > myanalyses
freq sample.cha >> myanalyses
freq sample.cha >& myanalyses

These three forms have slightly different results.

1. The single arrow overwrites material already in the file.

2. The double arrow appends new material to the file, placing it at the end of
material already in the file.

3. The single arrow with the ampersand writes both the analyses of the program
and various system messages to the file.

If you want to analyze a whole collection of files and send the output from each to a sepa-
rate file, use the +f switch instead.

2.3 Sample Runs

Now we are ready to try out a few sample runs with the five most basic CLAN com-
mands: FREQ, MLU, COMBO, KWAL, and GEM.

2.3.1 Sample FREQ Runs
 FREQ counts the frequencies of words used in selected files. It also calculates the

type–token ratio typically used as a measure of lexical diversity. In its simplest mode, it
generates an alphabetical list of all the words used by all speakers in a transcript along
with the frequency with which these words occur. The following example looks
specifically at the child’s tier. The output will be printed in the CLAN window in
alphabetical order:

freq +t*CHI 0042.cha

The output is:

> freq +tCHI 0042.cha
freq +tCHI 0042.cha
Tue Aug 7 16:07:59 2007
freq (03-Aug-2007) is conducting analyses on:
 ONLY speaker main tiers matching: *CHI;
**

CLAN Manual 16

From file <0042.cha>
 1 ah
 2 bow+wow
 10 uh
 1 vroom@o

 4 Total number of different word types used
 14 Total number of words (tokens)
0.286 Type/Token ratio

A statistical summary is provided at the end. In the above example there were a total
of 14 words or tokens used with only five different word types. The type–token ratio is
found by dividing the total of unique words by the total of words spoken. For our
example, the type–token ratio would be 4 divided by 14 or a ratio of 0.286.

The +f option can be used to save the results to a file. CLAN will automatically add
the .frq.cex extension to the new file it creates. By default, FREQ excludes the strings
xxx, yyy, www, as well as any string immediately preceded by one of the following
symbols: 0, &, +, -, #. However, FREQ includes all retraced material unless otherwise
commanded. For example, given this utterance:

*CHI: the dog [/] dog barked.

FREQ would give a count of two for the word “dog,” and one each for the words “the”
and “barked.” If you wish to exclude retraced material, use the +r6 option. To learn more
about the many variations in FREQ, read the section devoted specifically to this useful
command.

2.3.2 Sample MLU Run
The MLU command is used primarily to determine the mean length of utterance of a

specified speaker. It also provides the total number of utterances and of morphemes in a
file. The ratio of morphemes over utterances (MLU) is derived from those two totals. The
following command would perform an MLU analysis on the mother’s tier (+t*MOT)
from the file 0042.cha:

mlu +t*MOT 0042.cha

The output from this command looks like this:

> mlu +tMOT 0042.cha
mlu +tMOT 0042.cha
Tue Aug 7 16:09:52 2007
mlu (03-Aug-2007) is conducting analyses on:
 ONLY speaker main tiers matching: *MOT;
**
From file <0042.cha>
MLU for Speaker: *MOT
 MLU (xxx and yyy are EXCLUDED from the utterance and morpheme
counts):

Number of: utterances = 509, morphemes = 1406

CLAN Manual 17

Ratio of morphemes over utterances = 2.762
Standard deviation = 1.933

Thus, we have the mother’s MLU or ratio of morphemes over utterances (2.762) and her
total number of utterances (509).

2.3.3 Sample COMBO Run
 COMBO is a powerful program that searches the data for specified combinations of

words or character strings. For example, COMBO will find instances where a speaker
says kitty twice in a row within a single utterance. The following command would search
the mother’s tiers (+t*MOT) of the specified file 0042.cha:

combo +tMOT +s"kitty^kitty" 0042.cha

Here, the string +tMOT selects the mother’s speaker tier only for analysis. When search-
ing for a particular combination of words with COMBO, it is necessary to precede the
combination with +s (e.g., +s"kitty^kitty") in the command line. The symbol ^ specifies
that the word kitty is immediately followed by the word kitty. The output of the command
used above is as follows:

> combo +tMOT +s"kitty^kitty" 0042.cha
((kitty^kitty))
combo +tMOT +skitty^kitty 0042.cha
Tue Aug 7 16:11:34 2007
combo (03-Aug-2007) is conducting analyses on:
 ONLY speaker main tiers matching: *MOT;
**
From file <0042.cha>
--
*** File "0042.cha": line 3066.
*MOT: kitty (1)kitty kitty .
--
*** File "0042.cha": line 3143.
*MOT: and kitty (1)kitty .

Strings matched 2 times

2.3.4 Sample KWAL Run
 KWAL searches data for user-specified words and outputs those keywords in

context. The +s option is used to specify the words to be searched. The context or cluster
is a combination of main tier and the selected dependent tiers in relation to that line. The
following command searches for the keyword “bunny” and shows both the two sentences
preceding it, and the two sentences following it in the output.

kwal +sbunny -w2 +w2 0042.cha

The -w and +w options indicate how many lines of text should be included before and
after the search words. The output is as follows:

> kwal +sbunny -w2 +w2 0042.cha

CLAN Manual 18

Tue Aug 7 16:24:37 2007
kwal (03-Aug-2007) is conducting analyses on:
 ALL speaker tiers
**
From file <0042.cha>
--
*** File "0042.cha": line 2754. Keyword: bunny
*CHI: 0 .
*MOT: see ?
*MOT: is the bunny rabbit jumping ?
*MOT: okay .
*MOT: wanna [: want to] open the book ?
--
*** File "0042.cha": line 2900. Keyword: bunny
*MOT: <<one chick breaks out of its shell> ["]> [>] .
*CHI: <0> [<] .
*MOT: <and a bunny ges by hoppety+hoppety+hop> ["] .
*MOT: <<baby koala bear rides on mother's back> ["]> [>] .
*CHI: <0> [<] .
--
*** File "0042.cha": line 3080. Keyword: bunny
*CHI: 0 .
*MOT: hmm ?
*MOT: <the bunny> [>] .
*CHI: <0> [<] .
*MOT: <hop hop bunny> [>] .
--
*** File "0042.cha": line 3085. Keyword: bunny
*MOT: <the bunny> [>] .
*CHI: <0> [<] .
*MOT: <hop hop bunny> [>] .
*CHI: <0> [<] .
*MOT: you like that book ?

2.3.5 Sample GEM Run
GEM searches for previously tagged passages for further analyses. For example, we

might want to divide the transcript according to different social situations. By dividing
the transcripts in this manner, separate analyses can be conducted on each situation type.
One way of doing this is by “piping.” Piping directs the output from one command to
another.

gem +t*CHI +d 0012.cha | freq

The output is as follows:

> gem +t*CHI +d 0012.cha | freq
Tue Aug 7 16:25:37 2007
gem (03-Aug-2007) is conducting analyses on:
 ONLY speaker main tiers matching: *CHI;
 and ONLY header tiers matching: @BG:; @EG:;
**
From file <0012.cha>
freq
Tue Aug 7 16:25:37 2007

CLAN Manual 19

freq (03-Aug-2007) is conducting analyses on:
 ALL speaker tiers
**
From pipe input
 2 box
 1 byebye
 1 do
 1 going
 1 here
 6 kitty
 2 no+no
 2 oh
 5 this
 1 to

 10 Total number of different word types used
 22 Total number of words (tokens)
0.455 Type/Token ratio

The majority of the effort involved in using GEM is in the coding of the gem entries.
There are three levels of coding:

1. Lazy GEM is the simplest form of GEM. It needs no @eg because each gem
begins with one @g and ends with the next @g.

2. The next level is basic GEM. It can be used when the gem is surrounded by un-
wanted material. It should be marked with @bg at the beginning and with @eg
at the end. Make sure all gems begin with @bg and end with @eg.

3. Tagged gems require the highest degree of care. They are good for identifying
speech segments defined by the activities they accompany. They may be
embedded with other segments but must be delineated by gem coding with
tags to differentiate them from surrounding GEM material.

By using the +t option in the command, you may limit the search to a specific speaker or
include the dependent tiers in the output. For example:

gem +t"*MOT" sample.cha

The output is as follows:

> gem +tMOT sample.cha
Tue Aug 7 16:26:43 2007
gem (03-Aug-2007) is conducting analyses on:
 ONLY speaker main tiers matching: *MOT;
 and ONLY header tiers matching: @BG:; @EG:;
**
From file <sample.cha>
***** From file sample.cha; line 32.
@Bg
*MOT: what's that ?
*MOT: is there any delicious cha:lk ?
@Eg

CLAN Manual 20

3 The Editor
CLAN includes an editor that is specifically designed to work cooperatively with

CHAT files. To open up an editor window, either type ⌘-n (Control-n on Windows) for a

new file or ⌘-o to open an old file (Control-o on Windows). This is what a new text win-
dow looks like on the Macintosh:

You can type into this editor window just as you would in any full-screen text editor.

3.1 Text Mode vs. CHAT Mode

The editor works in two basic modes: Text Mode and CHAT Mode. In Text Mode,
the editor functions as a basic ASCII editor. To indicate that you are in Text Mode, the
bar at the bottom of the editor window displays [E][Text]. To enter Text Mode, you have
to uncheck the CHAT Mode button on the Mode pulldown menu. In CHAT Mode, the
editor facilitates the typing of new CHAT files and the editing of existing CHAT files. If
your file has the extension .cha, you will automatically be placed into CHAT Mode when
you open it. To indicate that you are in CHAT Mode, the bar at the bottom of the editor
window displays [E][CHAT].

When you are first learning to use the editor, it is best to begin in CHAT mode. When
you start CLAN, it automatically opens up a new window for text editing. By default, this
file will be opened using CHAT mode. You can use this editor window to start learning
the editor or you can open an existing CHAT file using the option in the File menu. It is
probably easiest to start work with an existing file. To open a file, type Command-o
(Macintosh) or Control-o (Windows). You will be asked to locate a file. Try to open up
the sample.cha file that you will find in the Lib directory inside the CLAN directory or

CLAN Manual 21

folder. This is just a sample file, so you do not need to worry about accidentally saving
changes.

You should stay in CHAT mode until you have learned the basic editing commands.
You can insert characters by typing in the usual way. Movement of the cursor with the
mouse and arrow keys works the same way in this editor as it does in most graphic
editors. Functions like scrolling, highlighting, cutting, and pasting also work in the
standard way. You should try these functions right away. Use them to move around in the
sample.cha file. Try cutting and pasting sections and using the scroll bar, the arrow keys,
and the page up and page down keys. Try to type a few sentences.

3.2 File, Edit, and Font Menus

The basic functions of opening files, printing, cutting, undoing, and font changing are
common to all window-based text editors. These commands can be found under the File,
Edit, and Font menus in the menu bar. The keyboard shortcuts for pulling down these
menu items are listed next to the menu options. Note that there is also a File function
called “Save Last Clip As ...” which you can use to save a time-delimited sound segment
as a separate file.

3.3 Default Window Positioning and Font Control

Often you may find that you want to control the way in which the CLAN editor
displays windows. There are two basic things you may want to control. First, you may
wish to control the position of the window on the screen when you first open it. In order

to control the default window position, you need to open an empty new file using ⌘-n.
Then resize and reposition the window to the form and position that you want and close
it. After this, old files that you open will appear in this same position. The system for
controlling the default Font is based on a similar idea. Whenever you select a new font,
that becomes your current default font. The recent fonts you have used appear at the top
of CLAN’s Font menu. If you want to select a new default, just select a new font and that
will be the new default.

3.4 CA Styles

CHAT supports many of the CA (Conversation Analysis) codes as developed by
Sacks, Schegloff, Jefferson (1974) and their students. The implementation of CA inside
CLAN was guided by suggestions from Johannes Wagner, Chris Ramsden, Michael
Forrester, Tim Koschmann, Charles Goodwin, and Curt LeBaron. Files that use CA styles
should declare this fact by including CA in the @Languages line, as in this example:

@Languages: en, CA

It is also useful to apply the CAfont font to CA files. Because the characters in this font
have a fixed width, you can use the INDENT program to make sure that CA overlap
markers are clearly aligned. Special CA characters can be inserted by typing the F1
function key followed by some letter or number, as indicated in this list:

CLAN Manual 22

CA Char Function F1 + Unicode
up-arrow ↑ shift to high pitch up arrow 2191
down-arrow ↓ shift to low pitch down arrow 2193
inverted ? ¿ inhalation ? 00BF
equals sign with slash ≠ no break = 2260
raised [⌈ top begin overlap [2308

raised] ⌉ top end overlap] 2309

lowered [⌊ bottom begin overlap shift [230A

lowered] ⌋ bottom end overlap shift] 230B

up slant arrow ↗ ↗ faster ↗ right arrow 2197

down slant arrow ↘ ↘ slower ↘ left arrow 2198

single cross † † creaky † t 2020
small super-0 ° ° softer ° 0 zero 00B0
asterisk ★ louder ★ ★ * 2605
low bar ▁ ▁ low pitch ▁ d 2581

high bar ▔ ▔ high pitch ▔ h 2594

yen sign \ \ laughed words \ y 00A5
pound sign £ suppressed laughter pulse l 00A3
cents sign ¢ pulse of laughter c 00A2

If you want to convert some of these characters to their more traditional CA forms, you
can do this using the CHAT2CA program. However, the files produced by CHAT2CA
will no longer be in conformity with CHAT or the CHILDES or TalkBank databases, so
we recommend only using this program when you are finished editing the files.

The F1 key is also being used to facilitate insertion of two diacritics for Romanized
versions of Arabic. The raised h diacritic is bound to F1-shift-h and the subscript dot is
bound to F1-comma.

3.5 Setting Special Colors

Within the Font Menu, you will find options for setting the style of areas as
“smaller”, “larger”, “underline”, “italic”, or “color keyword”. It is best to avoid using
these formatting features unless necessary, since they tend to complicate the shape of the
CHAT file. However, underlining is a crucial component of CA transcription and must
be used when you are working in that format. You may also find it important to set the
color of certain tiers to improve the readability of your files. For the Macintosh, you can
do this in the following way. Select the “Color Keywords” option. In the dialog that
appears, type the tier that you want to color in the upper box. For example, you may
want to have %mor or *CHI in a special color. Then click on “add to list” and edit the
color to the type you wish. The easiest way to do this is to use the crayon selector. Then
make sure you select “color entire tier.” To learn the various uses of this dialog, try
selecting and applying different options.

CLAN Manual 23

3.6 Searching

In the middle of the Edit menu, you will find a series of commands for searching.
The Find command brings up a dialog that allows you to enter a search string and to
perform a reverse search. The Find Same command allows you to repeat the find
multiple times. The Go To command allows you to move to a particular line number. The
Replace command allows you to find a particular string and replace it. There is a dialog
on both Macintosh and Windows that allows you to enter your search string, your
replacement string, along with tabs or returns. When you need to perform a large series
of different replacements, you can set up a file of replacement forms in the two-column
form used by CHSTRING. You then are led through the words in this replacement file
one by one. On the Macintosh, you have to use the following keyboard commands that
are described at the bottom of the editor screen:
! replace all of them
n do not replace current occurrence
spacebar replace the current occurrence
Control-g abort this command

3.7 Keyboard Commands

In addition to the mouse and the arrow keys, there are many keyboard movement
commands based on the EMACS editor. However, most users will prefer to use mouse
movements and the commands available in the menu bar. For those familiar with
EMACS, a list of these commands can be written out by typing Esc-h. This creates a file
called keys list that you can then read, save, or print out. If you want to change the
binding of a key, you go through these steps:

1. Type Esc-k.
2. Enter a command name, such as “cursor-down.”
3. Enter a key, such as F4.
4. Then F4 should move the cursor down.

3.8 Exclude Tiers

This function allows you to hide certain tiers in your transcript. It is equivalent to
typing escape-4. If you want to exclude the %mor tier, you type Control-x Control-t
(hold down the control key and type x and then t). Then you type e to exclude a tier and
%mor for the morphological tier. If you want to exclude all tiers, you type just %. To
reset the tiers and to see them all, you type Esc-4 and then r.

3.9 Send to Sound Analyzer.

This mode allows you to send a bulleted sound segment to Praat or Pitchworks. If
you are using Praat, you must first start up the Praat window (download Praat from
http://www.fon.hum.uva.nl/praat) and place your cursor in front of a bullet for a sound
segment. Selecting “send to Praat” then sends that clip to the Praat window for further
analysis. To run Praat in the background without a GUI, you can also send this command
from a Perl or Tcl script:

CLAN Manual 24

system (“\”C:\\Program Files\\Praatcon.exe\” myPraatScript.txt

3.10 Tiers Menu

When you open a CHAT file with an @Participants line, the editor looks at each of
the participants declared for the file and inserts their codes into the Tiers menu. Each
speaker is associated with a keyboard command that lets you enter the name quickly. If
you make changes to the @Participants line, you can press the Update button at the
bottom of the menu to reload new speaker names.

3.11 Running CHECK Inside the Editor

You can run CHECK from inside the editor. You do this by typing Esc-L or selecting
Check Opened File from the Mode menu. If you are in CHAT Mode, CHECK will look
for the correct use of CHAT. Make sure that you have set you “Lib” directory to
childes/clan/lib, where the depfile.cut file is located. If you are in CA Mode, CHECK will
look for the correct use of CA transcription.

3.12 Preferences and Options

You can set preferences by pulling down the Edit menu and selecting Options. The
following dialog box will pop up:

These options control the following features:

1. Checkpoint frequency. This controls how often your file will be saved. If
you set the frequency to 50, it will save after each group of 50 characters
that you enter.

CLAN Manual 25

2. Limit of lines in CLAN output. This determines how many output lines
will go to your CLAN output screen. It is good to use a large number, since
this will allow you to scroll backwards through large output results.

3. Tier for disambiguation. This is the default tier for the Disambiguator
Mode function.

4. Open Commands window at startup. Selecting this option makes it so that
the Commands window comes up automatically whenever you open
CLAN.

5. No backup file. By default, the editor creates a backup file, in case the
program hangs. If you check this, CLAN will not create a backup file.

6. Start in CHAT Coder mode. Checking this will start you in Text Mode
when you open a new text window.

7. Auto-wrap in Text Mode. This will wrap long lines when you type.

8. Auto-wrap CLAN output. This will wrap long lines in the output.

9. Show mixed stereo sound wave. CLAN can only display a single sound
wave when editing. If you are using a stereo sound, you may want to
choose this option.

10. Output Unix CRs. This is for people who use CLAN on Unix.

CLAN Manual 26

4 Linkage

In the old days, transcribers would use a foot pedal to control the rewinding and
replaying of tapes. With the advent of digitized audio and video, it is now possible to use
the computer to control the replay of sound during transcription. Moreover, it is possible
to link specific segments of the digitized audio or video to segments of the computerized
transcript. This linkage is achieved by inserting a header tier of this shape

@Media: clip, audio

The first field in the @Media line is the name of the media file. You do not need to
include the extension of the media file name. Each transcript should be associated with
one and only one media file. To keep your project well organized it is best if the media
file name matches the transcript file name. The second field in the @Media header tells
whether the media is audio, video, or missing.

Once this header tier is entered, you can use various methods to insert sound markers
that appear initially to the user as bullets. When these bullets are opened up they look
like this:

*ROS: alert [!] alert ! ∙1927_4086∙

When then are closed then look like this:

*ROS: alert [!] alert ! ∙

The size and shape of the bullet character varies across different fonts, but it will usually
be a bit darker than what you see above. The information in the bullet provides clearer
transcription and immediate playback directly from the transcript. The first number in the
bullet indicates the beginning of the segment in milliseconds and the second number
indicates the end in milliseconds.

Once a CHAT files has been linked to audio or video, it is easy to playback the
interaction from the transcript using “Continuous Playback” mode (escape-8). In this
mode, the waveform display is turned off and the computer plays back the entire
transcript, one utterance after another, while moving the cursor and adjusting the screen
to continually display the current utterances. This has the effect of “following the
bouncing ball” as in the old sing-along cartoons or karaoke video. In Continuous Movie
Playback Mode, the video is played as the cursor highlights utterances in the text.

To create a text that can be played back and studied in this way, however, the user
can make use of any combination of six separate methods: sonic mode, transcriber mode,
video mode, sound walker, time mark editing, and export to partitur editors. This chapter
describes each of these five methods and leaves it up to the individual researcher which
of these methods is best for his or her project.

To use any of these methods, you need to have a digitized audio or video file. Audio
files can be in either .wav or .mp3 format. Video files can be in any video format that

CLAN Manual 27

can be played by QuickTime. You will also need to have QuickTime installed on your
machine. Once you have created a digitized sound file for the material you wish to
transcribe, you are ready to start using one of the five methods described below.

4.1 Sonic Mode

Sonic Mode involves transcribing from a sound waveform. Currently, Sonic Mode
can only be used with audio files. To begin Sonic transcription, you should launch CLAN
and open a new file. Type in your basic header tiers first, along with the @Media header
discussed above. Then, go to the Mode pulldown menu and select “Sonic Mode” and you
will be asked to locate the digitized sound file. Once you have selected your file, the
waveform comes up, starting at the beginning of the file. Several functions are available
at this point:

1. Sound playing from the waveform. You can drag your cursor over a segment
of the waveform to highlight it. When you release your mouse, the segment will
play. As long as it stays highlighted, you can replay it by holding down the shift
key and clicking the mouse. At this point, it does not matter where your cursor is
positioned.

2. Waveform demarcation. You can move the borders of a highlighted region by
holding down the shift key and clicking your mouse to place the cursor at the
place to which you wish the region to move. You can use this method to either
expand or contract the highlighted region.

3. Transcription. While you are working with the waveform, you can repeatedly
play the sound by using shift-click. This will help you recognize the utterance
you are trying to transcribe. You then go back to the editor window and type out
the utterance that corresponds to the highlighted segment.

4. Linking. When you believe that the highlighted waveform corresponds correctly
to the utterance you have transcribed, you can click on the “s” button to the left
of the waveform display and a bullet will be inserted. This bullet contains
information regarding the exact onset and offset of the highlighted segment. You
can achieve the same effect using escape-I (insert time code).

5. Changing the waveform window. The +H and -H buttons on the left allow you
to increase or decrease the amount of time displayed in the window. The +V and
-V buttons allow you to control the amplitude of the waveform.

6. Scrolling. At the bottom of the sound window is a scroll-bar that allows you to
move forward or backward in the sound file (please note that scrolling in the
sound file can take some time as the sound files for long recordings are very
large and take up processing capacity).

7. Waveform activation. In order to highlight the section of the waveform associ-
ated with a particular utterance, you need to triple-click on the bullet following
the utterance you want to replay. You must triple-click at a point just before the
bullet to get reliable movement of the waveform. If you do this correctly, the
waveform will redisplay. Then you can replay it by using shift-click.

8. Expanding and hiding the bullets. If you want to see the exact temporal refer-
ences that are hiding inside the bullet symbols, you can type Esc-A to expand
them. Typing Esc-A again will hide them again.

9. Time duration information. Just above the waveform, you will see the editor

CLAN Manual 28

mode line. This is the black line that begins with the word “CLAN”. If you click
on this line, you will see three additional numbers. The first is the beginning and
end time of the current window in seconds. The second is the position of the cur-
sor in hours:minutes:seconds.milliseconds. The third is the beginning and end of
the current selection in seconds. If you click once again on the mode line, you
will see sampling rate information for the audio file.

4.2 Transcriber Mode

This mode is faster than Sonic or Video Mode, but often less precise. However,
unlike Sonic Mode, it can also be used for video transcription. Transcriber Mode is
intended for two uses. The first is for transcribers who wish to link a digitized file to an
already existing CHAT transcript. The second is for transcribers who wish to produce a
new transcript from a digitized file.

4.2.1 Linking to an already existing transcript

To link a video or audio file to an already existing transcript, please follow these steps:
1. Place your CLAN transcript and video file to the same directory.
2. Set your working directory as the location of the video and transcript.
3. Open the CLAN transcript.
4. Enter a few basic headers, including the @Media header discussed at the

beginning of this chapter.
5. Place your cursor somewhere within the first utterance.
6. Click on Mode, Transcribe Sound or Movie or just type F5.
7. When CLAN asks you for the movie, click on the video file you want to

transcribe.
8. The movie will automatically start playing in a Quicktime video player. When it

does, listen for the different utterances. At the end of each utterance, press the
spacebar. This will automatically record a bullet at the end of the line that
“connects” the video to the transcript.

9. If you get off at any point in time, click on the video window and the video will
stop running.

10. Once playback is stopped, reposition your cursor at the last correct bullet and
again click on “Transcribe sound or movie.” The movie will automatically begin
at the bullet where you cursor is. As you press the spacebar, the new bullets will
overwrite the old ones.

11. After you have spent some time inserting bullets, click file, save. The bullets will
be saved into your transcript.

12. After you are done adding bullets, click in the video window to stop the process.
Then go to the top of the file, and insert @Begin and @Participants lines. Use the
@Participants to generate key shortcuts under the View menu. Then replay the
first bullet, transcribe it, and use the appropriate command-1 or command-2 key
to enter the speaker ID. Then go on to the next utterance and repeat the process.
The result will be a full transcription that is roughly linked to the audio.

CLAN Manual 29

4.2.2 To create a new transcript

You can use the F5 insertion mode to create a new transcript in which the links have
already been inserted. Here are the steps:

1. Open a blank file.
2. Enter a few basic headers, along with the @Media header discussed at the

beginning of this chapter. Make sure that the media is in your working directory.
3. Go to "Mode," and select "Transcribe Sound or Movie {F5}."
4. Find the movie clip you want to transcribe.
5. When you click on it, the movie will open in another window.
6. Immediately, start pressing the spacebar at the end of each utterance. This will

insert a bullet into the blank transcript.
7. When you are finished inserting the bullets, save the file.
8. Then, one at a time, Crtl-click on the bullets and transcribe them.
9. If the bullets need some adjusting, you may do this while you are transcribing by

manipulating the numbers in the movie window and clicking on the save button in
the lower right hand corner. You can also expand the bullets {Esc-A} and type it
in manually.

10. Save frequently.
11. When you are done transcribing, it is a good idea to look at the transcript in

continuous playback mode to make sure everything is transcribed correctly. To
do this go to "Mode," and then "Continuous Playback {Esc-8}."

4.2.3 Sparse Annotation

For some applications, it is not necessary to produce a complete transcription of an
interaction. Instead, it is sufficient to link a few comments to just a few important
segments. For example, during a one-hour classroom Mathematics lesson, it might be
sufficient to point out just a few "teachable moments." To do this, you can follow these
steps:

1. open a new file.
2. insert a few basic headers, along with the @Media header discussed at the

beginning of this chapter. Make sure the media is in your working directory.
3. select the "Edit" menu and pulldown to "Select F5 option"
4. in segment length type 3000 for 3 seconds bullet length press OK button
5. start F5 mode by pressing F5 key
6. select the media you want and CLAN will start playing.
7. when you hear what you want to comment click F1 or F2 or F5
8. the bullet will be inserted into text and playback will stop
9. click on transcript text window and add comment to that bullet.
10. move text cursor to the last bullet less tier, i.e. "*: ".
11. press F5 again and the process will start again from last stop.

CLAN Manual 30

4.3 Video Linking

To learn to do video linking, it is best to first the video.zip file that contains
transcripts and a QuickTime movie for the first 28 utterances in the "MyTheory"
problem-based learning session analyzed in a special issue of Discourse Processes (27:2)
edited by Tim Koschmann. This file is at http://www.talkbank.org/dv/final.html. Using
video.zip, you then:

1. Unzip the file.
2. If you have a recent version of CLAN and QuickTime 7 or later, just double click

on 28lines.cha. If you don't have QuickTime 7 or above, you can download a
copy from http://www.apple.com/quicktime/download/

3. After the file opens, you will see some solid black bullets. These are the time
markers. If you type escape-A they will expand and you can see their values.
Then type escape-A again to close them.

4. Now place your cursor near the beginning of the file and type escape-8 for con-
tinuous playback. The video window should open and the file should play back.
When you want it to stop, double click.

5. To play back a single line, place your mouse just to the left of a bullet, press the
command key (Windows: control) and click the mouse. After a few seconds of
pause, the segment will play.

6. Try playing different segments, as well as using the continuous movie playback
mode, showing and playing from thumbnails, and other video features found in
the "Mode" menu.

If you want to link your transcript to a movie or create a new transcript that is linked
to a movie, you can use one of two methods –Transcriber Mode or Manual Linking
Mode. Transcriber Mode was described in the previous section. It is a quick and easy
method that will prove useful for beginning linking to a particular transcript. Using this
method, however, sacrifices precision. It is then necessary to go back and tighten up the
links using the Manual Linking method. The Help screen on the video window gives you
the functions you will need for this. Many of these functions apply to both video and
audio. Their use is summarized here:

1. <- will set back the current time. This function makes small changes at first and
then larger ones if you keep it pressed down.

2. -> will advance the current time. This function makes small changes at first and
then larger ones if you keep it pressed down.

3. control <- will decrease the beginning value for the segment in the text window
as well as the beginning value for the media in the video window. This function
makes small changes at first and then larger ones if you keep it pressed down.

4. control -> will increase the beginning value for the segment in the text window
as well as the beginning value for the media in the video window. This function
makes small changes at first and then larger ones if you keep it pressed down.

5. command <- will decrease the beginning value for the segment in the text win-
dow as well as the beginning value for the media in the video window. This
function makes small changes at first and then larger ones if you keep it pressed
down.

CLAN Manual 31

6. command -> will increase the beginning value for the segment in the text win-
dow as well as the beginning value for the media in the video window. This func-
tion makes small changes at first and then larger ones if you keep it pressed
down.

7. / pressing the button with the right slash with the start time active moves the
start time to current time. If the current time is active, it moves the current time
to the start time.

8. \ pressing the button with the left slash with the end time active moves the end
time to current time. If the current time is active, it moves the current time to the
end time.

9. Triple-clicking on the relevant cell has the same effect as the above two func-
tions.
10. You can play the current segment either by pressing the repeat button or

the space button when the video window is active. The behavior of the
repeat play function can be altered by inserting various values in the box
to the right of “repeat”. These are illustrated in this way:

-400 add 400 milliseconds to the beginning of the segment to be repeated
+400 add 400 milliseconds to the end of the segment to be repeated
b400 play the first 400 milliseconds of the segment
e400 play the last 400 milliseconds of the segment

4.4 SoundWalker

 The SoundWalker facility is based on the conception implemented by Jack DuBois at
UC Santa Barbara. This controller allows you to step forward and backwards through a
digitized file, using a few function keys. It attempts to imitate the old transcriber foot
pedal, but with some additional functionality. The options you can set are:

1. walk length: This sets how long a segment you want to have repeated.
2. loop number: If you set 3, for example, the programs plays each step three

times before moving on.
3. backspace: The amount of rewinding in milliseconds at the end of each

loop.
4. walk pause length: The duration of the pause between loops.
5. playback speed: This setting allows you to speed up or slow down your

playback rate.
The basic contrast here is between "stepping" which means moving one step forward or
back and "walking" which just keeps on stepping one step after another in the manner
you have specified with the above option. The keys you use are:

F6 walk
F7 step backward
F8 play current step
F9 step forward
shift F7 play to the end
F1-F12 stop playing

CLAN Manual 32

You will find all of these options in the "Walker Controller" dialog that you open under
the Window menu. Once you open the Walker Controller and thereby enable
SoundWalker, the functions described above become enabled.

If you would like to use a real foot pedal with SoundWalker, you can order one
(Windows Only) from www.xkeys.com. This foot pedal installs along with the keyboard
and allows you to bind F6, F7, and F8 to the left, middle, and right pedals for the
functions of rewind, play, and forward.

4.5 Export to Partitur Editors

Although CLAN is an excellent tool for basic transcription and linkage, more fine-
grained control for overlap marking is best achieved in a Partitur or “musical score”
editor like EXMARaLDA or ELAN. EXMARaLDA can be downloaded from
www1.uni-hamburg.de/exmaralda/and ELAN can be downloaded from
www.mpi.nl/tools/. To convert CHAT files to and from ELAN and EXMARaLDA, you
can use the CHAT2ELAN, ELAN2CHAT, CHAT2EXMAR, and EXMAR2CHAT
programs. When editing in ELAN and EXMARaLDA, it is best to focus only on the use
of these tools for time alignment and not for other aspects of editing, since CLAN is more
highly structured for these other aspects of transcription.

4.6 Playback Control

Once a transcript has been linked, you will want to study it through playback. Basic
playback uses the escape-8 command for continuous playback and command-click for
playback of a single utterance. You can use manual editing of the bullets to modify
playback in two other ways:

http://www.mpi.nl/tools/
http://www.xkeys.com/

CLAN Manual 33

4.6.1 Forced Skipping
If you have an audio recording with a large segment that you do not wish to

transcribe, you may also wish to exempt this segment from continuous playback. If you
do not apply forced skipping to do this, you will have to listen through this untranscribed
material during continuous playback. To implement forced skipping, you should open up
your bullets using escape-A. Then go to the end of the bullet after the skip and insert a
dash after the second time value. For example, you might change 4035_5230 to
4035_5230 Then close the bullets and save the file.

CLAN Manual 34

5 Coder Mode
Coder Mode is useful for researchers who have defined a fully structured coding

scheme that they wish to apply to all the utterances in a transcript. To begin Coder
Mode, you need to shift out of Editor Mode. To verify your current mode, just double-
click on a file. Near the bottom of the text window is a line like this:

CLAN [E] [chat] sample.cha 1

The [E] entry indicates that you are in editor mode and the [chat] entry indicates that you
are in CHAT Mode. In order to begin coding, you first want to set your cursor on the first
utterance you want to code. You can use an file to do this. If the file already has %spa
lines coded, you will be adding additional codes. If none are present yet, Coder’s Editor
will be adding new %spa line. Once you have placed the cursor anywhere on the first
line you want to code, you are ready to leave CHAT Mode and start using Coder Mode.
To go into Coder Mode, type Esc-e. You will be asked to load a codes file. Just navigate
to your library directory and select one of the demo codes files beginning with the word
“code.” We will use codes1.cut for our example.

5.1.1 Entering Codes
Now the coding tier that appears at the top line of the codes1.cut file is shown at the

bottom of the screen. In this case it is %spa:. You can either double-click this symbol or
just hit the carriage return and the editor will insert the appropriate coding tier header
(e.g. %spa), a colon and a tab on the line following the main line. Next it will display the
codes at the top level of your coding scheme. In this case, they are $POS and $NEG. You
can select one of these codes by using either the cursor keys, the plus and minus keys or a
mouse click. If a code is selected, it will be highlighted. You can enter it by hitting the
carriage return or double-clicking it. Next, we see the second level of the coding scheme.

To get a quick overview of your coding choices, type Esc-s several times in
succession and you will see the various levels of your coding hierarchy. Then return back
to the top level to make your first selection. When you are ready to select a top-level
code, double-click on it with your mouse. Once you have selected a code on the top level
of the hierarchy, the coder moves down to the next level and you repeat the process until
that complete code is constructed. To test this out, try to construct the code
$POS:COM:VE.

The coding scheme entered in codes1.cut is hierarchical, and you are expected to go
through all the decisions in the hierarchy. However, if you do not wish to code lower
levels, type Esc-c to signal that you have completed the current code. You may then enter
any subsequent codes for the current tier.

Once you have entered all the codes for a particular tier, type Esc-c to signal that you
are finished coding the current tier. You may then either highlight a different coding tier
relevant to the same main line, or move on to code another main line. To move on to
another main line, you may use the arrow keys to move the cursor or you may

CLAN Manual 35

automatically proceed to next main speaker tier by typing Control-t. Typing Control-t
will move the cursor to the next main line, insert the highlighted dependent coding tier,
and position you to select a code from the list of codes given. If you want to move to yet
another line, skipping over a line, type Control-t again. Try out these various commands
to see how they work.

If you want to code data for only one speaker, you can restrict the way in which the
Control-t feature works by using Esc-t to reset the set-next-tier-name function. For
example, you confine the operation of the coder to only the *CHI lines, by typing Esc-t
and then entering CHI. You can only do this when you are ready to move on to the next
line.

If you receive the message “Finish coding current tier” in response to a command (as,
for example, when trying to change to editor mode), use Esc-c to extricate yourself from
the coding process. At that point, you can reissue your original command. Here is a sum-
mary of the commands for controlling the coding window.

Function
finish coding current code
finish coding current tier
finish coding current tier and go to the next
restrict coding to a particular speaker
go on to the next speaker
show subcodes under cursor

5.1.2 Setting Up Your Codes File
When you are ready to begin serious coding, you will want to create your own codes

file to replace our sample. When editing your codes file, make sure that you are in Text
Mode and not CHAT Mode. You select Text Mode from the menu by deselecting
(unchecking) CHAT Mode in the Mode menu. To make sure you are in Text Mode, look
for [E][TEXT] in the bottom line of the Editor window. If you decide to use another
editor or if you do not use Text Mode in CLAN, you will probably have problems.

You will probably find it useful to use the samples in the /coder folder in the /lib
folder included with the CLAN program distribution. In the next paragraphs, we will
explain the construction of the codes-basic.cut file in that folder. The first line of your
codes-basic.cut file is:

\ +b50 +d +l1 +s1

The options on the main line were described in the previous section on editor options.
In this example, the +b option sets the checkpoint buffer (that is, the interval at which the
program will automatically back up the work you have done so far in that session). If you
find the interval is too long or too short, you can adjust it by changing the value of b. The
+d option tells the editor to keep a “.bak” backup of your original CHAT file. To turn off
the backup option, use –d. The +l option reorders the presentation of the codes based on

CLAN Manual 36

their frequency of occurrence. There are three values of the +l option:
0 leave codes without frequency ordering
1 move most frequent code to the top
2 move codes up one level by frequency

If you use the +s option, the program assumes that all of the codes at a particular level
have the same codes symmetrically nested within them. For example, consider the codes-
basic.cut file:
\ +l1 +s1 +b50
%spa:
 " $MOT
 :POS
 :Que
 :Res
 :NEG
 " $CHI

The spaces in this file must be spaces and not tabs. However, there must be a tab
following the colon on the %spa: tier. The above file is a shorthand for the following
complete listing of code types:

$MOT:POS:Que
$MOT:POS:Res
$MOT:NEG:Que
$MOT:NEG:Res
$CHI:POS:Que
$CHI:POS:Res
$CHI:NEG:Que
$CHI:NEG:Res

It is not necessary to explicitly type out each of the eight combinations of codes. With
the +s1 switch turned on, each code at a particular level is copied across the branches so
that all of the siblings on a given level have the same set of offspring. A more extensive
example of a file that uses this type of inheritance is the system for error coding given in
the codeserr.cut file in the /lib/coder folder distributed with CLAN.

If not all codes at a given level occur within each of the codes at the next highest
level, each individual combination must be spelled out explicitly and the +s option should
not be used. The second line in the file should declare the name for your dependent tier. It
should end with a tab, so that the tab is inserted automatically in the line you are con-
structing. A single codes.cut file can include coding systems for many different
dependent tiers with each system in order in the file and beginning with an identifier such
as $spa:.

Setting up the codes.cut file properly is the trickiest part of Coder Mode. Once properly
specified, however, it rarely requires modification. If you have problems getting the
editor to work, chances are the problem is with your codes.cut file.

CLAN Manual 37

6 Exercises
This chapter presents exercises designed to help you think about the application of

CLAN for specific aspects of language analysis. The illustrations in the section below are
based on materials developed by Barbara Pan originally published in Chapter 2 of
Sokolov and Snow (1994). The original text has been edited to reflect subsequent
changes in the programs and the database. Barbara Pan devised the initial form of this
extremely useful set of exercises and kindly consented to their inclusion here.

6.1 Contrasting Four Measures

One approach to transcript analysis focuses on the computation of particular measures
or scores that characterize the stage of language development in the children or adults in
the sample.

1. One popular measure (Brown, 1973) is the MLU or mean length of utterance,
which can be computed by the MLU program.

2. A second measure is the MLU of the five longest utterances in a sample, or
MLU5. Wells (1981) found that increases in MLU of the five longest utterances
tend to parallel those in MLU, with both levelling off after about 42 months of
age. Brown suggested that MLU of the longest utterance tends, in children de-
veloping normally, to be approximately three times greater than MLU.

3. A third measure is MLT or Mean Length of Turn which can be computed the the
MLT program.

4. A fourth popular measure of lexical diversity is the type–token ratio of Templin
(1957).

In these exercises, we will use CLAN to generate these four measures of spontaneous
language production for a group of normally developing children at 20 months. The goals
are to use data from a sizeable sample of normally developing children to inform us as to
the average (mean) performance and degree of variation (standard deviation) among chil-
dren at this age on each measure; and to explore whether individual children's
performance relative to their peers was constant across domains. That is, were children
whose MLU was low relative to their peers also low in terms of lexical diversity and
conversational participation? Conversely, were children with relatively advanced
syntactic skills as measured by MLU also relatively advanced in terms of lexical diversity
and the share of the conversational load they assumed?

The speech samples analyzed here are taken from the New England corpus of the
CHILDES database, which includes longitudinal data on 52 normally-developing
children. Spontaneous speech of the children interacting with their mothers was collected
in a play setting when the children were 14, 20, and 32 months of age. Transcripts were
prepared according to the CHAT conventions of the Child Language Data Exchange
System, including conventions for morphemicizing speech, such that MLU could be
computed in terms of morphemes rather than words. Data were available for 48 of the 52
children at 20 months. The means and standard deviations for MLU5, TTR, and MLT

CLAN Manual 38

reported below are based on these 48 children. Because only 33 of the 48 children
produced 50 or more utterances during the observation session at 20 months, the mean
and standard deviation for MLU50 is based on 33 subjects.

For illustrative purposes, we will discuss five children: the child whose MLU was the
highest for the group (68.cha), the child whose MLU was the lowest (98.cha), and one
child each at the first (66.cha), second (55.cha), and third (14.cha) quartiles. Transcripts
for these five children at 20 months can be found in the /ne20 directory in the /lib
directory distributed with CLAN.

Our goal is to compile the following basic measures for each of the five target
children: MLU on 50 utterances, MLU of the five longest utterances, TTR, and MLT. We
then compare these five children to their peers by generating z-scores based on the means
and standard deviations for the available sample for each measure at 20 months. In this
way, we were will generate language profiles for each of our five target children.

6.2 MLU50 Analysis

The first CLAN analysis we will perform calculates MLU for each child on a sample
of 50 utterances. By default, the MLU program excludes the strings xxx, yyy, www, as
well as any string immediately preceded by one of the following symbols: 0, &, +, -, #, $,
or : (see the CHAT manual for a description of transcription conventions). The MLU
program also excludes from all counts material in angle brackets followed by [/], [//], or
[% bch] (see the CLAN manual for list of symbols CLAN considers to be word,
morpheme, or utterance delimiters). Remember that to perform any CLAN analysis, you
need to be in the directory where your data is when you issue the appropriate CLAN
command. In this case, we want to be in /childes/clan/lib/ne20. The command string we
used to compute MLU for all five children is:

mlu +t*CHI +z50u +f *.cha
+t*CHI Analyze the child speaker tier only
+z50u Analyze the first 50 utterances only
+f Save the results in a file
*.cha Analyze all files ending with the extension .cha

The only constraint on the order of elements in a CLAN command is that the name of
the program (here, MLU) must come first. Many users find it good practice to put the
name of the file on which the analysis is to be performed last, so that they can tell at a
glance both what program was used and what file(s) were analyzed. Other elements may
come in any order.

The option +t*CHI tells CLAN that we want only CHI speaker tiers considered in the
analysis. Were we to omit this string, a composite MLU would be computed for all
speakers in the file.

The option + z50u tells CLAN to compute MLU on only the first 50 utterances. We
could, of course, have specified the child’s first 100 utterances (+z100u) or utterances
from the 51st through the 100th (+z51u-100u). With no +z option specified, MLU is

CLAN Manual 39

computed on the entire file.

The option +f tells CLAN that we want the output recorded in output files, rather than
simply displayed onscreen. CLAN will create a separate output file for each file on which
it computes MLU. If we wish, we may specify a three-letter file extension for the output
files immediately following the +f option in the command line. If a specific file extension
is not specified, CLAN will assign one automatically. In the case of MLU, the default ex-
tension is .mlu.cex. The .cex at the end is mostly important for Windows, since it allows
the Windows operating system to know that this is a CLAN output file.

Finally, the string *.cha tells CLAN to perform the analysis specified on each file
ending in the extension .cha found in the current directory. To perform the analysis on a
single file, we would specify the entire file name (e.g., 68.cha). It was possible to use the
wildcard * in this and following analyses, rather than specifying each file separately,
because:

1. All the files to be analyzed ended with the same file extensions and were in the
same directory; and
2. in each file, the target child was identified by the same speaker code (i.e.,

CHI), thus allowing us to specify the child’s tier by means of +t*CHI.

Utilization of wildcards whenever possible is more efficient than repeatedly typing in
similar commands. It also cuts down on typing errors.

By default, CLAN computes MLU in morphemes, rather than words, if the transcript
is morphemicized on the main line. The user may override this default and have CLAN
ignore morphemicization symbols by using the option, followed by those symbols to be
ignored. For example, -c# would instruct CLAN to ignore the prefix symbol in words
such as un#tie; -c#-would result in both the # and - symbols in un#tie-ed being
disregarded. Thus, researchers can choose not to count morphemes they believe the child
is not yet using productively. To have all morphemicization symbols ignored, one would
use -c#&- .

 For illustrative purposes, let us suppose that we ran the above analysis on only a
single child (68.cha), rather than for all five children at once (by specifying *.cha). We
would use the following command:

mlu +t*CHI +z50u 68.cha

The output for this command would be as follows:

> mlu +t*CHI +z50u 68.cha
mlu +t*CHI +z50U 68.cha
Wed Oct 20 11:46:51 1999
mlu (18-OCT-99) is conducting analyses on:
 ONLY speaker main tiers matching: *CHI;
**
From file <68.cha>

CLAN Manual 40

MLU for Speaker: *CHI:
 MLU (xxx and yyy are EXCLUDED from the utterance and morpheme
counts):

Number of: utterances = 50, morphemes = 133
Ratio of morphemes over utterances = 2.660
Standard deviation = 1.570

 MLU reports the number of utterances (in this case, the 50 utterances we specified),
the number of morphemes that occurred in those 50 utterances, the ratio of morphemes
over utterances (MLU in morphemes), and the standard deviation of utterance length in
morphemes. The standard deviation statistic gives some indication of how variable the
child’s utterance length is. This child’s average utterance is 2.660 morphemes long, with
a standard deviation of 1.570 morphemes.

Check line 1 of the output for typing errors in entering the command string. Check
lines 3 and possibly 4 of the output to be sure the proper speaker tier and input file(s)
were specified. Also check to be sure that the number of utterances or words reported is
what was specified in the command line. If CLAN finds that the transcript contains fewer
utterances or words than the number specified with the +z option, it will still run the
analysis but will report the actual number of utterances or words analyzed.

6.3 MLU5 Analysis

The second CLAN analysis we will perform computes the mean length in morphemes
of each child’s five longest utterances. To do this, we direct the output of one program to
a second program for further analysis. This process is called piping. Although we could
accomplish the same goal by running the first program on each file, sending the output to
files and then performing the second analysis on the output files, piping is more efficient.
The trade-off is that the analysis must be done on one file at a time (by specifying the full
file name), rather than by using the * wildcard. The CLAN command string we use is:

maxwd +t*CHI +g1 +c5 +dl 68.cha | mlu > 68.ml5.cex

+t*CHI Analyze the child speaker tier only
+gl Identify the longest utterances in terms of morphemes
+c5 Identify the five longest utterances
+dl Output the data in CHAT format
68.cha The child language transcript to be analyzed
| mlu Pipe the output to the MLU program
> Send the output of MLU to a file
68.ml5.cex Create a file for the output, called ml5.cex

If we run simply the first part of this command up to the pipe symbol, the output
would look like this:

*CHI: <I want to see the other box> [?] .
*CHI: that-'is [= book] the <morning # noon and night> ["] .
*CHI: there-'is a dolly in there [= box] .
*CHI: it-'is [= contents of box] crayon-s and paper .

CLAN Manual 41

*CHI: pop go-es the weasel .

By adding the MLU command after the pipe, we are telling CLAN to take this initial
output from MAXWD and send it on for further processing by MLU.

The string +g1 tells MAXWD to identify longest utterances in terms of morphemes
per utterance. If length is to be determined instead by the number of words per utterance,
the string +g2 would be used; if by number of characters per utterance, +g3 would be
used. For the +g1 switch to work well, we need to either break words into morphemes on
the main line (as described in the CHAT manual) or else run this command on the %mor
line.

