
Approximating Bayesian inference with a sparse distributed memory system
Joshua T. Abbott (joshua.abbott@berkeley.edu)

Jessica B. Hamrick (jhamrick@berkeley.edu)
Thomas L. Griffiths (tom griffiths@berkeley.edu)

Department of Psychology, University of California, Berkeley, CA 94720 USA

Abstract

Probabilistic models of cognition have enjoyed recent success
in explaining how people make inductive inferences. Yet, the
difficult computations over structured representations that are
often required by these models seem incompatible with the
continuous and distributed nature of human minds. To recon-
cile this issue, and to understand the implications of constraints
on probabilistic models, we take the approach of formalizing
the mechanisms by which cognitive and neural processes could
approximate Bayesian inference. Specifically, we show that an
associative memory system using sparse, distributed represen-
tations can be reinterpreted as an importance sampler, a Monte
Carlo method of approximating Bayesian inference. This ca-
pacity is illustrated through two case studies: a simple letter
reconstruction task, and the classic problem of property induc-
tion. Broadly, our work demonstrates that probabilistic mod-
els can be implemented in a practical, distributed manner, and
helps bridge the gap between algorithmic- and computational-
level models of cognition.
Keywords: Bayesian inference, importance sampling, rational
process models, associative memory models, sparse distributed
memory

Introduction
Probabilistic models of cognition can be used to explain the
complex inductive inferences people make every day, such
as identifying the content of images or learning new con-
cepts from limited evidence (Griffiths, Chater, Kemp, Per-
fors, & Tenenbaum, 2010; Tenenbaum, Kemp, Griffiths, &
Goodman, 2011). However, these models are typically for-
mulated at what Marr (1982) called the computational level,
focusing on the abstract problems people have to solve and
their ideal solutions. As a result, they explain why people
behave the way they do, rather than how cognitive and neu-
ral processes support these behaviors. This approach is thus
quite different from previous work on modeling human cog-
nition, which focused on Marr’s algorithmic and implemen-
tation levels, and has been criticized because it seems to im-
ply that human minds and brains need to solve intractable
computational problems and use structured representations
(Gigerenzer & Todd, 1999; McClelland et al., 2010).

Understanding the actual commitments that
computational-level accounts of human cognition based
on probabilistic models make at the algorithmic and im-
plementation level requires considering how these levels
of analysis could be bridged (Griffiths, Vul, & Sanborn,
2012). Identifying specific cognitive algorithms and neural
architectures that can approximate Bayesian inference is
a key step towards knowing whether it really poses an
intractable problem for human minds, or whether structured
representations need to be used to implement models that
involve structured probability distributions. In this paper,

we take on this challenge by showing that an associative
memory using sparse distributed representations can be
used to approximate Bayesian inference, producing behavior
consistent with a structured statistical model while using
distributed representations of the kind normally associated
with artificial neural networks.

The associative memory that we use to approximate
Bayesian inference implements a Monte Carlo algorithm
known as importance sampling. Previous work has shown
that this algorithm can be implemented in a common psycho-
logical process model – an exemplar model (Shi, Griffiths,
Feldman, & Sanborn, 2010). Shi and Griffiths (2009) further
demonstrated that importance sampling can be implemented
with a radial basis function neural network. However, this
neural network used a localist representation, in which each
hypothesis considered by the model had to be represented
with a single neuron – a “grandmother cell.” While this might
be plausible for modeling aspects of perception in which a
wide range of neurons prefer specific stimuli, it becomes less
plausible for modeling complex cognitive tasks in which hy-
potheses correspond to structured representations. For exam-
ple, having separate neurons for each concept or causal struc-
ture we consider seems implausible.

We demonstrate that an associative memory that uses
distributed representations – specifically, sparse distributed
memory (SDM) (Kanerva, 1988, 1993) – can be used to ap-
proximate Bayesian inference through importance sampling.
The underlying idea is simple: we use the associative mem-
ory to store and retrieve exemplars, allowing us to build on the
equivalence between exemplar models and importance sam-
pling. The critical advance is that this is done using dis-
tributed representations, meaning that arbitrary hypotheses
can be represented, and arbitrary distributions of exemplars
encoded by a single architecture. We show that the SDM nat-
urally implements one class of Bayesian models, and explain
how to generalize it to implement a broader range of models.

