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Abstract

In this paper, we describe a model that learns semantic representations from the distributional sta-
tistics of language. This model, however, goes beyond the common bag-of-words paradigm, and
infers semantic representations by taking into account the inherent sequential nature of linguistic
data. The model we describe, which we refer to as a Hidden Markov Topics model, is a natural exten-
sion of the current state of the art in Bayesian bag-of-words models, that is, the Topics model of Grif-
fiths, Steyvers, and Tenenbaum (2007), preserving its strengths while extending its scope to
incorporate more fine-grained linguistic information.

Keywords: Bayesian models; Probabilistic models; Computational models; Semantic representation;
Semantic memory

1. Introduction

How word meanings are represented and learned is a foundational problem in the study
of human language use. Within cognitive science, a promising recent approach to this prob-
lem has been the study of how the meanings of words can be learned from their statistical
distribution across the language. This approach is motivated by the so-called distributional
hypothesis, originally due to Harris (1954) and Firth (1957), which proposes that the mean-
ing of a word can be derived from the linguistic contexts in which it occurs. Numerous
large-scale computational implementations of this approach—including, for example, the
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work of Schüutze (1992), the HAL model (e.g., Lund, Burgess, & Atchley, 1995), the LSA
model (e.g., Landauer & Dumais, 1997) and, most recently, the Topics model (e.g., Grif-
fiths, Steyvers, & Tenenbaum, 2007)—have successfully demonstrated that the meanings of
words can, at least in part, be derived from their statistical distribution in language.

Important as these computational models have been, one of their widely shared practices
has been to treat the linguistic contexts in which a word occurs as unordered sets of words.
In other words, the linguistic context of any given word is defined by which words co-occur
with it and with what frequency, but it disregards all fine-grained sequential and syntactic
information. By disregarding these types of data, these so-called bag-of-words models dras-
tically restrict the information from which word meanings can be learned. All languages
have strong syntactic-semantic correlations. The sequential order in which words occur, the
argument structure and general syntactic relationships within sentences, all provide vital
information about the possible meaning of words. This information is unavailable in bag-
of-words models and consequently the extent to which they can extract semantic information
from text, or adequately model human semantic learning, is limited.

In this paper, we describe a distributional model that goes beyond the bag-of-words para-
digm. This model is a natural extension to the current state of the art in probabilistic bag-of-
words models, namely the Topics model described in Griffiths et al. (2007) and elsewhere.
The model we propose is a seamless continuation of the Topics model, preserving its
strengths—its thoroughly unsupervised learning, its hierarchical Bayesian nature—while
extending its scope to incorporate more fine-grained sequential and syntactic data.

2. The Topics model

The standard Topics model as described in Griffiths and Steyvers (2002, 2003); Griffiths
et al. (2007) is a probabilistic generative model for texts and is based on the latent Dirichlet
allocation (LDA) model of Blei, Ng, and Jordan (2003). It stipulates that each word in a cor-
pus of texts is drawn from one of K latent distributions /1 . . ./k . . ./K ¼" /, with each /k

being a probability distribution over the V word-types in a fixed vocabulary. These distribu-
tions are the so-called topics that give the model its name. Some examples, learned by a
Topics model described in Andrews, Vigliocco, and Vinson (2009), are given in Table 1. As
is evident from this table, each topic is a cluster of related terms that corresponds to a

Table 1
Topics taken from an LDA model described in Andrews et al. (2009)

theatre music league prison rate pub market railway air
stage band cup years cent guinness stock train aircraft
arts rock season sentence inflation beer exchange station flying
play song team jail recession drink demand steam flight
dance record game home recovery bar share rail plane
opera pop match prisoner economy drinking group engine airport
cast dance division serving cut alcohol news track pilot

Each column gives the seven most probable word types in each topic.
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coherent semantic theme, or subject-matter. As such, the topic distributions correspond to
the semantic knowledge learned by the model, and the semantic representation of each word
in the vocabulary is given by a distribution over them.