The string +c5 tells MAXWD to identify the five longest utterances.

The string +d1 tells MAXWD to send output to the output file in CHAT form, that is,
in a form that can be analyzed by other CLAN programs.

The piping symbol | (upright bar or vertical hyphens) separates the first CLAN com-
mand from the second, and indicates that the output of the first command is to be used as
the input to the second.

Finally, the redirect symbol > followed by the output file name and extension
specifies where the final output file is to be directed (i.e., saved). Omission of the redirect
symbol and file name will result in output being displayed on-screen rather than recorded
in a file. Here we are specifying that the output from MLU should be recorded in an
output file called 68.ml5.cex. The contents of this file are as follows:

MLU for Speaker: *CHI:
 MLU (xxx and yyy are EXCLUDED from the utterance and morpheme
counts):

Number of: utterances = 5, morphemes = 31
Ratio of morphemes over utterances = 6.200
Standard deviation = 0.748

The procedure for obtaining output files in CHAT format differs from program to
program but it is always the +d option that performs this operation. You must check the
+d options for each program to determine the exact level of the +d option that is required.
We can create a single file to run this type of analysis. This is called a batch file. The
batch file for this particular analysis would be:

maxwd +t*CHI +g1 +c5 +dl 14.cha | mlu > 14.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 55.cha | mlu > 55.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 66.cha | mlu > 66.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 68.cha | mlu > 68.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 98.cha | mlu > 98.ml5.cex

To run all five commands in sequence automatically, we put the batch file in our working
directory with a name such as batchml5.cex and then enter the command

batch batchml5

CLAN Manual 42

This command will produce five output files.

6.4 MLT Analysis

The third analysis we will perform is to compute MLT (Mean Length of Turn) for
both child and mother. Note that, unlike the MLU program, the CLAN program MLT
includes the symbols xxx and yyy in all counts. Thus, utterances that consist of only
unintelligible vocal material still constitute turns, as do nonverbal turns indicated by the
postcode [+ trn] as illustrated in the following example:

*CHI: 0.[+ trn]
%gpx: CHI points to picture in book

We can use a single command to run our complete analysis and put all the results into a
single file.

mlt *.cha > allmlt.cex

In this output file, the results for the mother in 68.cha are:

MLT for Speaker: *MOT:
 MLT (xxx and yyy are INCLUDED in the utterance and morpheme
counts):
 Number of: utterances = 331, turns = 227, words = 1398

Ratio of words over turns = 6.159
Ratio of utterances over turns = 1.458
Ratio of words over utterances = 4.224

There is similar output data for the child. This output allows us to consider Mean Length
of Turn either in terms of words per turn or utterances per turn. We chose to use words
per turn in calculating the ratio of child MLT to mother MLT, reasoning that words per
turn is likely to be sensitive for a somewhat longer developmental period. MLT ratio,
then, was calculated as the ratio of child MLT over mother MLT. As the child begins to
assume a more equal share of the conversational load, the MLT ratio should approach
1.00. For this example, the MLT ratio would be: 2.241 ÷ 6.159 = 0.3638.

6.5 TTR Analysis

The fourth CLAN analysis we will perform for each child is to compute the TTR or-
type–token ratio. For this we will use the FREQ command. By default, FREQ ignores the
strings xxx (unintelligible speech) and www (irrelevant speech researcher chose not to
transcribe). It also ignores words beginning with the symbols 0, &, +, -, or #. Here we
were interested not in whether the child uses plurals or past tenses, but how many
different vocabulary items she uses. Therefore, we wanted to count “cats” and “cat” as
two tokens (i.e., instances) of the word-type “ca”. Similarly, we wanted to count “play”
and “played” as two tokens under the word-type “play”. When computation is done by
hand, the researcher can exercise judgment online to decide whether a particular string of
letters should be counted as a word type. Automatic computation, however, is much more
literal: Any unique string will be counted as a separate word type. In order to have

CLAN Manual 43

inflected forms counted as tokens of the uninflected stem (rather than as different word
types), we morphemicized inflected forms in transcribing. That is, we transcribed “cats”
as “cat-s” and “played” as “play-ed”. Using our morphemicized transcripts, we then
instructed FREQ to ignore anything that followed a hyphen (-) within a word. The
command string used was:

 freq +t*CHI +s"*-%%" +f *.cha

+t*CHI Analyze the child speaker only
+s"*-% % " Ignore the hyphen and subsequent characters
+f Save output in a file
*.cha Analyze all files ending with the extension .cha

The only new element in this command is +s"*-%%". The +s option tells FREQ to
search for and count certain strings. Here we ask that, in its search, FREQ ignore any hy-
phen that occurs within a word, as well as whatever follows the hyphen. In this way,
FREQ produces output in which inflected forms of nouns and verbs are not counted as
separate word types, but rather as tokens of the uninflected form. The output generated
from this analysis goes into five files. For the 68.cha input file, the output is 68.frq.cex.
At the end of this file, we find this summary analysis:

85 Total number of different word types used
233 Total number of words (tokens)
0.365 Type/Token ratio

We can look at each of the five output files to get this summary TTR information for
each child.

6.6 Generating Language Profiles

Once we have computed these basic measures of utterance length, lexical diversity,
and conversational participation for our five target children, we need to see how each
child compares to his or her peers in each of these domains. To do this, we use the means
and standard deviations for each measure for the whole New England sample at 20
months, as given in the following table.

Table 5: New England 20 Means

Measure Mean SD Range
MLU50 1.400 0.400 1.02-2.64

MLU5 longest 2.848 1.310 1.00-6.20
TTR 0.433 0.102 0.266-0.621

MLT Ratio 0.246 0.075 0.126-0.453

The distribution of MLU50 scores was quite skewed, with the majority of children
who produced at least 50 utterances falling in the MLU range of 1.00-1.20. As noted
earlier, 15 of the 48 children failed to produce even 50 utterances. At this age the
majority of children in the sample are essentially still at the one-word stage, producing
few utterances of more than one word or morpheme. Like MLU50, the shape of the
distributions for MLUS and for MLT ratio were also somewhat skewed toward the lower

CLAN Manual 44

end, though not as severely as was MLU50.

Z-scores, or standard scores, are computed by subtracting each child’s score on a par-
ticular measure from the group mean and then dividing the result by the overall standard
deviation:

(child's score - group mean) ÷ standard deviation

The results of this computation are given in the following table.
Table 6: Z-scores for Five Children

Child MLU50 MLU5 TTR MLT Ratio
14 0.10 0.12 1.84 -0.90
55 -0.70 -0.65 -0.15 -0.94
66 -0.25 -0.19 -0.68 -1.14
68 3.10 2.56 -0.67 1.60
98 -0.95 -1.11 -0.55 0.31

 We would not expect to see radical departures from the group means on any of the
measures. For the most part, this expectation is borne out: we do not see departures
greater than 2 standard deviations from the mean on any measure for any of the five
children, except for the particularly high MLU50 and MLU5 observed for Subject 068.

It is not the case, however, that all five of our target children have flat profiles. Some
children show marked strengths or weaknesses relative to their peers in particular
domains. For example, Subject 14, although very close to the mean in terms of utterance
length (MLU5O and MLU5), shows marked strength in lexical diversity (TTR), even
though she shoulders relatively little of the conversational burden (as measured by MLT
ratio). The strengths of Subject 68, on the other hand, appear to be primarily in the area of
syntax (at least as measured by MLU50 and MLU5); her performance on both the lexical
and conversational measures (i.e., TTR and MLT ratio) is only mediocre. The subjects at
the second and third quartile in terms of MLU (Subject 055 and Subject 066) do have
profiles that are relatively flat: Their z-scores on each measure fall between -1 and 0.
However, the child with the lowest MLU50 (Subject 098) again shows an uneven profile.
Despite her limited production, she manages to bear her portion of the conversational
load. You will recall that unintelligible vocalizations transcribed as xxx or yyy, as well as
nonverbal turns indicated by the postcode [+ trn], are all counted in computing MLT.
Therefore, it is possible that many of this child’s turns consisted of unintelligible
vocalizations or nonverbal gestures.

What we have seen in examining the profiles for these five children is that, even
among normally developing children, different children may have strengths in different
domains, relative to their age mates. For illustrative purposes here I have considered only
three domains, as measured by four indices. In order to get a more detailed picture of a
child’s language production, we might choose to include other indices, or to further refine
the measures we use. For example, we might compute TTR based on a particular number

CLAN Manual 45

of words, or we might time-sample by examining the number of word types and word
tokens the child produced in a given number of minutes of mother–child interaction. We
might also consider other measures of conversational competence, such as number of
child initiations and responses; fluency measures, such as number of retraces or
hesitations; or pragmatic measures, such as variety of speech acts produced. Computation
of some of these measures would require that codes be entered into the transcript prior to
analysis; however, the CLAN analyses themselves would, for the most part, simply be
variations on the techniques I have discussed in this chapter. In the exercises that follow,
you will have an opportunity to use these techniques to perform analyses on these five
children at both 20 months and 32 months.

6.7 Further Exercises

The files needed for the following exercises are in two directories in the /lib folder:
NE20 and NE32. No data are available for Subject 14 at 32 months.

1. Compute the length in morphemes of each target child’s single longest utterance
at 20 months. Compare with the MLU of the five longest utterances. Consider
why a researcher might want to use MLU of the five longest rather than MLU of
the single longest utterance.

 2. Use the +z option to compute TTR on each child’s first 50 words at 32 months.
Then do the same for each successive 50-word band up to 300. Check the output
each time to be sure that 50 words were in fact found. If you specify a range of
50 words where there are fewer than 50 words available in the file, FREQ still
performs the analysis, but the output will show the actual number of tokens
found. What do you observe about the stability of TTR across different samples
of 50 words?

3. Use the MLU and FREQ programs to examine the mother’s (*MOT) language to
her child at 20 months and at 32 months.What do you observe about the
length/complexity and lexical diversity of the mother’s speech to her child? Do
they remain generally the same across time or change as the child’s language de-
velops? If you observe change, how can it be characterized?

4. Perform the same analyses for the four target children for whom data are avail-
able at age 32 months. Use the data given earlier to compute z-scores for each
target child on each measure (MLU 50 utterances, MLU of five longest utteranc-
es, TTR, MLT ratio). Then plot profiles for each of the target children at 32
months. What consistencies and inconsistencies do you see from 20 to 32
months? Which children, if any, have similar profiles at both ages? Which chil-
dren's profiles change markedly from 20 to 32 months?

5. Conduct a case study of a child you know to explore whether type of activity
and/or interlocutor affect mean length of turn (MLT). Videotape the child and
mother engaged in two different activities (e.g., bookreading, having a snack to-
gether, playing with a favorite toy). On another occasion, videotape the child en-
gaged in the same activities with an unfamiliar adult. If it is not possible to
videotape, you may audiotape and supplement with contextual notes. Transcribe
the interactions in CHAT format. You may wish to put each activity in a separate
file (or see CLAN manual for how to use the program GEM). Compare the MLT
ratio for each activity and adult–child pair. Describe any differences you observe.

CLAN Manual 46

7 Features

7.1 Shell Commands

CLAN provides two types of commands. The first are the Shell commands. These are
utility commands like those in the old-style DOS or Unix shells. These commands are
available for use inside the Commands window. All of the commands except those
marked with an asterisk are available for both Macintosh and Windows versions of
CLAN. The following commands allow you to change your folder or directory, display
information, or launch a new program.

accept* This command applies only to Macintosh. If you only want to
have CLAN look at files that the Macintosh calls TEXT files,
then type: accept text. If you want to set this back to all files,
type accept all.

batch You can place a group of commands into a text file which you
then execute as a batch. The word batch should be followed by
the name of a file in your working directory. Each line of that
file is then executed as a CLAN command.

cd This command allows you to change directories. With two
dots, you can move up one directory. If you type a folder’s
name and the folder is in the current folder, you can move right
to that folder. If you type a folder’s absolute address, you can
move to that folder from any other folder. For example, the
command cd HardDisk:Applications:CLAN on the
Macintosh will take you to the CLAN directory.

copy If you want to copy files without going back to the Finder, you
can use this command. The -q option asks to make sure you
want to make the copy.

del This command allows you to delete files. Using this in
combination with the +re switch can be very dangerous. In this
combination, the command del * can delete all files from your
current working directory and those below it. Please be
careful!

dir This command lists all the files in your current directory.
info This command displays the available programs and commands.
list This command lists the files that are currently in your input

files list.
rmdir This command deletes a directory or folder.
ren* This command allows you to change file names in a variety of

ways. The rename command can use the asterisk as a wildcard
for files in which there is a period. You can change case by
using -u for upper and -l for lower. You can change extensions
by using wildcards in file names. The -c and -t switches allow
you to change the creator signature and file types recognized

CLAN Manual 47

by Macintosh. Usually, you will want to have TEXT file types.
CLAN produces these by default and you should seldom need
to use the -t option. You will find that the -c option is more
useful. On the Macintosh, if you want a set of files to have the
icon and ownership for CLAN, you should use this command:

ren -cMCED *.cha *.cha

If you have spaces in these names, surround them with single
quotes. For example, to change ownership to the MPW shell,
you would need quotes in order to include the additional fourth
space character:

ren -c'MPS ' *.cha *.cha

Or you could rename a series of files with names like
“child.CHA (Word 5),” using this command:

ren '*.CHA (Word 5)' *.cha

type This command displays a file in the CLAN output window.

7.2 Online Help

CLAN has a limited form of online help. To use this help, you simply type the name
of the command without any further options and without a file name. The computer will
then provide you with a brief description of the command and a list of its available
options. To see how this works, just type freq and a carriage return and observe what
happens. If you need help remembering the various shell commands discussed in the
previous section, you can click on the Help button at the right of the Commands
window. If there is something that you do not understand about CLAN, the best thing
you can do is to try to find the answer to your problem in this manual.

7.3 Testing CLAN

It is a good idea to make sure that CLAN is conducting analyses correctly. In some
cases you may think that the program is doing something different from what it is
actually designed to do. In order to prevent misunderstandings and misinterpretations,
you should set up a small test file that contains the various features you want CLAN to
analyze. For example, if you are running a FREQ analysis, you can set a file with several
instances of the words or codes for which you are searching. Be sure to include items that
should be “misses” along with those that should be “hits.” For example, if you do not
want CLAN to count items on a particular tier, make sure you put some unique word on
that tier. If the output of FREQ includes that word, you know that something is wrong. In
general, you should be testing not for correct performance but for possible incorrect
performance. In order to make sure that you are using the +t and +s switches correctly,
make up a small file and then run KWAL over it without specifying any +s switch. This
should output exactly the parts of the file that you intend to include or exclude.

7.4 Bug Reports

Although CLAN has been extensively tested for years, it is possible that some

CLAN Manual 48

analyses will provide incorrect results. When this occurs, the first thing to do is to reread
the relevant sections of the manual to be sure that you have entered all of your commands
correctly. If a rereading of the manual does not solve the problem, then you can send e-
mail to macw@cmu.edu to try to get further assistance. In some cases, there may be true
“bugs” or program errors that are making correct analyses impossible. Should the
program not operate properly, please send e-mail to macw@cmu.edu with the following
information:

1. a description of the machine you are using and the operating system you are
running,

2. a copy of the file that the program was being run on,

3. the complete command line used when the malfunction occurred,

4. all the results obtained by use of that command, and

5. the date of compilation of your CLAN program, which you can find by
clicking on “About CLAN” at the top left of the menu bar on Macintosh or the
“Help CLAN” option at the top right of the menu bar for Windows.

Use WinZip or Stuffit to save the input and output files and include them as an e-mail at-
tachment. Please try to create the smallest possible file you can that will still illustrate the
bug.

7.5 Feature Requests

CLAN has been designed in response to information we have received from users
about the kinds of programs they need for furthering their research. Your input is
important, because we are continually designing new commands and improving existing
programs. If you find that these programs are not capable of producing the specific type
of analysis that you are trying to achieve, contact us and we will do our best to help.
Sometimes we can explain ways of using CLAN to achieve your goals. In other cases, it
may be necessary to modify the program. Each request must include a simple example of
an input file and the output you would like, given this input. Also, please explain how
this output will help you in your research. You can address inquiries by email to
macw@cmu.edu.

CLAN Manual 49

8 Analysis Commands

The analytic work of CLAN is performed by a series of commands that search for
strings and compute a variety of indices. These commands are all run from the
Commands window. In this section, we will examine each of the commands and the
various options that they take. The commands are listed alphabetically. The following
table provides an overview of the various CLAN commands. The CHECK program is
included here, because it is so important for all aspects of use of CLAN.

CLAN also includes two other major groups of commands. The first group is used to
perform morphosyntactic analysis on files by tagging words for their part of speech and
detecting grammatical relations. These programs are discussed in Chapter 7. In addition,
CLAN includes a large group of Utility commands that will be described in the Chapter
8.

Command Page Function
CHAINS 50 Tracks sequences of interactional codes across speakers.
CHECK 54 Verifies the correct use of CHAT format.
CHIP 57 Examines parent-child repetition and expansion.
COMBO 63 Searches for complex string patterns.
COOCUR 71 Examines patterns of co-occurence between words.
DIST 72 Examines patterns of separation between speech act codes.
DSS 73 Computes the Developmental Sentence Score.
FREQ 81 Computes the frequencies of the words in a file or files.
FREQMERG 91 Combines the outputs of various runs of FREQ.
FREQPOS 91 Tracks the frequencies in various utterance positions.
GEM 92 Finds areas of text that were marked with GEM markers.
GEMFREQ 94 Computes frequencies for words inside GEM markers.
GEMLIST 95 Lists the pattern of GEM markers in a file or files.
KEYMAP 96 Lists the frequencies of codes that follow a target code.
KWAL 97 Searches for word patterns and prints the line.
MAXWD 99 Finds the longest words in a file.
MLT 101 Computes the mean length of turn.
MLU 104 Computes the mean length of utterance.
MODREP 109 Matches the child’s phonology to the parental model.
PHONFREQ 112 Computes the frequency of phonemes in various positions.
RELY 113 Measures reliability across two transcriptions.
STATFREQ 114 Formats the output of FREQ for statistical analysis.
TIMEDUR 116 Uses the numbers in sonic bullets to compute overlaps.
VOCD 116 Computes the VOCD lexical diversity measure.
WDLEN 122 Computes the length of utterances in words.

CLAN Manual 50

8.1 CHAINS

CHAINS is used to track sequences of interactional codes. These codes must be
entered by hand on a single specified coding tier. In order to test out CHAINS, you may
wish to try the file chains.cha that contains the following sample data.

@Begin
@Participants: CHI Sarah Target_child, MOT Carol Mother
*MOT: sure go ahead [c].
%cod: $A
%spa: $nia:gi
*CHI: can I [c] can I really [c].
%cod: $A $D. $B.
%spa: $nia:fp $npp:yq.
%sit: $ext $why. $mor
*MOT: you do [c] or you don't [c].
%cod: $B $C.
%spa: $npp:pa
*MOT: that's it [c].
%cod: $C
%spa: $nia:pa
@End

The symbol [c] in this file is used to delimit clauses. Currently, its only role is within
the context of CHAINS. The %cod coding tier is a project-specific tier used to code
possible worlds, as defined by narrative theory. The %cod, %sit, and %spa tiers have
periods inserted to indicate the correspondence between [c] clausal units on the main line
and sequences of codes on the dependent tier.

To change the order in which codes are displayed in the output, create a file called
codes.ord. This file could be located in either your working directory or in the
\childes\clan\lib directory. CHAINS will automatically find this file. If the file is not
found then the codes are displayed in alphabetical order, as before. In the codes.ord file,
list all codes in any order you like, one code per line. You can list more codes than could
be found in any one file. But if you do not list all the codes, the missing codes will be
inserted in alphabetical order. All codes must begin with the $ symbol.

8.1.1 Sample Runs
For our first CHAINS analysis of this sample file, let us look at the %spa tier. If you

run the command:

chains +t%spa chains.cha

you will get a complete analysis of all chains of individual speech acts for all speakers, as
in the following output:

> chains +t%spa chains.cha
CHAINS +t%spa chains.cha
Mon May 17 13:09:34 1999
CHAINS (04-May-99) is conducting analyses on:
 ALL speaker tiers

CLAN Manual 51

and those speakers' ONLY dependent tiers matching: %SPA;
**
From file <chains.cha>

Speaker markers: 1=*MOT, 2=*CHI

$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq line #
0 1 0 0 0 3
2 0 0 0 2 6
0 0 0 1 0 10
0 0 1 0 0 13

ALL speakers:
$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq

chains 1 1 1 1 1
Avg leng 1.00 1.00 1.00 1.00 1.00
Std dev 0.00 0.00 0.00 0.00 0.00
Min leng 1 1 1 1 1
Max leng 1 1 1 1 1

Speakers *MOT:
 $nia:fp $nia:gi $nia:pa $npp:pa $npp:yq
chains 0 1 1 1 0
Avg leng 0.00 1.00 1.00 1.00 0.00
Std dev 0.00 0.00 0.00 0.00 0.00
Min leng 0 1 1 1 0
Max leng 0 1 1 1 0
SP Part. 0 1 1 1 0
SP/Total 0.00 1.00 1.00 1.00 0.00

Speakers *CHI:
 $nia:fp $nia:gi $nia:pa $npp:pa $npp:yq
chains 1 0 0 0 1
Avg leng 1.00 0.00 0.00 0.00 1.00
Std dev 0.00 0.00 0.00 0.00 0.00
Min leng 1 0 0 0 1
Max leng 1 0 0 0 1
SP Part. 1 0 0 0 1
SP/Total 1.00 0.00 0.00 0.00 1.00

It is also possible to use the +s switch to merge the analysis across the various speech act
codes. If you do this, alternative instances will still be reported, separated by commas.
Here is an example:

chains +d +t%spa chains.cha +s$nia:%

This command should produce the following output:

Speaker markers: 1=*MOT, 2=*CHI

$nia: line #
1 gi 3
2 fp 6
 6
1 pa 13

CLAN Manual 52

ALL speakers:
 $nia:
chains 2
Avg leng 1.50
Std dev 0.50
Min leng 1
Max leng 2

Speakers *MOT:
 $nia:
chains 2
Avg leng 1.00
Std dev -0.00
Min leng 1
Max leng 1
SP Part. 2
SP/Total 0.67

Speakers *CHI:
 $nia:

chains 1
Avg leng 1.00
Std dev 0.00
Min leng 1
Max leng 1
SP Part. 1
SP/Total 0.33

You can use CHAINS to track two coding tiers at a time. For example, one can look
at chains across both the %cod and the %sit tiers by using the following command. This
command also illustrates the use of the +c switch, which allows the user to define units of
analysis lower than the utterance. In the example file, the [c] symbol is used to delimit
clauses. The following command makes use of this marking:

chains +c"[c]" +d +t%cod chains.cha +t%sit

The output from this analysis is:

Speaker markers: 1=*MOT, 2=*CHI
$a $b $c $d line #
1 3
2 $ext $why 2 $ext $why 6
 2 $mor 6
 1 1 11

 1 14

ALL speakers:
 $a $b $c $d
chains 1 1 1 1
Avg leng 2.00 2.00 2.00 1.00
Std dev 0.00 0.00 0.00 0.00
Min leng 2 2 2 1
Max leng 2 2 2 1

CLAN Manual 53

Speakers *MOT:
 $a $b $c $d
chains 1 1 1 0
Avg leng 1.00 1.00 2.00 0.00
Std dev 0.00 0.00 0.00 0.00
Min leng 1 1 2 0
Max leng 1 1 2 0
SP Part. 1 1 1 0
SP/Total 0.50 0.50 1.00 0.00

Speakers *CHI:
 $a $b $c $d
chains 1 1 0 1
Avg leng 1.00 1.00 0.00 1.00
Std dev 0.00 0.00 0.00 0.00
Min leng 1 1 0 1
Max leng 1 1 0 1
SP Part. 1 1 0 1
SP/Total 0.50 0.50 0.00 1.00

8.1.2 Unique Options
At the end of our description of each CLAN command, we will list the options that

are unique to that command. The commands also use several options that are shared with
other commands. For a complete list of options for a command, type the name of the
command followed by a carriage return in the Commands window. Information regarding
the additional options shared across commands can be found in the chapter on Options.

+c The default unit for a CHAINS analysis is the utterance. You can use the
+c option to track some unit type other than utterances. The other unit type must
be delimited in your files with some other punctuation symbol that you specify
after the +c, as in +c"[c]" which uses the symbol [c] as a unit delimiter. If you
have a large set of delimiters you can put them in a file and use the form
+c@filename. To see how this switch operates try out this command:

chains +c"[c]" +d +t%cod chains.cha

+d Use this switch to change zeroes to spaces in the output. The following
command illustrates this option:

chains +d +t%spa chains.cha +s$nia:%

The +d1 value of this option works the same as +d, while also displaying every
input line in the output.

+sS This option is used to specify particular codes to track. For example, +s$b
will track only the $b code. A set of codes to be tracked can be placed in a file
and tracked using the form +s@filename. In the examples given earlier, the
following command was used to illustrate this feature:

chains +d +t%spa chains.cha +s$nia:%

+wN Sets the width between columns to N characters.

CLAN Manual 54

8.2 CHECK

Checking the syntactic accuracy of a file can be done in two ways. One method is to
work within the editor. In the editor, you can start up the CHECK program by just typing
Esc-L. Alternatively, you can run CHECK as a separate program. The CHECK program
checks the syntax of the specified CHAT files. If errors are found, the offending line is
printed, followed by a description of the problem.

8.2.1 How CHECK Works
CHECK makes two passes through each CHAT file. On the first pass it checks the

overall structure of the file. It makes sure that the file begins with @Begin and ends with
@End, that each line starts with either *, @, %, or a tab, and that colons are used
properly with main lines, dependent tiers, and headers that require entries. If errors are
found at this level, CHECK reports the problem and stops, because further processing
would be misleading. If there are problems on this level, you will need to fix them before
continuing with CHECK. Errors on the first level can mask the detection of further errors
on the second level. It is important not to think that a file has passed CHECK until all
errors have been removed.

The second pass checks the detailed structure of the file. To do this, it relies heavily
on depfile.cut, which we call the “depfile.” The depfile distributed with CLAN lists the
legitimate CHAT headers and dependent tier names as well as many of the strings
allowed within the main line and the various dependent tiers. When running CHECK,
you should have the file called depfile.cut located in your LIB directory, which you set
from the Commands window. If the programs cannot find the depfile, they will query you
for its location.

To get an idea of how CHECK operates, open up the file kid10.cha in the library
directory. That file has a large number of CHAT errors. Type Esc-L. Try to fix the errors.
If you can put the file into correct CHAT format so that it passes cleanly through
CHECK, you will have learned how to use CHECK to verify CHAT format.

If you find that the depfile is not permitting things that are important to your research,
please contact macw@cmu.edu to discuss ways in which we can extend the CHAT
system and its reflection in the XML Schema.

8.2.2 CHECK in CA Mode
CHECK can also be used with files that have been produced using CA mode. The

features that CHECK is looking for in CA Mode are:

1. Each utterance should begin with a number and a speaker code in the form
#:speaker:<whitespace>.

2. There should be paired parentheses around pause numbers.
3. Numbers marking pause duration are allowed on their own line.
4. Latching should be paired.
5. The double parentheses marking comments should be paired.

mailto:macw@cmu.edu

CLAN Manual 55

6. Overlap markers should be paired.
7. Superscript zeros should be paired.
8. The up-arrow, down-arrow, and zeros are allowed inside words.

8.2.3 Running CHECK
There are two ways to run CHECK. If you are working on new data, it is easiest to

run CHECK from inside the editor. To do this, you type Esc-L and check runs through
the file looking for errors. It highlights the point of the error and tells you what the nature
of the error is. Then you need to fix the error in order to allow CHECK to move on
through the file.

The other way of running CHECK is to issue the command from the commands win-
dow. This is the best method to use when you want to check a large collection of files. If
you want to examine several directories, you can use the +re option to make check work
recursively across directories. If you send the output of check to the CLAN Output
window, you can locate errors in that window and then triple-click on the file name and
CLAN will take you right to the problem that needs to be fixed. This is an excellent way
of working when you have many files and only a few errors.

8.2.4 Restrictions on Word Forms

In order to guarantee consistent transcription of word forms and to facilitate the
building of MOR grammars for various languages, CHAT has adopted a set of tight
restrictions on word forms. Earlier versions of CLAN and CHAT were considerably less
restrictive. However, this absence of tight rules led to many inaccuracies in transcription
and analysis. Beginning in 1998, the rules were significantly tightened. In addition, an
earlier system of marking morphemes on the main line was dropped in favor of automatic
analysis of words through MOR. The various options for word level transcription are
summarized in the chapter of the CHAT manual on Words. However, it is useful here to
provide some additional detail regarding specific CHECK features.

One major restriction on words forms is that they cannot include numbers. Earlier
versions of CHAT allowed for numbers inside UNIBET representations. However, since
we now use IPA instead of UNIBET for phonological coding, numbers are no longer
needed in this context. Also, actual numbers such as “79” are written out in their
component words as “seventy nine” without dashes. Therefore numbers are not needed
in this context either.

We also do not allow capital letters inside words. This is done to avoid errors and
forms that cannot be recognized by MOR. The exceptions to this principle are for words
with underlining, as in Santa_Claus or F_B_I.

CHECK also prohibits dashes within words in many contexts. Dashes were
eliminated from most contexts in 1998, but are still available for certain special cases. If
there is no an '@' sysmbol before the dash then:
 a. it is legal if the word starts with a capital letter
 b. it is legal if Legacy used in @Languages.
 c. otherwise it is always illegal.
If there is an '@' symbol before the dash then:

CLAN Manual 56

 a. it is legal if an @u used, i.e. Word-_#~'@u
 b. it is illegal if any following symbol used: ,'.!?_-+~#@)"
 c. if it is at the end of the word, i.e word-

8.2.5 Some Hints
1. Use CHECK early and often, particularly when you are learning to code

in CHAT. When you begin transcribing, check your file inside the editor
using Esc-L, even before it is complete. When CHECK complains about
something, you can learn right away how to fix it before continuing with
the same error.

2. If you are being overwhelmed by CHECK errors, you can use the +d1
switch to limit error reports to one of each type. Or you can focus your
work first on eliminating main line errors by using the -t% switch.

3. Learn how to use the query-replace function in your text editor to make
general changes and CHSTRING to make changes across sets of files.

8.2.6 Unique Options
+d This option attempts to suppress repeated warnings of the same error type.
It is convenient to use this in your initial runs when your file has consistent
repeated divergences from standard CHAT form. However, you must be careful
not to rely too much on this switch, because it will mask many types of errors
you will eventually want to correct. The +d1 value of this switch represses
errors even more severely to only one of each type.

+e This switch allows the user to select a particular type of error for checking.
To find the numbers for the different errors, type:

check +e

Then look for the error type you want to track, such as error #16, and type:
check +e16 *.cha

+g1 Setting +g1 turns on the treatment of prosodic contour markers such as -.
or -? as utterance delimiters, as discussed in the section on prosodic delimiters
in the CHAT manual. Setting -g1 sets the treatment back to the default, which is
to not treat these codes as delimiters.

+g2 By default, CHECK requires tabs after the colon on the main line and at
the beginning of each line. However, versions of Word Perfect before 5.0
cannot write out text files that include tabs. Other non-ASCII editors may also
have this problem. To get around the problem, you can set the -g2 switch in
CHECK that stops checking for tabs. If you want to turn this type of checking
back on, use the +g2 switch.

+g3 Without the +g3 switch, CHECK does minimal checking for the
correctness of the internal contents of words. With this switch turned on, the
program makes sure that words do not contain numbers, capital letters, or
spurious apostrophes.

CLAN Manual 57

CHECK also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.3 CHIP

CHIP was designed and written by Jeffrey Sokolov. The program analyzes specified
pairs of utterances. CHIP has been used to explore parental input, the relation between
speech acts and imitation, and individual differences in imitativeness in both normal and
language-impaired children. Researchers who publish work based on the use of this pro-
gram should cite Sokolov and MacWhinney (1990). There are four major aspects of
CHIP to be described: (1) the tier creation system, (2) the coding system, (3) the
technique for defining substitution classes, and (4) the nature of the summary statistics.

8.3.1 The Tier Creation System
CHIP compares two specified utterances and produces an analysis that it then inserts

onto a new coding tier. The first utterance in the designated utterance pair is the “source”
utterance and the second is the “response” utterance. The response is compared to the
source. Speakers are designated by the +b and +c codes. An example of a minimal CHIP
command is as follows:

chip +bMOT +cCHI chip.cha

We can run this command runs on the following seven-utterance chip.cha file that is dis-
tributed with CLAN.

@Begin
@Participants: MOT Mother, CHI Child
*MOT: what-'is that?
*CHI: hat.
*MOT: a hat!
*CHI: a hat.
*MOT: and what-'is this?
*CHI: a hat !
*MOT: yes that-'is the hat .
@End

The output from running this simple CHIP command on this short file is as follows:

CHIP (04-May-99) is conducting analyses on:
 ALL speaker tiers
**
From file <chip.cha>
*MOT: what-'is that ?
*CHI: hat .
%chi: $NO_REP $REP = 0.00
*MOT: a hat !
%asr: $NO_REP $REP = 0.00
%adu: $EXA:hat $ADD:a $EXPAN $DIST = 1 $REP = 0.50

CLAN Manual 58

*CHI: a hat .
%csr: $EXA:hat $ADD:a $EXPAN $DIST = 2 $REP = 0.50
%chi: $EXA:a-hat $EXACT $DIST = 1 $REP = 1.00
*MOT: and what-'is this ?
%asr: $NO_REP $REP = 0.00
%adu: $NO_REP $REP = 0.00
*CHI: that a hat !
%csr: $EXA:a-hat $ADD:that $EXPAN $DIST = 2 $REP = 0.67
%chi: $NO_REP $REP = 0.00
*MOT: yes that-'is the hat .
%asr: $NO_REP $REP = 0.00
%adu: $EXA:that $EXA:hat $ADD:yes $ADD:the $DEL:a $MADD:-'is
$DIST $REP = 0.50

The output also includes a long set of summary statistics which are discussed
later. In the first part of this output, CHIP has introduced four different dependent tiers:

%chi: This tier is an analysis of the child’s response to an adult’s utterance, so
the adult’s utterance is the source and the child’s utterance is the response.
%adu: This tier is an analysis of the adult’s response to a child’s utterance, so
the child is the source and the adult is the response.
%csr: This tier is an analysis of the child’s self repetitions. Here the child is
both the source and the response.
%asr: This tier is an analysis of the adult’s self repetitions. Here the adult is
both the source and the response.

By default, CHIP produces all four of these tiers. However, through the use of the -n
option, the user can limit the tiers that are produced. Three combinations are possible:

1. You can use both -ns and -nb. The -ns switch excludes both the %csr tier and the
%asr tier. The -nb switch excludes the %adu tier. Use of both switches results in
an analysis that computes only the %chi tier.

2. You can use both -ns and -nc. The -ns switch excludes both the %csr tier and the
%asr tier. The -nc switch excludes the %chi tier. Use of both of these switches
results in an analysis that computes only the %adu tier.
3. You can use both -nb and -nc. This results in an analysis that produces

only the %csr and the %asr tiers.

It is not possible to use all three of these switches at once.

8.3.2 The Coding System
The CHIP coding system includes aspects of several earlier systems (Bohannon &

Stanowicz, 1988; Demetras, Post, & Snow, 1986; Hirsh-Pasek, Trieman, &
Schneiderman, 1984; Hoff-Ginsberg, 1985; Moerk, 1983; Nelson, Denninger, Bonvilian,
Kaplan, & Baker, 1984). It differs from earlier systems in that it computes codes
automatically. This leads to increases in speed and reliability, but certain decreases in
flexibility and coverage.

The codes produced by CHIP indicate lexical and morphological additions, deletions,

CLAN Manual 59

exact matches and substitutions. The codes are as follows:

$ADD additions of N continuous words
$DEL deletions of N continuous words
$EXA exact matches of N continuous words
$SUB substitutions of N continuous words from within a word list
$MADD morphological addition based on matching word stem
$MDEL morphological deletion based on matching word stem
$MEXA morphological exact match based on matching word stem
$MSUB morphological substitution based on matching word stem
$DIST the distance the response utterance is from the source
$NO_REP the source and response do not overlap
$LO_REP the overlap is below a user-specified minimum
$EXACT source-response pairs with no changes
$EXPAN pairs with additions but no deletions or substitutions
$REDUC pairs with deletions but no additions or substitutions
$SUBST source-response pairs with only exact-matches and

substitutions
$FRO an item from the word list has been fronted
$REP the percentage of repetition between source and response

Let us take the last line of the chip.cha file as an example:

*MOT: yes that-'is the hat .
%asr: $NO_REP $REP = 0.00
%adu: $EXA:hat $ADD:yes-that-'is-the $DEL:a $DIST = 1 $REP = 0.25

The %adu dependent tier indicates that the adult’s response contained an EXAct match of
the string “hat,” the ADDition of the string “yes-that-’is-the” and the DELetion of “a.”
The DIST=1 indicates that the adult’s response was “one” utterance from the child’s, and
the repetition index for this comparison was 0.25 (1 matching stem divided by 4 total
stems in the adult’s response).

CHIP also takes advantage of CHAT-style morphological coding. Upon encountering
a word, the program determines the word’s stem and then stores any associated prefixes
or suffixes along with the stem. During the coding process, if lexical stems match
exactly, the program then also looks for additions, deletions, repetitions, or substitutions
of attached morphemes.

8.3.3 Word Class Analysis
In the standard analysis of the last line of the chip.cha file, the fact that the adult and

the child both use a definite article before the noun hat is not registered by the default
CHIP analysis. However, it is possible to set up a substitution class for small groups of
words such as definite articles or modal auxiliaries that will allow CHIP to track such
within-class substitutions, as well as to analyze within-class deletions, additions, or exact
repetitions. To do this, the user must first create a file containing the list of words to be
considered as substitutions. For example to code the substitution of articles, the file

CLAN Manual 60

distributed with CLAN called articles.cut can be used. This file has just the two articles
a and the. Both the +g option and the +h (word-list file name) options are used, as in the
following example:

chip +cCHI +bMOT +g +harticles.cut chip.cha

The output of this command will add a $SUB field to the %adu tier:

*CHI: a hat!
*MOT: yes that-'is the hat.
%adu: $EXA:that $EXA:hat $ADD:yes $SUB:the $MADD:-'is $DIST = 1
$REP =0.50

The +g option enables the substitutions, and the +harticle.cut option directs CHIP to
examine the word list previously created by the user. Note that the %adu now indicates
that there was an EXAct repetition of hat, an ADDition of the string yes that-'is and a
within-class substitution of the for a. If the substitution option is used, EXPANsions and
REDUCtions are tracked for the included word list only. In addition to modifying the
dependent tier, using the substitution option also affects the summary statistics that are
produced. With the substitution option, the summary statistics will be calculated relative
only to the word list included with the +h switch. In many cases, you will want to run
CHIP analyses both with and without the substitution option and compare the contrasting
analyses.

You can also use CLAN iterative limiting techniques to increase the power of your
CHIP analyses. If you are interested in isolating and coding those parental responses that
were expansions involving closed-class verbs, you would first perform a CHIP analysis
and then use KWAL to obtain a smaller collection of examples. Once this smaller list is
obtained, it may be hand coded and then once again submitted to KWAL or FREQ
analysis. This notion of iterative analysis is extremely powerful and takes full advantage
of the benefits of both automatic and manual coding.

8.3.4 Summary Measures
In addition to analyzing utterances and creating separate dependent tiers, CHIP also

produces a set of summary measures. These measures include absolute and proportional
values for each of the coding categories for each speaker type that are outlined below.
The definition of each of these measures is as follows. In these codes, the asterisk stands
for any one of the four basic operations of ADD, DEL, EXA, and SUB.

Total # of Utterances The number of utterances for all speakers regardless of the
number of intervening utterances and speaker identification.

Total Responses The total number of responses for each speaker type regardless
of amount of overlap.

Overlap The number of responses in which there is an overlap of at
least one word stem in the source and response utterances.

CLAN Manual 61

No Overlap The number of responses in which there is NO overlap between
the source and response utterances.

Avg_Dist The sum of the DIST values divided by the total number of
overlapping utterances.

%_Overlap The percentage of overlapping responses over the total number
of responses.

Rep_Index Average proportion of repetition between the source and re-
sponse utterance across all the overlapping responses in the
data.

*_OPS The total (absolute) number of add, delete, exact, or
substitution operations for all overlapping utterance pairs in the
data.

%_*_OPS The numerator in these percentages is the operator being
tracked and the denominator is the sum of all four operator
types.

*_WORD The total (absolute) number of add, delete, exact, or
substitution words for all overlapping utterance pairs in the
data.

%_*_WORDS The numerator in these percentages is the word operator being
tracked and the denominator is the sum of all four word
operator types.

MORPH_* The total number of morphological changes on
exactlymatching stems.

%_MORPH_* The total number of morphological changes divided by the
number of exactly matching stems.

AV_WORD_* The average number of words per operation across all the over-
lapping utterance pairs in the data.

FRONTED The number of lexical items from the word list that have been
fronted.

EXACT The number of exactly matching responses.

EXPAN The number of responses containing only exact matches and
additions.

CLAN Manual 62

REDUC The number of responses containing only exact-matches and
deletions.

SUBST The number of responses containing only exact matches and
substitutions.

8.3.5 Unique Options

+b Specify that speaker ID S is an “adult.” The speaker does not actually have
to be an adult. The “b” simply indicates a way of keeping track of one of the
speakers.

+c Specify that speaker ID S is a “child.” The speaker does not actually have
to be a child. The “c” simply indicates a way of keeping track of one of the
speakers.

+d Using +d with no further number outputs only coding tiers, which are
useful for iterative analyses. Using +d1 outputs only summary statistics, which
can then be sent to a statistical program.

+g Enable the substitution option. This option is meaningful in the presence
of a word list in a file specified by the +h/-h switch, because substitutions are
coded with respect to this list.

+h Use a word list file. The target file is specified after the letter “h.” Words
to be included (with +h) or excluded (with -h) are searched for in the target file.
The use of an include file enables CHIP to compare ADD and DEL categories
for any utterance pair analyses to determine if there are substitutions within
word classes. For example, the use of a file containing a list of pronouns would
enable CHIP to determine that the instances of ADD of “I” and DEL of “you”
across a source and response utterance are substitutions within a word class.

Standard CLAN wildcards may be used anywhere in the word list. When the
transcript uses CHAT-style morphological coding (e.g., I-’ve), only words from
the word list file will match to stems in the transcript. In other words, specific
morphology may not be traced within a word list analysis. Note that all of the
operation and word-based summary statistics are tabulated with respect to the
word list only. The word list option may be used for any research purpose
including grammatical word classes, number terms, color terms, or mental
verbs. Note also that the -h option is useful for excluding certain terms such as
“okay” or “yeah” from the analysis. Doing this often improves the ability of the
program to pick up matching utterances.

+n This switch has three values: +nb, +nc, and +ns. See the examples given
earlier for a discussion of the use of these switches in combination.

CLAN Manual 63

+qN Set the utterance window to N utterances. The default window is seven
utterances. CHIP identifies the source-response utterances pairs to code. When a
response is encountered, the program works backwards (through a window
determined by the +q option) until it identifies the most recent potential source
utterance. Only one source utterance is coded for each response utterance. Once
the source-response pair has been identified, a simple matching procedure is
performed.

+x Set the minimum repetition index for coding.

CHIP also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.4 COMBO

COMBO provides the user with ways of composing Boolean search strings to match
patterns of letters, words, or groups of words in the data files. This program is
particularly important for researchers who are interested in syntactic analysis. The search
strings are specified with either the +s/-s option or in a separate file. Use of the +s switch
is obligatory in COMBO. When learning to use COMBO, what is most tricky is learning
how to specify the correct search strings.

8.4.1 Composing Search Strings
Boolean searching uses algebraic symbols to better define words or combinations of

words to be searched for in data. COMBO uses regular expressions to define the search
pattern. These six special symbols are listed in the following table:

Table 3: COMBO Strings

Meaning Type Symbol
immediately FOLLOWED by Boolean ^
inclusive OR Boolean +
logical NOT Boolean !
repeated character metacharacter *
single character metacharacter _
quoting metacharacter \

Inserting the ^ operator between two strings causes the program to search for the first
string followed by the second string. The + operator inserted between two strings causes
the program to search for either of the two strings. In this case, it is not necessary for both
of them to match the text to have a successful match of the whole expression. Any one
match is sufficient. The ! operated inserted before a string causes the program to match a
string of text that does not contain that string.

CLAN Manual 64

The items of the regular expression will be matched to the items in the text only if
they directly follow one another. For example, the expression big^cat will match only the
word big directly followed by the word cat as in big cat. To find the word big followed
by the word cat immediately or otherwise, use the metacharacter * between the items big
and cat, as in big^*^cat. This expression will match, for example, big black cat. Notice
that, in this example, * ends up matching not just any string of characters, but any string
of words or characters up to the point where cat is matched. Inside a word, such as go*,
the asterisk stands for any number of characters. In the form ^*^, it stands for any number
of words. The * alone cannot be used in conjunction with the +g or +x option.

The underscore is used to “stand in for” for any single character. If you want to match
any single word, you can use the underscore with the asterisk as in +s"_*." which will
match any single word followed by a period. For example, in the string cat., the
underscore would match c, the asterisk would match at and the period would match the
period.

The backslash (\) is used to quote either the asterisk or the underline. When you want
to search for the actual characters * and _, rather than using them as metacharacters, you
insert the \ character before them.

Using metacharacters can be quite helpful in defining search strings. Suppose you
want to search for the words weight, weighs, weighing, weighed, and weigh. You could
use the string weigh* to find all of the previously mentioned forms. Metacharacters may
be used anywhere in the search string.

When COMBO finds a match to a search string, it prints out the entire utterance in
which the search string matched, along with any previous context or following context
that had been included with the +w or -w switches. This whole area printed out is what
we will call the “window.”

8.4.2 Examples of Search Strings
The following command searches the sample.cha file and prints out the window

which contains the word “want” when it is directly followed by the word “to.”
combo +swant^to sample.cha

If you are interested not just in cases where “to” immediately follows “want,” but also
cases where it eventually follows, you can use the following command syntax:

combo +s"want^*^to" sample.cha

The next command searches the file and prints out any window that contains both
“want” and “to” in any order:

combo +s"want^to" +x sample.cha

The next command searches sample.cha and sample2.cha for the words “wonderful”
or “chalk” and prints the window that contains either word:

combo +s"wonderful+chalk" sample*.cha

The next command searches sample.cha for the word “neat” when it is not directly
followed by the words “toy” or “toy-s.” Note that you need the ^ in addition to the ! in
order to clearly specify the exact nature of the search you wish to be performed.

CLAN Manual 65

combo +s"neat^!toy*" sample.cha

In this next example, the COMBO program will search the text for either the word
“see” directly followed by the word “what” or all the words matching “toy*.”

combo +s"see^(what+toy*)" sample.cha

You can use parentheses in order to group the search strings unambiguously as in the
next example:

combo +s"what*^(other+that*)" sample.cha

This command causes the program to search for words matching “what” followed by
either the word “that” or the word “other.” An example of the types of strings that would
be found are: “what that,” “what’s that,” and “what other.” It will not match “what is
that” or “what do you want.” Parentheses are necessary in the command line because the
program reads the string from left to right. Parentheses are also important in the next
example.

combo +s"the^*^!grey^*^(dog+cat)" sample2.cha

This command causes the program to search the file sample2.cha for the followed,
immediately or eventually, by any word or words except grey. This combination is then
to be followed by either dog or cat. The intention of this search is to find strings like the
big dog or the boy with a cat, and not to match strings like the big grey cat. Note the use
of the parentheses in the example. Without parentheses around dog+cat, the program
would match simply cat. In this example, the sequence ^*^ is used to indicate
“immediately or later.” If we had used only the symbol ^ instead of the ^*^, we would
have matched only strings in which the word immediately following the was not grey.

8.4.3 Referring to Files in Search Strings
Inside the +s switch, one can include reference to one, two, or even more groups of

words that are listed in separate files. For example, you can look for combinations of
prepositions with articles by using this switch:

+s@preps^@arts

To use this form, you first need to create a file of prepositions called “preps” with one
preposition on each line and a file of articles called “arts” with one article on each line.
By maintaining files of words for different parts of speech or different semantic fields,
you can use COMBO to achieve a wide variety of syntactic and semantic analyses. Some
suggestions for words to be grouped into files are given in the chapter of the CHAT
manual on word lists. Some particularly easy lists to create would be those including all
the modal verbs, all the articles, or all the prepositions. When building these lists,
remember the possible existence of dialect and spelling variations such as dat for that.