The plan of the paper is as follows. First, we give a brief
overview of performing Bayesian inference with importance
sampling and summarize how the sparse distributed memory
system is implemented. Next, we formalize how importance
sampling can be performed using a SDM. We provide two
case studies drawn from existing literature in which we use
the SDM to approximate existing Bayesian models. The first
case study is a simple example involving reconstructing En-
glish letters from noisy inputs, and the second is a more so-
phisticated model of property induction. We conclude the pa-
per with a discussion of implications and future directions.

1686

Background
Our results depend on two important sets of mathematical
ideas: approximating Bayesian inference by importance sam-
pling, and sparse distributed memories. We introduce these
ideas in turn.

Bayesian inference and importance sampling
Probabilistic models of cognition provide rational solutions to
problems of inductive inference, where probability distribu-
tions represent degrees of belief and are updated as more data
becomes available. Beliefs are updated by applying Bayes’
rule, which says that the posterior probability of a hypothe-
sis, h, given observed data, d, is proportional to the proba-
bility of observing d if h were the correct hypothesis (known
as the likelihood) multiplied by the prior probability of that
hypothesis:

p(h|d) = p(d|h)p(h)∫
H p(d|h)p(h)dh

(1)

Unfortunately, computing the integral in the denominator is
computationally expensive and often intractable. This has re-
sulted in the development of many algorithms for approxi-
mating Bayesian inference.

For the sake of illustration, consider the case in which we
have noisy observations x of a stimulus x∗. To recover the
value of x∗, we use Bayes’ rule to compute the posterior dis-
tribution over x∗:

p(x∗|x) = p(x|x∗)p(x∗)∫
x∗ p(x|x∗)p(x∗)dx∗

(2)

It is often desirable to compute the expectation of the poste-
rior distribution over some function f (x∗):

E[f (x∗)|x] =
∫

f (x∗)p(x∗|x)dx∗ (3)

where the choice of f (x∗) depends on the task. However,
evaluating this expectation still requires computing the full
posterior distribution.

To approximate expectations over posterior distributions,
we can use a Monte Carlo method known as importance sam-
pling (see, e.g., Neal, 1993), in which a finite set of samples
are used to represent the posterior. These samples are drawn
from a surrogate distribution q(x∗) and assigned weights pro-
portional to the ratio p(x∗|x)/q(x∗):

E[f (x∗)|x] =
∫

f (x∗)
p(x∗|x)
q(x∗)

q(x∗)dx∗ (4)

Given a set of K samples {x∗k} distributed according to q(x∗),
this integral can be approximated by:

E[f (x∗)|x]≈ 1
K

K

∑
k=1

f (x∗k)
p(x∗k |x)
q(x∗k)

(5)

with the approximation becoming more precise as K becomes
larger.

A1

A2

A3

A4

A5

A6

A7

A8

A9

AM-3

AM-2

AM-1

AM

x
D

Figure 1: An illustration of the basic read and write opera-
tions over SDMs. The outer dotted line represents the space
of 2N possible addresses while the squares with labels Am
represent the M sampled hard addresses used for storage. The
address being requested for operation is the x in the center of
the blue circle of radius D. The hard addresses selected for
operating correspond to the blue squares within the Hamming
radius of x.

One possible choice for q(x∗) is the prior, p(x∗), which
yields importance weights proportional to the likelihood,
p(x|x∗). Formally,

E[f (x∗)|x]≈ 1
K

K

∑
k=1

f (x∗k)
p(x∗k |x)
p(x∗k)

=
1
K

K

∑
k=1

f (x∗k)
p(x|x∗k)p(x∗k)

p(x∗k)p(x)

= α(x)
K

∑
k=1

f (x∗k)p(x|x∗k) (6)

where we assume x∗k is drawn from the prior, p(x∗), and α(x)
is a constant of proportionality that depends only on x. Re-
turning to the general case of data d and hypotheses h, we can
use the same approximation to compute the expectation of a
function f (h) given observed data, with

E[f (h)|d]≈ α(d)
K

∑
k=1

f (hk)p(d|hk) (7)

where hk is drawn from the prior p(h), and α(d) is a constant
of proportionality that depends only on d.