To describe the Topics model more precisely, let us assume we have a corpus of J texts
w1…wj…wJ, where the jth text wj is a sequence of nj words, that is, wj1…wji…wjnj. Each
word, in each text, is assumed to be sampled from one of the model’s K topics. Which one of
these topics is chosen is determined by the value of a latent variable xji that corresponds to
each word wji. This variable takes on one of K discrete values and is determined by sampling
from a probability distribution pj, which is specific to text j. As such, we can see that each
text wj is assumed to be a set of nj independent samples from a mixture model. This mixture
model is specific to text j, as the mixing distribution is determined by pj. However, across
texts, all mixing distributions are drawn from a common Dirichlet distribution, with parame-
ters a. Given known values for / and a, the likelihood of the entire corpus is given by

Pðw1:Jj/; aÞ ¼
YJ

j¼1

Z
dpjPðpjjaÞ

Ynj

i¼1

X

fxjig
Pðwjijxji;/ÞPðxjijpjÞ

2

4

3

5; ð1Þ

In this, we see that the Dirichlet distribution P(pj | a) introduces a hierarchical coupling of
all the mixing distributions. As such, the standard Topics model is a hierarchical coupling of
mixture models, effectively defining a continuum of mixture models, all sharing the same K
component topics.

The standard Topics model is thus an example of a hierarchical language model. Its
Bayesian network is shown in Fig.1. It assumes that each text is generated according to an

Fig. 1. A Bayesian network diagram of the standard Topics model described in Griffiths et al. (2007) and else-
where. Details are provided in the main text. Note that b denotes the parameters of a V-dimensional Dirichlet
distribution, from which each of K topic distributions is sampled.
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elementary language model—specifically a mixture of unigram distributions—which are
then hierarchically coupled with one another. From this, it is evident that the standard model
can be extended by simply changing the elementary language model on which it is based.
There are multiple possible language models that could be used in this respect. One possibil-
ity is to use a bigram language model as described in Wallach (2006). Another possibility is
to use a language model based on a full phrase-structure grammar as described in
Boyd-Graber and Blei (2009). However, in that work, the syntactic structure underlying the
sentences in the texts is assumed to be known in advance and is provided by syntactically
tagged corpus. In what follows, we describe a Topics models whose elementary language
model is a Hidden Markov model (HMM). We refer to this as the Hidden Markov Topics
model (HMTM).

3. Hidden Markov Topics model

In the HMTM, just as in the standard Topics model, each wji is drawn from one of K topics,
the identity of which is determined by the latent variable xji. However, rather than sampling
each xji independently from a probability distribution pj, as in the standard model, these latent
variables are generated by a Markov chain that is specific to text j. By direct analogy with the
standardmodel, across the texts, the parameters of theseMarkov chains are drawn from a com-
mon set of Dirichlet distributions. As such, the HMTM is a hierarchical coupling of HMMs,
defining a continuum of HiddenMarkovmodels, all sharing the same state to output mapping.

In the HMTM, the likelihood of the corpus is

Pðw1:Jj/; a; cÞ ¼
YJ

j¼1

Z
dpjdhjPðpj; hjja; cÞ

X

fxjg

Ynj

i¼1

Pðwjijxji;/Þ
Ynj

i¼2

Pðxjijxji%1; hjÞPðxj1jpjÞ

2

4

3

5: ð2Þ

Here, hj and pj are the parameters of the Markov chain of latent-states in text j. The hj is the
K · K state transition matrix (i.e., the kth row of hj gives the probability of transitioning to
each of the K states, given that the current state is k), and pj is the initial distribution for the
K states. The distribution over the pj and hj, that is, P(pj,hj | a,c), is a set of independent
Dirichlet distributions, where a are the parameters for the Dirichlet distribution over pj, and
c1 . . . cK ¼" c are the parameters for the distribution over each of the K rows of hj.

3.1. Learning and inference

From this description of the HMTM, as well as from its Bayesian network diagram given
in Fig. 2, we can see that the HMTM has four sets of parameters whose values must be
inferred from a training corpus of texts. These are the K topic distributions, that is, /, the
Dirichlet parameters for the latent-variable Markov chains, that is, a and c, and the Dirichlet

104 M. Andrews, G. Vigliocco ⁄Topics in Cognitive Science 2 (2010)



parameters from which the topic distributions are drawn, that is, b.1 The posterior over /, a,
b, and c given a set of J texts w1:J is

Pð/; a;b; cjw1:JÞ / Pðw1:Jj/; a; cÞPð/jbÞPða;b; cÞ; ð3Þ
where the likelihood term P(w1:J | /,a,c) is given by Eq. 2. This distribution is intractable
(as is even the likelihood term itself), and as such it is necessary to use Markov Chain Monte
Carlo (MCMC) methods to sample from it.