Here is a somewhat more complex example of how to refer to files in search strings.
In this case, we are looking in Spanish files for words that follow the definite articles la
and el and begin with either vowels or the silent “h” followed by a vowel. So we can
have one file, called arts.cut, with the words el and la each on their own line. Then, we
can have another file, called vowels.cut, that looks like this:

hu*
u*
ha*
a* etc.

In this case, the command we use looks like this:

CLAN Manual 66

combo +s@arts.cut^@vowels.cut test.cha

8.4.4 Cross-tier Combo
Particular dependent tiers can be included or excluded by using the +t option im-

mediately followed by the tier code. By default, COMBO excludes the header and
dependent code tiers from the search and output. However, when the dependent code tiers
are included by using the +t option, they are combined with their speaker tiers into
clusters. For example, if the search expression is the^*^kitten, the match would be found
even if the is on the speaker tier and kitten is on one of the speaker’s associated
dependent tiers. This feature is useful if one wants to select for analyses only speaker
tiers that contain specific word(s) on the main tier and some specific codes on the
dependent code tier. For example, if one wants to produce a frequency count of the words
want and to when either one of them is coded as an imitation on the %spa line, or neat
when it is a continuation on the %spa line, the following two commands could be used:

combo +s(want^to^*^%spa:^*^$INI*)+(neat^*^%spa:^*^$CON*)
 +t%spa +f +d sample.cha
freq +swant +sto +sneat sample.cmb

In this example, the +s option specifies that the words want, to, and $INI may occur in
any order on the selected tiers. The +t%spa option must be added in order to allow the
program to look at the %spa tier when searching for a match. The +d option is used to
specify that the information produced by the program, such as file name, line number and
exact position of words on the tier, should be excluded from the output. This way the
output is in a legal CHAT format and can be used as an input to another CLAN program,
FREQ in this case. The same effect could also be obtained by using the piping feature.

8.4.5 Cluster Pairs in COMBO
Most computer search programs work on a single line at a time. If these programs

find a match on the line, they print it out and then move on. Because of the structure of
CHAT and the relation between the main line and the dependent tiers, it is more useful to
have the CLAN programs work on “clusters” instead of lines. The notion of a cluster is
particularly important for search programs, such as COMBO and KWAL. A cluster can
be defined as a single utterance by a single speaker, along with all of its dependent tiers.
By default, CLAN programs work on a single cluster at a time. For COMBO, one can
extend this search scope to a pair of contiguous clusters by using the +b switch. However,
this switch should only be used when cross-cluster matches are important, because
addition of the switch tends to slow down the running of the program. To illustrate the
use of the +b switch, consider how you might want to perform a FREQ analysis on
sentences that the mother directs to the younger child, as opposed to sentences directed to
the older child or other adults. To find the sentences directed to the younger child, one
can imagine that sentences from the mother that are followed by sentences from the
younger child are most likely directed to the younger child. To find these, you can use
this command:

CLAN Manual 67

Combo +b2 +t*MOT +t*CHI +s*MOT:^*^*CHI: eve01.cha

After having checked out the results of this basic command, you can then pipe the data to
FREQ using this full command:

Combo +b2 +t*MOT +t*CHI +s*MOT:^*^*CHI: eve01.cha +d | freq
+t*MOT

8.4.6 Searching for Clausemates
When conducting analyses on the %syn tier, researchers often want to make sure that

the matches they locate are confined to “clausemate” constituents. Consider the following
two %syn tiers:

%syn: (S V L (O V))
%syn: (S V (S V O))

If we want to search for all subjects (S) followed by objects (O), we want to make
sure that we match only patterns of the type found in the embedded clause in the second
example. If we use a simple search pattern such as +sS^*^O", we will match the first
example as well as both clauses in the second example. In order to prevent this, we need
to add parentheses checking to our search string. The string then becomes:

+s"S^*^(!\(+!\))^*^O

This will find only subjects that are followed by objects without intervening parenthe-
ses. In order to guarantee the correct detection of parentheses, they must be surrounded
by spaces on the %syn line.

8.4.7 Tracking Final Words
In order to find the final words of utterances, you need to use the complete delimiter

set in your COMBO search string. You can do this with this syntax (\!+?+.) where the
parentheses enclose a set of alternative delimiters. In order to specify the single word that
appears before these delimiters, you can use the asterisk wildcard preceded by an
underline. Note that this use of the asterisk treats it as referring to any number of letters,
rather than any number of words. By itself, the asterisk in COMBO search strings usually
means any number of words, but when preceded by the underline, it means any number
of characters. Here is the full command:

combo +s"_*^(\!+?+.)" sample.cha

This can then be piped to FREQ if the +d3 switch is used:
combo +s"_*^(\!+?+.)" +d3 sample.cha | freq

8.4.8 Tracking Initial Words
Because there is no special character that marks the beginnings of files, it is difficult

to compose search strings to track items at utterance initial position. To solve this
problem, you can run use CHSTRING to insert sentence initial markers. A good marker
to use is the ++ symbol, which is only rarely used for other purposes. You can use this
command:

chstring +c -t@ -t% +t* *.cha

You also need to have a file called changes.cut that has this one line:
": " ": ++"

CLAN Manual 68

In this one-line file, there are two quoted strings. The first has a colon followed by a tab;
the second has a colon followed by a tab and then a double plus.

8.4.9 Adding Excluded Characters
COMBO strings have no facility for excluding a particular set of words. However,

you can achieve this same effect by (1) matching a pattern, (2) outputting the matches in
CHAT format, (3) altering unwanted matches so they will not rematch, and (4) then
rematching with the original search string. Here is an example:

combo +s"*ing*" +d input.cha | chstring +c +d -f | combo +s"*ing*"

The goal of this analysis is to match only words ending in participial ing. First, COMBO
matches all words ending in ing. Then CHSTRING takes a list of unwanted words that
end in ing like during and thing and changes the ing in these words to iing, for example.
Then COMBO runs again and matches only the desired participial forms.

8.4.10Limiting with COMBO
Often researchers want to limit their analysis to some particular group of utterances.

CLAN provides the user with a series of switches within each program for doing the sim-
plest types of limiting. For example, the +t/-t switch allows the user to include or exclude
whole tiers. However, sometimes these simple mechanisms are not sufficient and the user
will have to use COMBO or KWAL for more detailed control of limiting. COMBO is the
most powerful program for limiting, because it has the most versatile methods for string
search using the +s switch. Here is an illustration. Suppose that, in sample.cha, you want
to find the frequency count of all the speech act codes associated with the speaker *MOT
when this speaker used the phrase “want to” in an utterance. To accomplish this analysis,
use this command:

combo +t*MOT +t%spa sample.cha +s"want^to" +d | freq

The +t*MOT switch (Unix users should add double quotes for +t"*MOT") tells the
program to select only the main lines associated with the speaker *MOT. The +t%spa
tells the program to add the %spa tier to the *MOT main speaker tiers. By default, the
dependent tiers are excluded from the analysis. Then follows the file name, which can
appear anywhere after the program name. The +s"want^to" then tells the program to
select only the *MOT clusters that contain the phrase want to. The +d option tells the
program to output the matching clusters from sample.cha without any non-CHAT
identification information. Then the results are sent through a “pipe” indicated by the |
symbol to the FREQ program, which conducts an analysis on the main line. The results
could also be piped on to other programs such as MLU or KEYMAP or they can be
stored in files.

Sometimes researchers want to maintain a copy of their data that is stripped of the
various coding tiers. This can be done by this command:

combo +s* +o@ -t% +f *.cha

The +o switch controls the addition of the header material that would otherwise be
excluded from the output and the -t switch controls the deletion of the dependent tiers. It
is also possible to include or exclude individual speakers or dependent tiers by providing
additional +t or -t switches. The best way to understand the use of limiting for controlling
data display is to try the various options on a small sample file.

CLAN Manual 69

8.4.11Adding Codes with COMBO
Often researchers leave a mark in a transcript indicating that a certain sentence has

matched some search pattern. For example, imagine that you want to locate all sentences
with a preposition followed immediately by the word “the” and then tag these sentences
in some way. You can use the COMBO +d4 switch to do this. First, you would create a
file with all the prepositions (one on each line) and call it something like prep.cut. Then
you would create a second support file called something like combo.cut with this line:

"@prep.cut^the" "$Pthe" "%cod:"

The first string in this line gives the term used by the standard +s search switch. The
second string says that the code produced will bye $Pthe. The third string says that this
code should be placed on a %cod line under the utterance that is matched. If there is no
%cod line there yet, one will be created. The COMBO command that uses this
information would then be:

combo +s"@combo.cut" +d4 filename.cha

The resulting file will have this line added:
%cod: $Pthe

You can include as many lines as you wish in the combo.cut file to control the addition of
additional codes and additional coding lines. Once you are done with this, you can use
these new codes to control better inclusion and exclusion of utterances and other types of
searches.

8.4.12Unique Options
+b COMBO usually works on only one cluster at a time. However, when you
want to look at a contiguous pair of clusters, you can use this switch.

+d Normally, COMBO outputs the location of the tier where the match
occurs. When the +d switch is turned on you can output only each matched
sentence in a simple legal CHAT format. The +d1 switch outputs legal CHAT
format along with line numbers and file names. The +d2 switch outputs files
names once per file only. The +d3 switch outputs legal CHAT format, but with
only the actual words matched by the search string, along with @Comment
headers that are ignored by other programs. Try these commands:

combo +s"want^to" sample.cha
combo +s"want^to" +d sample.cha
combo +s"want^to" +d1 sample.cha | freq
combo +d2 +s"_*^." sample.cha | freq

This final command provides a useful way of searching for utterance final
words and tabulating their frequency. The use of the +d4 switch was described
in the previous section.

+g COMBO can operate in either string-oriented or word-oriented mode. The
default mode is word-oriented. COMBO can be converted to a string-oriented
program by using the +g option. Word-oriented search assumes that the string of
characters requested in the search string is surrounded by spaces or other word
delimiting characters. The string-oriented search does not make this assumption.
It sees a string of characters simply as a string of characters. In most cases, there
is no need to use this switch, because the default word-oriented mode is usually

CLAN Manual 70

more useful.

The interpretation of metacharacters varies depending on the search mode. In
word-oriented mode, an expression with the asterisk metacharacter, such as
air*^plane, will match air plane as well as airpline plane or airy plane. It will
not match airplane because, in word-oriented mode, the program expects to find
two words. It will not match air in the plane because the text is broken into
words by assuming that all adjacent nonspace characters are part of the same
word, and a space marks the end of that word. You can think of the search string
air as a signal for the computer to search for the expressions: _air_, _air., air?,
air!, and so forth, where the underline indicates a space.

The same expression air*^plane in the string-oriented search will
match airline plane, airy plane, air in the plane or airplane. They will all be
found because the search string, in this case, specifies the string consisting of
the letters “a,” “i,” and “r”, followed by any number of characters, followed by
the string “p,” “l,” “a,” “n,” and “e.” In string-oriented search, the expression
(air^plane) will match airplane but not air plane because no space character was
specified in the search string. In general, the string-oriented mode is not as
useful as the word-oriented mode. One of the few cases when this mode is
useful is when you want to find all but some given forms. For example if you
are looking for all the forms of the verb kick except the ing form, you can use
the expression “kick*^! ^!ing” and the +g switch.

+o The +t switch is used to control the addition or deletion of particular tiers
or lines from the input and the output to COMBO. In some cases, you may want
to include a tier in the output that is not being included in the input. This
typically happens when you want to match a string in only one dependent tier,
such as the %mor tier, but you want all tiers to be included in the output. In
order to do this you would use a command of the following shape:

combo +t%mor +s"*ALL" +o% sample2.cha

+s This option is obligatory for COMBO. It is used to specify a regular
expression to search for in a given data line(s). This option should be
immediately followed by the regular expression itself. The rules for forming a
regular expression are discussed in detail earlier in this section.

+t Particular dependent tiers can be included or excluded by using the +t
option immediately followed by the tier code. By default, COMBO excludes the
header and dependent code tiers from the search and output. However, when the
dependent code tiers are included by using the +t option, they are combined
with their speaker tiers into clusters. For example, if the search expression is
the^*^kitten, the match would be found even if the is on the speaker tier and
kitten is on one of the speaker’s associated dependent tiers. This feature is useful
if one wants to select for analyses only speaker tiers that contain specific
word(s) on the main tier and some specific codes on the dependent code tier.
For example, if one wants to produce a frequency count of the words want and
to when either one of them is coded as an imitation on the %spa line, or neat

CLAN Manual 71

when it is a continuation on the %spa line, the following two commands could
be used:

combo +s(want^to^*^%spa:^*^$INI*)+(neat^*^%spa:^*^$CON*)
 +t%spa +f +d sample.cha
freq +swant +sto +sneat sample.cmb

In this example, the +s option specifies that the words want, to, and $INI
may occur in any order on the selected tiers. The +t%spa option must be added
in order to allow the program to look at the %spa tier when searching for a
match. The +d option is used to specify that the information produced by the
program, such as file name, line number and exact position of words on the tier,
should be excluded from the output. This way the output is in a legal CHAT
format and can be used as an input to another CLAN program, FREQ in this
case. The same effect could also be obtained by using the piping feature.

+x COMBO searches are sequential. If you specify the expression dog^cat, the
program will match only the word “dog” directly followed by the word “cat”. If
you want to find clusters that contain both of these words, in any order, you
need to use the +x option. This option allows the program to find the
expressions in both the original order and in reverse order. Thus, to find a
combination of “want” and “to” anywhere and in any order, you use this
command:

combo +swant^to +x sample.cha

COMBO also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.5 COOCUR

The COOCCUR program tabulates co-occurences of words. This is helpful for
analyzing syntactic clusters. By default, the cluster length is two words, but you can reset
this value just by inserting any integer up to 20 immediately after the +n option. The
second word of the initial cluster will become the first word of the following cluster, and
so on.

cooccur +t*MOT +n3 sample.cha +f

The +t*MOT switch tells the program to select only the *MOT main speaker tiers.
The header and dependent code tiers are excluded by default. The +n3 option tells the
program to combine three words into a word cluster. The program will then go through
all of *MOT main speaker tiers in the sample.cha file, three words at a time. When
COOCCUR reaches the end of an utterance, it marks the end of a cluster, so that no
clusters are broken across speakers or across utterances. Co-ocurrences of codes on the
%mor line can be searched using commands such as this example:

cooccur +t%mor -t* +s*def sample2.cha

8.5.1 Unique Options
+d Strip the numbers from the output data that indicate how often a particular
cluster occurred.

CLAN Manual 72

+n Set cluster length to a particular number. For example, +n3 will set cluster
length to 3.

+s Select either a word or a file of words with @filename to search for.

COOCCUR also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.
have a final delimiter. It can also be used to insert final periods on other lines.

8.6 DIST

This program produces a listing of the average distances between words or codes in a file.
DIST computes how many utterances exist between occurrences of a specified key word
or code. The following example demonstrates a use of the DIST program.

dist +t%spa -t* +b: sample.cha

This command line tells the program to look at the %spa tiers in the file sample.cha for
codes containing the : symbol. It then does a frequency count of each of these codes, as a
group, and counts the number of turns between occurrences. The -t* option causes the
program to ignore data from the main speaker tiers.

8.6.1 Unique Options

+b This option allows you to specify a special character after the +b. This
character is something like the colon that you have chosen to use to divide some
complex code into its component parts. For example, you might designate a
word as a noun on the dependent tier then further designate that word as a
pronoun by placing a code on the dependent tier such as $NOU:pro. The
program would analyze each element of the complex code individually and as a
class. For the example cited earlier, the program would show the distance
between those items marked with a $NOU (a larger class of words) and show
the distance between those items marked with $NOU:pro as a subset of the
larger set. The +b option for the example would look like this with a colon
following the +b:

dist +b: sample.cha

+d Output data in a form suitable for statistical analysis.

+g Including this switch in the command line causes the program to count
only one occurrence of each word for each utterance. So multiple occurrences of
a word or code will count as one occurrence.

+o This option allows you to consider only words that contain the character

CLAN Manual 73

specified by the b option, rather than all codes in addition to those containing
your special character.

DIST also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.7 DSS

This program is designed to provide an automatic computation of the Developmental
Sentence Score (DSS) of Lee (1974). This score is based on the assignment of scores for
a variety of syntactic, morphological, and lexical structures across eight grammatical do-
mains. The computation of DSS relies on the part of speech (POS) analysis of the %mor
tier.

8.7.1 CHAT File Format Requirements
For DSS to run correctly on a file, the following CHAT conventions must be

followed:

1. All utterances must have delimiters, and imperatives must end with an
exclamation mark.

2. Incomplete or interrupted utterances must end either with the +... or the +/.
codes.

3. Only the pronoun “I” and the first letter of proper nouns should be in
uppercase.

4. Utterances that contain a noun and a verb in a subject-predicate relation in an
unusual word order must contain a [+ dss] postcode after the utterance
delimiter.

5. DSS automatically excludes any child utterances that are imitations of the
immediately preceding adult utterance. If, however, the analyst feels that there
are additional child utterances that are imitations and should be excluded from
the analysis, the [+ imit] postcode must be included for these utterances.

8.7.2 Selection of a 50-sentence Corpus
DSS scores are based on analysis of a corpus of 50 sentences. The dss program is de-

signed to extract a set of 50 sentences from a language sample using Lee’s six inclusion
criteria.

1. The corpus should contain 50 complete sentences. A sentence is considered
complete if it has a noun and a verb in the subject-predicate relationship. To
check for this, the program looks for a nominal phrase followed by a verb.
Imperatives such as “Look!” also are included. Imperative sentences must have
end with an exclamation mark. Immature sentences containing word order
reversals such as “car a garage come out” or “hit a finger hammer Daddy” also

CLAN Manual 74

should be included. However, these sentences must contain the [+ dss] code
after the utterance delimiter on the main tier to be included in the analysis.

2. The speech sample must be a block of consecutive sentences. To be
representative, the sentences constituting the corpora must occur consecutively
in a block, ignoring incomplete utterances. The analyst may use his or her
discretion as to which block of sentences are the most representative. The DSS
program automatically includes the first 50 consecutive sentences in the
transcript. If you wish to start the analysis at some other point, you can use the
+z switch in combination with KWAL and piping to DSS.

3. All sentences in the language sample must be different. Only unique child
sentences will be included in the corpora. DSS automatically analyzes each
sentence and excludes any repeated sentences.

4. Unintelligible sentences should be excluded from the corpus. The DSS pro-
gram automatically excludes any sentences containing unintelligible segments.
Thus, any sentence containing xxx, xx, yyy, and yy codes on the main tier will
be excluded from the analysis.

5. Echoed sentences should be excluded from the corpus. Any sentence that is
a repetition of the adult’s preceding sentence is automatically excluded.
Additionally, sentences containing a [+ imit] post-code also may be excluded
by using the -s option.

6. Incomplete sentences should be excluded. Any sentence that has the +... or
the +/. sentence delimiters, indicating that they were either incomplete or inter-
rupted, will not be included in the analysis.

7. DSS analysis can only be used if at least 50% of the utterances are
complete sentences as defined by Lee. If fewer than 50% of the sentences are
complete sentences, then the Developmental Sentence Type analysis (DST) is
appropriate instead.

8.7.3 Automatic Calculation of DSS
In order to compute DSS, the user must first complete a morphological analysis of the

file using the MOR program with the +c option. After completing the MOR analysis, the
%mor line should be disambiguated using POST. Once the disambiguated %mor is
created, the user can run DSS to compute the Developmental Sentence Analysis. The
DSS program has two modes: automatic and interactive. The use of the +e option invokes
the automatic mode. A basic automatic DSS command has this shape:

dss +b*CHI +le +e sample.mor

8.7.4 Interactive Calculation
In the interactive mode, DSS analyzes each sentence in the corpora and then allows

the user to add additional sentence points or attempt marks where appropriate. An
additional sentence point is assigned to each sentence if it “meets all the adult standard
rules” (Lee, p. 137). Sentence points should be withheld for all errors, including those
outside the eight categories analyzed by DSS, such as errors in the use of articles,

CLAN Manual 75

prepositions, plural and possessive markers, and word order changes. In addition,
sentence points should be withheld for semantic errors including neologisms such as
“sitting-thing” for “chair” or “letterman” for “mailman” (Lee, p. 137).

Grammatical category points should be assigned only to those structures that meet all
of Lee’s requirements. If a grammatical structure is attempted but produced incorrectly
then attempt marks should be inserted in the place of a numerical score. When using the
interactive mode, the DSS program displays each sentence and asks the user to determine
if it should or should not receive the additional sentence point and allows the user the op-
portunity to add attempt marks or edit the scoring. When assigning the sentence point, the
user can assign a point by typing p, can assign no sentence point by typing n, or can
modify the point values for each of the categories by typing e and then typing p or n.

It is also possible to modify the points given for each category. Here is an example of

a display of category points:
 Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|
what this say. | 1 | | | | | | | 2 |

To edit this display, you should type the name of the column and a plus or minus with a
number for how you want the score raised or lowered. For example, if you wish to raise
the IP column by 2 points, you type: ip+2. Adding attempt marks is done in a similar
fashion. To add the “-” attempt mark to primary verbs you type: pv+0. To remove the
attempt marker (-) from primary verbs, you type pv-0.

For example, in the sentence “what this say” the user might want to add attempt
markers to both the primary verb (PV) and the interrogative reversal (IR) categories
indicating the nature of the grammatical errors. To add an attempt mark for the primary
verb category, the user would type: pv+0 and get the following changes:

 Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|
what this say. | 1 | | - | | | | | 2 |

To add an attempt mark for the interrogative reversal category the user would type ir+0,
which would produce:

 Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|
what this say. | 1 | | - | | | | - | 2 |

The DSS program allows the user to make multiple changes simultaneously. There
should be no spaces between the ir the + and the 0. This interactive component also
enables users to add or subtract point values from grammatical categories in the same
way as adding or removing attempt marks.

Warning: The automatic form of DSS is unable to correctly assign points for the fol-
lowing three forms. If these forms are present, they have to be scored using interactive
DSS after use of automatic DSS.

1. The pronominal use of “one” as in “One should not worry about one’s life.”
These constructions should receive 7 points as personal pronouns.

2. The distinction between non-complementing infinitive structures (e.g,. I stopped
to play) which receives 3 points as secondary verb and later infinitival comple-
ment structures (e.g., I had to go), which receive 5 points as secondary verbs.

CLAN Manual 76

When these constructions occur in the analysis the DSS program presents both
the 3 and the 5 point value, and the user needs to differentiate these.

3. Wh-questions with embedded clauses that do not contain a conjunction (e.g.,
Why did the man we saw yesterday call you?) in contrast to those where the em-
bedded clause is marked with a conjunction (e.g., What did the man that we saw
yesterday say to you?).

8.7.5 DSS Output
Once all 50 sentences have been assigned sentence points, the DSS program

automatically generates a table. For both the automatic and interactive modes, each
sentence is displayed on the left hand column of the table with the corresponding point
values. For the interactive mode, the attempt markers for each grammatical category,
sentence point assignments, and the DSS score also are displayed. The Developmental
Sentence Score is calculated by dividing the sum of the total values for each sentence by
the number of sentences in the analysis.

The output of the table has specifically been designed for users to determine “at a
glance” areas of strength and weakness for the individual child for these eight
grammatical categories. The low points values for both the indefinite and personal
pronoun (IP, PP) categories in the table below indicate that this child used earlier
developing forms exclusively. In addition, the attempt mark for the main verb (MV) and
interrogative reversal (IR) categories suggest possible difficulties in question formulation.

Sentence |IP |PP |MV |SV |NG |CNJ|IR |WHQ|S|TOT|
I like this. | 1 | 1 | 1 | | | | | |1| 4|
I like that. | 1 | 1 | 1 | | | | | |1| 4|
I want hot dog. | | 1 | 1 | | | | | |0| 2|
I like it . | 1 | 1 | 1 | | | | | |1| 4|
what this say. | 1 | | - | | | | - | 2 |0| 3|

Developmental Sentence Score: 4.2

8.7.6 DSS Summary
DSS has been designed to adhere as strictly as possible to the criteria for both

sentence selection and scoring outlined by Lee. The goal is the calculation of DSS scores
based upon Lee’s (1974) criteria, as outlined below. The numbers indicate the scores
assigned for each type of usage.

Indefinite Pronouns (IP) (A)
1 it, this, that
2 no, some, more, all, lot(s), one(s), two (etc.), other(s), another
3 something, somebody, someone
4 nothing, nobody, none, no one
5 any, anything, anybody, anyone, every, everyone, everything, everybody
6 both, few, many, each, several, most, least, last, second, third (etc.)

Personal Pronouns (PP) (B)

CLAN Manual 77

1 1st and 2nd person: I, me, my, mine, your(s)
2 3rd person: he, him, his, she, her(s)
3 plurals: we, us, our(s) they, them, their
4 these, those
5 reflexives: myself, yourself, himself, herself, itself, themselves, ourselves
6 Wh-pronouns: who, which, whose, whom, what, how much

Wh-word + infinitive: I know what to do, I know who(m) to take.
7 (his) own, one, oneself, whichever, whoever, whatever

Each has his own. Take whatever you like.

Main Verb (MV) (C)
1 uninflected verb

copula, is or ’s. It’s red.
2 is + verb + ing
3 -s and -ed

irregular past, ate, saw
copula am, are, was, were\
auxiliary am, are, was, were

4 can, will may + verb
obligatory do + verb
emphatic do + verb

5 could, would, should, might + verb
obligatory does, did + verb
emphatic does, did +verb

6 must, shall + verb
have + verb + en
have got

7 passive including with get and be
8 have been + verb + ing, had been + verb + ing

modal + have + verb + en
modal + be + verb + ing
other auxiliary combinations (e.g., should have been sleeping)

Secondary Verbs (SV) (D)
1 five early developing infinitives

I wanna see, I’m gonna see, I gotta see, Lemme see, Let’s play
2 noncomplementing infinitives: I stopped to play
3 participle, present or past: I see a boy running. I found the vase broken.
4 early infinitives with differing subjects in basic sentences:

I want you to come
later infinitival complements: I had to go
obligatory deletions: Make it [to] go
infinitive with wh-word: I know what to get

5 passive infinitive with get: I have to get dressed
with be: I want to be pulled.

8 gerund: Swinging is fun.

CLAN Manual 78

Negative (NG) (E)
1 it, this, that + copula or auxiliary is, ’s + not: It’s not mine.

This is not a dog.
2 can’t don’t
3 isn’t won’t
4 any other aux-negative contractions: aren’t, couldn’t

any other pro-aux + neg forms: you’re not, he’s not
5 uncontracted negatives with have: I have not eaten it.

Conjunction (CNJ) (F)
1 and
2 but
3 because
4 so, and so, so that, if
5 or, except, only
6 where, when, how, while, whether, (or not), till, until, unless, since,

before, after, for, as, as + adjective + as, as if, like, that, than
wh-words + infinitive: I know how to do it.

7 therefore, however, whenever, wherever, etc.

Interrogative Reversal (IR) (G)
1 reversal of copula: isn’t it red?
2 reversal of auxiliary be: Is he coming?
3 obligatory -do, -does, -did Do they run?

reversal of modal: Can you play?
tag questions: It’s fun isn’t it?

4 reversal of auxiliary have: Has he seen you?
reversal with two auxiliaries: Has he been eating?

5 reversal with three auxiliaries: Could he have been going?

Wh-question (WHQ) (H)
1 who, what, what + noun
2 where, how many, how much, what....do, what....for
3 when, how, how + adjective
4 why, what it, how come, how about + gerund
5 whose, which, which + noun

8.7.7 DSS for Japanese
DSS can be used for Japanese data to provide an automatic computation of the
Developmental Sentence Score for Japanese (DSSJ; Miyata, & al. 2009) based on the
Developmental Sentence Score of Lee (1974). The DSSJ scores are based on a corpus of
100 utterances with disambiguated %mor tiers. The basic command has this shape:

dss +lj +ddssrulesjp.cut +b*CHI +c100 +e *.cha

CLAN Manual 79

The items scored by DSSJ are listed below. The numbers indicate the scores assigned for
each type of usage. The morpological codes refer to the codes used in JMOR04 and
WAKACHI2002 v.4.

Verb Final Inflection (Vlast)
1 PAST, PRES, IMP:te
2 HORT, CONN
3 COND:tara
4 CONN&wa, SGER, NEG&IMP:de
5 IMP, NEG&OBL
Verb Middle Inflection (Vmid)
1 COMPL, NEG, sub|i
2 DESID, POT, POL, sub|ku, sub|ik
3 sub|mi, sub|ar, sub|ok, sub|age
4 PASS
5 sub|moraw, sub|kure
Adjective Inflection (ADJ)
1 A-PRES
3 A-NEG-. A-ADV
4 A-PAST
Copula (COP)
1 da&PRES
3 de&wa-NEG-PRES, de&CONN
4 da-PAST, da&PRES:na, ni&ADV
5 de&CONN&wa
Adjectival Nouns + Copula (AN+COP)
4 AN+da&PRES, AN+ni&ADV, AN+da&PRES:na
Conjunctive particles (CONJ ptl)
2 kara=causal
3 to, kara=temporal, kedo
4 shi, noni
Conjunctions (CONJ)
4 datte, ja, de/sorede, dakara
5 demo
Elaborated Noun Phrases (NP)
2 N+no+(N), A+N
3 N+to+N, Adn+N, V+N
5 AN+na+N, V+SNR
Compounds (COMP)
1 N+N
5 PROP+N, V+V, N+V
Case Particles (CASE)
1 ga, ni
2 to, de
3 o, kara

CLAN Manual 80

5 made
Topic, Focus, Quotation Particles (TOP, FOC, QUOT)
1 wa, mo
2 tte
3 dake, to (quot)
5 kurai, shika
Adverbs (ADV)
2 motto, moo, mata
3 mada, chotto, ippai
4 ichiban, nanka, sugu
5 yappari, sakki
Sentence Final Particles (SFP)
1 yo, no, ne
2 kanaa, mon, ka, naa
3 no+yo
4 yo+ne, kke
Sentence Modalizers (SMOD)
3 desu
4 mitai, deshoo
5 yoo, jan
Formal Nouns (FML)
4 koto
5 hoo

8.7.8 How DSS works
DSS relies on a series of rules stated in the rules.cut file. Each rule matches one of the
top level categories in the DSS. Within each rule there is a series of conditions. These
conditions have a focus and points. Here is an example:

FOCUS: pro|it+pro:dem|that+pro:dem|this
POINTS: A1

This condition checks for the presence of the pronouns it, that, or this and assigns one A1
points if they are located. The pattern matching for the Focus uses the syntax of a
COMBO search pattern. DSS goes through the sentence one word at a time. For each
word, it checks for a match across all of the rules. Within a rule, DSS checks across
conditions in order from top to bottom. Once a match is found, it adds the points for that
match and then moves on to the next word. This means that, if a condition assigning
fewer points could block the application of a condition assigning more points, you need
to order the condition assigning more points before the condition assigning fewer points.
If there is no blocking relation between conditions, then you do not have to worry about
condition ordering. The Japanese implementation of DSS differs from the English
implementation in one important way. In Japanese, after a match occurs, no more rules
are searched and the processor moves directly on to the next word. In English, on the
other hand, after a match occurs, the processor moves on to the next rules before moving

CLAN Manual 81

on to the next word.

Miyata, S., Hirakawa, M., Ito, K., MacWhinney, B., Oshima-Takane, Y., Otomo, K.
Shirai, Y., Sirai, H., & Sugiura, M. (2009). Constructing a New Language Measure
for Japanese: Developmental Sentence Scoring for Japanese. In: Miyata, S. (Ed.)
Development of a Developmental Index of Japanese and its application to Speech
Developmental Disorders. Report of the Grant-in Aid for Scientific Research (B)
(2006-2008) No. 18330141, Head Investigator: Susanne Miyata, Aichi Shukutoku
University. 15-66.

8.7.9 Unique Options
+b Designate which speaker to be analyzed.

+c Determine the number of sentences to be included in analysis. The default
for this option is 50 sentences. These sentences must contain both a subject and a
verb, be intelligible, and be unique and non-imitative. A strict criteria is used in the
development of the corpora. Any sentences containing xxx yyy and www codes
will be excluded from the corpora.

+e Automatically generate a DSS table.

+s This switch has specific usage with DSS. To include sentences marked
with the [+ dss] code, the following option should be included on the command
line: +s"[+ dss]". To exclude sentences with the [+ imit] postcode, the user should
include the following option on the command line: -s"[+ imit]". These are the only
two uses for the +s/-s option.

Additional options shared across commands can be found in the chapter on Options.

8.8 FREQ

One of the most powerful programs in CLAN is the FREQ program for frequency
analysis. It is also one of the easiest programs to use and a good program to start with
when learning to use CLAN. FREQ constructs a frequency word count for user-specified
files. A frequency word count is the calculation of the number of times a word, as
delimited by a punctuation set, occurs in a file or set of files. FREQ produces a list of all
the words used in the file, along with their frequency counts, and calculates a type–token
ratio. The type–token ratio is found by calculating the total number of unique words used
by a selected speaker (or speakers) and dividing that number by the total number of
words used by the same speaker(s). It is generally used as a rough measure of lexical
diversity. Of course, the type–token ratio can only be used to compare samples of equiva-
lent size, because, as sample size increases, the increase in the number of types starts to
level off.

8.8.1 What FREQ Ignores
The CHAT manual specifies two special symbols that are used when transcribing dif-

CLAN Manual 82

ficult material. The xxx symbol is used to indicate unintelligible speech and the www
symbol is used to indicate speech that is untranscribable for technical reasons. FREQ
ignores these symbols by default. Also excluded are all the words beginning with one of
the following characters: 0, &, +, -, #. If you wish to include them in your analyses, list
them, along with other words you are searching for, in a file and use the +s/-s option to
specify them on the command line. The FREQ program also ignores header and code
tiers by default. Use the +t option if you want to include headers or coding tiers.

8.8.2 Studying Lexical Groups
The easiest way of using FREQ is to ask it to give a complete frequency count of all

the words in a transcript. However, FREQ can also be used to study the development and
use of particular lexical groups. If you are interested, for example, in how children use
personal pronouns between the ages of 2 and 3 years, a frequency count of these forms
would be helpful. Other lexical groups that might be interesting to track could be the set
of all conjunctions, all prepositions, all morality words, names of foods, and so on. In
order to get a listing of the frequencies of such words, you need to put all the words you
want to track into a text file, one word on each line by itself, and then use the +s switch
with the name of the file preceded by the @ sign, as in this example:

freq +s@articles.cut +f sample.cha

This command would conduct a frequency analysis on all the articles that you have put in
the file called articles.cut. You can create the articles.cut file using either the CLAN
editor in Text Mode or some other editor saving in “text only.” The file looks just like
this:

a
the
an

8.8.3 Building Concordances with FREQ
CLAN is not designed to build final, publishable concordances. However, you can

produce simple concordance-like output using the +d0 switch with FREQ. Here is a
fragment of the output from the use of this command. This fragment shows 8 matches
for the word “those” and 3 for the word “throw.”

8 those
 File "0012.cha": line 655.
 *MOT: look at those [= toys] .
 File "0012.cha": line 931.
 *MOT: do-'nt you touch those wire-s .
 File "0012.cha": line 1005.
 *MOT: you can-'nt play in those drawer-s .
 File "0012.cha": line 1115.
 *MOT: those [= crayons] are (y)icky .
 File "0012.cha": line 1118.

CLAN Manual 83

 *MOT: those [= crayons] are (y)icky .
 File "0012.cha": line 1233.
 *MOT: you can-'nt eat those [= crayons] .
 File "0012.cha": line 1240.
 *MOT: no # you can-'nt eat those [= crayons] .
 File "0012.cha": line 1271.
 *MOT: (be)cause you-'re gonna [: go-ing to] put those [= crayons] in

your mouth .
3 throw

 File "0012.cha": line 397.
 *MOT: can you <throw that [= football] ?> [>]
 File "0012.cha": line 702.
 *MOT: yeah # can we throw it [= ball] ?
 File "0012.cha": line 711.
 *MOT: can you throw that [= ball] to Mommy ?

8.8.4 Using Wildcards with FREQ
Some of the most powerful uses of freq involve the use of wildcards. Wildcards are

particularly useful when you want to analyze the frequencies for various codes that you
have entered into coding lines. Here is an example of the use of wildcards with codes.
One line of Hungarian data in sample2.cha has been coded on the %mor line for syntactic
role and part of speech, as described in the CHAT manual. It includes these codes: N:A|
duck-ACC, N:I|plane-ACC, N:I|grape-ALL, and N:A|baby-ALL, where the suffixes mark
accusative and illative cases and N:A and N:I indicate animate and inanimate nouns. If
you want to obtain a frequency count of all the animate nouns (N:A) that occur in this
file, use this command line:

freq +t%mor +s"N:A|*" sample2.cha

The output of this command will be:

1 n:a|baby-all
1 n:a|ball-acc
1 n:a|duck-acc

Note that material after the +s switch is enclosed in double quotation marks to guarantee
that wildcards will be correctly interpreted. For Macintosh and Windows, the double
quotes are the best way of guaranteeing that a string is correctly interpreted. On Unix,
double quotes can also be used. However, in Unix, single quotes are necessary when the
search string contains a $ sign.

The next examples give additional search strings with asterisks and the output they
will yield when run on the sample file. Note that what may appear to be a single
underline in the second example is actually two underline characters.

String Output

CLAN Manual 84

*-acc 1 n:a|ball-acc
 1 n:a|duck-acc
 1 n:i|plane-acc

*-a__ 1 n:a|baby-all
 1 n:a|ball-acc
 1 n:a|duck-acc
 1 n:i|grape-all
 1 n:i|plane-acc

N:*|*-all 1 N:A|baby-all
1 N:I|grape-all

These examples show the use of the asterisk as a wildcard. When the asterisk is used,
FREQ gives a full output of each of the specific code types that match. If you do not want
to see the specific instances of the matches, you can use the percentage wildcard, as in the
following examples:

String Output

N:A|% 3 N:A|
%-ACC 3 -ACC
%-A__ 3 -ACC

2 -ALL
N:%|%-ACC 3 N:|-ACC
N:%|% 5 N:|

It is also possible to combine the use of the two types of wildcards, as in these
examples:

String Output

N:%|*-ACC 1 N:|ball-acc
1 N:|duck-acc
1 N:|plane-acc

N:*|% 3 N:A|
2 N:I|

Researchers have also made extensive use of FREQ to tabulate speech act and
interactional codes. Often such codes are constructed using a taxonomic hierarchy. For
example, a code like $NIA:RP:NV has a three-level hierarchy. In the INCA-A system
discussed in the chapter on speech act coding in the CHAT manual, the first level codes
the interchange type; the second level codes the speech act or illocutionary force type;
and the third level codes the nature of the communicative channel. As in the case of the
morphological example cited earlier, one could use wildcards in the +s string to analyze
at different levels. The following examples show what the different wildcards will

CLAN Manual 85

produce when analyzing the %spa tier. The basic command here is:

freq +s"$*" +t%spa sample.cha

String Output
$* frequencies of all the three-level

codes in the %spa tier

$*:% frequencies of the interchange types

$%:*:% frequencies of the speech act codes

$RES:*: % frequencies of speech acts within the
RES category

$*:sel:% frequencies of the interchange types that have SEL
speech acts

If some of the codes have only two levels rather than the complete set of three levels,
you need to use an additional % sign in the +s switch. Thus the switch

+s"$%:*:%%"

will find all speech act codes, including both those with the third level coded and those
with only two levels coded.

As another example of how to use wild cards in FREQ, consider the task of
counting all the utterances from the various different speakers in a file. In this case, you
count the three-letter header codes at the beginnings of utterances. To do this, you need
the +y switch in order to make sure FREQ sees these headers. The command is:

freq +y +s”**:” *.cha

8.8.5 FREQ on the %mor line

The previous section illustrates the fact that searches for material on the %mor line can
be difficult to compose. To help in this regard, we have composed a variant of FREQ
searches that takes advantage of the syntax of the %mor tier. To see the available options
here, you can type “freq +s@” on the command line and you will see the following
information

+s@ Followed by file name or morpho-syntax
Morpho-syntax search pattern
 # prefix marker
 | part-of-speech
 r stem of the word
 - suffix marker
 & nonconcatenated morpheme
 = English translation for the stem
 followed by - and <--does not apply to contractions (~)
 * find any match
 % erase any match
 word -find "word"

Exception:
 ~ contractions

CLAN Manual 86

 followed by - and
 * find ONLY contractions
 + find contractions and other matches
 % erase any match

For example:
 +t%mor -t* +s"@r-*,o-%"
 find all stems and erase all other markers
 +t%mor -t* +s"@r-*,|-adv,o-%"
 find all stems of all "adv" and erase all other markers
 +t%mor -t* +s"@r-be"
 find all forms of "be" verb
 +t%mor -t* +s"@r-*,|-*,--%,o-%"
 find all stems, parts-of-speech followed by any suffix and erase
suffix and other markers

8.8.6 Lemmatization

Researchers are often interested in computing frequency profiles that are computed using
lemmas or root forms, rather inflected forms. For example, they may want to treat
"dropped" as an instance of the use of the lemma "drop." In order to perform these types
of computations, the +s switch can be used with the @ symbol to refer to various parts of
complex structures in the %mor line. This system recognizes the following structures on
the %mor line:

Element Symbol Example Representation Part
prefix # unwinding un#v|wind-PROG un#
stem r unwinding un#v|wind-PROG wind
part of speech | unwinding un#v|wind-PROG v|
suffix - unwinding un#v|wind-PROG PROG
fusion & unwound un#v|wind&PAST PAST
translation = gato n|gato=cat cat
other o - - -

To illustrate the use of these symbols, let us look at several possible commands. All of
these commands take the form: freq +t%mor -t* filename.cha. However, in addition,
they add +s switches as given in the second column. In these commands, the asterisk is
used to distinguish across forms in the frequency count and the % sign is used to combine
across forms.

Function String
All stems with their parts of speech, merge the rest +s@"r+*,|+*,o+%"
Only verbs +s@"|+v"
All forms of the stem "go" +s@"r+go"
The different parts of speech of the stem "go" +s@"r+go,|+*,o+%"
The stem "go" only when it is a verb +s@"r+go,|+v,o+%"
All stems, merge the rest +s@"r+*,o+%"

CLAN Manual 87

Of these various forms, the last one given above would be the one required for
conducting a frequency count based on lemmas or stems alone. Essentially CLAN breaks
every element on %mor tier into its individual components and then matches either literal
strings or wild cards provided by the user to each component.

8.8.7 Directing the Output of FREQ
When FREQ is run on a single file, output can be directed to an output file by using

the +f option:
 freq +f sample.cha

This results in the output being sent to sample.frq.cex. If you wish, you may specify a file
extension other than .frq.cex for the output file. For example, to have the output sent to a
file with the extension .mot.cex, you would specify:

 freq +fmot sample.cha

Suppose, however, that you are using FREQ to produce output on a group of files rather
than on a single file. The following command will produce a separate output file for
each .cha file in the current directory:

 freq +f *.cha

To specify that the frequency analysis for each of these files be computed separately but
stored in a single file, you must use the redirect symbol (>) and specify the name of the
output file. For example:

 freq *.cha > freq.all

This command will maintain the separate frequency analyses for each file separately and
store them all in a single file called freq.all. If there is already material in the freq.all file,
you may want to append the new material to the end of the old material. In this case, you
should use the form:

 freq *.cha >> freq.all

Sometimes, however, researchers want to treat a whole group of files as a single data-
base. To derive a single frequency count for all the .cha files, you need to use the +u
option:

 freq +u *.cha

Again, you may use the redirect feature to specify the name of the output file, as in the
following:

 freq +u *.cha > freq.all

8.8.8 Limiting in FREQ
An important analytic technique available in clan is the process of “limiting” which

allows you to focus your analysis on the part of your data files that is relevant by
excluding all other sections. Limiting is based on use of the +s, +t, and +z switches.
Limiting is available in most of the clan string search programs, but cannot be done
within special purpose programs such as chstrinG or check.

1. Limiting by including or excluding dependent tiers. Limiting can be used to
select out particular dependent tiers. By using the +t and -t options, you can
choose to include certain dependent tiers and ignore others. For example, if you
select a particular main speaker tier, you will be able to choose the dependent
tiers of only that particular speaker. Each type of tier has to be specifically se-

CLAN Manual 88

lected by the user, otherwise the programs follow their default conditions for se-
lecting tiers.

2. Limiting by including or excluding main tiers. When the -t* option is com-
bined with a switch like +t*MOT, limiting first narrows the search to the utter-
ances by MOT and then further excludes the main lines spoken by MOT. This
switch functions in a different way from -t*CHI, which will simply exclude all of
the utterances of CHI and the associated dependent tiers.

3. Limiting by including or excluding sequential regions of lines or words. The
next level of limiting is performed when the +z option is used. At this level only
the specified data region is chosen out of all the selected tiers.
4. Limiting by string inclusion and exclusion. The +s/-s options limit the

data that is passed on to subsequent programs.

Here is an example of the combined use of the first four limiting techniques. There
are two speakers, *CHI and *MOT, in sample.cha. Suppose you want to create a
frequency count of all variations of the $ini codes found on the %spa dependent tiers of
*CHI only in the first 20 utterances. This analysis is accomplished by using this
command:

freq +t*CHI +t%spa +s"$INI*" -t* +z20u sample.cha

The +t*CHI switch tells the program to select the main and dependent tiers associated
only with the speaker *CHI. The +t%spa tells the program to further narrow the selection.
It limits the analysis to the %spa dependent tiers and the *CHI main speaker tiers. The -t*
option signals the program to eliminate data found on the main speaker tier for NIC from
the analysis. The +s option tells the program to eliminate all the words that do not match
the $INI* string from the analysis. Quotes are needed for this particular +s switch in
order to guarantee correct interpretation of the asterisk. In general, it is safest to always
use pairs of double quotes with the +s switch. The +z20u option tells the program to look
at only the first 20 utterances. Now the FREQ program can perform the desired analysis.
This command line will send the output to the screen only. You must use the +f option if
you want it sent to a file. By default, the header tiers are excluded from the analysis.

The +/-s switch can also be used in combination with special codes to pick out
sections of material in code-switching. For example, stretches of German language can
be marked inside a transcript of mostly English productions with this form:

*CHI: <ich meine> [@g] cow drinking.

Then the command to ignore German material would be:

freq –s”<@g>” *.cha

8.8.9 TTR for Lemmas
If you run FREQ on the data on the main speaker tier, you will get a type-token ratio

that is grounded on whole word forms, rather than lemmas. For example, “run,” “runs,”
and “running” will all be treated as separate types. If you want to treat all forms of the

CLAN Manual 89

lemma “run” as a single type, you should run the file through MOR and POST to get a
disambiguated %mor line. Then you can run FREQ in a form such as this to get a
lemma-based TTR.

freq -t* +t%mor +s"*\|*-%" +s"*\|*" sample.mor.pst

Depending on the shape of your morphological forms, you may need to add some
additional +s switches to this sample command.

8.8.10Studying Unique Words and Shared Words
With a few simple manipulations, FREQ can be used to study the extent to which

words are shared between the parents and the child. For example, we may be interested in
understanding the nature of words that are used by the child and not used by the mother
as a way of understanding the ways in which the child’s social and conceptual world is
structured by forces outside of the immediate family. In order to isolate shared and
unique words, you can go through three steps. To illustrate these steps, we will use the
sample.cha file.

1. Run freq on the child’s and the mother’s utterances using these two com-
mands:

freq +d1 +t*MOT +f sample.cha
freq +d1 +t*CHI +f sample.cha

The first command will produce a sample.frq.cex file with the mother’s words
and the second will produce a sample.fr0.cex file with the child’s words.
2. Next you should run freq on the output files:

freq +y +o +u sample.f*

The output of these commands is a list of words with frequencies that are either 1
or 2. All words with frequencies of 2 are shared between the two files and all
words with frequencies of 1 are unique to either the mother or the child.
3. In order to determine whether a word is unique to the child or the mother,

you can run the previous command through a second filter that uses the
COMBO program. All words with frequencies of 2 are unique to the
mother. The words with frequencies of 1 are unique to the child.
Commands that automate this procedure are:

freq +y +o +u sample.f* | combo +y +s"2" +d | freq +y +d1 >
shared.frq

freq +y +o +u *.frq

The first command has three parts. The first FREQ segment tags all shared words
as having a frequency of 2 and all non-shared words as having a frequency of 1.
The COMBO segment extracts the shared words. The second FREQ segment
strips off the numbers and writes to a file. Then you compare this file with your
other files from the mother using a variant of the command given in the second
step. In the output from this final command, words with a frequency of 2 are

CLAN Manual 90

shared and words with a frequency of 1 are unique to the mother. A parallel
analysis can be conducted to determine the words unique to the child. This same
procedure can be run on collections of files in which both speakers participate, as
long as the speaker ID codes are consistent.