Sparse distributed memory
Sparse distributed memory (SDM) was developed as an
algorithmic-level model of human memory, designed to en-
capsulate the notion that distances between concepts in
memory correspond to distances between points in high-
dimensional space (Kanerva, 1988, 1993). In particular, it
has a natural interpretation as an artificial neural network that
uses distributed representations.

SDMs preserve distances between items in memory by
storing them in a distributed manner. Assume that items en-
ter memory as two strings of bits, with N bits indicating a

1687

location and L bits indicating its content. A conventional ap-
proach would be to sequentially enumerate the set of 2N loca-
tions (more technically, addresses), storing items by setting
the content bits at the appropriate address in turn. In contrast,
a SDM samples M� N addresses a j to use as registers from
the space of 2N possible addresses. Items are then stored by
changing the bits that encode the content associated with mul-
tiple addresses, according to how close those addresses are to
the target location. The algorithms for writing to and reading
from a SDM are given below and are illustrated in Figure 1.

Writing A SDM stores an L-bit vector, z, associated with
an N-bit location x∗ by storing the pattern at multiple ad-
dresses a j near x∗. Since the set of M available addresses does
not enumerate the total space of 2N , there may be very few ad-
dresses near x∗. Consequently, z is written to all addresses a j
that are within a Hamming distance D of x∗ (i.e. those a j that
differ from x∗ in D or fewer bits). The contents of these se-
lected addresses are modified to store the pattern z such that
each bit in the contents is increased or decreased by 1 depend-
ing on whether or not that bit in z is a 1 or 0, respectively.

A SDM can be constructed as a neural network with N
units in the input layer, a hidden layer with M units for
each sampled address, and an output layer with L units. The
weights between the input and hidden layer correspond to the
M×N matrix A = [a1;a2; . . . ;aM] of hard addresses, and the
weights between the hidden and output layer correspond to
the M×L matrix C of contents stored at each address. The
rule for writing z to memory address x∗ is expressed as:

y = ΘD(Ax∗) (8)
C = C+ zy (9)

where ΘD is a function that converts its argument zeros and
ones, with ΘD(w) = 1 if 1

2 (w−N) ≤ D and 0 otherwise. y
is thus a selection vector that picks out a particular set of ad-
dresses. The expected number of addresses selected in y is a
function of N, M, and D:

E[yT y] =
M
2N

D

∑
d=1

(
N
d

)
(10)

Reading To read a pattern out of memory from address x,
the SDM again computes a M-bit selection vector y of ad-
dresses within Hamming distance D of x. The contents of
each address selected by this vector are summed, resulting in
a vector ẑ of length L. The rule for reading ẑ from memory
address x is expressed as:

y = ΘD(Ax) (11)

ẑ = CT y (12)

The output ẑ can then be passed through a non-linearity to
return a binary vector if desired.

SDMs as importance samplers
Previous work formalizing a probabilistic interpretation of
SDMs (Anderson, 1989) lays the groundwork for using

SDMs to perform Bayesian inference. Here, we show that
the output of SDMs approximates the expectation of a func-
tion f (x∗) over the posterior distribution p(x∗|x) by linking
its behavior to that of the importance sampler in Equation 6.

Writing Let w(a j,x∗) be the probability of writing to ad-
dress a j given an input address x∗. In the standard SDM, this
is 1 if the Hamming distance between a j and x∗ is less than
or equal to D and 0 otherwise. In the limit, the number of
addresses increases to the point where we will always be able
to write to exactly x∗ (i.e., to set D = 0). Thus, this writing
probability must satisfy the following constraint:

lim
M→2N

w(a j,x∗) =
N

∏
i=1

δ(x∗i −a ji) (13)

After writing K (address, data) pairs (x∗k , zk), the value of the
counter associated with bit i of address a j will be:

c j =
K

∑
k=1

w(a j,x∗k)zk (14)