There are different options available for MCMC sampling. The method we employ is a
Gibbs sampler that draws samples from the posterior over a, b, c, and x1:J. Here, x1:J are the
sequences of latent-variables for each of the J texts, that is, x1,x2…xJ, with xj ¼ xj1…xjnj.
This Gibbs sampler has the useful property of integrating over /, p1:J and h1:J, which entails
both computational efficiency and faster convergence.

Fig. 2. A Bayesian network diagram for the Hidden Markov Topic model. As in the standard model, depicted in
Fig. 1, each observed variable wji is assumed to be sampled from one of K topic distributions, collectively speci-
fied by /. Likewise, which one of these distributions is chosen is determined by the value of the unobserved
variable xji. In the standard model, however, the latent variables xj1…xjnj are drawn independently from a distri-
bution pj, which is specific to text j. In the HMTM by contrast, xj1…xjnj are drawn from a Markov chain specific
to the jth text. The parameters of this chain are hj (i.e., the K · K state-space mapping for chain j) and pj (i.e., the
initial conditions for the jth chain). For all J texts, the parameters hj and pj are drawn from a common set of
Dirichlet distributions. Each hj is drawn from K-dimensional Dirichlet distributions, whose parameters are
collectively specified by c. Each pj is drawn from a K-dimensional Dirichlet distribution a. Also shown here is b,
the parameters of a V-dimensional Dirichlet distribution from which the K topic distributions / are sampled.
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On convergence of the Gibbs sampler, we will obtain samples from the joint posterior
distribution P(x1:J,a,b,c | w1:J). From this, other variables of interest can be obtained. For
example, it is desirable to know the likely values of the topic distributions /1…/k…/K.
Given known values for x1:J and b, the posterior distribution over / is simply a product of
Dirichlet distribution, from which samples are easily drawn and averaged. Further details of
this Gibbs sampler are provided in the Appendix.

3.2. Demonstration

Here, we demonstrate the operation of the HMTM on a toy problem. In this problem, we
generate a data-set from a HMTM with known values for /, a, and c. We can then train
another HMTM, whose parameters are unknown, with this training data-set. Using the
Gibbs sampler, we can draw samples from the posterior over /, a, b, and c, and then com-
pare these samples to the true parameter values that generated the training data.

In the example we present here, we use a ‘‘vocabulary’’ of V ¼ 25 symbols and a set of
K ¼ 10 ‘‘topics.’’ As is common practice in demonstrations of related models, the ‘‘topics’’
we use in this example can be visualized using the grids shown below.

Each grid, although shown as a 5 · 5 square, is just a 25 dimensional array, with 5 high val-
ues (darker) and 20 low values (lighter). Each of these arrays corresponds to one of the top-
ics distributions in our toy problem, that is, each one places the majority of its probability
mass on a different set of 5 symbols.

The c1 . . . cK ¼" c parameters in the HMTM are a set of K-dimensional Dirichlet parame-
ters. Each ck is an array of K non-negative real numbers. A common reparameterization of
Dirichlet parameters, such as ck is as smk, where s is the sum of ck and mk is the ck divided
by s. For each set of K Dirichlet parameters, we used an s ¼ 3.0. The K arrays m1…mK are
depicted below on the left.
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From these Dirichlet parameters, we may generate arbitrarily many sets of state-transition
parameters for a 10-state HMM. As an example, we show two such sets on the right. As is
evident, these parameters retain characteristics of the patterns found in the original Dirichlet
parameters. We can see that, on average, the state transition dynamics leads a given state to
map to either the state before it, or the state after it. For example, we can see that, on aver-
age, state 2 maps to state 1 or state 3, state 3 maps to state 2 or state 4, and so on. While this
average dynamical behavior is simple, it is not trivial and does not lead to fixed point or
periodic trajectories. Note also that the small differences in the transition dynamics can lead
to quite distinct dynamical behaviors in their respective HMMs.