8.8.11Unique Options
+c Find capitalized words only.

+d Perform a particular level of data analysis. By default the output consists
of all selected words found in the input data file(s) and their corresponding
frequencies. The +d option can be used to change the output format. Try these
commands:

freq sample.cha +d0
freq sample.cha +d1
freq sample.cha +d2 +tCHI

Each of these three commands produces a different output.

+d0 When the +d0 option is used, the output provides a concordance with the
frequencies of each word, the files and line numbers where each word, and the
text in the line that matches.

+d1 This option outputs each of the words found in the input data file(s) one
word per line with no further information about frequency. Later this output
could be used as a word list file for KWAL or COMBO programs to locate the
context in which those words or codes are used.

+d2 With this option, the output is sent to a file in a very specific form that is
useful for input to STATFREQ. This option also creates a stat.out file to keep
track of multiple .frq.cex output files. You do not need to use the +f option with
+d2, because this is assumed. Note that you must include a +t specification in
order to tell the +d2 option which speaker to track for the STATFREQ analysis.
You may also wish to use the +t@ID= method to select your target speakers, as
in this example for the ne20 sample files from the New England corpus.

freq +d2 +t@ID=”*|Target_Child|*” *.cha

+d3 This output is essentially the same as that for +d2, but with only the
statistics on types, tokens, and the type–token ratio. This option also creates a
“stat.out” file to keep track of multiple .frq.cex output files. Word frequencies
are not placed into the output. You do not need to use the +f option with +d3,
since this is assumed.

+d4 This switch allows you to output just the type–token information.

+o Normally, the output from FREQ is sorted alphabetically. This option can
be used to sort the output in descending frequency. The +o1 level will sort to
create a reverse concordance.

CLAN Manual 91

FREQ also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.9 FREQMERG

If you have collected a large number of freq output files and you want to merge these
counts together, you can use freqmerg to combine the outputs of several runs of the freq
program. For example, you could run this command:

freq sample*.cha +f

This would create sample.frq.cex and sample2.frq.cex. Then you could merge these two
counts using this command:

freqmerg *.frq.cex

The only option that is unique to freqmerg is +o, which allows you to search for a
specific word on the main speaker tier. To search for a file that contains a set of words
use the form +o@filename.

FREQMERG also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.10 FREQPOS

The freqpos program is a minor variant of freq. What is different about freqpos is the
fact that it allows the user to track the frequencies of words in initial, final, and second
position in the utterance. This can be useful in studies of early child syntax. For example,
using freqpos on the main line, one can track the use of initial pronouns or auxiliaries.
For open class items like verbs, one can use freqpos to analyze codes on the %mor line.
This would allow one to study, for example, the appearance of verbs in second position,
initial position, final position, and other positions.

To illustrate the running of freqpos, let us look at the results of this simple command:

freqpos sample.cha

Here are the first six lines of the output from this command:

1 a initial = 0, final = 0, other = 1, one word = 0
1 any initial = 0, final = 0, other = 1, one word = 0
1 are initial = 0, final = 1, other = 0, one word = 0
3 chalk initial = 0, final = 3, other = 0, one word = 0

CLAN Manual 92

1 chalk+chalk initial = 0, final = 1, other = 0, one word = 0
1 delicious initial = 0, final = 0, other = 1, one word = 0

We see here that the word “chalk” appears three times in final position, whereas the
word “delicious” appears only once and that is not in either initial or final position. In
order to study occurrences in second position, we must use the +d switch as in:

freqpos +d sample.cha

8.10.1Unique Options
+d Count words in either first, second, or other positions. The default is to
count by first, last, and other positions.

+g Display only selected words in the output. The string following the +g can
be either a word or a file name in the @filename notation.

-s The effect of this option for freqpos is different from its effects in the
other CLAN programs. Only the negative -s value of this switch applies. The
effect of using -s is to exclude certain words as a part of the syntactic context. If
you want to match a particular word with freqpos, you should use the +g switch
rather than the +s switch.

FREQPOS also uses several options that are shared with other commands. For a com-
plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.11 GEM

The gem program is designed to allow you to mark particular parts of a transcript for
further analysis. Separate header lines are used to mark the beginning and end of each in-
teresting passage you want included in your gem output. These header tiers may contain
“tags” that will affect whether a given section is selected or excluded in the output. If no
particular tag information is being coded, you should use the header form @bg with no
colon. If you are using tags, you must use the colon, followed by a tab. If you do not
follow these rules, check will complain.

8.11.1Sample Runs
By default, gem looks for the beginning marker @bg without tags and the ending

marker @eg, as in this example command:

 gem sample.cha

If you want to be more selective in your retrieval of gems, you need to add code
words or tags to both the @bg: and @eg: lines. For example, you might wish to mark all
cases of verbal interchange during the activity of reading. To do this, you must place the
word “reading” on the @bg: line just before each reading episode, as well as on the @eg:
line just after each reading episode. Then you can use the +sreading switch to retrieve

CLAN Manual 93

only this type of gem, as in this example:

gem +sreading sample2.cha

Ambiguities can arise when one gem without a tag is nested within another or when
two gems without tags overlap. In these cases, the program assumes that the gem being
terminated by the @eg line is the one started at the last @bg line. If you have any sort of
overlap or embedding of gems, make sure that you use unique tags.

GEM can also be used to retrieve responses to particular questions or particular
stimuli used in an elicited production task. The @bg entry for this header can show the
number and description of the stimulus. Here is an example of a completed header line:

@bg: Picture 53, truck

One can then search for all of the responses to picture 53 by using the +s"53" switch in
GEM.

The / symbol can be used on the @bg line to indicate that a stimulus was described
out of its order in a test composed of ordered stimuli. Also the & symbol can be used to
indicate a second attempt to describe a stimulus, as in 1a& for the second description of
stimulus 1a, as in this example:

@bg: 1b /
*CHI: a &b ball.
@bg: 1a /
*CHI: a dog.
@bg: 1a &
*CHI: and a big ball.

Similar codes can be constructed as needed to describe the construction and ordering
of stimuli for particular research projects.

When the user is sure that there is no overlapping or nesting of gems and that the end
of one gem is marked by the beginning of the next, there is a simpler way of using GEM,
which we call lazy GEM. In this form of GEM, the beginning of each gem is marked by
@g: with one or more tags and the +n switch is used. Here is an example:

@g: reading
*CHI: nice kitty.
@g: offstage
*CHI: who that?
@g: reading
*CHI: a big ball.
@g: dinner

In this case, one can retrieve all the episodes of “reading” with this command:
gem +n +sreading

8.11.2Limiting With GEM
GEM also serves as a tool for limiting analyses. The type of limiting that is done by

CLAN Manual 94

GEM is very different from that done by KWAL or COMBO. In a sense, GEM works
like the +t switches in these other programs to select particular segments of the file for
analysis. When you do this, you will want to use the +d switch, so that the output is in
CHAT format. You can then save this as a file or pipe it on to another program, as in this
command.:

gem +sreading +d sample2.cha | freq

Note also that you can use any type of code on the @bg line. For example, you might
wish to mark well-formed multi-utterance turns, teaching episodes, failures in
communications, or contingent query sequences.

8.11.3Unique Options
+d The +d0 level of this switch produces simple output that is in legal CHAT
format. The +d1 level of this switch adds information to the legal CHAT output
regarding file names, line numbers, and @ID codes.

+g If this switch is used, all of the tag words specified with +s switches must
appear on the @bg: header line in order to make a match. Without the +g
switch, having just one of the +s words present is enough for a match.

gem +sreading +sbook +g sample2.cha

 This will retrieve all of the activities involving reading of books.

+n Use @g: lines as the basis for the search. If these are used, no overlapping
or nesting of gems is possible and each @g must have tags. In this case, no @eg
is needed, but CHECK and GEM will simply assume that the gem starts at the
@g and ends with the next @g.

+s This option is used to select file segments identified by words found on
the @bg: tier. Do not use the -s switch. See the example given above for +g. To
search for a group of words found in a file, use the form +s@filename.

GEM also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.12 GEMFREQ

This program combines the basic features of FREQ and GEM. Like GEM, it analyzes
portions of the transcript that are marked off with @bg and @eg markers. For example,
gems can mark off a section of bookreading activity with @bg: bookreading and @eg:
bookreading. Once these markers are entered, you can then run GEMFREQ to retrieve a
basic FREQ-type output for each of the various gem types you have marked. For
example, you can run this command:

CLAN Manual 95

gemfreq +sarriving sample2.cha

and you would get the following output:

GEMFREQ +sarriving sample2.cha
Wed May 12 15:54:35 1999
GEMFREQ (04-May-99) is conducting analyses on:
 ALL speaker tiers
 and ONLY header tiers matching: @BG:; @EG:;
**
From file <sample2.cha>
 2 tiers in gem " arriving":
 1 are
 1 fine
 1 how
 1 you

8.12.1Unique Options
+d The d0 level of this switch produces simple output that is in legal CHAT
format. The d1 level of this switch adds information to the legal CHAT output
regarding file names, line numbers, and @ID codes.

+g If this switch is used, all of the tag words specified with +s switches must
appear on the @bg: header line in order to make a match. Without the +g
switch, having just one of the +s words present is enough for a match.

gem +sreading +sbook +g sample2.cha

 This will retrieve all of the activities involving reading of books.

+n Use @g: lines as the basis for the search. If these are used, no overlapping
or nesting of gems is possible and each @g must have tags. In this case, no @eg
is needed, and both CHECK and GEMFREQ will simply assume that the gem
starts at the @g and ends with the next @g.

+o Search for a specific word on the main speaker tier. To search for a file of
words use the form +o@filename.

8.13 GEMLIST

The GEMLIST program provides a convenient way of viewing the distribution of
gems across a collection of files. For example, if you run GEMLIST on both sample.cha
and sample2.cha, you will get this output:

 From file <sample.cha>
 12 @BG
 3 main speaker tiers.
 21 @EG
 1 main speaker tiers.
 24 @BG
 3 main speaker tiers.

CLAN Manual 96

 32 @EG
From file <sample2.cha>
 18 @BG: just arriving
 2 main speaker tiers.
 21 @EG: just arriving
 22 @BG: reading magazines
 2 main speaker tiers.
 25 @EG: reading magazines
 26 @BG: reading a comic book
 2 main speaker tiers.
 29 @EG: reading a comic book

GEMLIST can also be used with files that use only the @g lazy gem markers. In that
case, the file should use nothing by @g markers and GEMLIST will treat each @g as im-
plicitly providing an @eg for the previous @g. Otherwise, the output is the same as with
@bg and @eg markers.

The only option unique to GEMLIST is +d which tells the program to display only
the data in the gems. GEMLIST also uses several options that are shared with other
commands. For a complete list of options for a command, type the name of the command
followed by a carriage return in the Commands window. Information regarding the
additional options shared across commands can be found in the chapter on Options.

8.14 KEYMAP

The KEYMAP program is useful for performing simple types of interactional and
contingency analyses. KEYMAP requires users to pick specific initiating or beginning
codes or “keys” to be tracked on a specific coding tier. If a match of the beginning code
or key is found, KEYMAP looks at all the codes on the specified coding tier in the next
utterance. This is the “map.” The output reports the numbers of times a given code maps
onto a given key for different speakers.

8.14.1Sample Runs
Here is a file fragment with a set of codes that will be tracked by KEYMAP:
*MOT: here you go.
%spa: $INI
*MOT: what do you say?
%spa: $INI
*CHI: thanks.
%spa: $RES
*MOT: you are very welcome.
%spa: $CON

If you run the KEYMAP program on this data with the $INI as the +b key symbol,
the program will report that $INI is followed once by $INI and once by $RES. The key
($INI in the previous example) and the dependent tier code must be defined for the
program. On the coding tier, KEYMAP will look only for symbols beginning with the $
sign. All other strings will be ignored. Keys are defined by using the +b option
immediately followed by the symbol you wish to search for. To see how KEYMAP
works, try this example:

keymap +b$INI* +t%spa sample.cha

For Unix, this command would have to be changed to quote metacharacters as

CLAN Manual 97

follows:
keymap +b\$INI* +t%spa sample.cha

KEYMAP produces a table of all the speakers who used one or more of the key sym-
bols, and how many times each symbol was used by each speaker. Each of those speakers
is followed by the list of all the speakers who responded to the given initiating speaker,
including continuations by the initial speaker, and the list of all the response codes and
their frequency count.

8.14.2Unique Options
+b This is the beginning specification symbol.

+s This option is used to specify the code or codes beginning with the $ sign
to treat as possible continuations. For example, in the sample.cha file, you might
only want to track $CON:* codes as continuations. In this case, the command
would be as follows.

keymap +b$* +s"$CON:*" +t%spa sample.cha

KEYMAP also uses several options that are shared with other commands. For a com-
plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.15 KWAL

The KWAL program outputs utterances that match certain user-specified search
words. The program also allows the user to view the context in which any given keyword
is used. In order to specify the search words, use the +s option, which allows you to
search for either a single word or a whole group of words stored in a file. It is possible to
specify as many +s options on the command line as you like.

Like COMBO, the KWAL program works not on lines, but on “clusters.” A cluster is
a combination of the main tier and the selected dependent tiers relating to that line. Each
cluster is searched independently for the given keyword. The program lists all keywords
that are found in a given cluster tier. A simple example of the use of KWAL is:

kwal +schalk sample.cha

The output of this command tells you the file name and the absolute line number of the
cluster containing the key word. It then prints out the matching cluster.

8.15.1Tier Selection in KWAL
Sometimes you may want to create new files in which some of the tiers in your

original files are systematically deleted. For example, you may wish to drop out certain
coding tiers that interfere with the readability of your transcript, or you may wish to drop
out a tier that will be later recomputed by a program. For example, in order to drop out
the %mor tier for all speakers, except CHI, you can use this command:

kwal +t*chi +t%mor +o@ +o* -o%mor +d +f t.cha

CLAN Manual 98

The two +t switches work as a matched pair to preserve the %mor tier for CHI. The first
+o@ switch will preserve the header tiers. The second and third +o switches work as a
pair to exclude the %mor lines in the other speakers. However, the -o%mor switch keeps
all of the dependent tiers except for %mor. The +t switch is used for selecting parts of
the transcript that may also be searched using the +s option. The +o switch, on the other
hand, only has an impact on the shape of the output. The +d switch specifies that the
output should be in CHAT format and the +f switch sends the output to a file. In this
case, there is no need to use the +s switch. Try out variations on this command with the
sample files to make sure you understand how it works.

Main lines can be excluded from the analysis using the -t* switch. However, this
exclusion affects only the search process, not the form of the output. It will guarantee that
no matches are found on the main line, but the main line will be included in the output. If
you want to exclude certain main lines from your output, you can use the -o switch, as in:

kwal +t*CHI +t%spa -o* sample.cha

You can also do limiting and selection by combining FLO and KWAL:

kwal +t*CHI +t%spa +s"$*SEL*" -t* sample.cha +d |
flo -t* +t%

To search for a keyword on the *MOT main speaker tiers and the %spa dependent tiers of
that speaker only, include +t*MOT +t%spa on the command line, as in this command.

kwal +s"$INI:*" +t%spa +t*MOT sample.cha

If you wish to study only material in repetitions, you can use KWAL in this form:

kwal +s”+[//]” *.cha +d3 +d

8.15.2Unique Options
+a Sort the output alphabetically. Choosing this option can slow down
processing significantly.

+d Normally, KWAL outputs the location of the tier where the match occurs.
When the +d switch is turned on you can output each matched sentence without
line number information in a simple legal CHAT format. The +d1 switch
outputs legal CHAT format along with file names and line numbers. Try these
commands:

kwal +s"chalk" sample.cha
kwal +s"chalk" +d sample.cha
kwal +s"chalk" +d1 sample.cha

The +d and +d1 switches can be extremely important tools for performing
analyses on particular subsets of a text. For example, in one project, a central
research question focused on variations in MLU as a function of the nature of

CLAN Manual 99

the addressee. In order to analyze this, each utterance was given a %add line
along with a code that indicated the identity of the addressee. Using sample.cha
as an example, the following KWAL line was used:

kwal +t%add +t*CHI +s"mot" +d sample.cha | mlu

This produced an MLU analysis on only those child utterances that are
directed to the mother as addressee.

+/-nS Include or exclude all utterances from speaker S when they occur
immediately after a match of a specified +s search string. For example, if you
want to exclude all child utterances that follow questions, you can use this
command

kwal +t*CHI +s"?" -nCHI *.cha

+o The +t switch is used to control the addition or deletion of particular tiers
or lines from the input and the output to KWAL. In some cases, you may want
to include a tier in the output that is not being included in the input. This
typically happens when you want to match a string in only one dependent tier,
such as the %mor tier, but you want all tiers to be included in the output. In
order to do this you would use a command of the following shape:

kwal +t%mor +s"*ACC" +o% sample2.cha

In yet another type of situation, you may want to include tiers in the
KWAL output that are not normally included. For example, if you want to see
output with the ages of the children in a group of files you can use this
command:

kwal +o@Age -t* *.cha

+w It is possible to instruct the program to enlarge the context in which the
keyword was found. The +w and -w options let you specify how many clusters
after and before the target cluster are to be included in the output. These options
must be immediately followed by a number. Consider this example:

kwal +schalk +w3 -w3 sample.cha

When the keyword chalk is found, the cluster containing the keyword and
the three clusters above (-w3) and below (+w3) will be shown in the output.

KWAL also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.16 MAXWD

This program locates, measures, and prints either the longest word or the longest
utterance in a file. It can also be used to locate all the utterances that have a certain
number of words or greater.

When searching for the longest word, the MAXWD output consists of: the word, its
length in characters, the line number on which it was found, and the name of the file
where it was found. When searching for the longest utterance with the +g option, the
output consists of: the utterance itself, the total length of the utterance, the line number on

CLAN Manual 100

which the utterance begins, and the file name where it was found. By default, MAXWD
only analyzes data found on the main speaker tiers. The +t option allows for the data
found on the header and dependent tiers to be analyzed as well. The following command
will locate the longest word in sample.cha.

maxwd sample.cha

You can also use MAXWD to track all of the words or utterances of a certain length. For
example, the following command will locate all of the utterances with only one word in
them:

maxwd -x1 +g2 sample.cha

Alternatively, you may want to use MAXWD to filter out all utterances below or above a
certain length. For example, you can use this command to output only sentences with
four or more words in them:

maxwd +x4 +g2 +d1 +o%

8.16.1Unique Options
+b You can use this switch to either include or exclude particular morpheme
delimiters. By default the morpheme delimiters #, ~, and - are understood to
delimit separate morphemes. You can force MAXWD to ignore all three of
these by using the -b#-~ form of this switch. You can use the +b switch to add
additional delimiters to the list.

+c This option is used to produce a given number of longest items. The
following command will print the seven longest words in sample.cha.

maxwd +c7 sample.cha

If you want to print out all the utterances above a certain length, you can use this
KWAL command

 kwal +x4w sample.cha

+d The +d level of this switch produces output with one line for the length
level and the next line for the word. The +d1 level produces output with only the
longest words, one per line, in order, and in legal CHAT format.

+g This switch forces MAXWD to compute not word lengths but utterance
lengths. It singles out the sentence that has the largest number of words or
morphemes and prints that in the output. The way of computing the length of
the utterance is determined by the number following the +g option. If the
number is 1 then the length is in number of morphemes per utterance. If the
number is 2 then the length is in number of words per utterance. And if the
number is 3 then the length is in the number of characters per utterance. For
example, if you want to compute the MLU and MLT of five longest utterances
in words of the *MOT, you would use the following command:

maxwd +g2 +c5 +d1 +t*MOT +o%mor sample.cha | mlu

The +g2 option specifies that the utterance length will be counted in terms of
numbers of words. The +c5 option specifies that only the five longest utterances
should be sent to the output. The +d1 option specifies that individual words, one
per line, should be sent to the output. The +o%mor includes data from the %mor

CLAN Manual 101

line in the output sent to MLU. The | symbol sends the output to analysis by
MLU.

+j If you have elected to use the +c switch, you can use the +j switch to
further fine-tune the output so that only one instance of each length type is
included. Here is a sample command:

maxwd +c8 +j +xw sample.cha

+o The +o switch is used to force the inclusion of a tier in the output. In order
to do this you would use a command of the following shape:

maxwd +c2 +j +o%mor sample2.cha

+x This option allows you to start the search for the longest item of a certain
type at a certain item length. As a result, all the utterances or words shorter than
a specified number will not be included in a search. The number specifying the
length should immediately follow the +x option. After that, you need to put
either “w” for words, “c” for characters, or “m” for morphemes. Try this
command:

maxwd sample.cha +x6w

MAXWD also uses several options that are shared with other commands. For a com-
plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on.

8.17 MLT

The MLT program computes the mean number of utterances in a turn, the mean
number of words per utterance, and the mean number of words per turn. A turn is defined
as a sequence of utterances spoken by a single speaker. Overlaps are not taken into
account in this computation. Instead, the program simply looks for sequences of repeated
speaker ID codes at the beginning of the main line. These computations are provided for
each speaker separately. Note that none of these ratios involve morphemes. If you want to
analyze morphemes per utterances, you should use the MLU program.

8.17.1MLT Defaults
The exact nature of the MLT calculation depends both on what the program in-

cludes and what it excludes. The default principles that it uses are as follows:
1. MLT excludes material in angle brackets followed by either [/] or [//].

This can be changed by adding any of these switches:
+s+"</>" +s+"<//>"

2. In order to exclude utterances with a specific postcode, such as [+ bch],
you can use the -s switch:

-s"[+ bch]"

Similarly, you can use +s to include lines that would otherwise be excluded. For
example, you may want to use +s”[+ trn]” to force inclusion of lines marked with
[+ trn].
3. The following strings are also excluded:

CLAN Manual 102

www 0* &* +* -* #* $*.

Here the asterisk indicates any material following the first symbol until a delim-
iter. Unlike the MLU program, MLT does not exclude utterances with xxx and
yyy by default.
4. The program considers the following symbols to be word delimiters:

. ? ! , ; [] < >

The space is also a word delimiter.
5. The program considers the following three symbols to be utterance delimiters:

. ! ?
as well as the various complex symbols such as +..., which end with one of these
three marks.

6. The special symbols xxx and yyy are not excluded from the data. Thus if the ut-
terance consists of those symbols only it will still be counted.
1. Utterances with no speech on the main line can be counted as turns if you add

the [+ trn] code, as in this example:
CHI: 0. [+ trn]
%spa: gestures to mother

In order to count this utterance as a turn, you can use this switch:
+s+"[+ trn]"

The second + after the s is used to mark the inclusion of something that is usually
excluded. This method for including nonverbal activities in mlt was developed
by Pan (1994).

8.17.2Breaking Up Turns
Sometimes speakers will end a turn and no one takes over the floor. After a pause, the

initial speaker may then start up a new turn. In order to code this as two turns rather than
one, you can insert a “dummy” code for an imaginary speaker called XXX, as in this ex-
ample from Rivero, Gràcia, and Fernández-Viader (1998):

*FAT: ma::.
%act: he touches the girl’s throat
*FAT: say mo::m.
@EndTurn
*FAT: what’s that?
%gpx: he points to a picture that is on the floor
*FAT: what’s that?

Using the @EndTurn marker, this sequence would be counted as two turns, rather than as
just one.

8.17.3Sample Runs
The following example demonstrates a common use of the MLT program:

mlt sample.cha

8.17.4Unique Options
+cS Look for unit marker S. If you want to count phrases or narrative units
instead of sentences, you can add markers such as [c] to make this segmentation

CLAN Manual 103

of your transcript into additional units. Compare these two commands:

mlt sample.cha
mlt +c[c] sample.cha

+d You can use this switch, together with the @ID specification described for
STATFREQ to produce numbers for a statistical analysis, one per line. The
command for the sample file is:

mlt +d +t@ID=”*|Target_Child*” sample.cha

The output of this command would be something like this:

eng samp sample 0110 CHI 6 6 8 1.333 1.000 1.333

This output gives 11 fields in this order: language, corpus, file, age, participant
id, number of utterances, number of turns, number of words, words/turn,
utterances/ turn, and words/utterance. The first five of these fields come from
the @ID field. The next six are computed for the particular participant for the
particular file. In order to run this type of analysis you must have an @ID
header for each participant you wish to track. Alternatively, you can use the +t
switch in the form +t*CHI. In this case, all of the *CHI lines will be examined
in the corpus. However, if you have different names for children across different
files, you need to use the @ID fields.

+d1 This level of the +d switch outputs data in another systematic format, with
data for each speaker on a single line. However, this form is less adapted to
input to a statistical program than the output for the basic +d switch. Also this
switch works with the +u switch, whereas the basic +d switch does not. Here is
an example of this output:

*CHI: 6 6 8 1.333 1.000 1.333
*MOT: 8 7 43 6.143 1.143 5.375

+g You can use the +g option to exclude utterances composed entirely of
particular words. For example, you might wish to exclude utterances composed
only of hi, bye, or both of these words together. To do this, you should place the
words to be excluded in a file, each word on a separate line. The option should
be immediately followed by the file name. That is to say, there should not be a
space between the +g option and the name of this file. If the file name is
omitted, the program displays an error message: “No file name for the +g option
specified!”

+s This option is used to specify a word to be used from an input file. This
option should be immediately followed by the word itself. In order to search for
a group of words stored in a file, use the form +s@filename. The -s value of this
switch excludes certain words from the MLT count. This is a reasonable thing to
do. The +s switch bases the count only on the included words. It is difficult to

CLAN Manual 104

imagine why anyone would want to do such an analysis.

MLT also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.18 MLU

The MLU program computes the mean length of utterance, which is the ratio of
morphemes to utterances. The predecessor of the current MLU measure was the “mean
length of response” or MLR devised by Nice (1925). The MLR corresponds to what we
now call MLUw or mean length of utterance in Words. Brown (1973) emphasized the
value of thinking of MLU in terms of morphemes, rather than words. Brown was
particularly interested in the ways in which the acquisition of grammatical morphemes
reflected syntactic growth and he believed that MLUm or mean length of utterance in
morphemes would reflect this growth more accurately than MLUw. Brown linked growth
in MLU to movement through six stages from MLU 1.75 to MLU 4.5. Subsequent
research (Klee, Schaffer, May, Membrino, & Mougey, 1989) showed that MLU is
correlated with age until about 48 months. Rondal, Ghiotto, Bredart, and Bachelet (1987)
found that MLU is highly correlated with increases in grammatical complexity between
MLU of 1 and 3. However, after MLU of 3.0, the measure was not well correlated with
syntactic growth, as measured by LARSP. A parallel study by Blake, Quartaro, and
Onorati (1970) with a larger subject group found that MLU was correlated with LARSP
until MLU 4.5. Even better correlations between MLU and grammatical complexity have
been reported when the IPSyn is used to measure grammatical complexity (Scarborough,
Rescorla, Tager-Flusberg, Fowler, & Sudhalter, 1991).

Brown (1973, p. 54) presented the following set of rules for the computation (by
hand) of MLU:

1. Start with the second page of the transcription unless that page involves a
recitation of some kind. In this latter case, start with the first recitation free
stretch. Count the first 100 utterances satisfying the following rules.

2. Only fully transcribed utterances are used; none with blanks. Portions of
utterances, entered in parentheses to indicate doubtful transcription, are
used.

3. Include all exact utterance repetitions (marked with a plus sign in records).
Stuttering is marked as repeated efforts at a single word; count the word
once in the most complete form produced. In the few cases where a word is
produced for emphasis or the like (no, no, no) count each occurrence.

4. Do not count such fullers as mm or oh, but do count no, yeah, and hi.
5. All compound words (two or more free morphemes), propernames, and

riualized reduplications coun as single words. Examples: birthday, rakety-
booom, choo-choo, quack-quack, night-night, pocketbook, seesaw.
Justification is that there is no evidence that the constitutent morphemes
functions as such for these children.

6. Count as one morpheme all irregular pasts of the verb (got, did, went, saw).

CLAN Manual 105

Justification is that there is no evidence that the child relates these to
present forms.

7. Count as one morpheme all diminutives (doggie, mommie) because these
children at least to do not seem to use the suffix productively. Diminutives
are the standard forms used by the child.

8. Count as separate morphemes all auxiliaries (is, have, will, can, must,
would). Also all catenatives: gonna, wanna, hafta. These latter counted as
single morphemes rather than as gong to or want to because evidence is that
they function so for the children. Count as separate morphemes all
inflections, for example, possessive [s], plural [s], third person singular [s],
regular past [d], and progressive [ing].

9. The range count follows the above rules but is always calculated for the
total transcription rather than for 100 utterances.

Because researchers often want to continue to follow these rules, it is important to
understand how to implement this system in CLAN. Here is a point by point description,
corresponding to Brown’s nine points.
1. To isolate 100 sentences, use the +z switch. Brown recommended using 100

utterances. He also suggested that these should be taken from the second page of
the transcript. In effect, this means that roughly the first 25 utterances should be
skipped. The switch that would achieve this effect in the MLU program is +z25u-
125u.

2. The MLU programs excludes utterances with unrecognized material transcribed as
xxx and xx by default.

3. If you mark repetitions and retraces using the CHAT codes of [/] and [//] the
repeated material will be excluded from the computation automatically. This
behavior can be changed by using the +r switch in MLU.

4. If you want forms to be treated as nonwords, you can precede them with the
marker &, as in &mm. Alternatively, you can add the switch –smm to exclude
this form or you can have a list of forms to exclude. The following strings are also
excluded by default:

xxx yyy www uh um 0* &* +* -* #* $*

where the asterisk indicates any material following the exclusion symbol. If xxx,
yyy, or www occur, the whole utterance is skipped. However, the utterance is not
skipped for the other symbols, although they are not counted as morphemes. The
symbols xx and yy are counted as morphemes. In fact, the symbols xx and yy are
used as variants of xxx and yyy specifically to avoid exclusion in the MLU pro-
gram. If the utterance consists of only excludable material, the whole utterance
will be ignored. In addition, suffixes, prefixes, or parts of compounds beginning
with a zero are automatically excluded and there is no way to modify this exclu-
sion. Brown recommends excluding mm and oh by default. However, if you want
to exclude these filler words, you will need to list them in a file and use the -s
switch, as in:

mlu -s@excludewords sample.cha
You can use +s to include lines that would otherwise be excluded. For example,
you may want to use +s”[+ trn]” to force inclusion of lines marked with [+ trn].
You can use the -sxxx switch to change the exclusionary behavior of MLU. In this

CLAN Manual 106

case, the program stops excluding sentences that have xxx from the count, but still
excludes the specific string “xxx”.

5. When MLU is computed from the %mor line, the compound marker is excluded as
a morpheme delimiter, so this restriction is automatic.

6. The & marker for irregular morphology is not treated as a morpheme delimiter, so
this restriction is automatic.

7. By default, diminutives are treated as real morphemes. In view of the evidence for
the productivity of the diminutive, it is difficult to understand why Brown thought
they were not productive.

8. The treatment of hafta as one morpheme is automatic unless the form is replaced
by [: have to]. The choice between these codes is left to the transcriber.

9. The range count simply excludes the use of the +z switch.

It is also possible to exclude utterances with a specific postcode, such as [+ bch],
using the -s switch:

-s"[+ bch]"
The use of postcodes needs to be considered carefully. Brown suggested that all
sentences with unclear material be excluded. Brown wants exact repetitions to be
included and does not exclude imitations. However, other researchers recommend also
excluding imitation, self-repetitions, and single-word answers to questions. If you want to
have full control over what is excluded by MLU, the best approach is to use a postcode
such as [+ exc] for all utterances that you think should be excluded.

The program considers the following three symbols to be morpheme delimiters:
- # ~

MOR analyses distinguish between these delimiters and the ampersand (&) symbol that
indicates fusion. As a result, morphemes that are fused with the stem will not be included
in the MLU count. If you want to change this list, you should use the +b option
described below. For Brown, compounds and irregular forms were monomorphemic.
This means that + and & should not be treated as morpheme delimiters for an analysis
that follows his guidelines. The program considers the following three symbols to be
utterance delimiters:

. ! ?
as well as the various complex symbols such as +... which end with one of these three
marks.

The computation of MLU requires you to morphemicize words. The best way to do
this is to use the MOR and POST programs to construct a morphemic analysis on the
%mor line. This is relatively easy to do for English and other languages for which good
MOR grammars and POST disambiguation databases exist. However, if you are working
in a language that does not yet have a good MOR grammar, this process would take more
time. Even in English, to save time, you may wish to consider using MLU to compute
MLUw (mean length of utterance in words), rather than MLU. Malakoff, Mayes,
Schottenfeld, and Howell (1999) found that MLU correlates with MLUw at .97 for
English. Aguado (1988) found a correlation of .99 for Spanish, and Hickey (1991) found
a correlation of .99 for Irish. If you wish to compute MLUw instead of MLU, you can

CLAN Manual 107

simply refrain from dividing words into morphemes on the main line. If you wish to
divide them, you can use the +b switch to tell MLU to ignore your separators.

8.18.1Including and Excluding in MLU and MLT
Researchers often wish to conduct MLU analyses on particular subsets of their data.

This can be done using commands such as:
kwal +t*CHI +t%add +s"mot" sample.cha +d | mlu

This command looks at only those utterances spoken by the child to the mother as ad-
dressee. KWAL outputs these utterances through a pipe to the MLU program. The pipe
symbol | is used to indicate this transfer of data from one program to the next. If you
want to send the output of the MLU analysis to a file, you can do this with the redirect
symbol, as in this version of the command:

kwal +t*CHI +t%add +s"mot" sample.cha +d | mlu > file.mlu

The inclusion of certain utterance types leads to an underestimate of MLU. However,
there is no clear consensus concerning which sentence forms should be included or
excluded in an MLU calculation. The MLU program uses postcodes to accommodate
differing approaches to MLU calculations. To exclude sentences with postcodes, the -s
exclude switch must be used in conjunction with a file of postcodes to be excluded. The
exclude file should be a list of the postcodes that you are interested in excluding from the
analysis. For example, the sample.cha file is postcoded for the presence of responses to
imitations [+ I], yes/ no questions [+ Q], and vocatives [+ V].

For the first MLU pass through the transcript, you can calculate the child’s MLU on
the entire transcript by typing:

mlu +t*CHI +t%mor sample.cha

For the second pass through the transcript you can calculate the child’s MLU
according to the criteria of Scarborough (1990). These criteria require excluding the
following: routines [+ R], book reading [+ "], fillers [+ F], imitations [+ I], self-
repetitions [+ SR], isolated onomatopoeic sounds [+ O], vocalizations [+ V], and partially
unintelligible utterances [+ PI]. To accomplish this, an exclude file must be made which
contains all of these postcodes. Of course, for the little sample file, there are only a few
examples of these coding types. Nonetheless, you can test this analysis using the
Scarborough criteria by creating a file called “scmlu” with the relevant codes in angle
brackets. Although postcodes are contained in square brackets in CHAT files, they are
contained in angle brackets in files used by CLAN. The scmlu file would look something
like this:

[+ R]
[+ "]
[+ V]
[+ I]

Once you have created this file, you then use the following command:
mlu +t*CHI -s@scmlu sample.cha

For the third pass through the transcript you can calculate the child’s MLU using a still
more restrictive set of criteria, also specified in angle brackets in postcodes and in a sepa-
rate file. This set also excludes one word answers to yes/no questions [$Q] in the file of
words to be excluded. You can calculate the child’s MLU using these criteria by typing:

CLAN Manual 108

mlu +t*CHI -s@resmlu sample.cha

In general, exclusion of these various limited types of utterances tends to increase the
child’s MLU.

8.18.2Unique Options
+b You can use this switch to either include or exclude particular morpheme
delimiters. By default the morpheme delimiters ~, #, and - are understood to
delimit separate morphemes. You can force MLU to ignore all three of these by
using the -b#-~ switch. You can use the +b switch to add additional delimiters
to the list.

+cS Look for unit marker S. If you want to count phrases or narrative units
instead of sentences, you can add markers such as [c] to make this segmentation
of your transcript into additional units. Compare these two commands:

mlu sample.cha
mlu +c[c] sample.cha

+d You can use this switch, together with the ID specification described for
STATFREQ to produce numbers for a statistical analysis, one per line. The
command for the sample file is:

mlu +d +tCHI sample.cha

The output of this command should be:
en|sample|CHI|1;10.4|female|||Target_Child|| 5 7 1.400 0.490

This output gives the @ID field, the number of utterances, number of
morphemes, morphemes/utterances, and the standard deviation of the MLU. In
order to run this type of analysis, you must have an @ID header for each
participant you wish to track. You can use the +t switch in the form +tCHI to
examine a whole collections of files. In this case, all of the *CHI lines will be
examined in the corpus.

+d1 This level of the +d switch outputs data in another systematic format, with
data for each speaker on a single line. However, this form is less adapted to
input to a statistical program than the output for the basic +d switch. Also this
switch works with the +u switch, whereas the basic +d switch do es not. Here is
an example of this output:

*CHI: 5 7 1.400 0.490
*MOT: 8 47 5.875 2.891

+g You can use the +g option to exclude utterances composed entirely of
particular words from the MLT analysis. For example, you might wish to
exclude utterances composed only of hi or bye. To do this, you should place the
words to be excluded in a file, each word on a separate line. The option should
be immediately followed by the file name. That is to say, there should not be a
space between the +g option and the name of this file. If the file name is
omitted, the program displays an error message: “No file name for the +g option
specified!”

+s This option is used to specify a word to be used from an input file. This

CLAN Manual 109

option should be immediately followed by the word itself. In order to search for
a group of words stored in a file, use the form +s@filename. The -s switch
excludes certain words from the analysis. This is a reasonable thing to do. The
+s switch bases the analysis only on certain words. It is more difficult to see
why anyone would want to conduct such an analysis. However, the +s switch
also has another use. One can use the +s switch to remove certain strings from
automatic exclusion by MLU. The program automatically excludes xxx, 0, uh,
and words beginning with & from the MLU count. This can be changed by
using this command:

mlu +s+uh +s+xxx +s0* +s&* file.cha

MLU also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.19 MODREP

The MODREP program matches words on one tier with corresponding words on
another tier. It works only on tiers where each word on tier A matches one word on tier
B. When such a one-to-one correspondence exists, MODREP will output the frequency
of all matches. Consider the following sample file distributed with CLAN as modrep.cha:

@Begin
@Participants: CHI Child
*CHI: I want more.
%pho: aI wan mo
%mod: aI want mor
*CHI: want more bananas.
%pho: wa mo nAnA
%mod: want mor bAn&nAz
*CHI: want more bananas.
%pho: wa mo nAnA
%mod: want mor bAn&nAz
*MOT: you excluded [//] excluded [/] xxx yyy www

&d do?
%pho: yu du
%mod: yu du
@End

You can run the following command on this file to create a model-and-replica
analysis for the child’s speech:

modrep +b*chi +c%pho +k modrep.cha

The output of MODREP in this case should be as follows:
From file <modrep.cha>
 1 I
 1 aI
 2 bananas
 2 nAnA
 3 more
 3 mo
 3 want
 1 wan
 2 wa

CLAN Manual 110

This output tells us that want was replicated in two different ways, and that more was
replicated in only one way twice. Only the child’s speech is included in this analysis and
the %mod line is ignored. Note that you must include the +k switch in this command in
order to guarantee that the analysis of the %pho line is case-sensitive. By default, all
CLAN programs are case-insensitive. However, on the %pho line, UNIBET uses
capitalization to distinguish between pairs of different phonemes.

8.19.1Exclusions and Inclusions
By default, MODREP ignores certain strings on the model tier and the main tier.

These include xxx, yyy, www, material preceded by an ampersand, and material
preceding the retracing markers [/] and [//]. To illustrate these exclusions, try this
command:

 modrep +b* +c%pho +k modrep.cha

The output of this command will look like this:

MODREP +b* +c%PHO +k modrep.cha
Thu May 13 13:03:26 1999
MODREP (04-May-99) is conducting analyses on:
 ALL speaker main tiers

and those speakers' ONLY dependent tiers matching: %PHO;
**
From file <modrep.cha>
Model line:
you zzz do ?

is longer than Rep line:
yu du

In File "modrep.cha" in tier cluster around line 13.

If you want to include some of the excluded strings, you can add the +q option. For
example, you could type:

 modrep +b* +c%pho +k modrep.cha +qwww

However, adding the www would destroy the one-to-one match between the model line
and the replica line. When this happens, CLAN will complain and then die. Give this a
try to see how it works. It is also possible to exclude additional strings using the +q
switch. For example, you could exclude all words beginning with “z” using this
command:

 modrep +b* +c%pho +k modrep.cha -qz*

However, because there are no words beginning with “z” in the file, this will not change
the match between the model and the replica.

If the main line has no speech and only a 0, MODREP will effectively copy this zero
as many times as in needed to match up with the number of units on the %mod tier that is
being used to match up with the main line.

CLAN Manual 111

8.19.2Using a %mod Line
A more precise way of using MODREP is to construct a %mod line to match the

%pho line. In modrep.cha, a %mod line has been included. When this is done the
following type of command can be used:

modrep +b%mod +c%pho +k modrep.cha

This command will compare the %mod and %pho lines for both the mother and the child
in the sample file. Note that it is also possible to trace pronunciations of individual target
words by using the +o switch as in this command for tracing words beginning with /m/:

modrep +b%mod +c%pho +k +om* modrep.cha

8.19.3MODREP and COMBO -- Cross-tier COMBO
MODREP can also be used to match codes on the %mor tier to words on the main

line. For example, if you want to find all the words on the main line that match words on
the %mor line with an accusative suffix in the mother’s speech in sample2.cha, you can
use this command:

modrep +b%mor +c*MOT +o"*ACC" sample2.cha

The output of this command is:
From file <sample2.cha>
 1 n:a|ball-acc
 1 labda't
 1 n:a|duck-acc
 1 kacsa't
 1 n:i|plane-acc
 1 repu"lo"ge'pet

If you want to conduct an even more careful selection of codes on the %mor line, you
can make combined use of MODREP and COMBO. For example, if you want to find all
the words matching accusatives that follow verbs, you first select these utterances by run-
ning COMBO with the +d switch and the correct +s switch and then pipe the output to
the MODREP command we used earlier. This combined use of the two programs can be
called “cross-tier COMBO.”

combo +s"v:*^*^n:*-acc" +t%mor sample2.cha +d |
modrep +b%mor +c*MOT +o"*acc"

The output of this program is the same as in the previous example. Of course, in a
large input file, the addition of the COMBO filter can make the search much more
restrictive and powerful.

8.19.4Unique Options
+b This switch is used to set the model tier name. There is no default setting.
The model tier can also be set to the main line, using +b* or +b*chi.

+c You can use this switch to change the name of the replica tier. There is no
default setting.

+n This switch limits the shape of the output from the replica tier in
MODREP to some particular string or file of strings. For example, you can cut
down the replica tier output to only those strings ending in “-ing.” If you want to

CLAN Manual 112

track a series of strings or words, you can put them in a file and use the
@filename form for the switch.

+o This switch limits the shape of the output for the model tier in MODREP
to some particular string or file of strings. For example, you can cut down the
model tier output to only those strings ending in “-ing” or with accusative
suffixes, and so forth. If you want to track a series of strings or words, you can
put them in a file and use the @filename form for the switch.

+q The +q switch allows you to include particular symbols such as xxx or &*
that are excluded by default. The -q switch allows you to make further
exclusions of particular strings. If you want to include or exclude a series of
strings or words, you can put them in a file and use the @filename form for the
switch.

MODREP also uses several options that are shared with other commands. For a com-
plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.20 PHONFREQ

The PHONFREQ program tabulates all of the segments on the %pho line. For
example, using PHONFREQ with no further options on modrep.cha will produce this
output:

 2 A initial = 0, final = 1, other = 1
 1 I initial = 0, final = 1, other = 0
 3 a initial = 1, final = 1, other = 1
 2 m initial = 2, final = 0, other = 0
 3 n initial = 1, final = 1, other = 1
 2 o initial = 0, final = 2, other = 0
 2 w initial = 2, final = 0, other = 0

This output tells you that there were two occurrences of the segment /A/, once in final
position and once in other or medial position.

If you create a file called alphabet file and place it in your working directory, you can
further specify that certain digraphs should be treated as single segments. This is
important if you need to look at diphthongs or other digraphs in UNIBET. In the strings
in the alphabet file, the asterisk character can be used to indicate any single character. For
example, the string *: would indicate any sound followed by a colon. If you have three
instances of a:, three of e:, and three of o:, the output will list each of these three
separately, rather than summing them together as nine instances of something followed
by a colon. Because the asterisk is not used in either UNIBET or PHONASCII, it should
never be necessary to specify a search for a literal asterisk in your alphabet file. A sample
alphabet file for English is distributed with CLAN. PHONFREQ will warn you that it
does not find an alphabet file. You can ignore this warning if you are convinced that you
do not need a special alphabet file.

CLAN Manual 113

If you want to construct a complete substitution matrix for phonological analysis, you
need to add a %mod line in your transcript to indicate the target phonology. Then you can
run PHONFREQ twice, first on the %pho line and then on the %mod line. To run on the
%mod line, you need to add the +t%mod switch.

If you want to specify a set of digraphs that should be treated as single phonemes or
segments, you can put them in a file called alphabet.cut. Each combination should be en-
tered by itself on a single line. PHONFREQ will look for the alphabet file in either the
working directory or the library directory. If it finds no alphabet.cut file, each letter will
be treated as a single segment. Within the alphabet file, you can also specify trigraphs
that should override particular digraphs. In that case, the longer string that should
override the shorter string should occur earlier in the alphabet file.

8.20.1Unique Options
+b By default, PHONFREQ analyzes the %pho tier. If you want to analyze
another tier, you can use the +b switch to specify the desired tier. Remember
that you might still need to use the +t switch along with the +b switch as in this
command:

phonfreq +b* +t*CHI modrep.cha

+d If you use this switch, the actual words that were matched will be written
to the output. Each occurrence is written out.

+t You should use the +b switch to change the identity of the tier analyzed by
PHONFREQ. The +t switch is used to change the identity of the speaker being
analyzed. For example, if you want to analyze the main lines for speaker CHI,
you would use this command:

phonfreq +b* +t*CHI modrep.cha

PHONFREQ also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

The lexicon could be much smaller if more rules were written to handle derivational
morphology. These would handle prefixes such as “non#” and derivational suffixes such
as “-al.” The grammar still needs to be fine-tuned in order to catch common over-
regularizations, although it will never be able to capture all possible morphological
errors. Furthermore, attempts to capture over regularizations may introduce bogus
analyses of good forms, such as “seed” = “*see-PAST.” Other areas for which more rules
need to be written include diminutives, and words like “oh+my+goodness,” which should
automatically be treated as communicators.

8.21 RELY

This program has two functions. The first is to check reliability. When you are
entering a series of codes into files using the Coder Mode, you will often want to
compute the reliability of your coding system by having two or more people code a single

CLAN Manual 114

file or group of files. To do this, you can give each coder the original file, get them to
enter a %cod line and then use the RELY program to spot matches and mismatches. For
example, you could copy the sample.cha file to the samplea.cha file and change one code
in the samplea.cha file. In this example, change the word “in” to “gone” in the code on
line 15. Then enter the command

rely sample.cha samplea.cha +t%spa

The output in the sample.rly file will look like the basic sample.cha file, but with this
additional information for line 15:

%spa: $RDE:sel:non $RFI:xxx:gone:?"samplea.cha"
$RFI:xxx:in:?"sample.cha"

If you want the program to ignore any differences in the main line, header line, or
other dependent tiers that may have been introduced by the second coder, you can add the
+c switch. If you do this, the program will ignore differences and always copy
information from the first file. If the command is:

rely +c sample.cha samplea.cha +t%spa

then the program will use sample.cha as the master file for everything except the
information on the %spa tier.

The second function of the RELY program is to allow multiple coders to add a series
of dependent tiers to a master file. The main lines of master file should remain unchanged
as the coders add additional information on dependent tiers. This function is accessed
through the +a switch, which tells the program the name of the code from the secondary
file that is to be added to the master file, as in

rely +a orig.cha codedfile.cha +t%spa

8.21.1Unique Options
+a Add tiers from second file to first, master, file.

+c Do not check data on nonselected tier.