Reading We are given a location x, which as before is a
corrupted version of x∗. Let r(x,a j) be the probability that
we read from address a j given input x. In the standard SDM,
this is 1 if the Hamming distance between a j and x is less
than or equal to D and 0 otherwise. Then, the output of the
SDM for a particular set of addresses A is:

ẑ =
M

∑
j=1

c j r(x,a j) (15)

where c j is defined in Equation 14.
To see how this output behaves for any SDM, we consider

the expected value of ẑ over sampled sets of addresses A.
We first substitute Equation 14 into Equation 15 and simplify
according to linearity of expectation:

EA [̂z|x] = EA

[
M

∑
j=1

(
K

∑
k=1

w(a j,x∗k)zk

)
r(x,a j)

]
(16)

=
K

∑
k=1

zk ·EA

[
M

∑
j=1

w(a j,x∗k)r(x,a j)

]
(17)

As our address space grows larger (as in Equation 13), this
approaches:

lim
M→2N

EA [̂z|x] =
K

∑
k=1

zk

∫
a j

δ(x∗k−a j)r(x,a j) da j (18)

Thus, in the limit, the expected value of ẑ read from the SDM
will be:

EA [̂z|x] =
K

∑
k=1

zk r(x,x∗k) (19)

Comparing Equation 19 to Equation 6 yields our main re-
sult: SDMs can perform importance sampling by defining a

1688

reading density proportional to a likelihood function, approx-
imating the posterior expectation of the items stored in mem-
ory. More formally, the expectation of ẑ given x is propor-
tional to the output of the importance sampling approxima-
tion of the expectation of f (x∗) with respect to p(x|x∗):

EA [̂z|x] ∝

K

∑
k=1

f (x∗k)p(x|x∗) (20)

provided zk ∝ f (x∗k) and r(x,x∗k) ∝ p(x|x∗).
The utility of this result is limited with the standard for-

mulation of the SDM, as it only holds in the limit where the
address size becomes large and D becomes small, meaning
that r(x,x∗) becomes a delta function. Instead, we can con-
sider generalizations in which we use different values of D
for reading and writing (Dr and Dw, respectively), or where
we choose r(x,x∗) more freely. These modifications allow us
to approximate a variety of Bayesian models using SDMs.

We make a further note, which is that in most practical
applications, the address space will not approach the limit
(i.e. M� 2N). For any sampled set of addresses, we would
still expect the value of ẑ to be near the posterior mean
Ek[f (x∗)|x], but we cannot make any statement about how
close. We leave it as an area for future work to place analytic
bounds on the accuracy of the SDM’s approximation. For the
case studies we present here, we estimate the variance of the
SDM using Monte Carlo approximations.

In the following two sections, we evaluate SDMs as a
scheme for approximating Bayesian inference in two tasks:
one where the Bayesian likelihood matches the standard
SDM read rule, and one where the SDM read rule is adjusted
to match the Bayesian likelihood. The second case further il-
lustrates how SDMs can be applied to more general problems
of Bayesian inference that go beyond simply removing noise
from a stimulus.

Letter reconstruction
As a simple illustration of approximating Bayesian inference
with a SDM, we consider the task of recovering images of
English letters, x∗, from noisy observations x. To solve this
problem, we set up a Bayesian model loosely based on that
presented in Rumelhart and Siple (1974). Each letter of the
alphabet is encoded as a binary feature vector of length N =
14 based on the Rumelhart-Siple font template (Figure 2).

SDM approximation
In the Bayesian model, we wish to reconstruct the original
letters x∗ from the exemplars x by computing the mean of
the posterior distribution over original letters, p(x∗|x), i.e.
f (x∗) = x∗. Each of the original letters is associated with a
prior probability, p(x∗), set to be the relative letter frequency
of English text (Lewand, 2000). Following the generative
model, a noisy image x is produced from the original letter x∗
via a noise process in which at most B bits are flipped (uni-
formly). Given a noisy image vector x, we define the likeli-
hood p(x|x∗) to be uniformly distributed over the number of
possible bit strings in a hypersphere of radius Dr.