On the basis of these / and h, and using an array of K ones as the parameters a, we gener-
ated J ¼ 50 training ‘‘texts’’ as follows. For each text j, we drew a set of initial conditions
and transition parameters for a HMM from a and c, respectively. We then iterated the HMM
for nj ¼ 100 steps, to obtain a state trajectory xj1…xjnj. On the basis of the value of each xji,
we chose the appropriate topic (i.e., if xji ¼ k we chose /k) and drew an observation wji

from it. The training thus comprised a set of J symbol sequences, with each symbol taking a
value from the set {1…25}.

Using this as training data, we trained another HMTM whose parameters were unknown.
As described earlier, the Gibbs sampler draws samples from the posterior distribution over
x1:J, a, b, and c. From these samples, we may also draw samples from the posterior over the
topics. In Fig. 3, we graphically present some results of these simulations. Show in this fig-
ure are averages of samples drawn from the posterior over / and m1…mk, that is, the loca-
tion parameters of c1…ck. On the top row of Fig. 3, we show averages of samples drawn
after 20 iterations of the sampler. On the lower row, we show averages of samples drawn
after 100 iterations. In both cases, these averages are over 10 samples taken two iterations
apart in time. To the left in each case are the inferred topics. To the right are the inferred
locations of the Dirichlet parameters. These inferred parameters can be compared to the true
parameters on the previous page. By doing so, it is clear that even after 20 iterations of the
sampler, patterns in the topic distributions have been discovered. After 100 iterations, the
inferred parameters are almost identical to the originals.

Although not shown, the Gibbs sampler also successfully draws samples from the poster-
ior over a, b 2 and the scale parameter s for c. In addition, we may use draws from the pos-
terior to estimate, using the harmonic mean method, the marginal likelihood of the model
under a range of different numbers of topic distributions. Although, the harmonic mean
method is not highly recommended, we have found that in practice it consistently leads to
an estimate of the correct number of topics.

4. Learning topics from text

In this final section, we present some topics learned by a HMTM trained on a corpus of
natural language. The corpus used was a subsample from the British National Corpus
(BNC).3 The BNC is annotated with the structural properties of a text such as sectioning
and subsectioning information. The latter type of annotation facilitates the processing of the
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corpus. To extract texts from the BNC we extracted contiguous blocks that were labeled as
high-level sections, roughly corresponding to individual articles, letters, or chapters. These
sections varied in size from tens to thousands of words, and from these we chose only those
texts that were approximately 150–250 words in length. This length is typical of, for exam-
ple, a short newspaper article. Following these criteria, we then sampled 2,500 individual
texts to be used for training. Of all the word types that occurred within this subset of texts,
we excluded words that occurred less than five times overall and replaced their occurrence
with a marker symbol. This restriction resulted in a total of 5,182 unique words.

We trained a HMTM with K ¼ 120 topics using this corpus. After a burn-in period of
1,000 iterations, we drew 50 samples from the posterior over the latent trajectories and b,
with each sample being 10 iterations apart. We used these to draw samples from the poster-
ior over the topics, which are then averaged, as described earlier. In the upper part of
Table 2, we present seven averaged topics from the HMTM simulation. For the purposes of
comparison, in the lower part Table 2 we present seven averaged topics taken from a stan-
dard Topics model. This standard Topics model was trained on a larger corpus and is
described in detail in Andrews et al. (2009). The topics in the standard model were chosen
by finding the topics that are the closest matching to the HMTM topics we chose.

The side-by-side comparison provides an appreciation for how the topics in a HMTM dif-
fer from the standard model. In the HMTM, the topics are more refined in the semantics,
referring to more specific categories of things or events. For example, we see that the first

Fig. 3. Averages of samples from the posterior distribution over the topic distributions (left) and locations of the
c parameters (right). Shown on the top row are averages, over 10 draws, drawn after 20 iterations. Shown on the
lower row are averages, again over 10 draws, taken after 100 iterations. Compare with the true parameters shown
on the previous page.
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topic to the left in the HMTM refers to alcoholic beverages, specifically those associated
with a (British) pub. By contrast, the corresponding topic from the standard model is less
specifically about beverages and refers more generally to things of, or relating to, pubs. In
the next example, we see that the topic from the HMTM refers to farm animals. By contrast,
the corresponding topic from the standard model is less specifically about farm animals and
more related to agriculture in general. In all of the examples shown, a similar pattern of
results holds.