RELY also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

8.22 STATFREQ

The STATFREQ program provides a way of producing a summary of word or code
frequencies across a set of files. However, within each of the files, you can only look at
one speaker at a time. This summary can be sent on as the input to statistical analysis by
programs such as Excel, SAS or BMDP. Here is the output from a FREQ run on the
*CHI utterances in sample.cha and then a STATFREQ run the output:

*CHI: chalk mommy neat that what's yeah Types Token TTR
en|sample|CHI|1;10.04|female|||Target_Child||6 2 1 1 1 1 2 6 8 0.750

In order to get this type of output, you need to go through three steps. The actual running
of STATFREQ is the last of these three steps.

CLAN Manual 115

1. First, you must assign appropriate @ID header lines to the files to be analyzed,
using the INSERT program. You can also run INSERT from inside the editor,
but starting up CHECK. INSERT will create basic @ID headers which you may
wish to modify to add more information. There can be only one @ID header per
speaker. These lines take the following shape:

@ID: language|corpus|speaker|age|sex|group|SES|role|situation

an example would be:
@ID: eng|ne20|chi20|1;10.4|m||middle|target_child|situation

Note, that the information here for “group” is missing. This is indicated as
missing information between the fifth and sixth bar marks.

2. Next, use FREQ with the +t option followed by the appropriate speaker code.
You must also use the +d2 option in the FREQ command line. This will produce
a temporary file called stat.out. Here is an example of a FREQ command that
outputs data for a STATFREQ analysis:

 freq +d2 +t@ID=”*|female|*” sample.cha

STATFREQ will produce one line for each file. If your @ID code matches more
than one speaker, frequency information from the various speakers that it match-
es will be merged together. Therefore, you want to make sure that you use the
various pieces of information in the @ID field to select out exactly the material
you want to match.

3. FREQ will tell you to run STATFREQ by typing:
 statfreq stat.out.cex +f +d

The result of this command is stat.out.sat.cex. If the @ID header is not found in a
given file, the message NO ID GIVEN will be produced by the program.

If you used the +d, then you can import the StatFreq output in stat.out.sat.cex to Excel
using this procedure:

Start Excel
select open... from the File menu
choose *.sat.cex as your file
in “Text Import Wizard - Step 1 of 3” select “Delimited” in “Original Data Type”
press “Next >”
in “Text Import Wizard - Step 2 of 3” select “Space” only in “Delimiters”
make sure that “Treat consecutive delimiters as one” is selected
press “Finish”

If you wish to rotate your data table in Excel, here are the commands:
1. Select the data.
2. Right click and copy.
3. Select “Paste Special, Transpose”

The only option unique to STATFREQ is +d which removes the file headers so that
the data can be sent directly into a program for statistical analysis. It also replaces
missing values with a period, which is usually a symbol representing missing data for
statistical analysis. STATFREQ uses several options that are shared with other
commands. For a complete list of options for a command, type the name of the command

CLAN Manual 116

followed by a carriage return in the Commands window. Information regarding the
additional options shared across commands can be found in the chapter on Options.

8.23 TIMEDUR

The TIMEDUR program computes the duration of the pauses between speakers and
the duration of overlaps. This program requires a %snd tier created through sonic CHAT.
The data is output in a form that is intended for export to a spreadsheet program.
Columns labeled with the speaker’s ID indicate the length of the utterance. Columns
labeled with two speaker ID’s, such as FAT-ROS, indicate the length of the pause
between the end of the utterance of the first speaker and the beginning of the utterance of
the next speaker. Negative values in these columns indicate overlaps.

The only unique option in TIMEDUR is +a, which you can use to specify that the
time markers should be taken from the %mov tier instead of the default %snd tier.
TIMEDUR also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

8.24 VOCD

The VOCD command was written by Gerard McKee of the Department of Computer
Science, The University of Reading. The research project supporting this work was
funded by grants from the Research Endowment Trust Fund of The University of
Reading and the Economic and Social Research Council (Grant no R000221995) to D. D.
Malvern and B. J. Richards, School of Education, The University of Reading, Bulmershe
Court, Reading, England RG6 1HY. An article describing VOCD in detail can be found
at http://childes.psy.cmu.edu/manuals/vocd.doc .

Measurements of vocabulary diversity are frequently needed in child language
research and other clinical and linguistic fields. In the past, measures were based on the
ratio of different words (Types) to the total number of words (Tokens), known as the
type–token Ratio (TTR). Unfortunately, such measures, including mathematical
transformations of the TTR such as Root TTR, are functions of the number of tokens in
the transcript or language sample — samples containing larger numbers of tokens give
lower values for TTR and vice versa (Richards & Malvern, 1997a). This problem has
distorted research findings (Richards & Malvern, 1997b). Previous attempts to overcome
the problem, for example by standardizing the number of tokens to be analyzed from
each child, have failed to ensure that measures are comparable across researchers who
use different baselines of tokens, and inevitably waste data in reducing analyses to the
size of the smallest sample.

The approach taken in the VOCD program is based on an analysis of the probability
of new vocabulary being introduced into longer and longer samples of speech or writing.
This probability yields a mathematical model of how TTR varies with token size. By
comparing the mathematical model with empirical data in a transcript, VOCD provides a

http://childes.psy.cmu.edu/manuals/vocd.doc

CLAN Manual 117

new measure of vocabulary diversity called D. The measure has three advantages: it is
not a function of the number of words in the sample; it uses all the data available; and it
is more informative, because it represents how the TTR varies over a range of token size.
The measure is based on the TTR versus token curve calculated from data for the
transcript as a whole, rather than a particular TTR value on it.

D has been shown to be superior to previous measures in both avoiding the inherent
flaw in raw TTR with varying sample sizes and in discriminating across a wide range of
language learners and users (Malvern & Richards, in press; Richards & Malvern, 1998).

8.24.1Origin of the Measure
TTRs inevitably decline with increasing sample size. Consequently, any single value

of TTR lacks reliability as it will depend on the length in words of the language sample
used. A graph of TTR against tokens (N) for a transcript will lie in a curve beginning at
the point (1,1) and falling with a negative gradient that becomes progressively less steep
(see Malvern & Richards, 1997a). All language samples will follow this trend, but
transcripts from speakers or writers with high vocabulary diversity will produce curves
that lie above those with low diversity. The fact that TTR falls in a predictable way as the
token size increases provides the basis for our approach to finding a valid and reliable
measure. The method builds on previous theoretical analyses, notably by Brainerd (1982)
and in particular Sichel (1986), which model the TTR versus token curve mathematically
so that the characteristics of the curve for a transcript yields a valid measure of
vocabulary diversity.

Various probabilistic models were developed and investigated in order to arrive at a
model containing only one parameter which increases with increasing diversity and falls
into a range suitable for discriminating among the range of transcripts found in various
language studies. The model chosen is derived from a simplification of Sichel’s (1986)
type– token characteristic curve and is in the form an equation containing the parameter
D. This equation yields a family of curves all of the same general and appropriate shape,
with different values for the parameter D distinguishing different members of this family
(see Malvern & Richards, 1997). In the model, D itself is used directly as an index of
lexical diversity.

In order to calculate D from a transcript, the VOCD program first plots the empirical
TTR versus tokens curve for the speaker. It derives each point on the curve from an
average of 100 trials on subsamples of words of the token size for that point. The
subsamples are made up of words randomly chosen (without replacement) from
throughout the transcript. The program then finds the best fit between the theoretical
model and the empirical data by a curve-fitting procedure which adjusts the value of the
parameter (D) in the equation until a match is obtained between the actual curve for the
transcript and the closest member of the family of curves represented by the
mathematical model. This value of the parameter for best fit is the index of lexical
diversity. High values of D reflect a high level of lexical diversity and lower diversity
produces lower values of D.

CLAN Manual 118

The validity of D has been the subject of extensive investigation (Malvern &
Richards, 1997; Richards & Malvern, 1997a; Richards & Malvern, 1998; Malvern &
Richards, in press) on samples of child language, children with SLI, children learning
French as a foreign language, adult learners of English as a second language, and
academic writing. In these validation trials, the empirical TTR versus token curves for a
total of 162 transcripts from five corpora covering ages from 24 months to adult, two
languages and a variety of settings, all fitted the model. The model produced consistent
values for D which, unlike TTR and even Mean Segmental TTR (MSTTR) (see Richards
& Malvern, 1997a: pp. 35-38), correlated well with other well validated measures of
language. These five corpora also provide useful indications of the scale for D.

8.24.2Calculation of D
In calculating D, VOCD uses random sampling of tokens in plotting the curve of TTR

against increasing token size for the transcript under investigation. Random sampling has
two advantages over sequential sampling. Firstly, it matches the assumptions underlying
the probabilistic model. Secondly, it avoids the problem of the curve being distorted by
the clustering of the same vocabulary items at particular points in the transcript.

In practice each empirical point on the curve is calculated from averaging the TTRs
of 100 trials on subsamples consisting of the number of tokens for that point, drawn at
random from throughout the transcripts. This default number was found by
experimentation and balanced the wish to have as many trials as possible with the desire
for the program to run reasonably quickly. The run time has not been reduced at the
expense of reliability, however, as it was found that taking 100 trials for each point on the
curve produced consistency in the values output for D without unacceptable delays.

Which part of the curve is used to calculate D is crucial. First, in order to have
subsamples to average for the final point on the curve, the final value of N (the number of
tokens in a subsample) cannot be as large as the transcript itself. Moreover, transcripts
vary hugely in total token count. Second, the equation is an approximation to Sichel’s
(1986) model and applies with greater accuracy at lower numbers of tokens. In an
extensive set of trials, D has been calculated over different parts of the curve to find a
portion for which the approximation held good and averaging worked well. As a result of
these trials the default is for the curve to be drawn and fitted for N=35 to N=50 tokens in
steps of 1 token. Each of these points is calculated from averaging 100 subsamples, each
drawn from the whole of the transcript. Although only a relatively small part of the curve
is fitted, it uses all the information available in the transcript. This also has the advantage
of calculating D from a standard part of the curve for all transcripts regardless of their
total size, further providing for reliable comparisons between subjects and between the
work of different researchers.

The procedure depends on finding the best fit between the empirical and theoretically
derived curves by the least square difference method. Extensive testing confirmed that
the best fit procedure was valid and was reliably finding a unique minimum at the least
square difference.

CLAN Manual 119

As the points on the curve are averages of random samples, a slightly different value
of D is to be expected each time the program is run. Tests showed that with the defaults
chosen these differences are relatively small, but consistency was improved by VOCD
calculating D three times by default and giving the average value as output.

8.24.3Sample Size
By default, the software plots the TTR versus token curve from 35 tokens to 50

tokens. Each point on the curve is produced by random sampling without replacement.
VOCD therefore requires a minimum of 50 tokens to operate. However, the fact that the
software will satisfactorily output a value of D from a sample as small as 50 tokens does
not guarantee that values obtained from such small samples will be reliable. It should also
be noted that random sampling without replacement causes the software to run noticeably
more slowly when samples approach this minimum level.

8.24.4Preparation of Files
Files should be prepared in correct CHAT format and should pass through CHECK,

using the +g3 switch to track down spelling and typographical errors. The FREQ program
should then be used to create a complete wordlist that can be scanned for further errors.
The output from FREQ also allows the researcher to see exactly what FREQ (and
therefore VOCD) will treat as a word type. From this information, an exclude file of non-
words can be compiled (e.g. hesitations, laughter, etc). These can then be filtered out of
the analysis using the -s switch.

8.24.5The Output from VOCD
 To illustrate the functioning of VOCD, let us use a command that examines the

child’s output in the file 68.cha in the NE32 sample directory in the lib folder in the
CLAN distribution. The +r6 switch here excludes repetitions, the +s@exclude lists a file
of words to be excluded, and the +s”*-%%” instructs CLAN to merge across variations
of a base word.

VOCD +t"*CHI" +r6 -s@exclude +s"*-%%" 68.cha

 The output of this analysis has four parts:

1. A sequential list of utterances by the speaker selected shows the tokens that will
be retained for analysis.

2. A table shows the number of tokens for each point on the curve, average TTR
and the standard deviation for each point, and the value of D obtained from the
equation for each point. Three such tables appear, one for each time the program
takes random samples and carries out the curve-fitting.

3. At the foot of each of the three tables is the average of the Ds obtained from the
equation and their standard deviation, the value for D that provided the best fit,
and the residuals.
2. Finally, a results summary repeats the command line and file name and the

type and token information for the lexical items retained for analysis, as
well as giving the thre optimum values of D and their average.

For the command given above, the last of the three tables and the results summary

CLAN Manual 120

are:
tokens samples ttr st.dev D
 35 100 0.7963 0.067 54.470
 36 100 0.8067 0.054 60.583
 37 100 0.8008 0.059 59.562
 38 100 0.7947 0.056 58.464
 39 100 0.7831 0.065 55.124
 40 100 0.7772 0.054 54.242
 41 100 0.7720 0.064 53.568
 42 100 0.7767 0.057 56.720
 43 100 0.7695 0.051 55.245
 44 100 0.7650 0.057 54.787
 45 100 0.7636 0.053 55.480
 46 100 0.7626 0.057 56.346
 47 100 0.7543 0.052 54.403
 48 100 0.7608 0.050 58.088
 49 100 0.7433 0.058 52.719
 50 100 0.7396 0.049 52.516

D: average = 55.770; std dev. = 2.289
D_optimum <55.63; min least sq val = 0.001>

VOCD RESULTS SUMMARY
====================
 Command line: vocd +t*CHI +r6 -s@exclude +s*-%% 68.cha
 File name: 68.cha
 Types,Tokens,TTR: <129,376,0.343085>
 D_optimum values: <55.36, 55.46, 55.63>
 D_optimum average: 55.48

8.24.6Lemma-based Analysis
If you wish to conduct a lemma-based analysis, rather than a word-based analysis, you
can do this from the %mor line using a command of this type:

vocd +t%mor –t* +s"*|*-%%" +s"*|*&%%" *.cha

8.24.7Unique Options
+a0 Calculate D_optimum using the split half with evens.

+a1 Calculate D_optimum using the split half with odds.

+c Include capitalized words only.

+d Outputs a list of utterances processed and number of types, tokens and
TTR, but does not calculate D.

+d4 Outputs number of types, tokens and TTR only.

CLAN Manual 121

+dsNThe +ds switch allows separate analysis of odd and even numbered words
in the transcript. The results of this can then be fed into a split-half reliability
analysis. This switch can have one of two values: +ds0 (for even numbered
words) or +ds1 (for odd numbered words).

+g Calls up the limiting relative diversity (LRD) sub-routine to compare the
relative diversity of two different word classes coded on the %mor tier. This
procedure operates in three stages and extracts the words to be included from
the %mor tier where the word classes are coded. First, the speaker, the %mor
tier and the file name are specified in the usual way, plus the +g switch to
invoke the subroutine:

vocd +t“*CHI” +t“%mor” -t“*” +g filename

Second, the user is prompted twice to specify the word classes to be compared.
The following would compare verb and noun diversity and limit the analysis to
word stems:

+s“v|*” +s“*-%%”

+s“n|*” +s“*-%%”

The first word class entered will be the numerator and the second will be the
denominator.

+m This segments words into their component morphemes so that an overall
morpheme diversity measure will be returned. This feature relates particularly to
analyses of polysynthetic and agglutinative languages where, because of complex
morphological structure, the definition of a ‘word’ may be problematic. In these
cases morpheme diversity may be more meaningful the word diversity. VOCD
will segment words according to any combination of CHAT morpheme
delimiters. This is achieved by placing the boundary markers relevant for the
analysis in inverted commas after the -m switch. Thus,

vocd +t“*CHI” +m“-#~&+” filename.cha

will provide all possible word segmentations.

Hidden Options in vocd to Override the Defaults for Curve Fitting and Type of
Sampling

+Df<n>: D_optimum - size of starting sample (default 35)
+Dt<n>: D_optimum - size of largest sample (default 50)
+Di<n>: D_optimum - size of increments (default 1)
+Ds<n>: D_optimum - the number of samples (default 100)
-R : D_optimum - use random sampling with replacement.
 (default is random sampling without replacement).

CLAN Manual 122

-E : D_optimum - use sequential sampling.

VOCD also uses several options that are shared with other commands. For a complete list
of options for a command, type the name of the command followed by a carriage return
in the Commands window. Information regarding the additional options shared across
commands can be found in the chapter on Options.

8.25 WDLEN

The WDLEN program tabulates word lengths and prints a histogram. The program
reads through data files, tabulating the frequencies of various word and utterance lengths.
The output consists of word lengths (in characters) and utterance lengths (in words), the
frequencies of these lengths, and a histogram of these frequencies. The “Wdlen” in the
output represents the word length. The “Utt len” in the output represents the utterance
length. THe command allow for a maximum of 100 letters per word and 100 words or
morphemes per utterance. If you input exceeds these limits, you will receive an error
message. The basic use of the WDLEN program is as follows:

wdlen sample.cha

The only option unique to WDLEN is +h which allows you to extend the length of the
longest line on the histogram. WDLEN also uses several options that are shared with
other commands. For a complete list of options for a command, type the name of the
command followed by a carriage return in the Commands window. Information regarding
the additional options shared across commands can be found in the chapter on Options.

CLAN Manual 123

9 Options
This chapter describes the various options or switches that are shared across the

CLAN analysis commands. To see a list of options for a given program such as KWAL,
type kwal followed by a carriage return in the Commands window. You will see a list of
available options in the CLAN Output window.

Each option begins with a + or a -. There is always a space before the + or -. Multiple
options can be used and they can occur in any order. For example, the command:

 kwal +f +t*MOT sample.cha

runs a KWAL analysis on sample.cha. The selection of the +f option sends the output
from this analysis into a new file called sample.kwa.cex. The +t*MOT option confines
the analysis to only the lines spoken by the mother. The +f and +t switches can be placed
in either order.

9.1 +F Option

This option allows you to send output to a file rather than to the screen. By default,
nearly all of the programs send the results of the analyses directly to the screen. You can,
however, request that your results be inserted into a file. This is accomplished by
inserting the +f option into the command line. The advantage of sending the program’s
results to a file is that you can go over the analysis more carefully, because you have a
file to which you can later refer.

The -f switch is used for sending output to the screen. For most programs, -f is the de-
fault and you do not need to enter it. You only need to use the -f switch when you want
the output to go to the screen for CHSTRING, FLO, and SALTIN. The advantage of
sending the analysis to the screen (also called standard output) is that the results are
immediate and your directory is less cluttered with nonessential files. This is ideal for
quick temporary analysis.

The string specified with the +f option is used to replace the default file name
extension assigned to the output file name by each program. For example, the command

freq +f sample.cha

would create an output file sample.frq.cex. If you want to control the shape of the
extension name on the file, you can place up to three letters after the +f switch, as in the
command

freq +fmot sample.cha

which would create an output file sample.mot.cex. If the string argument is longer than
three characters, it will be truncated. For example, the command

freq +fmother sample.cha

would also create an output file sample.mot.cex.

On the Macintosh, you can use the third option under the File menu to set the
directory for your output files. On Windows you can achieve the same effect by using the
+f switch with an argument, as in:

+fc: This will send the output files to your working directory on c:.

CLAN Manual 124

+f".res" This sets the extension for your output files.
+f"c:.res" This sends the output files to c: and assigns the extension .res.

When you are running a command on several files and use the +f switch, the output
will go into several files – one for each of the input files. If what you want is a combined
analysis that treats all the input files as one large file, then you should use the +u switch.
If you want all of the output to go into a single file for which you provide the name, then
use the > character at the end of the command along with an additional file name. The >
option can not be combined with +f.

9.2 +K Option

This option controls case-sensitivity. A case-sensitive program is one that makes a
distinction between uppercase and lowercase letters. The CLAN programs, except for
CHSTRING, are not case-sensitive by default. Use of the +k option in all of the other
programs overrides the default state and allows them to become case-sensitive as well.
For instance, suppose you are searching for the auxiliary verb “may” in a text. If you
searched for the word “may” in a case-sensitive program, you would obtain all the
occurrences of the word “may” in lower case only. You would not obtain any
occurrences of “MAY” or “May.” Searches performed for the word “may” using the +k
option produce the words “may,” “MAY,” and “May” as output.

9.3 +P Option

This option allows you to define a custom punctuation set. Because most of the pro-
grams in the CLAN system are word-oriented, the beginning and ending boundaries of
words must be defined. This is done by defining a punctuation set. The default
punctuation set for CLAN includes the space and these characters:

, . ; ? ! [] < >

This punctuation set applies to the main lines and all coding lines with the exception
of the %pho and %mod lines which use the UNIBET and PHONASCII systems. Because
those systems make use of punctuation markers for special characters, only the space can
be used as a delimiter on the %pho and %mod lines.

All of the word-oriented programs have the +p option. This option allows the user to
redefine the default punctuation set. This is useful because the CHAT coding conventions
use special characters that at times are used as delimiters and other times as parts of
words. For example, sometimes the - character is used as a morpheme boundary marker
and, therefore, should not be considered part of the word. This is also quite useful when
you are working on a language that uses diacritics. To change the punctuation set, you
must create a small file that lists all the punctuation marks present in the file. You do this
by simply typing out all the punctuation marks on a single line with no spaces between
them. This line will change the punctuation set of the main speaker tiers and the code
tiers. The name of your new punctuation file should immediately follow the +p in the
command line. Here is an example situation. Suppose you wish to change both the main
speaker tier and the code tier punctuation sets from the default to the set in newpunct.cut.
The contents of the newpunct.cut file are as follows:

CLAN Manual 125

$*&^!

This line indicates the desired punctuation set for the main line and coding tier. You
can now issue commands such as the following:

freq +pnewpunct.cut sample.cha

If you use the +p switch with no file name, the programs look for a file called
punct.cut in the current working directory. If you do not use the +p switch at all, the
programs look for a punctuation file called punct.cut. If the punct.cut file is not found, the
program will then use the default built-in punctuation set. It is advisable to create a
punct.cut file when the punctuation characters of the language being analyzed are
different from the default punctuation characters. The punct.cut file should contain the
new punctuation set and should be located in the current working directory. Because the
punct.cut file is referred to automatically, this feature allows you to change the
punctuation set once for use with all the CLAN programs. If you do not want CLAN to
ever change the default punctuation set, make sure you do not have a punct.cut file in
your current working directory and make sure you do not use the +p switch.

9.4 +R Option

This option deals with the treatment of material in parentheses.

+r1 Removing Parentheses. Omitted parts of words can be marked by
parentheses, as in “(be)cause” with the first syllable omitted. The +r1 option
removes the parentheses and leaves the rest of the word as is.

+r2 Leaving Parentheses. This option leaves the word with parentheses.

+r3 Removing Material in Parentheses. This option removes all of the
omitted part.

Here is an example of the use of the first three +r options and their
resulting outputs, if the input word is “get(s)”:

Option Output
"no option" gets
"+r1" gets
"+r2" get(s)
"+r3" get

+r4 Removing Prosodic Symbols in Words. By default, symbols such as
#, /, and : are ignored when they occur inside words. Use this switch if you want
to include them in your searches. If you do not use this switch, the strings cat
and ca:t will be seen as the same. If you use this switch, they will be seen as
different. The use of these prosodic marker symbols is discussed in the CHAT
manual.

+r5 Text Replacement. By default, material in the form [: text] replaces the
material preceding it in the string search programs. If you do not want this

CLAN Manual 126

replacement, use this switch.

+r6 Retraced Material. By default, material in retracings is included in
searches and counts. However, this material can be excluded by using the +r6
switch. In the MLU and MODREP programs, retracings are excluded by
default. For these programs, the +r6 switch can be used to include material in
retracings.

9.5 +S Option

This option allows you to search for a particular string. The +s option allows you to
specify the keyword you desire to find. You do this by putting the word in quotes directly
after the +s switch, as in +s"dog" to search for the word “dog.” You can also use the +s
switch to specify a file containing words to be searched. You do this by putting the file
name after the +s preceded by the @ sign, as in +s@adverbs, which will search for the
words in a file called adverbs.cut. If you want to look for the literal character @, you
need to precede it with a backslash as in +s"\@".

By default, the programs will only search for this string on the main line. Also by de-
fault, this switch treats material in square brackets as if it were a single “opaque” form. In
effect, unless you include the square brackets in your search string, the search will ignore
any material that is enclosed in square brackets. The COMBO program is the only one
that allows you to specify regular expressions with this option. The only programs that
allow you to include delimiters in the search string are COMBO, FREQ, and KWAL.

It is possible to specify as many +s options on the command line as you like. If you
have several +s options specified, the longest ones will be applied first. Use of the +s
option will override the default list. For example, the command

freq +s"word" data.cut

will search through the file data.cut looking for “word.”

The +s/-s switch is usually used to include or exclude certain words. However, it can
actually be used with five types of material: (1) words, (2) codes or postcodes in square
brackets, (3) text in angle brackets associated with particular codes within square
brackets, (4) whole utterances associated with particular postcodes, and (5) particular
postcodes themselves. Moreover, the switch can be used to either include, exclude, or add
particular information. The effect of the switch for the five different types across the
three function is described in the following three tables:

CLAN Manual 127

Table 4: Search Strings for Inclusion of Five Types of Material

Material Switch Results
word +s"dog" find only the word “dog”
[code] +s"[//]" find only this code
<text>[code] +s"<//>" find only text marked by this code
utterance +s"<+imi>" find only utterances marked with this

postcode
postcode +s"[+imi]" find only this postcode itself

Table 5: Search Strings for Exclusion of Four Types of Material

Material Switch Results
word -s"dog" find all words except the word “dog”
<text>[code] -s"<//>" find all text except text marked by this

code
utterance -s"[+ imi]" find all utterances except utterances

marked with this postcode

Table 6: Search Strings for Addition of Four Types of Material that are usually
excluded by default

Material Switch Results
word +s+xxx add “xxx”
[code] +s+"[//]" find all text, plus this code
utterance +s+"<+ bch>" find all utterances, including those marked

with the [+ bch] postcode
postcode +s+"[+ imi]" find all text, including this postcode itself

Multiple +s strings are matched as exclusive or’s. If a string matches one +s string, it
cannot match the other. The most specific matches are processed first. For example, if
your command is

freq +s$gf% +s$gf:a

and your text has these codes
$gf $gf:a $gf:b $gf:c

your output will be
$gf% 3
$gf 1

Because $gf:a matches specifically to the +s$gf:a, it is excluded from matching +s$gf%.

One can also use the +s switch to remove certain strings from automatic exclusion.
For example, the MLU program automatically excludes xxx, 0, uh, and words beginning
with & from the MLU count. This can be changed by using this command:

mlu +s+uh +s+xxx +s+0* +s+&* file.cha

CLAN Manual 128

9.6 +T Option

This option allows you to include or exclude particular tiers. In CHAT formatted
files, there exist three tier code types: main speaker tiers (denoted by *), speaker-
dependent tiers (denoted by %), and header tiers (denoted by @). The speaker-dependent
tiers are attached to speaker tiers. If, for example, you request to analyze the speaker
*MOT and all the %cod dependent tiers, the programs will analyze all of the *MOT main
tiers and only the %cod dependent tiers associated with that speaker.

The +t option allows you to specify which main speaker tiers, their dependent tiers,
and header tiers should be included in the analysis. All other tiers, found in the given file,
will be ignored by the program. For example, the command:

freq +t*CHI +t%spa +t%mor +t"@Group of Mot" sample.cha

tells FREQ to look at only the *CHI main speaker tiers, their %spa and %mor dependent
tiers, and @Situation header tiers. When tiers are included, the analysis will be done on
only those specified tiers.

The -t option allows you to specify which main speaker tiers, their dependent tiers,
and header tiers should be excluded from the analysis. All other tiers found in the given
file should be included in the analysis, unless specified otherwise by default. The
command:

freq -t*CHI -t%spa -t%mor -t@"Group of Mot" sample.cha

tells FREQ to exclude all the *CHI main speaker tiers together with all their dependent
tiers, the %spa and %mor dependent tiers on all other speakers, and all @Situation header
tiers from the analysis. All remaining tiers will be included in the analysis.

When the transcriber has decided to use complex combinations of codes for speaker
IDs such as *CHI-MOT for “child addressing mother,” it is possible to use the +t switch
with the # symbol as a wildcard, as in these commands:

freq +t*CHI-MOT sample.cha
freq +t*#-MOT sample.cha
freq +t*CHI-# sample.cha

When tiers are included, the analysis will be done on only those specified tiers. When
tiers are excluded, however, the analysis is done on tiers other than those specified.
Failure to exclude all unnecessary tiers will cause the programs to produce distorted
results. Therefore, it is safer to include tiers in analyses than to exclude them, because it
is often difficult to be aware of all the tiers present in any given data file.

If only a tier-type symbol (*, %, @) is specified following the +t/-t options, the pro-
grams will include all tiers of that particular symbol type in the analysis. Using the option
+t@ is important when using KWAL for limiting (see the description of the KWAL pro-
gram), because it makes sure that the header information is not lost.

CLAN Manual 129

The programs search sequentially, starting from the left of the tier code descriptor, for
exactly what the user has specified. This means that a match can occur wherever what has
been specified has been found. If you specify *M on the command line after the option,
the program will successfully match all speaker tiers that start with *M, such as *MAR,
*MIK, *MOT, and so forth. For full clarity, it is best to specify the full tier name after the
+t/-t options, including the : character. For example, to ensure that only the *MOT
speaker tiers are included in the analysis, use the +t*MOT: notation.

As an alternative to specifying speaker names through letter codes, you can use the
form:

+t@id=idcode

In this form, the “idcode” is any character string that matches the type of string that has
been declared at the top of each file using the @ID header tier.

All of the programs include the main speaker tiers by default and exclude all of the
dependent tiers, unless a +t% switch is used.

9.7 +U Option

This option merges specified files together. By default, when the user has specified a
series of files on the command line, the analysis is performed on each individual file. The
program then provides separate output for each data file. If the command line uses the +u
option, the program combines the data found in all the specified files into one set and out-
puts the result for that set as a whole. If too many files are selected, CLAN may
eventually be unable to complete this merger.

9.8 +V Option

This switch gives you the date when the current version of CLAN was compiled.

9.9 +W Option

This option controls the printing of additional sentences before and after a matched
sentence. This option can be used with either KWAL or COMBO. These programs are
used to display tiers that contain keywords or regular expressions as chosen by the user.
By default, KWAL and COMBO combine the user-chosen main and dependent tiers into
“clusters.” Each cluster includes the main tier and its dependent tiers. (See the +u option
for further information on clusters.)

The -w option followed by a positive integer causes the program to display that
number of clusters before each cluster of interest. The +w option followed by a positive
integer causes the program to display that number of clusters after each cluster of interest.
For example, if you wanted the KWAL program to produce a context larger than a single
cluster, you could include the -w3 and +w2 options in the command line. The program
would then output three clusters above and two clusters below each cluster of interest.

CLAN Manual 130

9.10 +Y Option

This option allows you to work on non-CHAT files. Most of the programs are
designed to work best on CHAT formatted data files. However, the +y option allows the
user to use these programs on non-CHAT files. The program considers each line of a
non-CHAT file to be one tier. There are two values of the +y switch. The +y value works
on lines and the +y1 value works on utterances as delimited by periods, question marks,
and exclamation marks. Some programs do not allow the use of the +y option at all.
Workers interested in using CLAN with nonconversational data may wish to first convert
there files to CHAT format using the TEXTIN program in order to avoid having to avoid
the problematic use of the +y option.

9.11 +Z Option

This option allows the user to select any range of words, utterances, or speaker turns
to be analyzed. The range specifications should immediately follow the option. For
example:

+z10w analyze the first ten words only.
+z10u analyze the first ten utterances only.
+z10t analyze the first ten speaker turns only.
+z10w-20w analyze 11 words starting with the 10th word.
+z10u-20u analyze 11 utterances starting with the 10th utterance.
+z10t-20t analyze 11 speaker turns starting with the 10th turn.
+z10w- analyze from the tenth word to the end of file.
+z10u- analyze from the tenth utterance to the end of file.
+z10t- analyze from the tenth speaker turn to the end of file.

If the +z option is used together with the +t option to select utterances from a particular
speaker, then the counting will be based only on the utterances of that speaker. For
example, this command:

mlu +z50u +t*CHI 0611.cha

will compute the MLU for the first 50 utterances produced by the child. If the +z option
is used together with the +s option, the counting will be dependent on the working of the
+s option and the results will seldom be as expected. To avoid this problem, you should
use piping, as in this example:

kwal +d +z1-3u +t*CHI sample.cha | kwal +sMommy

If the user has specified more items than exist in the file, the program will analyze
only the existing items. If the turn or utterance happens to be empty, because it consists
of special symbols or words that have been selected to be excluded, then this utterance or
turn is not counted.

The usual reason for selecting a fixed number of utterances is to derive samples that
are comparable across sessions or across children. Often researchers have found that

CLAN Manual 131

samples of 50 utterances provide almost as much information as samples of 100
utterances. Reducing the number of utterances being transcribed is important for
clinicians who have been assigned a heavy case load.

You can use the +z switch with KWAL and pipe the results to a second program,
rather than using it directly with FREQ or MLU. For example, in order to specifically
exclude unintelligible utterances in an MLU analysis of the first 150 utterances from the
Target Child, you could use this form:

kwal +z150u +d +t*CHI 0042.cha -syyy -sxxx | mlu

You can also use postcodes to further control the process of inclusion or exclusion.

9.12 Metacharacters for Searching

Metacharacters are special characters used to describe other characters or groups of
characters. Certain metacharacters may be used to modify search strings used by the +s/-s
switch. However, in order to use metacharacters in the CHSTRING program a special
switch must be set. The CLAN metacharacters are:

* Any number of characters matched
% Any number of characters matched and removed
%% As above plus remove previous character
_ Any single character matched
\ Quote character

Suppose you would like to be able to find all occurrences of the word “cat” in a
file. This includes the plural form “cats,” the possessives “cat-'s,” “cat-s'” and the
contractions “cat-'is” and “cat-'has.” Using a metacharacter (in this case, the asterisk)
would help you to find all of these without having to go through and individually specify
each one. By inserting the string cat* into the include file or specifying it with +s option,
all these forms would be found. Metacharacters can be placed anywhere in the word.

The * character is a wildcard character; it will find any character or group of con-
tinuous characters that correspond to its placement in the word. For example, if b*s were
specified, the program would match words like “beads,” “bats,” “bat-'s,” “balls,” “beds,”
“bed-s,” “breaks,” and so forth.

The % character allows the program to match characters in the same way that the
* symbol does. Unlike the * symbol, however, all the characters matched by the % will
be ignored in terms of the way of which the output is generated. In other words, the
output will treat “beat” and “bat” as two occurrences of the same string, if the search
string is b%t. Unless the % symbol is used with programs that produce a list of words
matched by given keywords, the effect of the % symbol will be the same as the effect of
the * symbol.

CLAN Manual 132

When the percentage symbol is immediately followed by a second percentage
symbol, the effect of the metacharacter changes slightly. The result of such a search
would be that the % symbol will be removed along with any one character preceding the
matched string. Without adding the additional % character, a punctuation symbol
preceding the wildcard string will not be matched ane will be ignored. Adding the second
% sign can be particularly useful when searching for roots of words only. For example, to
produce a word frequency count of the stem “cat,” specify this command:

freq +s"cat-%%" file.cha.

The first % sign matches the suffixes and the second one matches the dash mark.
Thus, the search string specified by the +s option will match words like: “cat,” “cat-s,”
“cat-'s,” and “cat-s” and FREQ will count all of these words as one word “cat.” If the data
file file.cha had consisted of only those four words, the output of the FREQ program
would have been: 4 cat. The limitation of this search is that it will not match words like
“cats” or “cat's,” because the second percentage symbol is used to match the punctuation
mark. The second percentage symbol is also useful for matching hierarchical codes such
as $NIA:RP:IN.

The underline character _ is similar to the * character except that it is used to
specify any single character in a word. For example, the string b_d will match words like
“bad,” “bed,” “bud,” “bid,” and so forth. For detailed examples of the use of the
percentage, underline, and asterisk symbols, see the section special characters.

The quote character (\) is used to indicate the quotation of one of the characters
being used as metacharacters. Suppose that you wanted to search for the actual symbol
(*) in a text. Because the (*) symbol is used to represent any character, it must be quoted
by inserting the (\) symbol before the (*) symbol in the search string to represent the
actual (*) character, as in “string*string.” To search for the actual character (\), it must
be quoted also. For example, “string\\string” will match “string” followed by “\” and then
followed by a second “string.”

CLAN Manual 133

10 MOR – Morphosyntactic Analysis

The modern study of child language development owes much to the methodological
and conceptual advances introduced by Brown (1973). In his study of the language
development of Adam, Eve, and Sarah, Roger Brown focused on a variety of core
measurement issues, such as acquisition sequence, growth curves, morpheme inventories,
productivity analysis, grammar formulation, and sampling methodology. The basic
question that Brown was trying to answer was how one could use transcripts of
interactions between children and adults to test theoretical claims regarding the child’s
learning of grammar. Like many other child language researchers, Brown considered the
utterances produced by children to be a remarkably rich data source for testing theoretical
claims. At the same time, Brown realized that one needed to specify a highly systematic
methodology for collecting and analyzing these spontaneous productions.

Language acquisition theory has advanced in many ways since Brown (1973), but we
are still dealing with many of the same basic methodological issues he confronted.
Elaborating on Brown’s approach, researchers have formulated increasingly reliable
methods for measuring the growth of grammar, or morphosyntax, in the child. These
new approaches serve to extend Brown’s vision into the modern world of computers and
computational linguistics. New methods for tagging parts of speech and grammatical
relations now open up new and more powerful ways of testing hypotheses and models
regarding children’s language learning.

Before embarking on our review of computational tools in CHILDES, it is helpful to
review briefly the ways in which researchers have come to use transcripts to study
morphosyntactic development. When Brown collected his corpora back in the 1960s, the
application of generative grammar to language development was in its infancy. However,
throughout the 1980s and 1990s (Chomsky & Lasnik, 1993), linguistic theory developed
increasingly specific proposals about how the facts of child language learning could
illuminate the shape of Universal Grammar. At the same time, learning theorists were
developing increasingly powerful methods for extracting linguistic patterns from input
data. Some of these new methods relied on distributed neural networks (Rumelhart &
McClelland, 1986), but others focused more on the ways in which children can pick up a
wide variety of patterns in terms of relative cue validity (MacWhinney, 1987).

These two very different research traditions have each assigned a pivotal role to the
acquisition of morphosyntax in illuminating core issues in learning and development.
Generativist theories have emphasized issues such as: the role of triggers in the early
setting of a parameter for subject omission (Hyams & Wexler, 1993), evidence for
advanced early syntactic competence (Wexler, 1998), evidence for early absence
functional categories that attach to the IP node (Radford, 1990), the role of optional
infinitives in normal and disordered acquisition (Rice, 1997), and the child’s ability to
process syntax without any exposure to relevant data (Crain, 1991). Generativists have
sometimes been criticized for paying inadequate attention to the empirical patterns of
distribution in children’s productions. However, work by researchers, such as

CLAN Manual 134

Stromswold (1994), van Kampen (1998), and Meisel (1986), demonstrates the important
role that transcript data can play in evaluating alternative generative accounts.

Learning theorists have placed an even greater emphasis on the use of transcripts for
understanding morphosyntactic development. Neural network models have shown how
cue validities can determine the sequence of acquisition for both morphological
(MacWhinney & Leinbach, 1991; MacWhinney, Leinbach, Taraban, & McDonald, 1989;
Plunkett & Marchman, 1991) and syntactic (Elman, 1993; Mintz, Newport, & Bever,
2002; Siskind, 1999) development. This work derives further support from a broad
movement within linguistics toward a focus on data-driven models (Bybee & Hopper,
2001) for understanding language learning and structure. These accounts formulate
accounts that view constructions (Tomasello, 2003) and item-based patterns
(MacWhinney, 1975) as the loci for statistical learning.

10.1 Analysis by Transcript Scanning

Although the CHILDES Project has succeeded in many ways, it has not yet provided
a complete set of computational linguistic tools for the study of morphosyntactic
development. In order to conduct serious corpus-based research on the development of
morphosyntax, users will want to supplement corpora with tags that identify the
morphological and syntactic status of every morpheme in the corpus. Without these tags,
researchers who want to track the development of specific word forms or syntactic
structures are forced to work with a methodology that is not much more advanced than
that used by Brown in the 1960s. In those days, researchers looking for the occurrence of
a particular morphosyntactic structure, such as auxiliary fronting in yes-no questions,
would have to simply scan through entire transcripts and mark occurrences in the margins
of the paper copy using a red pencil. With the advent of the personal computer in the
1980s, the marks in the margins were replaced by codes entered on a %syn (syntactic
structure) or %mor (morphological analysis with parts of speech) coding tier. However, it
was still necessary to pour over the full transcripts line by line to locate occurrences of
the relevant target forms.

10.2 Analysis by Lexical Tracking

If a researcher is clever, there are ways to convince the computer to help out in this
exhausting process of transcript scanning. An easy first step is to download the CLAN
programs from the CHILDES website at http://childes.psy.cmu.edu. These programs
provide several methods for tracing patterns within and between words. For example, if
you are interested in studying the learning of English verb morphology, you can create a
file containing all the irregular past tense verbs of English, as listed in the CHILDES
manual. After typing all of these words into a file and then naming that file something
like irreg.cut, you can use the CLAN program called KWAL with the +s@irreg.cut
switch to locate all the occurrences of irregular past tense forms. Or, if you only want a
frequency count, you can run FREQ with the same switch to get a frequency count of the
various forms and the overall frequency of irregulars. Although this type of search is
very helpful, you will also want to be able to search for overregularizations and
overmarkings such as “*ranned”, “*runned”, “*goed”, or “*jumpeded”. Unless these are

http://childles.psy.cmu.edu/

CLAN Manual 135

already specially marked in the transcripts, the only way to locate these forms is to create
an even bigger list with all possible overmarkings. This is possible for the common
irregular overmarkings, but doing this for all overmarked regulars, such as “*playeded”,
is not really possible. Finally, you also want to locate all correctly marked regular verbs.
Here, again, making the search list is a difficult matter. You can search for all words
ending in –ed, but you will have to cull out from this list forms like “bed”, “moped”, and
“sled”. A good illustration of research based on generalized lexical searches of this type
can be found in the study of English verb learning by Marcus et al. (1992).

Or, to take another example, suppose you would like to trace the learning of auxiliary
fronting in yes-no questions. For this, you would need to create a list of possible English
auxiliaries to be included in a file called aux.cut. Using this, you could easily find all
sentences with auxiliaries and then write out these sentences to a file for further analysis.
However, only a minority of these sentences will involve yes-no questions. Thus, to
further sharpen your analysis, you would want to further limit the search to sentences in
which the auxiliary begins the utterance. To do this, you would need to dig carefully
through the electronic version of the CHILDES manual to find the ways in which to use
the COMBO program to compose search strings that include markers for the beginnings
and ends of sentences. Also, you may wish to separate out sentences in which the
auxiliary is moved to follow a wh-word. Here, again, you can compose a complicated
COMBO search string that looks for a list of possible initial interrogative or “wh” words,
followed by a list of possible auxiliaries. Although such searches are possible, they tend
to be difficult, slow, and prone to error. Clearly, it would be better if the searches could
examine not strings of words, but rather strings of morphosyntactic categories. For
example, we would be able to trace sentences with initial wh-words followed by
auxiliaries by just looking for the pattern of “int + aux”. However, in order to perform
such searches, we must first tag our corpora for the relevant morphosyntactic features.
The current article explains how this is done.

10.3 Analysis by MOR, POST, and GRASP

So far, our analysis has examined how researchers can use the database through
transcript scanning and lexical scanning. However, often these methods are inadequate
for addressing broader and more complex issues such as detailed syntactic analysis or the
comparisons and evaluations of full generative frameworks. To address these more
complex issues, the CHILDES system now provides full support for analysis based on
automatic morphosyntactic coding. The core programs used in this work are MOR,
POST, and GRASP.

The initial morphological tagging of the CHILDES database relies on the application
of the MOR program. Running MOR on a CHAT file is easy. In the simplest case, it
involves nothing much more than a one-line command. However, before discussing the
mechanics of MOR, let us take a look at what it produces. To give an example of the
results of a MOR analysis for English, consider this sentence from eve15.cha in Roger
Brown’s corpus for Eve.

*CHI: oop I spilled it .

CLAN Manual 136

%mor: int|oop pro|I v|spill-PAST pro|it .
Here, the main line gives the child’s production and the %mor line gives the part of
speech for each word, along with the morphological analysis of affixes, such as the past
tense mark (-PAST) on the verb. The %mor lines in these files were not created by hand.
To produce them, we ran the MOR program, using the MOR grammar for English, which
can be downloaded from http://childes.psy.cmu.edu/morgrams/.

The command for running MOR is nothing more in this case than “mor *.cha”. After
running MOR, the file looks like this:

*CHI: oop I spilled it .
%mor: int|oop pro|I part|spill-PERF^v|spill-PAST pro|it .

Notice that the word “spilled” is initially ambiguous between the past tense and participle
readings. To resolve such ambiguities, we run a program called POST. Running POST
for English is also simple. The command is just “post *.cha” After POST has been run,
the sentence is then “disambiguated.” Using this disambiguated form, we can then run
the GRASP program, which is currently a separate program available from the CHILDES
website, to create the representation given in the %xsyn line below:

*CHI: oop I spilled it .
%mor: int|oop pro|I v|spill-PAST pro|it .
%xsyn: 1|3|JCT 2|3|SUBJ 3|0|ROOT 4|3|OBJ 5|3|PUNCT

In this %xsyn line, we see that the second word “I” is related to the verb (“spilled”)
through the grammatical relation (GR) of Subject. The fourth word “it” is related to the
verb through the grammatical relation of Object.

Using GRASP, we have recently inserted dependency grammar tags for all of these
grammatical relations in the Eve corpus. In tests run on the Eve corpus, 94% of the tags
were assigned accurately (Sagae, Davis, Lavie, MacWhinney, & Wintner, 2007). A
further test of GRASP on the Adam corpus also yielded an accuracy level of 94%. For
both of these corpora, grammatical relations were mistagged 6% of the time. It is likely
that, over time, this level of accuracy will improve, although we would never expect
100% accuracy for any tagging program. In fact, only a few human taggers can achieve
94% accuracy in their first pass tagging of a corpus.

The work of building MOR, POST, and GRASP has been supported by a number of
people. Mitzi Morris built MOR in 1997, using design specifications from Roland
Hausser. Since 2000, Leonid Spektor has extended MOR in many ways. Christophe
Parisse built POST and POSTTRAIN (Parisse & Le Normand, 2000) and continues to
maintain and refine them. Kenji Sagae built GRASP as a part of his dissertation work for
the Language Technologies Institute at Carnegie Mellon University (Sagae,
MacWhinney, & Lavie, 2004a, 2004b). GRASP was then applied in detail to the Eve and
Adam corpus by Eric Davis and Shuly Wintner.

These initial experiments with GRASP and computational modelling of grammatical
development in the CHILDES corpora underscore the increasing importance of methods
from computational linguistics for the analysis of child language data. Together with
statistical computational analyses (Edelman, Solan, Horn, & Ruppin, 2004) and neural
network analyses (Li, Zhao, & MacWhinney, 2007), we should expect to see increasing

CLAN Manual 137

input from computational linguistics, as the morphosyntactic tagging of the CHILDES
database becomes increasingly refined and accurate.

The computational design of MOR was guided by Roland Hausser’s (1990) MORPH
systm and was implemented by Mitzi Morris. The system has been designed to maximize
portability across languages, extendability of the lexicon and grammar, and compatibility
with the CLAN programs. The basic engine of the parser is language independent. Lan-
guage-specific information is stored in separate data files. The rules of the language are
in data files that can be modified by the user. The lexical entries are also kept in ASCII
files and there are several techniques for improving the match of the lexicon to a
particular corpus. In order to avoid having too large a lexical file, only stems are stored in
the lexicon and inflected forms appropriate for each stem are compiled at run time.

MOR automatically generates a %mor tier in which words are labeled by their
syntactic category or “scat”, followed by the pipe separator |, followed by the word itself,
broken down into its constituent morphemes.

*CHI: the people are making cakes .
%mor: det|the n|people v:aux|be&PRES v|make-ING

n|cake-PL .

The MOR program looks at each word on the main tier, without regard to context, and
provides all possible grammatical categories and morphological analyses, as in the
following example with the words “to” and “back.” The caret ^ denotes the multiple
possibilities for each word on the main tier.

*CHI: I want to go back.
%mor: pro|I v|want inf|to^prep|to

v|go adv|back^n|back^v|back .