(11111010100000)

1

2

5

4

10

8

3

6

11 12

7 9

14 13

Figure 2: The Rumelhart-Siple font feature map and the
Rumelhart-Siple representation for the letter “A” along with
its binary feature pattern.

In the SDM, we sample exemplars x∗ of the original letters
from the prior p(x∗) and write them to the SDM at inputs x∗
(i.e., z = x∗). The likelihood defined for the Bayesian model
is naturally compatible with the standard read rule of a SDM,
where we only consider hypotheses x∗ which are within Ham-
ming distance Dr of x. Thus, we can set the read function
r(x∗,x) of the SDM to be a variation of this likelihood:

p(x|x∗)≈ r(x,x∗) =

[
∑

Dr
d=1

(N−d+1
d

)]−1
|x−x∗| ≤ Dr

0 otherwise

The corrupted images x are the inputs that we attempt to read
from and Dr is the SDM’s read radius; we additionally define
Dw to be the write radius. The intuition is that we write the
original letters z = x∗ to input x∗, and read from x outputs ẑ
which are similar to the mean of the Bayesian posterior.

Analysis
To evaluate how well the SDM approximates the posterior
mean, we sampled 1000 exemplars from the prior distribution
p(x∗). We then created three images x for each letter in the
alphabet, each with two bits of corruption, yielding a total of
72 test images. We repeated this simulation – sampling from
the prior and generating test images – 20 times for each SDM
with parameters Dr, Dw, and M, where each simulation used
a different set of sampled addresses A.

We determined the appropriate settings of the read and
write radii, Dr and Dw, by considering the constraints im-
posed by the SDM and the specific problem of letter recon-
struction. The mean Hamming distance between pairs of let-
ters was 5.4615, indicating that the read radius must lie some-
where between 2 (the amount of corruption) and 5. Choosing
a radius outside these bounds would have the effect of re-
turning an inaccurate expectation, either because the noise
was greater than the signal (Dr < 2) or because too many hy-
potheses were considered (Dr > 5). So, we chose Dr = 2, thus
ensuring that the true x∗ would always fall within this radius,
and also minimizing the number of incorrect hypotheses con-
sidered. For the write radius, we considered three different
values, Dw = {0,1,2}.

We stored all 1000 letters in each SDM, varying the num-
ber of hard addresses, M, among eight evenly spaced values

1689

2048 4096 6144 8192 10240 12288 14336 16384

0

0.2

0.4

0.6

0.8

1

Correlations between Bayes and SDM
in letter recognition task

Size of SDM address space (M)

C
o

rr
e

la
ti
o

n

Dw = 0

Dw = 1

Dw = 2

Dw = 3

Figure 3: The average correlations between the Bayesian pos-
terior mean and pre-thresholded SDM outputs for the task of
recovering a Rumelhart-Siple letter from a noisy observation.
Dr = 2 for each of the 4 values of Dw presented.

between 2048 and 2N = 16384. We then read the value ẑ for
each corrupted input x, for different address spaces A. For
the Bayesian model, we analytically calculated the posterior
mean by evaluating the full posterior for each x∗ and then cal-
culating the average x∗ weighed by its posterior probability.
We then computed the average correlation between the SDM
values of ẑ and the Bayesian posterior mean across sampled
addresses A. These results are displayed in Figure 3.

The SDMs with Dw = 0 performed similarly to the
Bayesian model only when M = 2N (ρ = 0.9628, se =
0.0058), reflecting the intuition that it’s highly unlikely to
find an exact address from a random sample of 2N . Con-
versely, the SDMs with Dw = 2 and Dw = 3 had near-constant
correlations with the Bayesian model (ρ ≈ 0.88 for Dw = 2
and ρ ≈ 0.79 for Dw = 3), regardless of the size of the hard
address space. This behavior was also in line with our ex-
pectations: with Dw = 2 and Dw = 3, the probability of hav-
ing no hard addresses within Dw of x∗ is extremely low for
M = 2048; this probability only decreases as M increases.

In summary, these results show SDMs can naturally ap-
proximate Bayesian models of noisy stimulus reconstruction.
Here, we set the likelihood function to follow the standard
SDM read rule. In the next section we consider a more gen-
eral example of Bayesian inference and explore the conse-
quences of adjusting the SDM read rule to match the likeli-
hood in question.