From this demonstration, we can see that more refined semantic representations can be
learned when sequential information is taken into account. Why we see a benefit from
sequential information can be understood by way of the following simple example. Words
like horse, cow, mule are likely to occur as subjects of verbs like eat, chew, while words like
grass, hay, grain are likely to occur as their objects. A model that learns topics by taking
into account this sequential information may learn that words like horse, cow, and mule etc.,
form a coherent topic. Likewise, such a model may infer other topics based on words like
eat, chew, etc., or words like grass, hay, grain, etc. By contrast, the standard Topics model,
based on the assumptions that the sequential information in a text is irrelevant, is likely to
conflate these separate topics into one single topic referring to, for example, farms or
farming.

Table 2
Examples of topics learned by a HMTM (top row) that was trained on a set of documents taken from the BNC

HMTM Topics
beer sheep sugar aircraft film say ship
guinness cattle fruit plane movie know boat
alcohol meat butter jet series talk ferry
ale livestock bread airline tv think vessel
whisky dairy chocolate squadron story feel ships
spirits beef milk helicopter television understand navy
wine pigs cream fighter soap believe shipping
cider animal water hercules movies speak lifeboat
pint cow lemon airbus drama ask fleet
lager pig egg falcon episode explain coastguard

Standard Topics
pub farm fruit air film want boat
drink agriculture add aircraft star think island
guinness food fresh flight hollywood like sea
beer farming butter plane movie people ship
drinking sheep cooking airport screen moment crew
wine agricultural minutes flying stars happen ferry
bar cattle hot pilot director wanted sailing
alcohol ministry food fly actress worried yacht
brewery crop bread jet actor believe shipping
whisky pigs chicken airline role exactly board

Note. On the lower row, we show topics from a standard Topics model also trained on a set of documents
from the BNC.
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5. Discussion

The general problem that has motivated the work presented here is the problem of
how word meanings are represented and learned. As mentioned, a promising recent
approach to this general problem has been the study of how the meanings of words can
be learned from their statistical distribution across the language. Across disciplines such
as cognitive science, computational linguistics, and natural language processing, the var-
ious computational approaches to modeling the role of distributional statistics in the
learning of word meanings can be seen to fall into two broad groups, each characterized
largely by the granularity of statistical information that they consider. On the one hand,
there are those models that focus primarily on broad or coarse-grained statistical struc-
tures. These models, which include the seminal work of, for example, Schütze (1992);
Lund et al. (1995); Landauer and Dumais (1997), have been widely adopted and have
many appealing characteristics. In most cases, they are large-scale, broad coverage,
unsupervised learning models that are applied to plain and untagged corpora. In addi-
tion, particularly in recent models such as Griffiths et al. (2007), they are often also
fully specified probabilistic generative language models. However, one of the widely
shared practices of models like this is to adopt a bag-of-words assumption and treat the
linguistic contexts in which a word occurs as unordered sets of words. The obvious lim-
itation of this approach is that all fine-grained sequential and syntactic statistical infor-
mation is disregarded.

In contrast to coarse-grained distributional models, a second group of models have
focused specifically on the role of more fine-grained sequential and syntactic structures
(e.g., Padó & Lapata, 2007; Pereira, Tishby, & Lee, 1993). The obvious appeal of these
models is that by focusing on the sequential order, argument structure, and general syntactic
relationships, within sentences, they capture syntactic-semantic correlations in language that
can provide vital information about the possible meanings of words (see, e.g., Alishahi &
Stevenson, 2008; Gillette, Gleitman, Gleitman, & Lederer, 1999). However, in practice,
these fine-grained distributional models have often focused on extracting semantic informa-
tion for constrained or specific problems (e.g., automatic thesaurus generation; Curran &
Moens, 2002a,b; Lin, 1998) or taxonomy generation (Widdows, 2003) rather than develop-
ing large-scale probabilistic language models. This has limited their suitability as cognitive
models. In addition, they have been heavily reliant on supervised learning methods using
part-of-speech tagged or parsed corpora.