In order to select the correct form for each ambiguous case, the user can either edit the
file using Disambiguator Mode or use POST.

One way of restricting the possible categories inserted by MOR is to use the replace-
ment symbol [: text] on the main line for difficult cases. For example, the English form
“wanna” could mean either “want to” or “want a”. Similarly, “gotta” could be either “got
to” or “got a.” The transcriber can commit to one of these two readings on the main line
by using this method:

*CHI: I wanna [: want to] go back.
%mor: pro|I v|want inf|to^prep|to v|go adv|back^n|back^v|back .

In this example, MOR will only attend to the material in the square brackets and will
ignore the form “wanna.”

10.4 Configuring MOR

For MOR to run successfully, you need to configure your grammar files and lexicon
files into their proper positions in the MOR library directory. You will want to create a

CLAN Manual 138

specific library directory for MOR that is distinct from the general CLAN lib directory.
It is often convenient to place this MOR library inside the CLAN lib directory. In the
MOR library directory, you need these three grammar files on top: ar.cut, cr.cut, and
sf.cut. Optionally, you may also want to have a file called dr.cut. Within this directory,
you then need to have a subdirectory called lex, which contains all of the various closed
and open class lexicon files such as adj.cut, clo.cut, prep.cut, or n.cut. If you have
retrieved the MOR grammar from the Internet or the CD-ROM, the materials will already
be configured in the correct relative positions. Each separate grammar should be stored
in its own folder and you should select the grammar you wish to use by setting the
MORLIB location in the commands window.

10.4.1Grammar and Lexicon Files
MOR relies on three files to specify the morphological processes of the language.

They are:

1. The allomorph rules file. This file lists the ways in which morphemes vary in
shape. The rules that describe these variations are called “arules.” The name of
this file should be ar.cut.

2. The concatenation rules file. This file lists the ways in which morphemes can
combine or concatenate. The rules that describe allowable concatenations are
called “crules”. The name of this file should be cr.cut.

3. The special form markers file. The CHAT manual presents a series of special
form markers that help identify lexical types such as neologisms, familial words,
onomatopoeia, or second-language forms. MOR can use these markings to di-
rectly insert the corresponding codes for these words onto the %mor line. The
sf.cut file includes all of these special form markers. In addition, these types must
be listed in the first declaration in the cr.cut file. For English, all this is already
done. If you are creating a grammar for another language, you can model your
materials on the English example. The syntax of the lines in the sf.cut file is
fairly simple. Each line has a special form marker, followed by the category
information you wish to see inserted in the %mor line. If you wish to pull out
capitalization words as being proper nouns, despite the shape of the special form
marker, you can place \c to indicate uppercase before the special form marker.
You must then add \l on another line to indicate what you want to have done with
lowercase examples. See the English sf.cut file for examples.

In addition to these three grammar files, MOR uses a set of lexicon files to specify the
shapes of individual words and affixes. These forms are stored in a group of files in the
lexicon folder. The affix.cut file includes the prefixes and suffixes for the language. The
other files contain the various open and closed class words of the language. At run time,
MOR used the grammar rules to “blow up” the content of the lexicon files into a large bi-
nary tree that represents all the possible words of the language.

The first action of the parser program is to load the ar.cut file. Next the program reads
in the files in your lexicon folder and uses the rules in ar.cut to build the run-time lexicon.
If your lexicon files are fairly big, you will need to make sure that your machine has

CLAN Manual 139

enough memory. On Macintosh, you can explicitly assign memory to the program. On
Windows, you will have to make sure that your machine has lots of memory. Once the
run-time lexicon is loaded, the parser then reads in the cr.cut file. Additionally, if the +b
option is specified, the dr.cut file is also read in. Once the concatenation rules have been
loaded the program is ready to analyze input words. As a user, you do not need to
concern yourself about the run-time lexicon. Your main concern is about the entries in
the lexicon files. The rules in the ar.cut and cr.cut files are only of concern if you wish to
have a set of analyses and labelings that differs from the one given in the chapter of the
CHAT manual on morphosyntactic coding, or if you are trying to write a new set of
grammars for some language.

10.4.2Disambiguation Rules

 Although the MOR system relies primarily on POST for automatic disambiguation, it
is sometimes useful to do some forced rule-based disambiguation during the development
of a training corpus in preparation for the training of POSTTRAIN. To do this, you can
use the +b switch in MOR to read a set of disambiguation rules that are kept in a file
called dr.cut. Here are some sample disambiguation rules:

RULENAME: adj-n % this rule chooses adj before nouns
choose
CURCAT = [scat adj]
when
NEXTCAT = [scat n]

RULENAME: asp % this rule chooses Chinese asp between verbs and nouns
choose
CURCAT = [scat asp]
when
PREVCAT = [scat v]
NEXTCAT = [scat n]

RULENAME: rel % this rule chooses rel when it is after a verb and not sentence final
choose
CURCAT = [scat rel]
when
PREVCAT = [scat v]
NEXTCAT = ![end .]

RULENAME: rel % this rule chooses pro:wh when it is sentence final
choose
CURCAT = [scat rel]
when
NEXTCAT = [end OR . ?] % this could also be [end *] or even NEXTSURF = ?|.

CLAN Manual 140

10.4.3Unique Options
+b Use the dr.cut disambiguation rules.

+c With this option, clitics such as 'd, n't , and 'll will be treated as separate
words. This option must be used when creating the %mor tier for DSS analysis.

+eS Show the result of the operation of the arules on either a stem S or stems
in file @S. This output will go into a file called debug.cdc in your library
directory. Another way of achieving this is to use the +d option inside
“interactive MOR”

+xi Run MOR in the interactive test mode. You type in one word at a time to
the test prompt and MOR provides the analysis on line. This facility makes the
following commands available in the CLAN Output window:

word - analyze this word
:q quit- exit program
:c print out current set of crules
:d display application of arules.
:l re-load rules and lexicon files
:h help - print this message

If you type in a word, such as “dog” or “perro,” MOR will try to analyze it
and give you its components morphemes. If you change the rules or the lexicon,
use :l to reload and retest. The :c and :d switches will send output to a file
called debug.cdc in your library directory.

+xl Run MOR in the lexicon building mode. This mode takes a series of .cha
files as input and outputs a small lexical file with the extension .ulx with entries
for all words not recognized by MOR. This helps in the building of lexicons.

MOR also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in the chapter on Options.

10.4.4MOR Lexicons
Before running MOR on a set of CHAT files, it is important to make sure that MOR

will be able to recognize all the words in these files. A first step in this process involves
running the CHECK program to make sure that all of the words follow basic CHAT
rules, such as not including numbers or capital letters in the middle of words. For more
details about these various CHECK requirements, please consult the sections of this
manual that describe CHECK.

Once you know that a corpus passes CHECK, you will want to see whether it
contains words that are not yet in the MOR lexicon. You can do this quickly by running
the command

mor +xl *.cha

 and checking the output file which will list all the words not yet recognized by MOR. It
is extremely unlikely that every word in any large corpus of child language data would be

CLAN Manual 141

listed in even the largest MOR lexicon. Therefore, users of MOR need to understand how
to supplement the basic lexicons with additional entries. Before we look at the process of
adding new words to the lexicon, we first need to examine the way in which entries in the
disk lexicon are structured.

The disk lexicon contains truly irregular forms of a word as well as citation forms.
For example, the verb “go” is stored in the disk lexicon, along with the past tense “went,”
since this latter form is suppletive and does not undergo regular rules. The disk lexicon
contains any number of lexical entries, stored at most one entry per line. The lexicon may
be annotated with comments, which will not be processed. A comment begins with the
percent sign and ends with a new line. A lexical entry consists of these parts:

1. The surface form of the word.
2. Category information about the word, expressed as a set of feature-value

pairs. Each feature-value pair is enclosed in square brackets and the full
set of feature-value pairs is enclosed in curly braces. All entries must
contain a feature-value pair that identifies the syntactic category to which
the word belongs, consisting of the feature “scat” with an appropriate
value.

3. Following the category information is information about the
lemmatization of irregular forms. This information is given by having the
citation form of the stem followed by the & symbol as the morpheme
separator and then the grammatical morphemes it contains.

4. Finally, if the grammar is for a language other than English, you can enter
the English translation of the word preceded by the = sign.

The following are examples of lexical entries:
can {[scat v:aux]}
a {[scat det]}
an {[scat det]} "a"
go {[scat v] [ir +]}
went {[scat v] [tense past]} "go&PAST"

When adding new entries to the lexicon it is usually sufficient to enter the citation form
of the word, along with the syntactic category information, as in the illustration for the
word “a” in the preceding examples. When working with languages other than English,
you may wish to add English glosses and even special character sets to the lexicon. For
example, in Cantonese, you could have this entry:

ping4gwo2 {[scat n]} =apple

To illustrate this, here is an example of the MOR output for an utterance from Cantonese:

*CHI: sik6 ping4gwo2 caang2 hoeng1ziu1 .
%mor: v|sik6=eat n|ping4gwo2=apple

n|caang2=orange n|hoeng1ziu1=banana .

In languages that use both Roman and non-Roman scripts, such as Chinese, you may also
want to add non-Roman characters after the English gloss. This can be done using this
form in which the $ sign separates the English gloss from the representation in characters:

CLAN Manual 142

pinyin {[scat x]} “lemmatization” =gloss$characters=

MOR will take the forms indicated by the lemmatization, the gloss, and the characters
and append them after the category representation in the output. The gloss should not
contain spaces or the morpheme delimiters +, -, and #. Instead of spaces or the + sign,
you can use the underscore character to represent compounds.

10.4.5Lexicon Building
Once the file is thoroughly CHECK-ed, you are ready to make a first run of MOR to

see how many words in your files are not yet in the MOR lexicon. The command is
simply:

mor +xl *.mor

When MOR is run with the +xl flag, the output is a single “minilex” file with the
extension .ulx which contains templates for the lexical entries for all unknown words in a
collection of files. Duplicates are removed automatically when MOR creates the .ulx file.
A fragment of the output of this command might look something like this:

ta {[scat ?]}
tag {[scat ?]}
tags {[scat ?]}
talkative {[scat ?]}
tambourine {[scat ?]}

You must then go through this file and determine whether to discard, complete, or modify
these entry templates. For example, it may be impossible to decide what category “ta”
belongs to without examining where it occurs in the corpus. In this example, a scan of the
Sarah files in the Brown corpus (from which these examples were taken), reveals that
“ta” is a variant of the infinitive marker “to”:

*MEL: yeah # (be)cause if it's gon (t)a be a p@l it's
 got ta go that way.

Therefore, the entry for “ta” is amended to:
ta {[scat inf]} "to"

The corpus includes both the form “tag” and “tags.” However, because the former
can be derived from the latter, it is sufficient to have just the entry for “tag” in the
lexicon. The forms “talkative” and “tambourine” are low-frequency items that are not
included in the standard lexicon file eng.lex. Inasmuch as these are real words, the ?
should be replaced by the codes “adj” and “n”, respectively. For the example fragment
given above, the resulting .ulx file should look like this:

ta {[scat inf]} "to"
tag {[scat n]}
talkative {[scat adj]}
tambourine {[scat n]}

Once all words have been coded, you need to insert each new word into one of the
lexicon files. If you do not want to edit the main files, you can create new ones such as
adj2.cut for all your new adjectives or vir2.cut for additional irregular verbs.

CLAN Manual 143

10.4.6A Formal Description of the Rule Files
Users working with languages for which grammar files have already been built do not

need to concern themselves with the remaining sections on MOR. However, users who
need to develop grammars for new languages or who find they have to modify grammars
for existing ones will need to understand how to create the two basic rule files
themselves. You do not need to create a new version of the sf.cut file for special form
markers. You just copy this file and give it a name such as dansf.cut, if the prefix you
want to use for your language is something like “dan” for Danish.

 In order to build new versions of the arules and crules files for your language, you
will need to study the English files or files for a related language. For example, when
you are building a grammar for Portuguese, it would be helpful to study the grammar that
has already been constructed for Spanish. This section will help you understand the basic
principles underlying the construction of the arules and crules.

Declarative structure
Both arules and crules are written using a simple declarative notation. The following

formatting conventions are used throughout:

1. Statements are one per line. Statements can be broken across lines by placing the
continuation character \ at the end of the line.

2. Comments begin with a % character and are terminated by the new line. Com-
ments may be placed after a statement on the same line, or they may be placed on
a separate line.

3. Names are composed of alphanumeric symbols, plus these characters:
^ & + - _ : \ @ . /

Both arule and crule files contain a series of rules. Rules contain one or more clauses,
each of which is composed of a series of condition statements, followed by a series of
action statements. In order for a clause in rule to apply, the input(s) must satisfy all
condition statements. The output is derived from the input via the sequential application
of all the action statements.

Both condition and action statements take the form of equations. The left hand side of
the equation is a keyword, which identifies the part of the input or output being
processed. The right hand side of the rule describes either the surface patterns to be
matched or generated, or the category information that must be checked or manipulated.

The analyzer manipulates two different kinds of information: information about the
surface shape of a word, and information about its category. All statements that match or
manipulate category information must make explicit reference to a feature or features.
Similarly, it is possible for a rule to contain a literal specification of the shape of a stem
or affix. In addition, it is possible to use a pattern matching language in order to give a
more general description of the shape of a string.

CLAN Manual 144

Pattern-matching symbols
The specification of orthographic patterns relies on a set of symbols derived from the

regular expression (regexp) system in Unix. The rules of this system are:

1. The metacharacters are: * [] | . ! All other characters are interpreted
literally.

2. A pattern that contains no metacharacters will only match itself, for example the
pattern “abc” will match only the string “abc”.

3. The period matches any character.
4. The asterisk * allows any number of matches (including 0) on the preceding

character. For example, the pattern '.*' will match a string consisting of any num-
ber of characters.

5. The brackets [] are used to indicate choice from among a set of characters. The
pattern [ab] will match either a or b.

6. A pattern may consist of a disjunctive choice between two patterns, by use of the
| symbol. For example, the pattern will match all strings which end in x, s, sh, or
ch.

7. It is possible to check that some input does not match a pattern by prefacing the
entire pattern with the negation operator !.

Variable notation
A variable is used to name a regular expression and to record patterns that match it. A

variable must first be declared in a special variable declaration statement. Variable decla-
ration statements have the format: “VARNAME = regular-expression” where
VARNAME is at most eight characters long. If the variable name is more than one
character, this name should be enclosed in parenthesis when the variable is invoked.
Variables are particularly important for the arules in the ar.cut file. In these rules, the
negation operator is the up arrow ^, not the exclamation mark. Variables may be
declared through combinations of two types of disjunction markers, as in this example for
the definition of a consonant cluster in the English ar.cut file:

O = [^aeiou]|[^aeiou][^aeiou]|[^aeiou][^aeiou][^aeiou]|qu|squ

Here, the square brackets contain the definition of a consonant as not a vowel and the bar
or turnstile symbols separate alternative sequences of one, two, or three consonants.
Then, for good measure, the patterns “qu” and “squ” are also listed as consonantal onsets.
For languages that use combining diacritics and other complex symbols, it is best to use
the turnstile notation, since the square bracket notation assumes single characters. In
these strings, it is important not to include any spaces or tabs, since the presence of a
space will signal the end of the variable.

Once declared, the variable can be invoked in a rule by using the operator $. If the vari-
able name is longer than a single character, the variable name should be enclosed in
parentheses when invoked. For example, the statement X = .* declares and initializes a
variable named “X.” The name X is entered in a special variable table, along with the
regular expression it stands for. Note that variables may not contain other variables.

CLAN Manual 145

The variable table also keeps track of the most recent string that matched a named
pattern. For example, if the variable X is declared as above, then the pattern $Xle will
match all strings that end in “le”. In particular, the string “able” will match this pattern;
“ab” will match the pattern named by “X”, and “le” will match the literal string “le”.
Because the string “ab” is matched against the named pattern X, it will be stored in the
variable table as the most recent instantiation of X, until another string matches X.

Category Information Operators
The following operators are used to manipulate category information: ADD [feature

value], and DEL [feature value]. These are used in the category action statements. For ex-
ample, the crule statement “RESULTCAT = ADD [num pl]” adds the feature value pair
[num pl] to the result of the concatenation of two morphemes.

Arules
The function of the arules is to expand the entries in the disk lexicon into a larger

number of entries in the on-line lexicon. Words that undergo regular phonological or
orthographic changes when combined with an affix only need to have one disk lexicon
entry. The arules are used to create on-line lexicon entries for all inflectional variants.
These variants are called allos. For example, the final consonant of the verb “stop” is
doubled before a vowel-initial suffix, such as “-ing.” The disk lexicon contains an entry
for “stop,” whereas the online lexicon contains two entries: one for the form “stop” and
one for the form “stopp”.

An arule consists of a header statement, which contains the rulename, followed by
one or more condition-action clauses. Each clause has a series of zero or more conditions
on the input, and one or more sets of actions. Here is an example of a typical condition-
action clause from the larger n-allo rule in the English ar.cut file:

LEX-ENTRY:
LEXSURF = $Yy
LEXCAT = [scat n]
ALLO:
ALLOSURF = $Yie
ALLOCAT = LEXCAT, ADD [allo nYb]
ALLO:
ALLOSURF = LEXSURF
ALLOCAT = LEXCAT, ADD [allo nYa]

This is a single condition-action clause, labeled by the header statement “LEX-EN-
TRY:” Conditions begin with one of these two keywords:

1. LEXSURF matches the surface form of the word in the lexical entry to an ab-
stract pattern. In this case, the variable declaration is
Y = .*[^aeiou]
Given this, the statement “LEXSURF = $Yy” will match all lexical entry surfac-
es that have a final y preceded by a nonvowel.
3. LEXCAT checks the category information given in the matched lexical

item against a given series of feature value pairs, each enclosed in square
brackets and separated by commas. In this case, the rule is meant to apply

CLAN Manual 146

only to nouns, so the category information must be [scat n]. It is possible
to check that a feature-value pair is not present by prefacing the feature-
value pair with the negation operator !.

Variable declarations should be made at the beginning of the rule, before any of the
condition-action clauses. Variables apply to all following condition-action clauses inside
a rule, but should be redefined for each rule.

After the condition statements come one or more action statements with the label AL-
LO: In most cases, one of the action statements is used to create an allomorph and the
other is used to enter the original lexical entry into the run-time lexicon. Action clauses
begin with one of these three keywords:

 1. ALLOSURF is used to produce an output surface. An output is a form that will
be a part of the run-time lexicon used in the analysis. In the first action clause, a
lexical entry surface form like “pony” is converted to “ponie” to serve as the
stem of the plural. In the second action clause, the original form “pony” is kept
because the form “ALLOSURF = LEXSURF” causes the surface form of the
lexical entry to be copied over to the surface form of the allo.

 2. ALLOCAT determines the category of the output allos. The statement “ALLO-
CAT = LEXCAT” causes all category information from the lexical entry to be
copied over to the allo entry. In addition, these two actions add the morphologi-
cal classes such as [allo nYa] or [allo nYb] in order to keep track of the nature of
these allomorphs during the application of the crules.
4. ALLOSTEM is used to produce an output stem. This action is not

necessary in this example, because this rule is fully regular and produces a
noninflected stem. However, the arule that converts “postman” into
“postmen” uses this ALLOSTEM action:

 ALLOSTEM = $Xman&PL

The result of this action is the form postman&PL that is placed into the %mor
line without the involvement of any of the concatenation rules.

There are two special feature types that operate to dump the contents of the arules and the
lexicon into the output. These are “gen” and “proc”. The gen feature introduces its value
as a component of the stem. Thus the entry [gen masc] for the Spanish word “hombre”
will end up producing n|hombre&MASC. The entry [proc dim] for Chinese reduplicative
verbs wil end up producing v|kan4-DIM for the reduplicated form kan4kan4. These
methods allow allorules to directly influence the output of MOR.

Every set of action statements leads to the generation of an additional allomorph for
the online lexicon. Thus, if an arule clause contains several sets of action statements, each
labeled by the header ALLO:, then that arule, when applied to one entry from the disk
lexicon, will result in several entries in the online lexicon. To create the online lexicon,
the arules are applied to the entries in the disk lexicon. Each entry is matched against the

CLAN Manual 147

arules in the order in which they occur in the arules file. This ordering of arules is an
extremely important feature. It means that you need to order specific cases before
general cases to avoid having the general case preempt the specific case.

As soon as the input matches all conditions in the condition section of a clause, the
actions are applied to that input to generate one or more allos, which are loaded into the
on-line lexicon. No further rules are applied to that input, and the next entry from the disk
lexicon is then read in to be processed. The complete set of arules should always end with
a default rule to copy over all remaining lexical entries that have not yet been matched by
some rule. This default rule must have this shape:

% default rule- copy input to output
RULENAME: default
LEX-ENTRY:
ALLO:

Crules
The purpose of the crules is to allow stems to combine with affixes. In these rules,

sets of conditions and actions are grouped together into if then clauses. This allows a rule
to apply to a disjunctive set of inputs. As soon as all the conditions in a clause are met,
the actions are carried out. If these are carried out successfully the rule is considered to
have “fired,” and no further clauses in that rule will be tried.

There are two inputs to a crule: the part of the word identified thus far, called the
“start,” and the next morpheme identified, called the “next.” The best way to think of this
is in terms of a bouncing ball that moves through the word, moving items from the not-
yet-processed chunk on the right over to the already processed chunk on the left. The
output of a crule is called the “result.” The following is the list of the keywords used in
the crules:

condition keywords function
STARTSURF check surface of start input against some pattern
STARTCAT check start category information
NEXTSURF check surface of next input against some pattern
NEXTCAT check next category information
MATCHCAT check that start and next have the same value for

all the feature-value pairs of the type
specified

RESULTCAT output category information

Here is an example of a piece of a rule that uses most of these keywords:
S = .*[sc]h|.*[zxs] % strings that end in affricates
O = .*[^aeiou]o % things that end in o
% clause 1 - special case for "es" suffix
 if
 STARTSURF = $S
 NEXTSURF = es|-es
 NEXTCAT = [scat vsfx]
 MATCHCAT [allo]
 then
 RESULTCAT = STARTCAT, NEXTCAT [tense], DEL [allo]

CLAN Manual 148

 RULEPACKAGE = ()

This rule is used to analyze verbs that end in -es. There are four conditions that must
be matched in this rule:

1. The STARTSURF is a stem that is specified in the declaration to end in an affri-
cate. The STARTCAT is not defined.

2. The NEXTSURF is the -es suffix that is attached to that stem.
3. The NEXTCAT is the category of the suffix, which is “vsfx” or verbal suffix.

5. The MATCHCAT [allo] statement checks that both the start and next
inputs have the same value for the feature allo. If there are multiple [allo]
entries, all must match.

The shape of the result surface is simply the concatenation of the start and next surfaces.
Hence, it is not necessary to specify this via the crules. The category information of the
result is specified via the RESULTCAT statement. The statement “RESULTCAT =
STARTCAT” causes all category information from the start input to be copied over to the
result. The statement “NEXTCAT [tense]” copies the tense value from the NEXT to the
RESULT and the statement “DEL [allo]” deletes all the values for the category [allo].

In addition to the condition-action statements, crules include two other statements: the
CTYPE statement, and the RULEPACKAGES statement. The CTYPE statement
identifies the kind of concatenation expected and the way in which this concatenation is
to be marked. This statement follows the RULENAME header. There are two special
CTYPE makers: START and END. “CTYPE: START” is used for those rules that
execute as soon as one morpheme has been found. “CTYPE: END” is used for those rules
that execute when the end of the input has been reached. Otherwise, the CYTPE marker
is used to indicate which concatenation symbol is used when concatenating the
morphemes together into a parse for a word. According to CLAN conventions, # is used
between a prefix and a stem, - is used between a stem and suffix, and ~ is used between a
clitic and a stem. In most cases, rules that specify possible suffixes will start with
CTYPE: -. These rules are neither start nor end rules and they insert a suffix after the
stem.

Rules with CTYPE START are entered into the list of startrules. Startrules are the set
of rules applied as soon as a morpheme has been recognized. In this case, the beginning
of the word is considered as the start input, and the next input is the morpheme first
recognized. As the start input has no surface and no category information associated with
it, conditions and actions are stated only on the next input.

Rules with CTYPE END are entered into the list of endrules. These rules are invoked
when the end of a word is reached, and they are used to rule out spurious parses. For the
endrules, the start input is the entire word that has just been parsed, and there is no next
input. Thus conditions and actions are only stated on the start input.

The RULEPACKAGES statement identifies which rules may be applied to the result
of a rule, when that result is the input to another rule. The RULEPACKAGES statement
follows the action statements in a clause. There is a RULEPACKAGES statement associ-

CLAN Manual 149

ated with each clause. The rules named in a RULEPACKAGES statement are not tried
until after another morpheme has been found. For example, in parsing the input
“walking”, the parser first finds the morpheme “walk,” and at that point applies the
startrules. Of these startrules, the rule for verbs will be fired. This rule includes a
RULEPACKAGES statement specifying that the rule which handles verb conjugation
may later be fired. When the parser has further identified the morpheme “ing,” the verb
conjugation rule will apply, where “walk” is the start input, and “ing” is the next input.

Note that, unlike the arules which are strictly ordered from top to bottom of the file,
the crules have an order of application that is determined by their CTYPE and the way in
which the RULEPACKAGES statement channels words from one rule to the next.

10.4.7Interactive Mode
When building a grammar for a new language, it is best to begin with a paper-and-

pencil analysis of the morphological system in which you lay out the various affixes of
the language, the classes of stem allomorphy variations, and the forces that condition the
choices between allomorphs. This work should be guided by a good descriptive grammar
of the morphology of the language. Once this work is finished, you should create a small
lexicon of the most frequent words. You may want to focus on one part-of-speech at a
time. For example, you could begin with the adverbs, since they are often
monomorphemic. Then you could move on to the nouns. The verbs should probably
come last. You can copy the sf.cut file from English and rename it.

Once you have a simple lexicon and a set of rule files, you will begin a long process
of working with interactive MOR. When using MOR in the +xi or interactive mode,
there are several additional options that become available in the CLAN Output window.
They are:

word - analyze this word
:q quit- exit program
:c print out current set of crules
:d display application of a rules.
:l re-load rules and lexicon files
:h help - print this message

If you type in a word, such as “dog” or “perro,” MOR will try to analyze it and give you
its component morphemes. If all is well, you can move on the next word. If it is not, you
need to change your rules or the lexicon. You can stay within CLAN and just open these
using the Editor. After you save your changes, use :l to reload and retest.

When you begin work with the grammar, you want to focus on the use of the +xi
switch, rather than the analysis of large groups of files. As you begin to elaborate your
grammar, you will want to start to work with sets of files. These can be real data files or
else files full of test words. When you shift to working with files, you will be combining
the use of interactive MOR and the +xi switch with use of the lexicon testing facility that
uses +xl. As you move through this work, make copies of your MOR grammar files and
lexicon frequently, because you will sometimes find that you have made a change that
makes everything break and you will need to go back to an earlier stage to figure out
what you need to fix. We also recommend using a fast machine with lots of memory.

CLAN Manual 150

You will find that you are frequently reloading the grammar using the :l function.
Having a fast machine will greatly speed this process.

To begin the process, start working with the sample minimal MOR grammars
available from the net. These files should allow you to build up a lexicon of uninflected
stems. Try to build up separate files for each of the parts of speech in your language. As
you start to feel comfortable with this, you should begin to add affixes. To do this, you
need to create a lexicon file, such as aff.cut. Using the technique found in unification
grammars, you want to set up categories and allos for these affixes that will allow them to
match up with the right stems when the crules fire. For example, you might want to call
the plural a [scat nsfx] in order to emphasize the fact that it should attach to nouns. And
you could give the designation [allo mdim] to the masculine diminutive suffix -ito in
Spanish in order to make sure that it only attaches to masculine stems and produces a
masculine output.

As you progress with your work, continually check each new rule change by
entering :l (colon followed by “l” for load) into the CLAN Output window. If you have
changed something in a way that produces a syntactic violation, you will learn this
immediately and be able to change it back. If you find that a method fails, you should
first rethink your logic. Consider these factors:

1. Arules are strictly ordered. Maybe you have placed a general case before a spe-
cific case.

2. Crules depend on direction from the RULEPACKAGES statement.
3. There has to be a START and END rule for each part of speech. If you are get-

ting too many entries for a word, maybe you have started it twice. Alternatively,
you may have created too many allomorphs with the arules.

4. If you have a MATCHCAT allos statement, all allos must match. The operation
DEL [allo] deletes all allos and you must add back any you want to keep.

5. Make sure that you understand the use of variable notation and pattern matching
symbols for specifying the surface form in the arules.

However, sometimes it is not clear why a method is not working. In this case, you
will want to check the application of the crules using the :c option in the CLAN Output
window. You then need to trace through the firing of the rules. The most important
information is often at the end of this output.

If the stem itself is not being recognized, you will need to also trace the operation of
the arules. To do this, you should either use the +e option in standard MOR or else the :d
option in interactive MOR. The latter is probably the most useful. To use this option,
you should create a directory called testlex with a single file with the words your are
working with. Then run:

mor +xi +ltestlex

Once this runs, type :d and then :l and the output of the arules for this test lexicon will go
to debug.cdc. Use your editor to open that file and try to trace what is happening there.

CLAN Manual 151

As you progress with the construction of rules and the enlargement of the lexicon,
you can tackle whole corpora. At this point you will occasionally run the +xl analysis.
Then you take the problems noted by +xl and use them as the basis for repeated testing
using the +xi switch and repeated reloading of the rules as you improve them. As you
build up your rule sets, you will want to annotate them fully using comments preceded by
the % symbol.

10.4.8Disambiguator Mode
Disambiguation is a special facility that is used to “clean up” the ambiguities in the

%mor tier that are created by MOR. If you use the POST program, hand disambiguation
is not necessary. However, when developing POST for a new language, you may find
this tool useful. Toggling the Disambiguator Mode option in the Mode menu allows you
to go back and forth between Disambiguator Mode and standard Editor Mode. In
Disambiguator Mode, you will see each ambiguous interpretation on a %mor line broken
into its alternative possibilities at the bottom of the editor screen. The user double-clicks
on the correct option and it is inserted. An ambiguous entry is defined as any entry that
has the ^ symbol in it. For example, the form N|back^Prep|back is ambiguously either the
noun “back” or the preposition “back.”

By default, Disambiguator Mode is set to work on the %mor tier. However, you may
find it useful for other tiers as well. To change its tier setting, select the Edit menu and
pull down to Options to get the Options dialog box. Set the disambiguation tier to the
tier you want to disambiguate. To test all of this out, edit the sample.cha file, reset your
default tier, and then type Esc-2. The editor should take you to the second %spa line
which has:

%spa: $RES:sel:ve^$DES:tes:ve

At the bottom of the screen, you will have a choice of two options to select. Once the
correct one is highlighted, you hit a carriage return and the correct alternative will be
inserted. If you find it impossible to decide between alternative tags, you can select the
UND or undecided tag, which will produce a form such as “und|drink” for the word
drink, when you are not sure whether it is a noun or a verb.

10.5 The Workings of MOR

When MOR runs, it breaks up morphemes into their component parts. In a relatively
analytic language like English, many words require no analysis at all. However, even in
English, a word like “coworkers” can be seen to contain four component morphemes,
including the prefix “co”, the stem, the agential suffix, and the plural. For this form,
MOR will produce the analysis: co#n:v|work-AGT-PL. This representation uses the
symbols # and – to separate the four different morphemes. Here, the prefix stands at the
beginning of the analysis, followed by the stem (n|work), and the two suffixes. In
general, stems always have the form of a part of speech category, such as “n” for noun,
followed by the vertical bar and then a statement of the stem’s lexical form.

CLAN Manual 152

In order to understand the functioning of the MOR grammar for English, the best
place to begin is with a tour of the files inside the /english folder that you can download
from the server. At the top level, you will see these files:

1. ar.cut – These are the rules that generate allomorphic variants from stems.
2. cr.cut – These are the rules that specify the possible combinations of morphemes

going from left to right in an English word.
3. debug.cdc – This file holds the complete trace of an analysis of a given word by

MOR. It always holds the results of the most recent analysis. It is mostly useful for
people who are developing new ar.cut or cr.cut files as a way of tracing out or
debugging problems with these rules.

4. docs – This is a folder containing a file of instructions on how to train POST and a
list of tags and categories used in the English grammar.

5. eng.db – This is a file used by POST and should be left untouched.
6. ex.cut – This file includes analyses that are being “overgenerated” by MOR and

should simply be filtered out or excluded whenever they occur.
7. lex – This is the heart of the MOR grammar. We will examine it in greater detail

below.
8. posttags.cut – This is a list of the grammatical tags of English that should be

included whenever running POST.
9. sf.cut – This file tells MOR how to deal with words that end with certain special

form markers such as @b for babbling.
10. traintags.cut – This is a list of the tags that are used by POSTTRAIN when it creates

the eng.db database.
When examining these files and others, please note that the exact shapes of the files, the
word listings, and the rules will change over time. We recommend that users open up
these various files to understand their contents. However, over time, the contents will
diverge more and more from the names and examples given here. Still, it should be
possible to trace through the same basic principles, even given these inevitable changes.

Now let us take a look at the files contained inside the /lex folder. Here, we find 72
files that break out the possible words of English into different files for each specific part
of speech or compound structure. Because these distinctions are so important to the
correct transcription of child language and the correct running of MOR, it is worthwhile
to consider the contents of each of these various files. As the following table shows,
about half of these word types involve different part of speech configurations within
compounds. This analysis of compounds into their part of speech components is intended
to further study of the child’s learning of compounds as well as to provide good
information regarding the part of speech of the whole. The name of the compound files
indicates their composition. For example the name adj+n+adj.cut indicates compounds
with a noun followed by an adjective (n+adj) whose overall function is that of an
adjective. In English, the part of speech of a compound is usually the same as that of the
last component of the compound.

CLAN Manual 153

File Function Example
0affix.cut prefixes and suffixes see expanded list below
0uk.cut terms local to the UK fave, doofer, sixpence
adj-dup.cut baby talk doubles nice+nice, pink+pink
adj-ir.cut irregular adjectives better, furthest
adj-kidy.cut adjectives with babytalk –y bunchy, eaty, crawly
adj.cut regular adjectives tall, redundant
adj+adj+adj.cut compounds half+hearted, hot+crossed
adj+adj+adj(on).cut compounds super+duper, easy+peasy
adj+n+adj.cut compounds dog+eared, stir+crazy
adj+v+prep+n.cut compounds pay+per+view
adj+v+v.cut compounds make+believe, see+through
adv-int.cut intensifying adverbs really, plumb, quite
adv-loc.cut locative adverbs north, upstairs
adv-tem.cut temporal adverbs tomorrow, tonight, anytime
adv.cut regular adverbs ajar, fast, mostly
adv+adj+adv.cut compounds half+off, slant+wise
adv+adj+n.cut compounds half+way, off+shore
adv+n+prep+n.cut compounds face+to+face
auxil.cut auxiliaries and modals should, can, are
co-cant.cut Cantonese bilngual forms wo, wai, la
co-voc.cut vocative communicators honey, dear, sir
co.cut regular communicators blah, bybye, gah, no
conj.cut conjunctions and, although, because
det.cut deictic determiners this, that, the,
fil.cut fillers um, uh, er
int-rhymes.cut rhymes as interjections fee_figh_foe_fum
int.cut interjections farewell, boohoo, hubba
int+int+int.cut compounds good+afternoon
int+int+int+int.cut compounds ready+set+go
n-abbrev.cut abbreviations c_d, t_v, w_c
n-baby.cut babytalk forms passie, wawa, booboo
n-dashed.cut non-compound combinations cul_de_sac, seven_up
n-dup.cut duplicate nouns cow+cow, chick_chick
n-ir.cut irregular nouns children, cacti, teeth
n-loan.cut loan words goyim, amigo, smuck
n-pluraletant.cut nouns with no singular golashes, kinesics, scissors
n.cut regular nouns dog, corner, window
n+adj+n.cut compounds big+shot, cutie+pie
n+adj+v+adj.cut compounds merry+go+round
n+n+conj+n.cut compounds four+by+four, dot+to+dot
n+n+n-on.cut compounds quack+duck, moo+cow
n+n+n.cut compounds candy+bar, foot+race
n+n+novel.cut compounds children+bed, dog+fish
n+n+prep+det+n.cut compounds corn+on+the+cob

CLAN Manual 154

n+on+on-baby.cut compounds wee+wee, meow+meow
n+v+x+n.cut compounds jump+over+hand
n+v+n.cut compounds squirm+worm, snap+bead
n+v+ptl.cut compounds chin+up, hide+out
num-ord.cut ordinals fourth, thirteenth
num.cut cardinals five, twenty
on.cut onomatopoeia boom, choo_choo
on+on+on.cut compounds cluck+cluck, knock+knock
prep.cut prepositions under, minus
pro.cut pronouns he, nobody, himself
ptl.cut verbal particle up, about, on
quan.cut quantifier some, all, only, most
small.cut assorted forms not, to, xxx, yyy
v-baby.cut baby verbs wee, poo
v-clit.cut cliticized forms gonna, looka
v-dup.cut verb duplications eat+eat, drip+drip
v-ir.cut irregular verbs came, beset, slept
v.cut regular verbs run, take, remember
v+adj+v.cut compounds deep+fry, tippy+toe
v+n+v.cut compounds bunny+hop, sleep+walk
v+v+conj+v.cut compounds hide+and+seek
wh.cut interrogatives which, how, why
zero.cut omitted words 0know, 0conj, 0is

The construction of these lexicon files involves a variety of decisions. Here are some
of the most important issues to consider.
1. Words may often appear in several files. For example, virtually every noun in

English can also function as a verb. However, when this function is indicated by a
suffix, as in “milking” the noun can be recognized as a verb through a process of
morphological derivation contained in a rule in the cr.cut file. In such cases, it is
not necessary to list the word as a verb. Of course, this process fails for unmarked
verbs. However, it is generally not a good idea to represent all nouns as verbs,
since this tends to overgenerate ambiguity. Instead, it is possible to use the
POSTMORTEM program to detect cases where nouns are functioning as bare
verbs.

2. If a word can be analyzed morphologically, it should not be given a full listing.
For example, since “coworker” can be analyzed by MOR into three morphemes as
co#n:v|work-AGT, it should not be separately listed in the n.cut file. If it is, then
POST will not be able to distinguish co#n:v|work-AGT from n|coworker.

3. In the zero.cut file, possible omitted words are listed without the preceding 0. For
example, there is an entry for “conj” and “the”. However, in the transcript, these
would be represented as “0conj” and “0the”.

4. It is always best to use spaces to break up word sequences that are really just
combinations of words. For example, instead of transcribing 1964 as
“nineteen+sixty+four”, “nineteen-sixty-four”, or “nineteen_sixty_four”, it is best
to transcribe simply as “nineteen sixty four”. This principle is particularly

CLAN Manual 155

important for Chinese, where there is a tendency to underutilize spaces, since
Chinese itself is written without spaces.

5. For most languages that use Roman characters, you can rely on capitalization to
force MOR to treat words as proper nouns. To understand this, take a look at the
forms in the sf.cut file at the top of the MOR directory. These various entries tell
MOR how to process forms like k@l for the letter “k” or John_Paul_Jones for the
famous admiral. The symbol \c indicates that a form is capitalized and the symbol
\l indicates that it is lowercase.

6. Deciding how to represent compounds is a difficult matter. See the discussion in
the next section.

10.5.1Compounds and Complex Forms
The initial formulations of CHAT that were published in 1991 (1991), 1995 (1995),

and 2000 (2000) specified no guidelines for the annotation of compounds. They only
stipulated that compounds should be represented with a plus. When MOR saw a word
with a plus, it simply tagged it as a noun compound. This was a big mistake, since many
of the compounds tagged in this way were not common nouns. Instead, they included
verbs, adjectives, proper nouns, idioms, greetings, onomatopoeia, and many other
nonstandard forms. Unfortunately, once this genie had been let out of the bottle, it was
very difficult to convince it to go back in. To solve this problem, we had to shift from
blanket recognition of compounds to an exhaustive listing of the actual forms of possible
compounds. The result of this shift is that we have now created many special compound
files such as n+n+n.cut or v+n+v.cut. Fixing the forms in the database to correspond to
this new, tighter standard was a huge job, perhaps even more tedious than that involved
in removing main line morphemicization from the corpus. However, now that we have a
full analysis of compounds, there is a much more accurate analysis of children’s learning
of these forms.

In the current system, compounds are listed in the lexical files according to both their
overall part of speech (X-bar) and the parts of speech of their components. However,
there are seven types of complex word combinations that should not be treated as
compounds.

1. Underscored words. The n-dashed.cut file includes 40 forms that resemble
compounds, but are best viewed as units with non-morphemic components. For
example, kool_aid and band_aid are not really combinations of morphemes,
although they clearly have two components. The same is true for hi_fi and
coca_cola. In general, MOR and CLAN pay little attention to the underscore
character, so it can be used as needed when a plus for compounding is not
appropriate. The underscore mark is particularly useful for representing the
combinations of words found in proper nouns such as John_Paul_Jones,
Columbia_University, or The_Beauty_and_the_Beast. As long as these words are
capitalized, they do not need to be included in the MOR lexicon, since all
capitalized words are taken as proper nouns in English. However, these forms
cannot contain pluses, since compounds are not proper nouns. And please be
careful not to overuse this form.

CLAN Manual 156

2. Separate words. Many noun-noun combinations in English should just be
written out as separate words. An example would be “faucet stem assembly
rubber gasket holder”. We don’t want to write this as
“Faucet_stem_assembly_rubber_gasket_holder” or
“faucet_stem_assembly_rubber_gasket_holder” or even
“faucet+stem+assembly+rubber+gasket+holder”. It is worth noting here that
German treats all such forms as single words. This means that different
conventions have to be adopted for German in order to avoid the need for
exhaustive listing of the infinite number of German compound nouns.

3. Spelling sequences. Sequences of letter names such as “O-U-T” for the spelling
of “out” are transcribed with the suffix @k, as in out@k.

4. Acronyms. Forms such as FBI are transcribed with underscores, as in F_B_I.
Presence of the initial capital letter tells MOR to treat F_B_I as a proper noun.
This same format is used for non-proper abbreviations such as c_d or d_v_d.

5. Products. Coming up with good forms for commercial products such as Coca-
Cola is tricky. Because of the need to ban the use of the dash on the main line, we
have avoided the use of the dash in these names. It is clear that they should not be
compounds, as in coca+cola, and compounds cannot be capitalized, so Coca+Cola
is not possible. This leaves us with the option of either coca_cola or Coca_Cola.
The option coca_cola seems best, since this is not really a proper noun.

6. Interjections. The choice between underscoring, compounding, and writing as
single words is particularly tricky for interjections and set phrases. A careful
study of files such as co-voc.cut, co.cut, n-dashed.cut, n-abbrev.cut, int-
rhymes.cut, int.cut, inti+int+int.cut, and int+int+int.cut will show how difficult it
is to apply these distinctions consistently. We continue to sharpen these
distinctions, so the best way to trace these categories is to scan through the
relevant files to see the principles that are being used to separate forms into these
various types.

7. Babbling and word play. In earlier versions of CHAT and MOR, transcribers
often represent sequences of babbling or word play syllables as compounds. This
was done mostly because the plus provides a nice way of separating out the
separate syllables in these productions. In order to make it clear that these
separations are simply marked for purposes of syllabification, we now ask
transcribers to use forms such as ba^ba^ga^ga@wp or choo^bung^choo^bung@o
to represent these patterns.

The introduction of this more precise system for transcription of complex forms
opens up additional options for programs like MLU, KWAL, FREQ, and GRASP. For
MLU, compounds will be counted as single words, unless the plus sign is added to the
morpheme delimiter set using the +b+ option switch. For GRASP, processing of
compounds only needs to look at the part of speech of the compound as a whole, since
the internal composition of the compound is not relevant to the syntax. Additionally,
forms such as "faucet handle valve washer assembly" do not need to be treated as
compounds, since GRASP can learn to treat sequences of nouns as complex phrases
header by the final noun.

CLAN Manual 157

10.5.2Lemmatization
Researchers are often interested in computing frequency profiles that are computed

using lemmas or root forms, rather inflected forms. For example, they may want to treat
"dropped" as an instance of the use of the lemma "drop." In order to perform these types
of computations, the KWAL and FREQ programs provide a series of options that allow
users to refer to various parts of complex structures in the %mor line. This system
recognizes the following structures on the %mor line:
Element Symbol Example Representation Part
prefix # unwinding un#v|wind-PROG un#
stem r unwinding un#v|wind-PROG wind
suffix - unwinding un#v|wind-PROG PROG
fusion & unwound un#v|wind&PAST PAST
translation = gato n|gato=cat cat
other o - - -

To illustrate the use of these symbols, let us look at several possible commands. All
of these commands take the form: freq +t%mor -t* filename.cha. However, in addition,
they add the +s switches that are given in the second column. In these commands, the
asterisk is used to distinguish across forms in the frequency count and the % sign is used
to combine across forms.

Function String
All stems with their parts of speech, merge the rest +s@"r+*,|+*,o+%"
Only verbs +s@"|+v"
All forms of the stem "go" +s@"r+go"
The different parts of speech of the stem "go" +s@"r+go,|+*,o+%"
The stem "go" only when it is a verb +s@"r+go,|+v,o+%"
All stems, merge the rest +s@"r+*,o+%"

Of these various forms, the last one given above would be the one required for
conducting a frequency count based on lemmas or stems alone. Essentially CLAN breaks
every element on %mor tier into its individual components and then matches either literal
strings or wild cards provided by the user to each component.

10.5.3Errors and Replacements
Transcriptions on the main line have to serve two, sometimes conflicting (Edwards,

1992), functions. On the one hand, they need to represent the form of the speech as
actually produced. On the other hand, they need to provide input that can be used for
morphosyntactic analysis. When words are pronounced in their standard form, these two
functions are in alignment. However, when words are pronounced with phonological or
morphological errors, it is important to separate out the actual production from the
morphological target. This can be done through a system of main line tagging of errors.
This system largely replaces the coding of errors on a separate %err line, although that
form is still available, if needed. The form of the newer system is illustrated here:

CHI: him [case] ated [: ate] [* +ed-sup] a f(l)ower and a pun [: bun].

CLAN Manual 158

For the first error, there is no need to provide a replacement, since MOR can process
“him” as a pronoun. However, since the second error is not a real word form, the
replacement is necessary in order to tell MOR how to process the form. The third error is
just an omission of “l” from the cluster and the final error is a mispronunciation of the
initial consonant. Phonological errors are not coded here, since that level of analysis is
best conducted inside the Phon program (Rose et al., 2005).

10.5.4Affixes and Control Features
To complete our tour of the MOR lexicon for English, we will take a brief look at the

0affix.cut file, as well some additional control features in the other lexical files. The
responsibility of processing inflectional and derivational morphology is divided across
these three files. Let us first look at a few entries in the 0affix.cut file.

1. This file begins with a list of prefixes such as “mis” and “semi” that attach either
to nouns or verbs. Each prefix also has a permission feature, such as [allow mis].
This feature only comes into play when a noun or verb in n.cut or v.cut also has
the feature [pre no]. For example, the verb “test” has the feature [pre no] included
in order to block prefixing with “de-” to produce “detest” which is not a
derivational form of "test". At the same time, we want to permit prefixing with
“re-”, the entry for “test” has [pre no][allow re]. Then, when the relevant rule in
cr.cut sees a verb following “re-” it checks for a match in the [allow] feature and
allows the attachment in this case.

2. Next we see some derivational suffixes such as diminutive –ie or agential –er.
Unlike the prefixes, these suffixes often change the spelling of the stem by
dropping silent e or doubling final consonants. The ar.cut file controls this
process, and the [allo x] features listed there control the selection of the correct
form of the suffix.

3. Each suffix is represented by a grammatical category in parentheses. These
categories are taken from a typologically valid list given in the CHAT Manual.

4. Each suffix specifies the grammatical category of the form that will result after its
attachment. For suffixes that change the part of speech, this is given in the scat,
as in [scat adj:n]. Prefixes do not change parts of speech, so they are simply listed
as [scat pfx] and use the [pcat x] feature to specify the shape of the forms to
which they can attach.

5. The long list of suffixes concludes with a list of cliticized auxiliaries and reduced
main verbs. These forms are represented in English as contractions. Many of
these forms are multiply ambiguous and it will be the job of POST to choose the
correct reading from among the various alternatives.