Property induction
If you are told that a horse has a particular property, protein K,
what other animals do you think share this protein? Questions
of this type are considered problems of property induction,
where one or more categories in a domain are observed to
have some novel property and the task is to determine how
the property is distributed over the domain. For our analyses
we explore the category-based induction task introduced by

Osherson, Smith, Wilkie, Lopez, and Shafir (1990), where
judgments are made as to whether certain animals can get a
disease knowing other animals that can catch it.

SDM approximation
We solve this problem with a Bayesian model of property in-
duction based on Kemp and Tenenbaum (2009). Here, we
observe a set of examples d of a concept C (known to have
property K) and we aim to calculate p(y∈C|d), the probabil-
ity that object y is also a member of C. Thus, averaging over
all possible concepts, we compute:

p(y ∈C|d) = ∑
h∈H

p(y ∈C|h)p(h|d) (21)

where the hypothesis space H is the set of all possible con-
cepts in a domain, p(y∈C|h) = 1 if y is in hypothesis h, and 0
otherwise. The posterior probability p(h|d) can be computed
via Bayes’ rule from Equation 1.

We explore two variations of likelihood functions based on
assumptions of how the data were generated. If the data are
generated uniformly at random, the likelihood follows from
weak sampling: p(d|h) = 1 if all examples in d are in h and
p(d|h) = 0 otherwise. If the data are generated at random
from the true concept C, the likelihood follows from strong
sampling, where p(d|h) = 1/|h|n if all n examples in d be-
long to h, and p(d|h) = 0 otherwise. This likelihood function
incorporates the size principle, where hypotheses with fewer
items are given more weight than hypotheses with more items
for the same set of data (Tenenbaum & Griffiths, 2001).

In the SDM, the location x∗ corresponds to a hypothesis h,
and the content z corresponds to data d. For both weak and
strong sampling assumptions, we set the read function of the
SDM, r(d,h), to be proportional to the Bayesian likelihood
by weighting the selection vector y by p(d|h).

Analysis
To evaluate the performance of this modified SDM, we used
the category-based induction dataset from Osherson et al.
(1990), consisting of 36 two-premise arguments and 45 three-
premise arguments (e.g., “Cat, Dog, Horse can get disease
X”) for a domain of 10 animals. Thus, each observation d is
encoded as a binary feature vector of length N = 10. We used
a taxonomic hypothesis space following Kemp and Tenen-
baum (2009), constructed from human similarity judgments
for each possible pairing of animals. As before, we stored
1000 exemplars sampled from p(h) in the SDM, and varied
the number of hard addresses among eight evenly spaced val-
ues between 128 and 2N = 1024. We evaluated this modified
SDM against the Bayesian model of property induction for
3 values of Dw over a constant reading radius Dr = 0. The
results are presented in Figure 41.

We find the SDM approximates Bayesian inference for a
variety of write radii and, as predicted, matches Bayes when

1We note that these correlations are not strictly monotonic as one
might intuit, due to sampling error in the address space (most notable
in the case when Dw = 0.)

1690

128 256 384 512 640 768 896 1024

0

0.2

0.4

0.6

0.8

1

Correlations between Bayes and SDM
in property induction task with weak sampling

Size of SDM address space (M)

C
o

rr
e

la
ti
o

n

Dw = 0

Dw = 1

Dw = 2

128 256 384 512 640 768 896 1024

0

0.2

0.4

0.6

0.8

1

Correlations between Bayes and SDM
in property induction task with strong sampling

Size of SDM address space (M)

C
o

rr
e

la
ti
o

n

Dw = 0

Dw = 1

Dw = 2

Figure 4: The average correlations between the Bayesian posterior and pre-thresholded SDM outputs assuming weak sampling
(left panel), and assuming strong sampling (right panel) for the property induction task. Dr = 0 for each of the 3 values of Dw
presented.