In this paper, we have described the HMTM, a model that attempts to integrate the
coarse- and fine-grained approaches to modeling distributional structure. This model is
intended to preserve the strengths of both of these approaches, while avoiding their
principal limitations. It is scalable, unsupervised, and trained with untagged corpora.
However, it goes beyond the dominant bag-of-words paradigm by incorporating sequen-
tial and syntactic structures. In this respect, it is similar to the beagle model described
in Jones and Mewhort (2007). However, unlike beagle, the HMTM, being a direct gen-
eralization of the LDA model, is a fully specified probabilistic generative language
model. The HMTM also extends beyond a model described in Griffiths et al. (2007);
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Griffiths, Steyvers, Blei, and Tenenbaum (2005) that couples a HMM with a standard
Topics model. In particular, the HMTM is designed to learn semantic representations
by directly availing of the sequential information in text. By contrast, the model
described in Griffiths et al. (2005, 2007) learns semantic representations using a stan-
dard Topics model (i.e., latent variables are drawn by independently sampling from a
fixed distribution), while the HMM is used to learn syntactic categories. More gener-
ally, the HMTM is an example of a hierarchical language model. Within cognitive sci-
ence, computational linguistics, and NLP research, probabilistic language models such
as HMMs and PCFGs have been extensively used. However, the hierarchically coupled
versions of these models have yet to be introduced. The HMTM is a hierarchically cou-
pled HMM and can be in principle extended to the case of a hierarchically coupled
PCFG. We believe that these models, and their training by Bayesian methods on large-
scale data-sets, may be an important development in the complexity of the language
models used in these fields.

Notes

1. The b parameters can be seen as a prior over /, but a prior that will be inferred from
the data rather than simply assumed.

2. For the case of b, we used a symmetric Dirichlet distribution.
3. The BNC is a 100-million-word corpus of contemporary written and spoken English

in the British Isles. According to its publishers, the texts that make up the written com-
ponent include ‘‘extracts from regional and national newspapers, specialist periodicals
and journals for all ages and interests, academic books and popular fiction, published
and unpublished letters and memoranda, school and university essays.’’
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Appendix

The Gibbs sampler for the HMTM model draws samples from P(x1:J,a,b,c | w1:J). It does
so iteratively sampling from a given latent variable xji, assuming values from all other latent
variables, and for a, b, c. The conditional distribution over xji is given by

Pðxjijx%½ji';w1:J; a; b; cÞ
/ Pðwjijxji;x%½ji';w%½ji';bÞPðxjijx%½ji'; a; cÞ;

ðA:1Þ

where we denote the set of latent variables excluding xji by x)[ji], and denote the set of
observables excluding wji by w)[ji]. Superficially, this conditional distribution appears iden-
tical to the conditional distributions in the Gibbs sampler for the standard Topics model, as
described in Griffiths and Steyvers (2002, 2003); Griffiths et al. (2007). However, due to the
non-independence in the latent trajectory that results from the Markov dynamics, the term
P(xji | x)[ji],a,c) must be calculated as a ratio of Polya distributions, that is,

Pðxjijx%½ji'; a; cÞ ¼
Pðx1:Jja; cÞ
Pðx%½ji'ja; cÞ

: ðA:2Þ

The Dirichlet parameters a, b, c may also be sampled by Gibbs sampling. For example, each
ck is reparameterized as smk (as described in the main text). Assuming known values for all
variables, the conditional posterior distribution of s is log-concave and can be sampled using
adaptive rejection sampling (ARS), see Gilks and Wild (1992). Likewise, assuming known
values for all other variables, the conditional posterior over the share of the probability mass
between any two elements of mk is also log-concave and can be sampled by ARS. As such,
the Gibbs sequentially samples from each latent variable xji, each scale parameter of the
Dirichlet parameters given by a, b, c, and also from the share of probability mass between
every pair of elements of each location parameters of the Dirichlet parameters.
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