Outside of the 0affix.cut file, in the various other *.cut lexical files, there are several
control features that specify how stems should be treated. One important set includes the
[comp x+x] features for compounds. These features control how compounds will be
unpacked for formatting on the %mor line. Irregular adjectives in adj-ir.cut have features
specifying their degree as comparative or superlative. Irregular nouns have features
controlling the use of the plural. Irregular verbs have features controlling consonant
doubling [gg +] and the formation of the perfect tense.

CLAN Manual 159

10.5.5Building MOR Grammars
So far, this discussion of the MOR grammar for English has avoided an examination

of the ar.cut and cr.cut files. It is true that users of English MOR will seldom need to
tinker with these files. However, serious students of morphosyntax need to understand
how MOR and POST operate. In order to do this, they have to understand how the ar.cut
and cr.cut files work. Fortunately, for English at least, these rule files are not too
complex. The relative simplicity of English morphology is reflected in the fact that the
ar.cut file for English has only 391 lines, whereas the same file for Spanish has 3172
lines. In English, the main patterns involve consonant doubling, silent –e, changes of y to
i, and irregulars like “knives” or “leaves.” The rules use the spelling of final consonants
and vowels to predict these various allomorphic variations. Variables such as $V or $C
are set up at the beginning of the file to refer to vowels and consonants and then the rules
use these variables to describe alternative lexical patterns and the shapes of allomorphs.
For example the rule for consonant doubling takes this shape:

LEX-ENTRY:
LEXSURF = OV$C
LEXCAT = [scat v], ![tense OR past perf], ![gem no] % to block putting
ALLO:
ALLOSURF = OVCC
ALLOCAT = LEXCAT, ADD [allo vHb]
ALLO:
ALLOSURF = LEXSURF
ALLOCAT = LEXCAT, ADD [allo vHa]

Here, the string OV$C characterizes verbs like “bat” that end with vowels followed
by consonants. The first allo will produce words like “batting” or “batter” and the second
will give a stem for “bats” or “bat”. A complete list of allomorphy types for English is
given in the file engcats.cdc in the /docs folder in the MOR grammar.

When a user types the “mor” command to CLAN, the program loads up all the *.cut
files in the lexicon and then passes each lexical form past the rules of the ar.cut file. The
rules in the ar.cut file are strictly ordered. If a form matches a rule, that rule fires and the
allomorphs it produces are encoded into a lexical tree based on a “trie” structure. Then
MOR moves on to the next lexical form, without considering any additional rules. This
means that it is important to place more specific cases before more general cases in a
standard bleeding relation. There is no “feeding” relation in the ar.cut file, since each
form is shipped over to the tree structure after matching.

The other “core” file in a MOR grammar is the cr.cut file that contains the rules that
specify pathways through possible words. The basic idea of crules or concatenation or
continuation rules is taken from Hausser’s (1999) left-associative grammar which
specifies the shape of possible “continuations” as a parser moves from left to right
through a word. Unlike the rules of the ar.cut file, the rules in the cr.cut file are not
ordered. Instead, they work through a “feeding” relation. MOR goes through a candidate
word from left to right to match up the current sequence with forms in the lexical trie
TREE?? structure. When a match is made, the categories of the current form become a
part of the STARTCAT. If the STARTCAT matches up with the STARTCAT of one of

CLAN Manual 160

the rules in cr.cut, as well as satisfying some additional matching conditions specified in
the rule, then that rule fires. The result of this firing is to change the shape of the
STARTCAT and to then thread processing into some additional rules. For example, let
us consider the processing of the verb “reconsidering.” Here, the first rule to fire is the
specific-vpfx-start rule which matches the fact that “re-” has the feature [scat pfx] and
[pcat v]. This initial recognition of the prefix then threads into the specific-vpfx-verb
rule that requires the next item have the feature [scat v]. This rule has the feature CTYPE
which serves to introduce the # sign into the final tagging to produce re#part|consider-
PROG. After the verb “consider” is accepted, the RULEPACKAGE tells MOR to move
on to three other rules: v-conj, n:v-deriv, and adj:v-deriv. Each of these rules can be
viewed as a separate thread out of the specific-vpfx-verb rule. At this point in processing
the word, the remaining orthographic material is “-ing”. Looking at the 0affix.cut file,
we see that “ing” has three entries: [scat part], [scat v:n], and [scat n:gerund]. One of the
pathways at this point leads through the v-conj rule. Within v-conj, only the fourth clause
fires, since that clause matches [scat part]. This clause can lead on to three further
threads, but, since there is no further orthographic material, there is no NEXTCAT for
these rules. Therefore, this thread then goes on to the end rules and outputs the first
successful parse of “reconsidering.” The second thread from the specific-vpfx-verb rule
leads to the n:v-deriv rule. This rule accepts the reading of “ing” as [scat n:gerund] to
produce the second reading of “reconsidering”. Finally, MOR traces the third thread
from the specific-vpfx-verb rule which leads to adj:v-deriv. This route produces no
matches, so processing terminates with this result:

Result: re#part|consider-PROG^re#n:gerund|consider-GERUND
Later, POST will work to choose between these two possible readings of

“reconsidering” on the basis of the syntactic context. As we noted earlier, when
“reconsidering” follows an auxiliary (“is eating”) or when it functions adjectivally (“an
eating binge”), it is treated as a participle. However, when it appears as the head of an
NP (“eating is good for you”), it is treated as a gerund. Categories and processes of this
type can be modified to match up with the requirements of the GRASP program to be
discussed below.

The process of building ar.cut and cr.cut files for a new language involves a slow
iteration of lexicon building with rule building. During this process, and throughout
work with development of MOR, it is often helpful to use MOR in its interactive mode
by typing: mor +xi . When using MOR in this mode, there are several additional options
that become available in the CLAN Output window. They are:

word - analyze this word
:q quit- exit program
:c print out current set of crules
:d display application of a rules.
:l re-load rules and lexicon files
:h help - print this message

If you type in a word, such as “dog” or “perro,” MOR will try to analyze it and give
you its component morphemes. If all is well, you can move on the next word. If it is not,
you need to change your rules or the lexicon. You can stay within CLAN and just open
these using the Editor. After you save your changes, use :l to reload and retest the word

CLAN Manual 161

again.

The problem with building up a MOR grammar one word at a time like this is that
changes that favour the analysis of one word can break the analysis of other words. To
make sure that this is not happening, it is important to have a collection of test words that
you continually monitor using mor +xl. One approach to this is just to have a growing
set of transcripts or utterances that can be analyzed. Another approach is to have a
systematic target set configured not as sentences but as transcripts with one word in each
sentence. An example of this approach can be found in the /verbi folder in the Italian
MOR grammar. This folder has one file for each of the 106 verbal paradigms of the
Berlitz Italian Verb Handbook (2005). That handbook gives the full paradigm of one
“leading” verb for each conjugational type. We then typed all of the relevant forms into
CHAT files. Then, as we built up the ar.cut file for Italian, we designed allo types using
features that matched the numbers in the Handbook. In the end, things become a bit more
complex in Spanish, Italian, and French.

1. The initial rules of the ar.cut file for these languages specify the most limited and
lexically-bound patterns by listing almost the full stem, as in $Xdice for verbs like
“dicere”, “predicere” or “benedicere” which all behave similarly, or “nuoce”
which is the only verb of its type.

2. Further in the rule list, verbs are listed through a general phonology, but often
limited to the presence of a lexical tag such as [type 16] that indicates verb
membership in a conjugational class.

3. Within the rule for each verb type, the grammar specifies up to 12 stem allomorph
types. Some of these have the same surface phonology. However, to match up
properly across the paradigm, it is important to generate this full set. Once this
basic grid is determined, it is easy to add new rules for each additional
conjugational type by a process of cut-and-paste followed by local modifications.

4. Where possible, the rules are left in an order that corresponds to the order of the
conjugational numbers of the Berlitz Handbook. However, when this order
interferes with rule bleeding, it is changed.

5. Perhaps the biggest conceptual challenge is the formulation of a good set of [allo
x] tags for the paradigm. The current Italian grammar mixes together tags like
[allo vv] that are defined on phonological grounds and tags like [allo vpart] that
are defined on paradigmatic grounds. A more systematic analysis would probably
use a somewhat larger set of tags to cover all tense-aspect-mood slots and use the
phonological tags as a secondary overlay on the basic semantic tags.

6. Although verbs are the major challenge in Romance languages, it is also
important to manage verbal clitics and noun and adjectives plurals. In the end, all
nouns must be listed with gender information. Nouns that have both masculine
and feminine forms are listed with the feature [anim yes] that allows the ar.cut file
to generate both sets of allomorphs.

7. Spanish has additional complexities involving the placement of stress marks for
infinitives and imperatives with suffixed clitics, such as dámelo. Italian has
additional complications for forms such as “nello” and the various pronominal
and clitic forms.

CLAN Manual 162

To begin the process, start working with the sample “minMOR” grammars available
from the net. These files should allow you to build up a lexicon of uninflected stems.
Try to build up separate files for each of the parts of speech in your language. As you
start to feel comfortable with this, you should begin to add affixes. To do this, you need
to create a lexicon file for affixes, such as affix.cut. Using the technique found in
unification grammars, you want to set up categories and allos for these affixes that will
allow them to match up with the right stems when the crules fire. For example, you
might want to assign [scat nsfx] to the noun plural suffix in order to emphasize the fact
that it should attach to nouns. And you could give the designation [allo mdim] to the
masculine diminutive suffix -ito in Spanish in order to make sure that it only attaches to
masculine stems and produces a masculine output.

As you progress with your work, continually check each new rule change by
entering :l (colon followed by “l” for load) into the CLAN Output window and then
testing some crucial words. If you have changed something in a way that produces a
syntactic violation, you will learn this immediately and be able to change it back. If you
find that a method fails, you should first rethink your logic. Consider these factors:

1. Arules are strictly ordered. Maybe you have placed a general case before a
specific case.

2. Crules depend on direction from the RULEPACKAGES statement. Perhaps
you are not reaching the rule that needs to fire.

3. There has to be a START and END rule for each part of speech. If you are
getting too many entries for a word, maybe you have started it twice.
Alternatively, you may have created too many allomorphs with the arules.

4. Possibly, you form is not satisfying the requirements of the end rules. If it
doesn’t these rules will not “let it out.”

5. If you have a MATCHCAT allos statement, all allos must match. The
operation DEL [allo] deletes all allos and you must add back any you want to
keep.

6. Make sure that you understand the use of variable notation and pattern
matching symbols for specifying the surface form in the arules.

However, sometimes it is not clear why a method is not working. In this case, you will
want to check the application of the crules using the :c option in the CLAN Output
window. You then need to trace through the firing of the rules. The most important
information is often at the end of this output.

If the stem itself is not being recognized, you will need to also trace the operation of
the arules. To do this, you should either use the +e option in standard MOR or else the :d
option in interactive MOR. The latter is probably the most useful. To use this option,
you should create a directory called testlex with a single file with the words you are
working with. Then run: mor +xi +ltestlex

Once this runs, type :d and then :l and the output of the arules for this test lexicon will
go to debug.cdc. Use your editor to open that file and try to trace what is happening
there.

As you progress with the construction of rules and the enlargement of the lexicon,

CLAN Manual 163

you can tackle whole corpora. At this point you will occasionally run the +xl analysis.
Then you take the problems noted by +xl and use them as the basis for repeated testing
using the +xi switch and repeated reloading of the rules as you improve them. As you
build up your rule sets, you will want to annotate them fully using comments preceded by
the % symbol.

10.6 Using MOR with a New Corpus

Because the English MOR grammar is stable and robust, the work of analyzing a new
corpus seldom involves changes to the rules in the ar.cut or cr.cut files. However, a new
English corpus is still likely to need extensive lexical clean up before it is fully
recognized by MOR. The unrecognized words can be identified quickly by running this
command:

mor +xl *.cha
This command will go through a collection of files and output a single file “mini

lexicon” of unrecognized words. The output is given the name of the first file in the
collection. After this command finishes, open up the file and you will see all the words
not recognized by MOR. There are several typical reasons for a word not being
recognized:

1. It is misspelled.
2. The word should be preceded by an ampersand (&) to block look up through

MOR. Specifically, incomplete words should be transcribed as &text so that the
ampersand character can block MOR look up. Similarly, sounds like laughing
can be transcribed as &=laughs to achieve the same effect.

3. The word should have been transcribed with a special form marker, as in bobo@o
or bo^bo@o for onomatopoeia. It is impossible to list all possible onomatopoeic
forms in the MOR lexicon, so the @o marker solves this problem by telling MOR
how to treat the form. This approach will be needed for other special forms, such
as babbling, word play, and so on.

4. The word was transcribed in “eye-dialect” to represent phonological reductions.
When this is done, there are two basic ways to allow MOR to achieve correct
lookup. If the word can be transcribed with parentheses for the missing material,
as in “(be)cause”, then MOR will be happy. This method is particularly useful in
Spanish and German. Alternatively, if there is a sound substitution, then you can
transcribe using the [: text] replacement method, as in “pittie [: kittie]”.

5. You should treat the word as a proper noun by capitalizing the first letter. This
method works for many languages, but not in German where all nouns are
capitalized and not in Asian languages, since those languages do not have systems
for capitalization.

6. The word should be treated as a compound, as discussed in the previous section.
7. The stem is in MOR, but the inflected form is not recognized. In this case, it is

possible that one of the analytic rules of MOR is not working. These problems
can be reported to me at macw@cmu.edu.

8. The stem or word is missing from MOR. In that case, you can create a file called
something like 0add.cut in the /lex folder of the MOR grammar. Once you have
accumulated a collection of such words, you can email them to me for permanent
addition to the lexicon.

mailto:macw@cmu.edu

CLAN Manual 164

Some of these forms can be corrected during the initial process of transcription by
running CHECK. However, others will not be evident until you run the mor +xl
command and get a list of unrecognized words. In order to correct these forms, there are
basically two possible tools. The first is the KWAL program built in to CLAN. Let us
say that your filename.ulx.cex list of unrecognized words has the form “cuaght” as a
misspelling of “caught.” Let us further imagine that you have a single collection of 80
files in one folder. To correct this error, just type this command into the Commands
window:

kwal *.cha +scuaght

KWAL will then send input to your screen as it goes through the 80 files. There may
be no more than one case of this misspelling in the whole collection. You will see this as
the output scrolls by. If necessary, just scroll back in the CLAN Output window to find
the error and then triple click to go to the spot of the error and then retype the word
correctly.

For errors that are not too frequent, this method works fairly well. However, if you
have made some error consistently and frequently, you may need stronger methods.
Perhaps you transcribed “byebye” as “bye+bye” as many as 60 times. In this case, you
could use the CHSTRING program to fix this, but a better method would involve the use
of a powerful Programmer’s Editor system such as BBEdit for the Mac or Epsilon for
Windows. Any system you use must include an ability to process Regular Expressions
(RegExp) and to operate smoothly across whole directories at a time. However, let me
give a word of warning about the use of more powerful editors. When using these
systems, particularly at first, you may make some mistakes. Always make sure that you
keep a backup copy of your entire folder before each major replacement command that
you issue.

Once you have succeeded in reducing the context of the minilex to zero, you are
ready to run a final pass of MOR. After that, if there is a .db file in the MOR grammar
for your language, you can run POST to disambiguate your file. After disambiguation,
you should run CHECK again. There may be some errors if POST was not able to
disambiguate everything. In that case, you would either need to fix MOR or else just use
CLAN’s disambiguate tier function (escape-2) to finish the final stages of
disambiguation.

10.7 MOR for Bilingual Corpora

It is now possible to use MOR and POST to process bilingual corpora. The first
application of this method has been to the transcripts collected by Virginia Yip and
Stephen Matthews from Cantonese-English bilingual children in Hong Kong. In these
corpora, parents, caretakers, and children often switch back and forth between the two
languages. In order to tell MOR which grammar to use for which utterances, each
sentence must be clearly identified for language. It turns out that this is not too difficult
to do. First, by the nature of the goals of the study and the people conversing with the
child, certain files are typically biased toward one language or the other. In the

CLAN Manual 165

YipMatthews corpus, English is the default language in folders such as SophieEng or
TimEng and Cantonese is the default in folders such as SophieCan and TimCan. To mark
this in the files in which Cantonese is predominant, the @Languages tier has this form:

@Language: zh, en
In the files in which English is predominant, on the other hand, the tier has this form:
 @Language: en, zh
The programs then assume that, by default, each word in the transcript is in the first listed
language. This default can be reversed in two ways. First, within the English files, the
precode [- zh] can be placed at the beginning of utterances that are primarily in
Cantonese. If single Cantonese words are used inside English utterances, they are
marked with the special form marker @s. If an English word appears within a Cantonese
sentence marked with the [- zh] precode, then the @s code means that the default for that
sentence (Chinese) is now reversed to the other language (English). For the files that are
primarily in Cantonese, the opposite pattern is used. In those files, English sentences are
marked as [- en] and English words inside Cantonese are marked by @s. This form of
marking preserves readability, while still making it clear to the programs which words are
in which language. If it is important to have each word explicitly tagged for language,
the –l switch can be used with CLAN programs such as KWAL, COMBO, or FIXIT to
insert this more verbose method of language marking.

To minimize cross-language listing, it was also helpful to create easy ways of
representing words that were shared between languages. This was particularly important
for the names of family members or relation names. For example, the Cantonese form 姐
姐 for “big sister” can be written in English as Zeze, so that this form can be processed
correctly as a proper noun address term. Similarly, Cantonese has borrowed a set of
English salutations such as “byebye” and “sorry” which are simply added directly to the
Cantonese grammar in the co-eng.cut file.

Once these various adaptations and markings are completed, it is then possible to run
MOR in two passes on the corpus. For the English corpora, the steps are:

1. Set the MOR library to English and run: mor -s”[- zh]” *.cha +1
2. Disambiguate the results with: post *.cha +1
3. Run CHECK to check for problems.
4. Set the MOR library to Cantonese and run: mor +s”[- zh]” *.cha +1
5. Disambiguate the results with: post +dcant.db *.cha +1
6. Run CHECK to check for problems.

To illustrate the result of this process, here is a representative snippet from the
te951130.cha file in the /TimEng folder. Note that the default language here is English
and that sentences in Cantonese are explicitly marked as [+ can].

*LIN: where is grandma first, tell me ?
%mor: adv:wh|where v|be n|grandma adv|first v|tell pro|me ?
*LIN: well, what's this ?
%mor: co|well pro:wh|what~v|be pro:dem|this ?

*CHI: xxx 呢 個 唔 夠 架 . [+ can]
%mor: unk|xxx det|ni1=this cl|go3=cl neg|m4=not adv|gau3=enough

CLAN Manual 166

sfp|gaa3=sfp . [+ can]

*LIN: 呢 個 唔 夠 . [+ can]
%mor: det|ni1=this cl|go3=cl neg|m4=not adv|gau3=enough . [+ can]
*LIN: <what does it mean> [>] ?
%mor: pro:wh|what v:aux|do pro|it v|mean ?

Currently, this type of analysis is possible whenever MOR grammars exist for both
languages, as would be the case for Japanese-English, Spanish-French, Putonghua-
Cantonese, or Italian-Chinese bilinguals.

10.8 POST

POST was written by Christophe Parisse of INSERM, Paris for the purpose of
automatically disambiguating the output of MOR. The POST package is composed of
four CLAN commands: POST, POSTTRAIN, POSTLIST, and POSTMOD. POST is the
command that runs the disambiguator. POST uses a database that contains information
about syntactic word order. Databases are created and maintained by POSTTRAIN and
can be dumped in a text file by POSTLIST. POSTMODRULES is a utility for modifying
Brill rules. In this section, we describe the use of the POST command.

In order to use POST, you must first have a database of disambiguation rules
appropriate for your language. For English, this file is called eng.db. There are also
POST databases now for Chinese, Japanese, Spanish, and English. As our work with
POST progresses, we will make these available for additional languages. To run POST,
you can use this command format :

post *.cha

This command assumes the default values of the +f, +d, and +s switches described below.
The accuracy of disambiguation by POST for English will be above 95 percent.
However, there will be some errors. To make the most conservative use of POST, you
may wish to use the +s2 switch.

The options for POST are:

-b do not use Brill rules (they are used by default)

+bs use a slower but more thorough version of Brill's rules analysis.

+c output all affixes

+cF output the affixes listed in file F and post.db

-c output only the affixes defined during training with POSTTRAIN (default).

-cF omit the affixes in file F, but not the affixers defined during training with
POSTTRAIN

CLAN Manual 167

+dF use POST database file F (default is "post.db"). This file must have been created
by POSTTRAIN. If you do not use this switch, POST will try to locate a file
called post.db in either the current working directory or your MOR library
directory.

+e[1,2]c this option is a complement to the option +s2 and +s3 only. It allows you to
change the separator used (+e1c) between the different solutions, (+e2c) before
the information about the parsing process. (c can be any character). By default,
the separator for +e1 is # and for +e2, the separator is /.

+f send output to file derived from input file name. If you do not use this switch,
POST will create a series of output files named *.pst.

+fF send output to file F. This switch will change the extension to the output files.

-f send output to the screen

+lm reduce memory use (but longer processing time)
+lN when followed by a number the +l switch controls the number of output lines

+unk tries to process unknown words.

+sN N=0 (default) replace ambiguous %mor lines with disambiguated ones
 N=1 keep ambiguous %mor lines and add disambiguated %pos lines.
 N=2 output as in N=1, but with slashes marking undecidable cases.
 N=3 keep ambiguous %mor lines and add %pos lines with debugging info.
 N=4 inserts a %nob line before the %mor/%pos line that presents the results of

the analysis without using Brill rules.
 N=5 outputs results for debuging POST grammars.
 N=6 complete outputs results for debuging POST grammars.

With the options +s0 and +s1, only the best candidate is outputted. With option
+s2, second and following candidates may be outputted, when the disambiguation
process is not able to choose between different solutions with the most probable
solution displayed first. With option +s3, information about the parsing process is
given in three situations: processing of unknown words (useful for checking these
words quickly after the parsing process), processing of unknown rules and no
correct syntactic path obtained (usually corresponds to new grammatical
situations or typographic errors).

+tS include tier code S
-tS exclude tier code S
 +/-t#Target_Child - select target child's tiers
 +/-t@id="*|Mother|*" - select mother's tiers

CLAN Manual 168

10.9 POSTLIST

POSTLIST provides a list of tags used by POST. It is run on the *.db database file.
The options for POSTLIST are as follows:

+dF this gives the name of the database to be listed (default value: ‘eng.db’).
+fF specify name of result file to be F.
+m outputs all the matrix entries present in the database.
+r outputs all the rules present in the database.
+rb outputs rule dictionary for the Brill tagger.
+rn outputs rule dictionary for the Brill tagger in numerical order.
+t outputs the list of all tags present in the database.
+w outputs all the word frequencies gathered in the database.
+wb outputs word dictionary for the Brill tagger.

If none of the options is selected, then general information about the size of the database
is outputted.

10.10 POSTMODRULES

This program outputs the rules used by POST for debugging rules.

10.11 POSTMORTEM

This program relies on a dictionary file called postmortem.cut to alter the part-of-speech
tags in the %mor line after the final operation of MOR and POST. The use of this
program is restricted to cases of extreme part-of-speech extension, such as using color
names as nouns or common nouns as verbs. Here is an example of some lines in a
postmortem.cut file

det adj v => det n v
det adj $e => det n $e

Here, the first line will change a sequence such as “the red is” from “det adj v” to “det n
v”. The second line will change “det adj” to “det n” just in the case that the adjective is
at the end of the sentence.

10.12 POSTTRAIN

POSTTRAIN was written by Christophe Parisse of INSERM, Paris. In order to run
POST, you need to create a database file for your language. For several languages, this
has already been done. If there is no POST database file for your language or your
subject group, you can use the POSTTRAIN program to create this file. The default
name for this file is eng.db. If you are not working with English, you should choose
some other name for this file. Before running POSTTRAIN, you should take these steps:

1. You should specify a set of files that will be your POSTTRAIN training files.
You may wish to start with a small set of files and then build up as you go.

2. You should verify that all of your training files pass CHECK.

CLAN Manual 169

3. Next, you should run MOR with the +xl option to make sure that all words are
recognized.

4. You then run MOR on your training files. This will produce an ambiguous
%mor line.

5. Now you open each file in the editor and use the escape-2 command to
disambiguate the ambiguous %mor line.

6. Once this is done for a given file, using the Query-Replace function to rename
%mor to %trn.

7. After you have created a few training files or even after you have only one file,
run MOR again.

8. Now you can run POSTTRAIN with a command like this:
posttrain +cnewdatabase.db +o0errrors.cut *.cha

9. Now, take a look at the 0errors.cut file to see if there are problems. If not, you
can test out your POST file using POST. If the results seem pretty good, you
can shift to eye-based evaluation of the disambiguated line, rather than using
escape-2. Otherwise, stick with escape-2 and create more training data.
Whenever you are happy with a disambiguated %mor line in a new training
file, then you can go ahead and rename it to %trn.

10. The basic idea here is to continue to improve the accuracy of the %trn line as a
way of improving the accuracy of the .db POST database file.

When developing a new POST database, you will find that eventually you need to
repeatedly cycle through a standard sets of commands while making continual changes to
the input data. Here is a sample sequence that uses the defaults in POST and
POSTTRAIN:

mor *.cha +1
posttrain +c +o0errors.cut +x *.cha
post *.cha +1
trnfix *.cha

In these commands, the +1 must be used carefully, since it replaces the original. If a
program crashes or exits while running with +1, the original can be destroyed, so make a
backup of the whole directory first before running +1. TRNFIX can be used to spot
mismatches between the %trn and %mor lines.

The options for POSTTRAIN are:
+a train word frequencies even on utterances longer than length 3.
+b extended learning using Brill's rules
-b Brill's rules training only
+boF append output of Brill rule training to file F (default: send it to screen)
+bN parameter for Brill rules
 1- means normal Brill rules are produced (default)
 2- means only lexical rules are produced
 3- same as +b1, but eliminates rules redundant with binary rules
 4- same as +b2, but eliminates rules redundant with binary rules
+btN threshold for Brill rules (default=2). For example, if the value is 2, a rule should

CLAN Manual 170

correct 3 errors to be considered useful. To generate all possible rules, use a
threshold of 0.

+c create new POST database file with the name eng.db
+cF create new POST database file with the name F
-c add to an existing version of eng.db
-cF add to an existing POST database file with the name F
+eF the affixes and stems in file F are used for training. If this switch is not used,

then, by default, all affixes are used and no stems are used. So, if you want to
add stems for the training, but still keep all affixes, you will need to add all the
affixes explicitly to this list.

+mN load the disambiguation matrices into memory (about 700K)
N=0 no matrix training
N=2 training with matrix of size 2
N=3 training with matrix of size 3
N=4 training with matrix of size 4 (default)

+oF append errors output to file F (default: send it to screen)
+sN This switch has three forms

N=0 default log listing mismatches between the %trn and %mor line.
N=1 similar output in a format designed more for developers.
N=2 complete output of all date, including both matches and mismatches

+tS include tier code S
-tS exclude tier code S
 +/-t#Target_Child - select target child's tiers
 +/-t@id="*|Mother|*" - select mother's tiers
+x use syntactic category suffixes to deal with stem compounds

When using the default switch form of the error log, lines that begin with @ indicate that
the %trn and %mor had different numbers of elements. Lines that do not begin with @
represent simple disagreement between the %trn and the %mor line in some category
assignment. For example, if %mor has “pro:dem^pro:exist” and %trn has “co” three
times. Then +s0 would yield: 3 there co (3 {1} pro:dem (2} pro:exist).

By default, POSTTRAIN uses all the affixes in the language and none of the stems. If
you wish to change this behavior, you need to create a file with your grammatical names
for prefixes and suffixes or stem tags. For English, we call this traintags.cut. However,
for other languages you may want to use a different name with your +f switch. This file
is used by both POSTTRAIN and POST. However, you may wish to create one file for
use by POSTTRAIN and another for use by POST.

The English POST disambiguator currently achieves over 95% correct
disambiguation. We have not yet computed the levels of accuracy for the other
disambiguators. However, the levels may be a bit better for inflectional languages like
Spanish or Italian. In order to train the POST disambiguator, we first had to create a
hand-annotated training set for each language. We created this corpus through a process
of bootstrapping. Here is the sequence of basic steps in training.

CLAN Manual 171

1. First run MOR on a small corpus and used the escape-2 hand disambiguation
process to disambiguate.

2. Then rename the %mor line in the corpus to %trn.
3. Run MOR again to create a separate %mor line.
4. Run POSTTRAIN with this command: posttrain +ttraintags.cut +c +o0errors.cut

+x *.cha
5. This will create a new post.db database.
6. You then need to go through the 0errors.cut file line by line to eliminate each

mismatch between your %trn line and the codes of the %mor line. Mismatches
arise primarily from changes made to the MOR codes in between runs of MOR.

7. Before running POST, make sure that post.db is in the right place. The default
location is in the MOR library, next to ar.cut and cr.cut. However, if post.db is
not there, POST will look in the working directory. So, it is best to make sure it is
located in the MOR library to avoid confusion.

8. Disambiguate the MOR line with: post *.cha +1
9. Compare the results of POST with your hand disambiguation using: trnfix *.cha

In order to perform careful comparison using trnfix, you can set your *.trn.cex files
into CA font and run longtier *.cha +1. This will show clearly the differences between
the %trn and %mor lines. Sometimes the %trn will be at fault and sometimes %mor will
be at fault. You can only fix the %trn line. To fix the %mor results, you just have to
keep on compiling more training data by iterating the above process. As a rule of thumb,
you eventually want to have at least 5000 utterances in your training corpus. However, a
corpus with 1000 utterances will be useful initially.

During work in constructing the training corpus for POSTTRAIN, you will eventually
bump into some areas of English grammar where the distinction between parts of speech
is difficult to make without careful specification of detailed criteria. We can identify three
areas that are particularly problematic in terms of their subsequent effects on GR
(grammatical relation) identification:

1. Adverb vs. preposition vs. particle. The words “about”, “across”, “after”,
“away”, “back”, “down”, “in”, “off”, “on”, “out”, “over”, and “up” belong to
three categories: ADVerb, PREPosition and ParTicLe. To annotate them
correctly, we apply the following criteria. First, a preposition must have a
prepositional object. Second, a preposition forms a constituent with its noun
phrase object, and hence is more closely bound to its object than an adverb or a
particle. Third, prepositional phrases can be fronted, whereas the noun phrases
that happen to follow adverbs or particles cannot. Fourth, a manner adverb can be
placed between the verb and a preposition, but not between a verb and a particle.
To distinguish between an adverb and a particle, the meaning of the head verb is
considered. If the meaning of the verb and the target word, taken together, cannot
be predicted from the meanings of the verb and the target word separately, then
the target word is a particle. In all other cases it is an adverb.

2. Verb vs. auxiliary. Distinguishing between Verb and AUXiliary is especially
tricky for the verbs “be”, “do” and “have”. The following tests can be applied.
First, if the target word is accompanied by a nonfinite verb in the same clause, it

CLAN Manual 172

is an auxiliary, as in “I have had enough” or “I do not like eggs”. Another test that
works for these examples is fronting. In interrogative sentences, the auxiliary is
moved to the beginning of the clause, as in “Have I had enough?” and “Do I like
eggs?” whereas main verbs do not move. In verb-participle constructions headed
by the verb “be”, if the participle is in the progressive tense (“John is smiling”),
then the head verb is labeled as an AUXiliary, otherwise it is a Verb (“John is
happy”).

3. Communicator vs. Interjection vs. Locative adverbs. COmmunicators can be
hard to distinguish from interjections, and locative adverbs, especially at the
beginning of a sentence. Consider a sentence such as “There you are” where
“there” could be interpreted as either specifying a location or as providing an
attentional focus, much like French voilà. The convention we have adopted is
that CO must modify an entire sentence, so if a word appears by itself, it cannot
be a CO. For example, utterances that begin with “here” or “there” without a
following break are labelled as ADVerb. However, if these words appear at the
beginning of a sentence and are followed by a break or pause, then they are
labelled CO. Additionally, for lack of a better label, in here/there you are/go, here
or there are labelled CO. Interjections, such as “oh+my+goodness” are often
transcribed at the beginning of sentences as if they behaved like communicators.
However, they might better be considered as sentence fragments in their own
right.

10.13 POSTMOD

This tool enables you to modify the Brill rules of a database. There are these options:
+dF use POST database file F (default is eng.db).
+rF specify name of file (F) containing actions that modify rules.
+c force creation of Brill's rules.
+lm reduce memory use (but increase processing time).

CLAN Manual 173

11 GRASP – Syntactic Dependency Analysis

This chapter, written by Eric Davis, Shuly Wintner, Brian MacWhinney, Alon Lavie, and
Kenji Sagae, describes a system for coding syntactic dependencies in the English
CHILDES corpora. This system uses the GRASP program in CLAN to process the
information on the %mor line to automatically create a dependency analysis. Here we
describe first the annotation system and then the use of the program.

11.1 Grammatical Relations

GRASP describes grammatical relations in terms of dependencies. Following the
formalization of Mel’cuk (2006), dependencies involve both valency relations and
attachment relations. Attachment relations specify the relation between a head and a
dependent. Valency relations specify the relation between a predicate and one of its
several possible arguments. Valency relations open up slots for arguments. In English,
modifiers (adjectives, determiners, quantifiers) are predicates whose arguments are the
following nouns. In this type of dependency organization the argument becomes the
head. However, in other grammatical relations, the predicate or governor is the head and
the resultant phrase takes on its functions from the predicate. Examples of predicate-head
GRs include the attachment of thematic roles to verbs and the attachment of adjuncts to
their heads. In the notation we use for GRs, the relations between heads and dependents
are made explicit. However, valency or government relations are only coded implicitly.
Therefore, for each of the GRs listed, we will state which element serves as the head and
whether that element is also the predicate or governor.

The following is a comprehensive list of the grammatical relations in the CHILDES GR
annotation scheme. Example GRs as well as other relevant GR to that particular GR are
provided. In this annotation scheme, C refers to clausal and X refers to non- nite clausal.fi
This list is divided into relations in which the predicate becomes the head and relations in
which the argument becomes the head. In the examples, the dependent is marked in
italics.

Predicate-head relations. First, we list the relations in which the dependent attaches to
a governing head.

1. SUBJect identi es the subject of clause, when the subject itself is not a clause.fi
Typically, the head is the main verb and the dependent is a nominal. Ex: You eat
with your spoon.

2. ClausalSUBJect = CSUBJ identi es the nite clausal subject of another clause.fi fi
The head is the main verb, and the dependent is the main verb of the clausal
subject. Ex: That Eric cried moved Bush.

3. XSUBJect identifies the non- nite clausal non- nite subject of another clause.fi fi
The head is the main verb, and the dependent is the main verb of the clausal
subject. Ex: Eating vegetables is important.

4. OBJect identifies the rst object of a verb. The head is the main verb, and thefi
dependent is a nominal or a noun that is the head of a nominal phrase. A clausal

CLAN Manual 174

complement relation should be denoted by COMP or XCOMP (depending on
whether the clausal complement is nite or non- nite, see below), not OBJ orfi fi
OBJ2. Ex: You read the book.

5. OBJect2 = OBJ2 identifies the second object of a ditransitive verb, when not
introduced by a preposition. The head is a ditransitive verb, and the dependent is a
noun (or other nominal). The dependent must be the head of a required non-
clausal and nonprepositional complement of a verb (head of OBJ2) that is also the
head of an OBJ relation. A second complement that has a preposition as its head
should be denoted by IOBJ, not OBJ2. Ex: He gave you your telephone.

6. IndirectOBJect = IOBJ identifies an (required) object complement introduced by a
preposition. When a prepositional phrase appears as the required complement of a
verb, it is the dependent in an IOBJ relation, not a JCT (adjunct) relation. The
head is the main verb, and the dependent is a preposition (not the complement of
the preposition, see POBJ below). Ex: Mary gave a book to John.

7. LOCative identifies the relation between a verb and a required location. Locations
are required for verbs such as put or live. LOC takes the place of JCT in such
cases when the PP is required by the verb. This is especially relevant for here,
there, and back, which would otherwise be labeled JCT for other verbs. Ex: Put
the toys in the box.

8. COMPlement identifies a nite clausal complement of a verb. The head is thefi
main verb of the matrix clause, and the dependent is the main verb of the clausal
complement. Ex: I think that was Fraser.

9. XCOMPlement identifies a non- nite clausal complement of a verb. The head isfi
the main verb of the matrix clause, and the dependent is the main verb of the
clausal complement. The XCOMP relation is only used for non- nite clausalfi
complements, not predicate nominals or predicate adjectives (see PRED). Ex:
You’re going to stand on my toe. I told you to go. Eve, you stop throwing the
blocks.

10. PREDicate identifies a predicate nominal, predicate adjective, or a prepositional
complement of verbs such as be and become. The head is the verb. PRED should
not be confused with XCOMP, which identi es a non- nite complement of a verbfi fi
(some syntactic formalisms group PRED and XCOMP in a single category). Ex:
I’m not sure. He is a doctor. He is in Chicago.

11. ClausalPREDicate = CPRED identifies a nite clausal predicate that identifies thefi
status of the subject of verbs such as be and become. The head is the main verb of
the matrix clause, not its subject. The dependent is the verb of the predicate clause
Ex: This is how I drink my coffee.

12. XPREDicate identifies a non- nite clausal predicate of the subject of verbs suchfi
as be and become. The head is the main verb (of the matrix clause), not its
subject. Ex: My goal is to win the competition.

13. PrepositionalOBJect = POBJ is the relation between a preposition and its object.
The head is a preposition, and the dependent is typically a noun. The traditional
treatment of the prepositional phrase views the object of the preposition as the
head of the prepositional phrase. However, we are here treating the preposition as
the head, since the prepositional phrase then participates in a further JCT relation

CLAN Manual 175

to a head verb or a NJCT relation to a head noun. Ex: You want to sit on the
stool?

Argument-head relations: Relations in which dependents serve as governors include
relations of adjunction and modification.
1. adJunCT = JCT identifies an adjunct that modifies a verb, adjective, or adverb.

The adjunct is the governor, since it opens up a valency slot for something to
attach to. The head of JCT is the verb, adjective or adverb to which the JCT
attaches as a dependent. The dependent is typically an adverb, a preposition (in
the case of phrasal adjuncts headed by a preposition, such as a prepositional
phrase). Intransitive prepositions may be treated as adverbs, in which case the
JCT relation applies. Adjuncts are optional, and carry meaning on their own (and
do not change the basic meaning of their JCT heads). Verbs requiring a
complement describing location may be treated as prepositional objects, in which
case the IOBJ relation applies (see above). Ex: That’s much better. He ran with a
limp.

2. ClausaladJunCT = CJCT identifies a nite clause that adjoins to a verb, adjective,fi
or adverb head. The dependent is typically the main verb of a subordinate clause.
Ex: We can’t find it, because it is gone.

3. TAG is the relation between the finite verb of a tag question and the root verb of
the main clause. Ex: You know how to count, don’t you?

4. XadJunCT = XJCT identifies a non- nite clause that adjoins to a verb, adjective,fi
or adverb. The dependent is typically the main verb of a non- nite subordinatefi
clause. Ex: She’s outside sleeping in the carriage.

5. Nominal adJunCT = NJCT identifies the head of a complex NP with a
prepositional phrase attached as an adjunct of a noun. Ex: The man with an
umbrella arrived late.

6. MODi er identifies a non-clausal nominal modi er or complement. The head is afi fi
noun, and the dependent is typically an adjective, noun or preposition. Ex: Would
you like grape juice? That’s a nice box.

7. ClausalMODi er = CMOD identifies a nite clause that is a nominal modi erfi fi fi
(such as a relative clause) or complement. The head is a noun, and the dependent
is typically a nite verb. Ex: Here are the grapes I fi found.

8. XMODi er identifies a non- nite clause that is a nominal modi er (such as afi fi fi
relative clause) or complement. The head is a noun, and the dependent is typically
a non- nite verb. Ex: It’s time to fi take a nap.

9. DETerminer identifies a determiner of a noun. Determiners include the, a, as well
as (adjectival) possessives pronouns (my, your, etc) and demonstratives (this,
those, etc), but not quanti ers (fi all, some, any, etc; see QUANT below). Typically,
the head is a noun and the dependent/governor is a determiner. In cases where a
word that is usually a determiner does not have a head, there is no DET relation.
Ex: I want that cookie.

10. QUANTi er identifies a nominal quanti er, such as three, many, and some.fi fi
Typically, the head is a noun, and the dependent is a quanti er. In cases where afi
quanti er has no head, there is no QUANT relation. In English, the MOD, DET,fi

CLAN Manual 176

and QUANT relations have largely the same syntax. However, within the noun
phrase, we occasionally see that they are ordered as QUANT+DET+MOD+N. Ex:
I’ll take three bananas.

11. PostQuantifier = PQ is the relation between a postquantifier and the preceding
head nominal. Ex: We both arrived late.

12. AUXiliary identifies an auxiliary of a verb, or a modal. The head is a verb, and
the dependent is an auxiliary (such as be or have) or a modal (such as can or
should). Ex: Can you do it?

13. NEGation identifies verbal negation. When the word not (contracted or not)
follows an auxiliary or modal (or sometimes a verb), it is the dependent in a NEG
relation (not JCT), where the auxiliary, modal or verb (in the absence of an
auxiliary or modal) is the head. Ex: Mommy will not read it.

14. INFinitive identifies an in nitival particle (to). The head is a verb, and thefi
dependent is always to. Ex: He’s going to drink the coffee.

15. SeRLial identifies serial verbs such as go play and come see. In English, such
verb sequences start with either come or go. The initial verb is the dependent, and
the verb next to the inital verb, e.g., play and see in the previous example, is the
head (the adjacent verb is typically the root of the sentence). Ex: Come see if we
can find it. Go play with your toys over there.

16. ComPlementiZeR = CPZR identifies the relation between a complementizer (that,
which) or a subordinate conjunction and the verb to which it attaches. After this
attachment, the verbal head acts as the dependent in a CJCT relation involving the
embedded clause and its matrix clause (the verb is higher in the dependency tree
than the complementizer). Ex: Wait until the noodles are cool.

Root linkage. There is also a set of relations in which the dependent is a sentential
modifier. These could be viewed as depending on either the root or the left wall.
Somewhat arbitrarily, we code them as linking to the root.

1. COMmunicator identifies a communicator (such as hey, okay, etc). Because
communicators are typically global in a given sentence, the head of COM is
typically the root. The dependent is a communicator. COM items often appear
either at the very beginning or very end of a clause or sentence. Ex: Yes, you got
a fly. You need more paper, right?

2. VOCative identifies a vocative. As with COM, the head is the root of the
sentence. The dependent is a vocative. Ex: Some more cookies, Eve?

3. TOPicalization identifies an object or a predicate nominal that has been
topicalized. The head is the ROOT of the sentence, and the dependent is the
topicalized item. Ex: Tapioca, there is no tapioca. In other languages, topics may
appear without repetition, as in Tapioca, there is no.

4. INCROOT identifies a word that serves as the root of an utterance, because the
usual root forms (verbs in English) are missing. This form could be a single word
by itself (adverb, communicator, noun, adjective) or a word with additional
modifiers, such as the noun dog in the big dog, when it occurs by itself without a
verb. It may appear that there could be more than one of these in an utterance, as
in well, sure. However, in this case, well should be marked as a CO that is

CLAN Manual 177

dependent on sure.

Cosmetic relations. There are several relations that are just used to keep other relations
straight:

1. PUNCTuation is the relation between the final punctuation mark and the root.
2. RightDislocationPunctuation = RDP is the relation between the marker of right

dislocation or topicalization and the root. This is just a notational convention.
3. VocativePunctuation = VOCP is the relation between the mark of the vocative

and the root.
4. ROOT This is the relation between the topmost word in a sentence (the root of the

dependency tree) and the LeftWall. The topmost word in a sentence is the word
that is the head of one or more relations, but is not the dependent in any relation
with other words (except for the LeftWall).

Series relations. Some additional relations involve processes of listing, coordination,
and classification. In these, the final element is the head and the initial elements all
depend on the final head. In English, this extends the idea that the last element in a
compound is the head.

1. NAME identifies a string of proper names such as Eric Davis and New York
Central Library. The initial name is the dependent, and the adjacent name is the
head. The adjacent name is the dependent of the ROOT. Ex: My name is Tom
Jones.

2. DATE identifies a date with month and year, month and day, or month, day, and
year. Examples include: October 7, 1980 and July 26. For consistency, we regard
the final element in these various forms as the head. Ex: October seventh nineteen
ninety.

3. ENUMeration involves a relation between elements in a series without any
coordination based on a conjunction (and, but, or). The series can contain letters,
numbers, and nominals. The head is the last item in the series, and all the other
items in the enumeration depend on this last word. Ex: one, two, three, four.

4. CONJ involves a relation between a coordinating conjunction and one or more
preceding items. For example, in the phrase I walk, jump, and run, the items walk
and jump are both dependents and the item and is the governing head. The
resultant phrase walk, jump and is then further linked by the COORD relation to
the final element ran. Ex: I walk, jump, and run.

5. COORD involves an attachment of a conjoined phrase such as walk and with a
final coordinated element, which then serves as the head of the entire conjoined
phrase. (In the current training corpus, there is a single COORD relation with the
conjunction as the head. However, that analysis is incorrect and will be changed
soon.) Ex: Tom, Bill, and Frank arrived on the late train.

Bivalency. The above GRs describe dependencies in terms of the direction of the major
valency relations. However, many of these relations have a secondary bivalent nature.

CLAN Manual 178

For example, in the relations of thematic roles with the verb, it is also true that nominals
are “looking for” roles in predications. Within the noun phrase, common nouns are
looking for completion with either articles or plurality. Also, the attachment of
auxiliaries to non-finite verbs serves to complete their finite marking. We can think of
these additional valency relations as secondary relations. In all of these cases, valency
works within the overall framework of dependency. Because GRASP relations are
unidirectional, bivalency cannot be represented in GRASP.

11.2 Ellision Relations

In addition to the basic GRs, there is this additional set of GRs used for marking elided
elements.

1. AUX-ROOT identifies an auxiliary of a verb, or a modal with an elided main
verb. Typically, the AUX-ROOT is the head of the entire utterance. Ex: Yes, I can
xxx.

2. AUX-COMP identifies an auxiliary of a verb, or a modal with an elided
complement. The head is a verb, and the dependent is an auxiliary (such as be or
have) or a modal (such as can or should). Ex: I wish you would xxx.

3. AUX-COORD identifies an auxiliary of a verb, or a modal with an elided
coordinated item. The head is the coordinator or verb, and the dependent is an
auxiliary (such as be or have) or a modal (such as can or should). Ex: xxx and he
will.

4. DET-OBJ identifies a determiner of a noun with an elided object. Determiners
include the, a, as well as (adjectival) possessives pronouns (my, your, etc).
Typically, the DET-OBJ depends on a verb. This GR mainly results from an
interruption by another speaker (where +... indicates a trailing off). Ex: have a +
…

5. DET-POBJ identifies a determiner of a noun with an elided prepositional object.
Determiners include the, a, as well as (adjectival) possessives pronouns (my,
your, etc). The DET-POBJ depends on a preposition or adverb. This GR mainly
results from an interruption by another speaker. Ex: climb up the +…

6. DET-COORD identifies a determiner of a noun with an elided coordinated object.
Determiners include the, a, as well as (adjectival) possessives pronouns (my, your,
etc). Typically, the DET-COORD depends on a coordinator, but it can also
depend on a verb. This GR mainly results from an interruption by another
speaker. Ex: and a +…

7. DET-JCT identifies a determiner of a noun with an elided adjunct. Determiners
include the, a, as well as (adjectival) possessives pronouns (my, your, etc). The
DET-JCT depends on a verb (usually the main verb). Ex: Eve sit down another +
…

8. INF-XCOMP identifies an in nitival particle (to) with an elided verbalfi
complement. The head is a verb, and the dependent is always to. Ex: Yes, I want
to, too.

9. INF-XMOD identifies an in nitival particle (to) with an elided verbal modi er.fi fi
The head is usually a nominal, and the dependent is always to. Ex: time to +…

CLAN Manual 179

10. QUANT-OBJ identifies a nominal quanti er, such as fi three, many, and some with
an elided object. Typically, the head is the elided noun, and the QUANT-OBJ
depends on the main verb. Ex: You’ve just had some xxx.

11. QUANT-POBJ identifies a nominal quanti er, such as fi three, many, and some
with an elided prepositional object. Typically, the head is the elided prepositional
object, and the QUANT-POBJ depends on the preposition. Ex: There’s not room
for both xxx.

12. QUANT-PRED identifies a nominal quanti er, such as three, many, and somefi
with an elided predicate. Typically, the head is the elided predicate, and the
QUANT-PRED depends on the main verb. Ex: That’s too much.