Dw = 0 and M = 2N . Furthermore, the SDMs that use a
weak or strong sampling read rule correlate equally well with
the Bayesian models that use weak or strong sampling like-
lihoods, respectively. This nicely illustrates the correspon-
dence between the SDM’s read rule and a Bayesian likeli-
hood, and implies that SDMs can approximate a broad range
of Bayesian models by adjusting the read rule to match the
likelihood function.

Conclusion
What constraints do the algorithmic and implementation lev-
els impose on probabilistic models of cognition? We explored
this question by considering whether the computations em-
ployed by a distributed representation of associative mem-
ory could approximate Bayesian inference. By choosing the
SDM read rule to appropriately match the the likelihood func-
tion, we showed in two separate scenarios that SDMs can
accurately implement a specific form of Bayesian inference
called importance sampling.

Future work will take our analyses one step further and
investigate whether SDMs can approximate Bayesian infer-
ence without modifying their read rule. Specifically, can we
encode the data in a manner such that reading it from a stan-
dard SDM is still proportional to the likelihood? If so, it
would make SDMs an even more general and appealing ap-
proach to performing Bayesian inference. Regardless, the re-
sults presented in this paper are an important step towards
an explanation of how the structured representations assumed
by probabilistic models of cognition could be expressed in
the distributed, continuous representations commonly used in
algorithmic-level models such as neural networks.

Acknowledgments. This work was supported by grant number FA-
9550-10-1-0232 from the Air Force Office of Scientific Research
and a Berkeley Fellowship awarded to JBH.

References
Anderson, C. H. (1989). A conditional probability interpretation

of Kanerva’s sparse distributed memory. In International joint
conference on neural networks (pp. 415–417).

Gigerenzer, G., & Todd, P. (1999). Simple heuristics that make us
smart. Oxford University Press, USA.

Griffiths, T., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J.
(2010). Probabilistic models of cognition: exploring representa-
tions and inductive biases. Trends in Cognitive Sciences, 14(8),
357–364.

Griffiths, T., Vul, E., & Sanborn, A. (2012). Bridging levels of
analysis for probabilistic models of cognition. Current Directions
in Psychological Science, 21(4), 263–268.

Kanerva, P. (1988). Sparse Distributed Memory Systems. MIT
Press.

Kanerva, P. (1993). Sparse Distributed Memory and Related Mod-
els. In M. Hassoun (Ed.), Associative neural memories: Theory
and implementation (pp. 50–76). Oxford University Press.

Kemp, C., & Tenenbaum, J. B. (2009). Structured statistical models
of inductive reasoning. Psychological Review, 116(1), 20–58.

Lewand, R. (2000). Cryptological mathematics. Mathematical As-
sociation of America.

Marr, D. (1982). Vision. San Francisco, CA: W. H. Freeman.
McClelland, J., Botvinick, M., Noelle, D., Plaut, D., Rogers, T.,

Seidenberg, M., et al. (2010). Letting structure emerge: connec-
tionist and dynamical systems approaches to cognition. Trends in
Cognitive Sciences, 14(8), 348–356.

Neal, R. (1993). Probabilistic inference using Markov chain Monte
Carlo methods (Tech. Rep. No. CRG-TR-93-1). Department of
Computer Science, University of Toronto.

Osherson, D., Smith, E., Wilkie, O., Lopez, A., & Shafir, E. (1990).
Category-based induction. Psychological Review, 97(2), 185.

Rumelhart, D., & Siple, P. (1974). Process of recognizing tachisto-
scopically presented words. Psychological Review, 81(2), 99.

Shi, L., & Griffiths, T. (2009). Neural implementation of hierar-
chical Bayesian inference by importance sampling. Advances in
Neural Information Processing Systems, 22, 1669–1677.

Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (2010).
Exemplar models as a mechanism for performing Bayesian infer-
ence. Psychonomic Bulletin & Review, 17(4), 443–64.

Tenenbaum, J., & Griffiths, T. (2001). Generalization, similarity,
and Bayesian inference. Behavioral and Brain Sciences, 24(4),
629–640.

Tenenbaum, J., Kemp, C., Griffiths, T., & Goodman, N. (2011).
How to grow a mind: Statistics, structure, and abstraction. Sci-
ence, 331(6022), 1279–1285.

1691