13. QUANT-COORD identifies a nominal quanti er, such as fi three, many, and some
with an elided coordinated object (usually nominal). Typically, the head is the
coordinated item, and the QUANT-COORD depends on the coordinator. Ex: You
had more and more cookies.

11.3 GRs for Chinese

The GRs needed for Chinese are not too very different from those needed for English.
The major differences involve these areas:

1. Chinese uses all the basic GRs that are also found in English with these
exceptions: TAG, DET, and INF.

2. Also, Chinese does not have a finite, non-finite distinction on verbs. Somewhat
arbitrarily, this makes the “X” relations of English irrelevant and only CSUBJ,
COMP, CMOD, CPRED, and CJCT are needed. Also, the main verb is the head
of the clause, not the auxiliary.

3. Chinese makes extensive use of topics and sentence final particles. In the TOP
relation, the head/root can be a nominal or adjective, as well as a verb.

4. Chinese has a variety of verb-verb constructions, beyond simple serial verbs.
For Chinese, the head of SRL is the first verb, not the second.

5. The Chinese possessive construction has the head in final position.
Also, Chinese can use classifier phrases such as yi1 bian4 as JCT

6. Chinese often combines clauses without using any conjunction to mark
subordination or coordination. In this case, it is best to transcribe the two
clauses as separate sentences. To mark the missing subordination relation, just
add this postcode to the end of the first sentence: [+ sub]. This mark does not
necessarily imply which clause is subordinate; it just notes that the two clauses
are related, although the relation is not marked with a conjunction.

7. The CJCT relation can also extend to mei2 you3 because they are both words
neg|mei2=not v|you3=have v|jiang3=speak v:resc|wan2=finish .
1|2|NEG 2|3|CJCT 3|0|ROOT 4|3|VR 5|3|PUNCT

8. The CJCT relation is also used in the many cases where there are no
subordinating conjunctions, as in this example:

n|qing1wa1 adv|yi1 v|kan4 adv|jiu4 neg|mei2 sfp|le
 1|3|SUBJ 2|3|JCT 3|5|CJCT 4|5|JCT 5|0|INCROOT 6|5|SFP

9. Clefts can be coded using the CPRED relations as in this example:
 co|lai2 n:relat|jie3&DIM adv|jiu4 v:cop|shi4 adv|zhe4yang4 v|jiang3 sfp|de

CLAN Manual 180

 1|4|COM 2|4|SUBJ 3|4|JCT 4|0|ROOT 5|6|JCT 6|4|CPRED 7|4|SFP 8|4|PUNCT
10. The JCT relation for Chinese extends also to the complements of directional

verbs, as in this example:
v|pao3=run v:dirc|jin4=enter n|ping2=bottle post|li3=inside

 1|0|ROOT 2|1|VD 3|4|POSTO 4|1|JCT
Note that the JCT is attached to the second of the two serial verbs

The additional relations needed for Chinese are:
1. POSSession = POSS is the relation that holds between the linker “de” and the

preceding possessor noun or pronoun which then functions as the head for
further attachment to the thing possessed through the MOD relation.

2. Chinese has no articles and uses classifiers (CLASS) to mark quantification.
3. VR is the relation between the initial verb as head and the following resultative

verb as dependent.
4. VD is the relations between the initial verb in a serial verb construction as head

and the following directional verb as dependent.
5. SFP is a relation between the sentence final particle and the root.
6. PTOP is a postposed topic, as in this example:
 pro|zhe4=this class|ge4 v:cop|shi4=is pro:wh|shen2me=what pro|zhe4=this class|ge4

 1|2|DET 2|3|SUBJ 3|0|ROOT 4|3|OBJ 5|6|DET 6|3|SUBJ
7. PostpositionalObject = POSTO is the relation between a postposition, which is

the head and the dependent noun. This relation is marked on the noun, as in this
example:
ta pao dao jiaoshu limian qu 1|2|SUBJ 2|0|ROOT 3|2|JCT 4|5|POSTO 5|3|JCT 6|
2|SRL

8. PrepositionalObject = PREPO is the relation between a preposition, which is the
head and the following dependent noun, as in this example, where the relation is
coded on the noun:
ta shi cong Beijing lai de 1|2|SUBJ 2|0|ROOT 3|5|JCT 4|3|PREPO 5|2|CJCT 6|
5|CPZR
This relation can also hold between a preposition and a postposition, as in this
example:

v|yang3=maintain prep|zai4=at pro:wh|shen2me=what post|li3mian4=inside ?
 1|0|ROOT 2|1|JCT 3|4|POSTO 4|2|PREPO 5|1|PUNCT

11.1 GRs for Japanese

The GRs needed for Japanes are more differentiated than those needed for English. The
major differences involve these areas:

1. Japanese is left-branched with the head following the modifier, adjunct or
complement.

2. Japanese uses mostly optional case particles to identify case relations. This
makes a range of argument relations necessary (besides SUBJ and OBJ, ORIG,
DIREC, INSTR, SYM, and LOC are used). The particles themselves are coded

CLAN Manual 181

as CASP. The noun is coded as the head of the case particle.
Ken ga Tookyoo kara kita
Ken SUBJ Tokyo ORIG come-PAST “Ken came from Tokyo”
1|5|SUBJ 2|1|CASP 3|5|ORIG 4|3|CASP 5|0|ROOT

3. The root can be a tense-bearing element like a verb, a verbal adjective (ROOT),
a copula (COPROOT) or a noun (PREDROOT).

4. The root can be also a quotative marker (QUOTROOT), a conjunctive particle
(CPZRROOT) or a topic (TOPROOT). Note that these different types of roots
are fully grammatical and not elliptic fragments.
iku kara. go-PRES because “because (I) will go” 1|2|COMP 2|0|CPZRROOT

5. Japanese expresses topic relations (TOP); the topic particle is coded as PTL.
6. Like Chinese, Japanese has no articles and uses classifiers and counters to mark

quantification.
sankurambo sanko tabeta. 3-pieces eat-PAST “he ate 3 cherries”
1|3| OBJ 2|1|QUANT 3|0|ROOT

7. Japanese makes extensive use of focus particles (FOC), sentence final particles
(SFP) and sentence modifiers (SMDR).

Root ROOT verbal ROOT; relation between verb and left wall: v,
adj, subsidiary verb (tense bearing element)
taberu.
1|0|ROOT

　 COPROOT COPula ROOT; copula with noun, adjectival noun, or
sentence nominalizer (no da)
koko da.
1|2|PRED 2|0|COPROOT

　 PREDROOT nominal ROOT (without copula); includes adv, co,
and quant in root position.
koko.
1|0|PREDROOT

　 CPREDROOT nominal ROOT with a sentence nominalizer in root
position (ptl:snr|no)
uma no chiisai no.
1|3|MOD 2|1|CASP 3|4|CMOD
4|0|CPREDROOT

Topic TOP TOPicalization, (for convenience the root of the
sentence is considered to be the head)
kore wa yomenai.
1|3|TOP 2|1|TOPP 3|0|ROOT

　 CTOP finite Clausal TOPic (head of the clause is ptl:snr|no)
iku no wa ii kedo [...]
1|2|CMOD 2|4|CTOP 3|2|TOPP
4|5|COMP 5|6|CPZR

　 FOC FOCus (followed by ptl:foc; mo, shika, bakari, hodo
etc.)
kore mo yonda.
1|3|FOC 2|1|FOCP 3|0|ROOT

Arguments SUBJ nonclausal SUBject

CLAN Manual 182

Jon ga tabeta.
1|3|SUBJ 2|1|CASP 3|0|ROOT

　 CSUBJ finite Clausal SUBJect (head of the clause is ptl:snr)
taberu no ga ii.
1|2|CMOD 2|3|CSUBJ 3|0|ROOT

　 OBJ accusative OBJect
hon o yonda.
1|3|OBJ 2|1|CASP 3|0|ROOT

　 COBJ finite Clausal accusative OBJect
taberu no o yameta.
1|2|CMOD 2|4|COBJ 3|2|CASP

　 ORIG ORIGinalis (incl. temporalis & passive agent)
gakkoo kara kaetta.
1|3|ORIG 2|1|CASP 3|0|ROOT

　 DIREC DIRECtionalis (incl. temporalis, motive, benefactive)
gakkoo ni iku.
1|3|DIREC 2|1|CASP 3|0|ROOT

　 INSTR INSTRumentalis (tool; material)
fooku de taberu.
1|3|INSTR 2|1|CASP 3|0|ROOT

　 CINSTR finite Clausal INSTRumentalis
ochita no de taberu.
1|2|CMOD 2|3|CINSTR 3|2|CASP 4|0|ROOT

　 SYM SYMmetry
Papa to asonda.
1|3|SYM 2|1|CASP 3|0|ROOT

　 CSYM finite Clausal SYMmetry
moratta no to asobu.
1|2|CMOD 2|4|CSYM 3|2|CASP 4|0|ROOT

　 LOC LOCative
uchi de tabeta.
1|3|LOC 2|1|CASP 3|0|ROOT

Clause
conjunction

CPZR ComPlementiZeR (subordinating conjunctive
particle; ptl:conj|)
osoi kara kaeru.
1|2|COMP 2|3|CPZR 3|0|ROOT

　 ZCPZR Zero-ComPlementiZeR (sentence introducing
conjunction); head is always the root
dakara kaeru.
1|2|ZCPZR 2|0|ROOT

　 COMP finite clausal verb COMPlement (before ptl:conj| and
quot|to)
osoi kara kaeru.　
1|2|COMP 2|3|CPZR 3|0|ROOT

　 QUOT QUOTative after nominal or verbal phrase
Juria to iimasu.
13COMP 21QUOT 30ROOT

CLAN Manual 183

　 ZQUOT Zero-QUOTative (sentence introducing quotative
marker)
tte iu ka […]
1|2|ZQUOT 2|3|COMP 3|4|CPZR

Nominal
head

MOD nonclausal MODifier (of a nominal)
Papa no kutsu ga atta.
1|3|MOD 2|1|CASP 3|5|SUBJ 4|3|CASP 5|0|ROOT

　 MOD-SUBJ modifier in subject position with head-noun elided
Papa no ga atta.
1|4|MOD-SUBJ 2|1|CASP 3|4|CASP 4|0|ROOT

　 MOD-OBJ modifier in object position with head-noun elided
Papa no o mita.
1|3|MOD-OBJ 2|1|CASP 3|4|CASP 4|0|ROOT

　 MOD-INSTR modifier in instrumentalis position with head-noun
elided
Papa no de asonda.
1|3|MOD-INSTR 2|1|CASP 3|4|CASP 4|0|ROOT

　 MOD-PRED modifier in predicate position with head-noun elided
kore wa Papa no da.
1|5|TOP 2|1|TOPP 3|5|MOD-PRED 4|3|CASP 5|0|COPROOT

　 MOD-TOP modifier in topic position with head-noun elided
Papa no wa agenai.
1|4|MOD-TOP 2|1|CASP 3|2|TOPP 4|0|ROOT

　 CMOD finite Clausal MODifier of a nominal; the dependent
is a finite verb, adjective or adj noun with copula
akai kuruma o mita.
1|2|CMOD 2|4|OBJ 3|2|CASP 4|0|ROOT

　 XMOD nonfinite clausal MODifier of a nominal (adn|)
kore to onaji mono ga […]
1|3|SYM 2|1|CASP 3|4|XMOD 4|6|SUBJ 5|4|CASP

　 COORD COORDination, second noun is the head; (ptl:coo|)
inu to neko o katte iru.
1|3|COORD 2|1|COOP 3|5|OBJ 4|3|CASP 5|6|XJCT 6|0|ROOT

Verbal head JCT adverbial adJunCT to a verbal head; (adv|)
yukkuri shabetta.
1|2|JCT 2|0|ROOT

　 XJCT nonfinite clause as adJunCT (tabe-reba, -tara, -te,
-cha, -tari; oishi-ku; shizuka ni)
tsunagereba ii.
1|2|XJCT 2|0|ROOT

NP PRED nominal PREDicate before copula or QUOT
tabeta hito da.
1|2|CMOD 2|3|PRED 3|0|COPROOT

　 CPRED finite Clausal PREDicate before copula (no da)
taberu no da.
1|2|CMOD 2|3|CPRED 3|0|COPROOT

　 CASP CASe Particles (ptl:case; ga, o, kara, ni, de, to, no)
hon o yonda.
1|3|OBJ 2|1|CASP 3|0|ROOT

　 TOPP TOPic Particle (ptl:top)
kore wa yomenai.

CLAN Manual 184

1|3|TOP 2|1|TOPP 3|0|ROOT

　 FOCP FOCus Particle (ptl:foc; mo, shika, bakari, hodo etc.)
kore mo yonda.
1|3|OBJ 2|1|FOCP 3|0|ROOT

　 COOP COOrdination Particles
inu to neko o […]
1|3|COORD 2|1|COOP 3|5|OBJ 4|3|CASP

　 QUANT QUANTifier (incl. classifiers and counters)
banana sambon tabeta.
1|3|OBJ 2|1|QUANT 3|0|ROOT

　 ENUM ENUMeration, without coordinating particle
ichi ni sanko da.
1|2|ENUM 2|3|ENUM 3|4|JCT 4|0|ROOT

　 NAME string of proper NAMEs, second name is the head
Kameda Taishoo ga kita.
1|2|NAME 2|4|SUBJ 3|2|CASP 4|0|ROOT

　 DATE string of DATEs, last element (day) is the head
rokugatsu gonichi ni kita.
1|2|DATE 2|4|LOC 3|2|CASP 4|0|ROOT

Others SMDR sentence final Sentence MoDifieR (smod| mitai, jan,
rashii etc); for convenience, the tense bearing verb is
considered to be the head
kaetta mitai.
1|0|ROOT 2|1|SMDR

　 SFP Sentence Final Particle (including the use after
arguments)
kuru ne.
1|0|ROOT 2|1|SFP

　 COM COMmunicator; (co:i| co:g|) including isolated final
particles, sentence modalizers and onomatopoeias;
head is always set to 0
anoo tabeta.
1|0|COM 2|0|ROOT

　 VOC VOCative ; head is always set to 0
Taishoo ‡ aka.
1|0|VOC 2|3|VOCP 3|0|PREDROOT

Punctuation PUNCT sentence boundary (sentence ends; .!? etc.); the root is
the head
iku .
1|0|ROOT 2|1|PUNCT

　 RDP Right Dislocation boundary (tag|„); dislocation
follows; the root is the head
mita „ fuusen ?
1|0|ROOT 2|1|RDP 3|1|SUBJ 4|1|PUNCT

　 VOCP VOCative marker (tag|‡); head is the preceding
vocative
Taishoo ‡ mite !
1|0|VOC 2|3|VOCP 3|0|ROOT 4|3|PUNCT

CLAN Manual 185

11.2 MEGRASP

The MEGRASP program uses a training corpus that is distributed in the English MOR
grammar to train a statistical parser. This corpus contains a hand-annotated %grt tier to
control training. The output of the parser is the megrasp.mod file that is then used to
create a new %xgra coding tier for the English CHILDES corpora. The program uses
these options:

-e : evaluate accuracy (input file must contain gold standard GRs)
-t : training mode (parser runs in parse mode by default)
-iN: number of iterations for training ME model (default: 300)
-cN: inequality parameter for training ME model (default: 0.5).
+fS: send output to file (program will derive filename)
+re: run program recursively on all sub-directories.

CLAN Manual 186

12 Utility Commands

The various utility commands are used primarily for fixing and reformatting older files to
bring them into accord with the current CHAT format or for reformatting data for use
with other programs.

Command Page Function
CHAT2CA 186 Convert CA/CHAT to purer CA for display only
CHAT2ELAN 187 Convert CHAT to ELAN format
CHAT2XMAR 187 Convert CHAT to EXMARaLDA format
CHSTRING 187 Changes words and characters in CHAT files.
COMPOUND 189 Converts word pairs to compounds
COMBTIER 190 Combines extra commentary lines.
CP2UTF 190 Converts ASCII files to Unicode files.
DATACLEAN 190 Updates the format of older CHAT files.
DATES 190 Uses the date and birthdate of the child to compute age.
DELIM 191 Inserts periods when final delimiters are missing.
ELAN2CHAT 191 Converts ELAN files to CHAT
FIXBULLETS 191 Repairs bullets and reformats old style bullets
FIXIT 192 Breaks up tiers with multiple utterances.
FIXMP3S 192 Fixes bullets to MP3 media in older CHAT files
FLO 192 Reformats the file in simplified form.
INDENT 192 Aligns the overlap marks in CA files.
INSERT 192 Inserts @ID fields.
LIPP2CHAT 192 Converts LIPP files to CHAT
LONGTIER 193 Removes carriage returns to make long lines.
LOWCASE 193 Converts uppercase to lowercase throughout a file.
OLAC 194 Creates XML index files for the OLAC database
ORT 194 Converts Chinese characters.
PRAAT2CHAT 195 Converts PRAAT files to CHAT
QUOTES 195 Moves quoted material to its own tier.
REPEAT 195 Inserts postcodes to mark repeated utterances.
RETRACE 195 Inserts retrace markers.
SALTIN 195 Converts SALT files to CHAT format.
SILENCE 196 Converts utterances with LASTNAME to silence
TEXTIN 196 Converts straight text to CHAT format.
TIERORDER 196 Rearranges dependent tiers into a consistent order.
TRNFIX 196 Compares the %trn and %mor lines.
UNIQ 196 Sorts lexicon files and removes duplicates.

12.1 CHAT2CA

The CHAT2CA program will convert a CHAT file to a format that is closer to standard

CLAN Manual 187

CA (Conversation Analysis) format. This is a one-way conversion, since we cannot
convert back to CHAT from CA. Therefore, this conversion should only be done when
you have finished creating your file in CHAT or when you want to show you work in
more standard CA format. The conversion changes some of the non-standard symbols to
their standard equivalent. For example the #3_2 form of marking pauses is changed to
the (3.2) form and speedup and slowdown are marked by inward and outward pointing
arrows.

12.2 CHAT2ELAN

This program converts a CHAT file to the ELAN format for gestural analysis. For
conversion in the opposite direction, use ELAN2CHAT. You can download the ELAN
program from http://www.mpi.nl/tools/elan.html.

12.3 CHAT2XMAR

This program converts a CHAT file to the EXMARaLDA format for Partitur analysis.
For conversion in the opposite direction, use XMAR2CHAT. You can download the
EXMARaLDA program from http://www1.uni-hamburg.de/exmaralda/.

12.4 CHSTRING

This program changes one string to another string in an ASCII text file. CHSTRING
is useful when you want to correct spelling, change subjects’ names to preserve
anonymity, update codes, or make other uniform changes to a transcript. This changing of
strings can also be done on a single file using a text editor. However CHSTRING is much
faster and allows you to make a whole series of uniform changes in a single pass over
many files.

By default, CHSTRING is word-oriented, as opposed to string-oriented. This means
that the program treats the as the single unique word the, rather than as the string of the
letters “t”, “h”, and “e”. If you want to search by strings, you need to add the +w option.
If you do, then searching for the with CHSTRING will result in retrieving words such as
other, bathe, and there. In string-oriented mode, adding spaces can help you to limit your
search. Knowing this will help you to specify the changes that need to be made on words.
Also, by default, CHSTRING works only on the text in the main line and not on the
dependent tiers or the headers.

When working with CHSTRING, it is useful to remember the functions of the various
metacharacters, as described in the metacharacters section. For example, the following
search string allows you to add a plus mark for compounding between “teddy” and “bear”
even when these are separated by a newline, since the underscore character matches any
one character including space and newline. You need two versions here, since the first
with only one space character works within the line and the second works when “teddy”
is at the end of the line followed by first a carriage return and then a tab:

+s"teddy_bear" "teddy+bear” +s"teddy__bear" "teddy+bear"

http://www.mpi.nl/tools/elan.html

CLAN Manual 188

Unique Options

+b Work only on material that is to the right of the colon which follows the tier ID.

+c Often, many changes need to be made in data. You can do this by using a text ed-
itor to create an ASCII text file containing a list of words to be changed and what
they should be changed to. This file should conform to this format:

"oldstring" "newstring"

The default name for the file listing the changes is changes.cut. If you don’t spec-
ify a file name at the +c option, the program searches for changes.cut. If you want
to another file, the name of that file name should follow the +c. For example, if
your file is called mywords.cut, then the option takes the form +cmywords.cut.

To test out the operation of CHSTRING with +c, try creating the following file
called changes.cut:

"the" "wonderful"
"eat" "quark"

Then try running this file on the sample.cha file with the command:
chstring +c sample.cha

Check over the results to see if they are correct. If you need to include the double
quotation symbol in your search string, use a pair of single quote marks around
the search and replacement strings in your include file. Also, note that you can in-
clude Unicode symbols in your search string.

+d This option turns off a number of CHSTRING clean-up actions. It turns off
deletion of blank lines, removal of blank spaces, removal of empty dependent
tiers, replacement of spaces after headers with a tab, and wrapping of long lines.
All it allows is the replacement of individual strings.

+l Work only on material that is to the left of the colon which follows the tier ID.
For example, if you want to add an “x’ to the %syn to make it %xsyn, you would
use this command:

chstring +s"%mor:" "%xmor:" +t% +l *.cha

+q CHAT requires that a three letter speaker code, such as *MOT:, be followed by a
tab. Often, this space is filled by three spaces instead. Although this is undetect-
able visually, the computer recognizes tabs and spaces as separate entities. The +q
option brings the file into conformance with CHAT by replacing the spaces with a
tab. It also reorganizes lines to wrap systematically at 80 characters.

+s Sometimes you need to change just one word, or string, in a file(s). These strings
can be put directly on the command line following the +s option. For example, if
you wanted to mark all usages of the word gumma in a file as child-based forms,
the option would look like this:

+s"gumma" "gumma@c"

+w Do string-oriented search and replacement, instead of word-oriented search and
replacement. CAUTION: Used incorrectly, the +w switch can lead to serious

CLAN Manual 189

losses of important data. Consider what happens when changing all occurrences
of “yes” to “yeah.” If you use this command with the +w switch included,

chstring +w +s"yes" "yeah" myfile.cha

every single occurrence of the sequence of letters y-e-s will be changed. This
includes words, such as “yesterday,” “eyes,” and “polyester,” which would
become “yeahterday,” “eyeah,” and “polyeahter,” respectively. However, if you
omit the +w switch, you will not have these problems. Alternatively, you can
surround the strings with spaces, as in this example:

chstring +w +s" yes " " yeah " myfile.cha

+x If you want to treat the asterisk (*), the underline (_), and the backslash (\) as the
literal characters, instead of metacharacters, you must add this switch.

CHSTRING can also be used to remove the bullets in CHAT files that link to media.
There are several steps in this procedure.

1. Open a file with bullets and expand bullets using escape-A.
2. Highlight one of the bullets, NOT the whole info inside the bullet.
3. Select the copy command to get an image of the bullet.
4. Move to the Commands window or open it with command-D.
5. In the Commands window type: chstring +s"
6. Then paste a bullet after the first quote. It will look like a blank space.
7. After this blank space, type an asterisk, then the bullet again, then

another quote, then a space, and two more quotes and then the file
name.

8. The resulting command should look like this with the bullet character
indicated with the underline: chstring +s"_*_" "" sample.cha

9. Finally, just run the command on one file or a groups of files, as in
*.cha.

In order to make this process easier, we have created a one-line file called bullets.cut
which is located in the CLAN/lib/fixes folder. To remove all bullets, you can put this file
into your working directory and type:

chstring +crem_bullets.cut t.cha

CHSTRING also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

12.5 COMPOUND

This program changes pairs of words to compounds, to guarantee more uniformity in
morphological and lexical analysis. It requires that the user create a file of potential com-
pound words in a format with each compound on a separate line, as in this example.

night+night

CLAN Manual 190

Chatty+baby
oh+boy

Whenever the program finds “night night” in the text, whether it be written as
“night+night”, “night night” or “night-night,” it will be changed to “night+night”.

12.6 COMBTIER

COMBTIER corrects a problem that typically arises when transcribers create several
%com lines. It combines two %com lines into one by removing the second header and
moving the material after it into the tier for the first %com.

12.7 CP2UTF

CP2UTF converts code page ASCII files and UTF-16 into UTF-8 Unicode files. If there
is an @Font tier in the file, the program uses this to guess the original encoding. If not, it
may be necessary to add the +o switch to specify the original language, as in +opcct for
Chinese traditional characters on the PC. If the file already has a @UTF8 header, the
program will not run. The +c switch uses the unicode.cut file in the Library directory to
effect translation of ASCII to Unicode for IPA symbols, depending on the nature of the
ASCII IPA being used. For example, the +c3 switch produces a translation from
IPAPhon. The +t@u switch forces the IPA translation to affect main line forms in the
text@u format.

12.8 DATACLEAN

DATACLEAN is used to rearrange and modify old style header tiers and line identifiers.
1. If @Languages tier is found, it is moved to the position right after @Begin.
2. If @Participants tier is found, it is moved to the position right after @Languages.
3. If the tier name has a space character after ':', then it is replaced with tab. If the

tier name doesn't have a following tab, then it is added. If there is any character
after the tab following a speaker name, such as another tab or space, then it is
removed.

4. Tabs in the middle of tiers are replaced with spaces.
5. If utterance delimiters, such as +..., are not separated from the previous word with

a space, then a space is inserted.
6. if [...] is not preceded or followed by space, then space is added.
7. Replaces #long with ###.
8. The string "..." is replaced with "+...".

12.9 DATES

The DATES program takes two time values and computes the third. It can take the
child’s age and the current date and compute the child’s date of birth. It can take the date
of birth and the current date to compute the child’s age. Or it can take the child’s age and
the date of birth to compute the current date. For example, if you type:

 dates +a 2;3.1 +b 12-jan-1962

CLAN Manual 191

you should get the following output:

@Age of Child: 2;3.1
@Birth of Child: 12-JAN-1962
@Date: 13-APR-1964

Unique Options

+a Following this switch, after an intervening space, you can provide the child’s age
in CHAT format.

+b Following this switch, after an intervening space, you can provide the child’s
birth date in day-month-year format.

+d Following this switch, after an intervening space, you can provide the current
date or the date of the file you are analyzing in day-month-year format.

DATES uses several options that are shared with other commands. For a complete list
of options for a command, type the name of the command followed by a carriage return
in the Commands window. Information regarding the additional options shared across
commands can be found in the chapter on Options.

12.10 DELIM

DELIM inserts a period at the end of every main line if it does not currently have one.

12.11 ELAN2CHAT

This program converts ELAN files (http://www.mpi.nl/tools) to CHAT files. Use
CHAT2ELAN for conversion in the opposite direction.

12.12 FIXBULLETS

This program is used to fix the format of the bullets that are used in CLAN to link a
CHAT file to audio or video. Without any additional switches, it fixes old format bullets
that contain the file name to new format bullets and inserts an @Media tier at the
beginning of the file. The various switches can be used to fix other problems. The +l
switch can be used to make the implicit declaration of second language source explicit.
The +o switch can be used to change the overall start time for a file.

+b merge multiple bullets per line into one bullet per tier
+oN time offset value N (+o+800 means add 800, +o-800 means subtract)
+fS send output to file (program will derive filename)
-f send output to the screen or pipe
+l add language tag to every word
+re run program recursively on all sub-directories.
+tS include tier code S

http://www.mpi.nl/tools

CLAN Manual 192

-tS exclude tier code S
+/-2 +2 do not create different versions of output file names / -2 create them

File names can be "*.cha" or a file of list of names "@:filename"

12.13 FIXIT

FIXIT is used to break up tiers with multiple utterances into standard format with one
utterance per main line.

12.14 FIXMP3S

This program fixes errors in the time alignments of sound bullets for MP3 files in
versions of CLAN before 2006.

12.15 FLO

The FLO program creates a simplified version of a main CHAT line. This simplified
version strips out markers of retracing, overlaps, errors, and all forms of main line
coding. The only unique option in FLO is +d, which replaces the main line, instead of
just adding a %flo tier.

FLO also uses several options that are shared with other commands. For a complete list
of options for a command, type the name of the command followed by a carriage return
in the Commands window. Information regarding the

12.16 INDENT

This program is used to realign the overlap marks in CA files. The files must be in a
fixed width font such as FixedSysExcelsior.

12.17 INSERT

Programs such as STATFREQ, MLU, and MLT can use the information
contained in the @ID header to control their operation. After creating the @Participants
line, you can run INSERT to automatically create @ID headers. After this is done, you
may need to insert additional information in these header tiers by hand.

12.18 LIPP2CHAT

In order to convert LIPP files to CHAT, you need to go through two steps. The first step
is to run this command:

cp2utf –c8 *.lip

This will change the LIPP characters to CLAN’s UTF8 format. Next you run this
command:

lipp2chat –len *.utf.cex

CLAN Manual 193

This will produce a set of *.utf.cha files which you can then rename to *.cha. The
obligatory +l switch requires you to specify the language of the transcripts. For example
“en” is for English and “fr” is for French.

12.19 LONGTIER

This program removes line wraps on continuation lines so that each main tier and each
dependent tier is on one long line. It is useful what cleaning up files, since it eliminates
having to think about string replacements across line breaks.

12.20 LOWCASE

This program is used to fix files that were no transcribed using CHAT capitalization
conventions. Most commonly, it is used with the +c switch to only convert the initial
word in the sentence to lowercase. To protect certain proper nouns in first position from
the conversion, you can create a file of proper noun exclusions.

12.21 MAKEMOD

This program uses the CMU Pronouncing Dictionary to insert phonological forms in
SAMPA notation. The dictionary is copyrighted by Carnegie Mellon University and can
be retrieved from http://www.speech.cs.cmu.edu/cgi-bin/cmudict/ Use of this dictionary,
for any research or commercial purpose, is completely unrestricted. For MAKEMOD, we
have created a reformatting of the CMU Pronouncing Dictionary that uses SAMPA. In
order to run MAKEMOD, you must first retrieve the large cmulex.cut file from the server
and put it in your library directory. Then you just run the program by typing

makemod +t* filename

By default, the program analyzes all speakers. However, you can control this using the +t
switch. Also, by default, it only inserts the first of the alternative pronunciations from the
CMU Dictionary. However, you can use the +a switch to force inclusion of all of them.
The beginning of the cmulex.cut file gives the acknowledgements for construction of the
file and the following set of

CMU Word full CMU SAMPA
AA odd AAD A
AE at AE T {
AH hut HH AH T @
AO ought AO T O
AW cow K AW aU
AY hide HH AY D aI
B be B IY b
CH cheese CH IY Z tS
D dee D IY d

DH thee DH IY D
EH Ed EH D E
ER hurt HH ER T 3

CLAN Manual 194

EY ate EY T eI
F fee F IY f
G green G R IY N g

HH he HH IY h
IH it IH T I
IY eat IY T i
JH gee JH IY dZ
K key K IY k
L lee L IY l
M me M IY m
N knee N IY n

NG ping P IH NG N
OW oat OW T o
OY toy T OY OI
P pee P IY p
R read R IY D r
S sea S IY s

SH she SH IY S
T tea T IY t

TH theta TH EY T AH T
UH hood HH UH D U
UW two T UW u
V vee V IY v
Y yield Y IY L D j
Z zee Z IY z

ZH seizure S IY ZH ER Z

The CMU Pronouncing Dictionary tone markings were converted to SAMPA in the
following way. L0 stress was unmarked. A double quote preceding the syllable marked
L1 stress and a percentage sign preceding the syllable being stressed marked L2 stress.

12.22 OLAC

This program goes through the various directories in CHILDES and TalkBank and
creates an XML database that can be used by the OLAC (Online Language Archives
Community) system to help researchers locate corpora relevant to their research interests.

12.23 ORT

ORT, if +c used, then this converts HKU style disambiguated pinyin with capital letters
to CMU style lowercase pinyin on the main line. Without the +c switch, it is used to
create a %ort line with Hanzi characters corresponding to the pinyin-style words found
on main line. The choice of characters to be inserted is determined by entries in the
lexicon files at the end of each word's line after the '%' character.

CLAN Manual 195

12.24 PRAAT2CHAT

This program converts files in the PRAAT format to files in CHAT format.

12.25 QUOTES

This program moves quoted material to its own separate tier.

12.26 REPEAT

REPEAT if two consecutive main tiers are identical then the postcode [+ rep] is inserted
at the end of the second tier.

12.27 RETRACE

RETRACE inserts [/] after repeated words as in this example:
*FAT: +^ the was the was xxx ice+cream .
%ret: +^ <the was> [/] the was xxx ice+cream .

If +c is used then the main tier is replaced with an %ret tier and no additional %ret tier is
not created.

12.28 RTFIN

This program is used to take data that was formatted in Word and convert it to CHAT.

12.29 SALTIN

This program takes SALT formatted files and converts them to the CHAT format.
SALT is a transcript format developed by Jon Miller and Robin Chapman at the
University of Wisconsin. By default, SALTIN sends its output to a file. Here is the most
common use of this program:

saltin file.cut

It may be useful to note a few details of the ways in which SALTIN operates on
SALT files:

1. When SALTIN encounters material in parentheses, it translates this material as
an unspecified retracing type, using the [/?] code.

2. Multiple comments are placed on separate lines on a single comment tier.
3. SALT codes in square brackets are converted to CHAT comments in square

brackets and left in the original place they occurred, unless the + symbol is added
to the SALT code. If it is present, the code is treated as a postcode and moved to
the end of the utterance when SALTIN runs. The CHSTRING program can be
used to insert + in the desired codes or in all codes, if required.

3. Times in minutes and seconds are converted to times in hours:minutes:seconds.
4. A %def tier is created for coding definitions.

Unique Options
+h Some researchers have used angle brackets in SALT to enter comments. When

the original contains text found between the < and the > characters this option

CLAN Manual 196

instructs SALTIN to place it between [% and]. Otherwise, material in angle
brackets would be coded as a text overlap.

+l Put all codes on a separate %cod line. If you do not select this option, codes will
be placed on the main line in the [$text] format.

SALTIN also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on Options.

12.30 SILENCE

This program looks for utterances with the string Lastname and converts the linked
segment of the related audio file to silence to preserve anonymity.

12.31 TEXTIN

The TEXTIN program is quite simple. It takes a set of sentences in paragraph form
and converts them to a CHAT file. Blank lines are considered to be possible paragraph
breaks and are noted with @Blank headers. To illustrate the operation of TEXTIN, here
are the results of running TEXTIN on the previous three sentences:

@Begin
@Participants: T Text
*T: the textin program is quite simple.
*T: it takes a set of sentences in paragraph form and

converts
them to a chat file.

*T: blank lines are considered to be possible paragraph
breaks and
are noted with @blank headers.

@End

There are no options that are unique to textin. However, it uses several options that
are shared with other commands. For a complete list of options for a command, type the
name of the command followed by a carriage return in the Commands window.
Information regarding the additional options shared across commands can be found in
the chapter on Options.

12.32 TIERORDER

TIERORDER puts the dependent tiers into a consistent alphabetical order.

12.33 TRNFIX

This program compares the %trn line with the %mor line and notes discrepancies. This is
useful in developing a training corpus for POSTTRAIN.

12.34 UNIQ

UNIQ is used to sort lexicon files into alphabetical order, while removing duplicates.

CLAN Manual 197

13 References
Aguado, G. (1988). Appraisal of the morpho-syntactic competence in a 2.5 month old

child. Infancia y Aprendizaje, 43, 73-95.
Blake, J., Quartaro, G., & Onorati, S. (1970). Evaluating quantitative measures of gram-

matical complexity in spontaneous speech samples. Journal of Child Language, 20,
139-152.

Bohannon, N., & Stanowicz, L. (1988). The issue of negative evidence: Adult responses
to children's language errors. Developmental Psychology, 24, 684-689.

Brainerd, B. (1982). The type–token relation in the works of S. Kierkegaard. In: R. W.
Bailey (ed.) Computing in the humanities (pp. 97-109). Amsterdam: North-Holland.

Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard.
Demetras, M., Post, K., & Snow, C. (1986). Feedback to first-language learners. Journal

of Child Language, 13, 275-292.
Hausser, R. (1990). Principles of computational morphology. Computational Linguistics,

47.
Hickey, T. (1991). Mean length of utterance and the acquisition of Irish. Journal of Child

Language, 18, 553-569.
Hirsh-Pasek, K., Trieman, R., & Schneiderman, M. (1984). Brown and Hanlon revisited:

Mother sensitivity to grammatical form. Journal of Child Language, 11, 81-88.
Hoff-Ginsberg, E. (1985). Some contributions of mothers' speech to their children's

syntactic growth. Journal of Child Language, 12, 367-385.
Klee, T., Schaffer, M., May, S., Membrino, S., & Mougey, K. (1989). A comparison of

the age-MLU relation in normal and specifically language-impaired preschool
children. Journal of Speech and Hearing Research, 54, 226-233.

Lee, L. (1974). Developmental Sentence Analysis. Evanston, IL: Northwestern University
Press.

Malakoff, M.E., Mayes, L. C., Schottenfeld, R., & Howell, S. (1999) Language
production in 24-month-old inner-city children of cocaine-and-other-drug-using
mothers. Journal of Applied Developmental Psychology, 20, 159-180..

Malvern, D. D., & Richards, B. J., (1997). A new measure of lexical diversity. In: A.
Ryan and A. Wray (Eds.) Evolving models of language. Clevedon: Multilingual
Matters.

Malvern, D. D., & Richards, B. J. (in press). Validation of a new measure of lexical
diversity. In B. v. d. Bogaerde & C. Rooijmans (Eds.), Proceedings of the 1997
Child Language Seminar, Garderen, Netherlands. Amsterdam: University of
Amsterdam.

Moerk, E. (1983). The mother of Eve as a first language teacher. Norwood, NJ: Ablex.
Nelson, K. E., Denninger, M. S., Bonvilian, J. D., Kaplan, B. J., & Baker, N. D. (1984).

Maternal input adjustments and non-adjustments as related to children’s linguistic
advances and to language acquisition theories. In A. D. Pellegrini & T. D. Yawkey
(Eds.), The development of oral and written language in social contexts. Norwood,
NJ: Ablex.

Nice, M. (1925). Length of sentences as a criterion of a child’s progress in speech.
Journal of Educational Psychology, 16, 370-379.

Pan, B. (1994). Basic measures of child language. In J. Sokolov & C. Snow (Eds.), Hand-

CLAN Manual 198

book of research in language acquisition using CHILDES (pp. 26-49). Hillsdale NJ:
Lawerence Erlbaum Associates.

Richards, B. J., & Malvern, D. D, (1997a). Quantifying lexical diversity in the study of
language development. Reading: University of Reading, The New Bulmershe
Papers.

Richards, B. J., & Malvern, D. D. (1997b). type–token and Type-Type measures of
vocabulary diversity and lexical style: an annotated bibliography. Reading: Faculty
of Education and Community Studies, The University of Reading. (Also available on
the World Wide Web at: http://www.rdg.ac.uk/~ehsrichb/home1.html)

Richards, B. J., & Malvern, D. D, (1998). A new research tool: mathematical modelling
in the measurement of vocabulary diversity (Award reference no. R000221995).
Final Report to the Economic and Social Research Council, Swindon, UK.

Rivero, M., Gràcia, M., & Fernández-Viader, P. (1998). Including non-verbal
communicative acts in the mean length of turn analysis using CHILDES. In A. Aksu
Koç, E. Taylan, A. Özsoy, & A. Küntay (Eds.), Perspectives on language
acquisition (pp. 355-367). Istanbul: Bogaziçi University Press.

Rondal, J., Ghiotto, M., Bredart, S., & Bachelet, J. (1987). Age-relation, reliability and
grammatical validity of measures of utterance length. Journal of Child Language,
14, 433-446.

Scarborough, H. S. (1990). Index of productive syntax. Applied Psycholinguistics, 11, 1-
22.

Scarborough, H. S., Rescorla, L., Tager-Flusberg, H., Fowler, A., & Sudhalter, V. (1991).
The relation of utterance length to grammatical complexity in normal and language-
disordered groups. Applied Psycholinguistics, 12, 23-45.

Sichel, H. S. (1986). Word frequency distributions and type–token characteristics. Mathe-
matical Scientist, 11, 45-72.

Snow, C. E. (1989). Imitativeness: a trait or a skill? In G. Speidel & K. Nelson (Eds.),
The many faces of imitation. New York: Reidel.

Sokolov, J. L., & MacWhinney, B. (1990). The CHIP framework: Automatic coding and
analysis of parent-child conversational interaction. Behavior Research Methods, In-
struments, and Computers, 22, 151-161.

Templin, M. (1957). Certain language skills in children. Minneapolis, MN: University of
Minnesota Press.

Wells, G. (1981). Learning through interaction: The study of language development.
Cambridge, Cambridge University Press.

	1 Getting Started
	1.1 Learning CLAN
	1.2 Installing CLAN

	2 Tutorial
	2.1 The Commands Window
	2.2 Typing Command Lines
	2.3 Sample Runs
	2.3.1 Sample FREQ Runs
	2.3.2 Sample MLU Run
	2.3.3 Sample COMBO Run
	2.3.4 Sample KWAL Run
	2.3.5 Sample GEM Run

	3 The Editor
	3.1 Text Mode vs. CHAT Mode
	3.2 File, Edit, and Font Menus
	3.3 Default Window Positioning and Font Control
	3.4 CA Styles
	3.5 Setting Special Colors
	3.6 Searching
	3.7 Keyboard Commands
	3.8 Exclude Tiers
	3.9 Send to Sound Analyzer.
	3.10 Tiers Menu
	3.11 Running CHECK Inside the Editor
	3.12 Preferences and Options

	4 Linkage
	4.1 Sonic Mode
	4.2 Transcriber Mode
	4.2.1 Linking to an already existing transcript
	4.2.2 To create a new transcript
	4.2.3 Sparse Annotation

	4.3 Video Linking
	4.4 SoundWalker
	4.5 Export to Partitur Editors
	4.6 Playback Control
	4.6.1 Forced Skipping

	5 Coder Mode
	5.1.1 Entering Codes
	5.1.2 Setting Up Your Codes File

	6 Exercises
	6.1 Contrasting Four Measures
	6.2 MLU50 Analysis
	6.3 MLU5 Analysis
	6.4 MLT Analysis
	6.5 TTR Analysis
	6.6 Generating Language Profiles
	6.7 Further Exercises

	7 Features
	7.1 Shell Commands
	7.2 Online Help
	7.3 Testing CLAN
	7.4 Bug Reports
	7.5 Feature Requests

	8 Analysis Commands
	8.1 CHAINS
	8.1.1 Sample Runs
	8.1.2 Unique Options

	8.2 CHECK
	8.2.1 How check Works
	8.2.2 CHECK in CA Mode
	8.2.3 Running check
	8.2.4 Restrictions on Word Forms
	8.2.5 Some Hints
	8.2.6 Unique Options

	8.3 CHIP
	8.3.1 The Tier Creation System
	8.3.2 The Coding System
	8.3.3 Word Class Analysis
	8.3.4 Summary Measures
	8.3.5 Unique Options

	8.4 COMBO
	8.4.1 Composing Search Strings
	8.4.2 Examples of Search Strings
	8.4.3 Referring to Files in Search Strings
	8.4.4 Cross-tier Combo
	8.4.5 Cluster Pairs in combo
	8.4.6 Searching for Clausemates
	8.4.7 Tracking Final Words
	8.4.8 Tracking Initial Words
	8.4.9 Adding Excluded Characters
	8.4.10 Limiting with combo
	8.4.11 Adding Codes with COMBO
	8.4.12 Unique Options

	8.5 COOCUR
	8.5.1 Unique Options

	8.6 DIST
	8.6.1 Unique Options

	8.7 DSS
	8.7.1 CHAT File Format Requirements
	8.7.2 Selection of a 50-sentence Corpus
	8.7.3 Automatic Calculation of DSS
	8.7.4 Interactive Calculation
	8.7.5 dss Output
	8.7.6 dss Summary
	8.7.7 DSS for Japanese
	8.7.8 How DSS works
	8.7.9 Unique Options

	8.8 FREQ
	8.8.1 What freq Ignores
	8.8.2 Studying Lexical Groups
	8.8.3 Building Concordances with FREQ
	8.8.4 Using Wildcards with freq
	8.8.5 FREQ on the %mor line
	8.8.6 Lemmatization
	8.8.7 Directing the Output of freq
	8.8.8 Limiting in freq
	8.8.9 TTR for Lemmas
	8.8.10 Studying Unique Words and Shared Words
	8.8.11 Unique Options

	8.9 FREQMERG
	8.10 FREQPOS
	8.10.1 Unique Options

	8.11 GEM
	8.11.1 Sample Runs
	8.11.2 Limiting With gem
	8.11.3 Unique Options

	8.12 GEMFREQ
	8.12.1 Unique Options

	8.13 GEMLIST
	8.14 KEYMAP
	8.14.1 Sample Runs
	8.14.2 Unique Options

	8.15 KWAL
	8.15.1 Tier Selection in kwal
	8.15.2 Unique Options

	8.16 MAXWD
	8.16.1 Unique Options

	8.17 MLT
	8.17.1 mlt Defaults
	8.17.2 Breaking Up Turns
	8.17.3 Sample Runs
	8.17.4 Unique Options

	8.18 MLU
	8.18.1 Including and Excluding in mlu and mlt
	8.18.2 Unique Options

	8.19 MODREP
	8.19.1 Exclusions and Inclusions
	8.19.2 Using a %mod Line
	8.19.3 modrep and combo -- Cross-tier combo
	8.19.4 Unique Options

	8.20 PHONFREQ
	8.20.1 Unique Options

	8.21 RELY
	8.21.1 Unique Options

	8.22 STATFREQ
	8.23 TIMEDUR
	8.24 VOCD
	8.24.1 Origin of the Measure
	8.24.2 Calculation of D
	8.24.3 Sample Size
	8.24.4 Preparation of Files
	8.24.5 The Output from VOCD
	8.24.6 Lemma-based Analysis
	8.24.7 Unique Options

	8.25 WDLEN

	9 Options
	9.1 +F Option
	9.2 +K Option
	9.3 +P Option
	9.4 +R Option
	9.5 +S Option
	9.6 +T Option
	9.7 +U Option
	9.8 +V Option
	9.9 +W Option
	9.10 +Y Option
	9.11 +Z Option
	9.12 Metacharacters for Searching

	10 MOR – Morphosyntactic Analysis
	10.1 Analysis by Transcript Scanning
	10.2 Analysis by Lexical Tracking
	10.3 Analysis by MOR, POST, and GRASP
	10.4 Configuring MOR
	10.4.1 Grammar and Lexicon Files
	10.4.2 Disambiguation Rules
	10.4.3 Unique Options
	10.4.4 mor Lexicons
	10.4.5 Lexicon Building
	10.4.6 A Formal Description of the Rule Files
	10.4.7 Interactive Mode
	10.4.8 Disambiguator Mode

	10.5 The Workings of MOR
	10.5.1 Compounds and Complex Forms
	10.5.2 Lemmatization
	10.5.3 Errors and Replacements
	10.5.4 Affixes and Control Features
	10.5.5 Building MOR Grammars

	10.6 Using MOR with a New Corpus
	10.7 MOR for Bilingual Corpora
	10.8 POST
	10.9 POSTLIST
	10.10 POSTMODRULES
	10.11 POSTMORTEM
	10.12 POSTTRAIN
	10.13 POSTMOD

	11 GRASP – Syntactic Dependency Analysis
	11.1 Grammatical Relations
	11.2 Ellision Relations
	11.3 GRs for Chinese
	11.1 GRs for Japanese
	11.2 MEGRASP

	12 Utility Commands
	12.1 CHAT2CA
	12.2 CHAT2ELAN
	12.3 CHAT2XMAR
	12.4 CHSTRING
	12.5 COMPOUND
	12.6 COMBTIER
	12.7 CP2UTF
	12.8 DATACLEAN
	12.9 DATES
	12.10 DELIM
	12.11 ELAN2CHAT
	12.12 FIXBULLETS
	12.13 FIXIT
	12.14 FIXMP3S
	12.15 FLO
	12.16 INDENT
	12.17 INSERT
	12.18 LIPP2CHAT
	12.19 LONGTIER
	12.20 LOWCASE
	12.21 MAKEMOD
	12.22 OLAC
	12.23 ORT
	12.24 PRAAT2CHAT
	12.25 QUOTES
	12.26 REPEAT
	12.27 RETRACE
	12.28 RTFIN
	12.29 SALTIN
	12.30 SILENCE
	12.31 TEXTIN
	12.32 TIERORDER
	12.33 TRNFIX
	12.34 UNIQ

	13 References

