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Statistical learning: a powerful
mechanism that operates by
mere exposure
Richard N. Aslin*

How do infants learn so rapidly and with little apparent effort? In 1996, Saffran,
Aslin, and Newport reported that 8-month-old human infants could learn the
underlying temporal structure of a stream of speech syllables after only 2min of
passive listening. This demonstration of what was called statistical learning,
involving no instruction, reinforcement, or feedback, led to dozens of confirma-
tions of this powerful mechanism of implicit learning in a variety of modalities,
domains, and species. These findings reveal that infants are not nearly as
dependent on explicit forms of instruction as we might have assumed from stud-
ies of learning in which children or adults are taught facts such as math or prob-
lem solving skills. Instead, at least in some domains, infants soak up the
information around them by mere exposure. Learning and development in these
domains thus appear to occur automatically and with little active involvement by
an instructor (parent or teacher). The details of this statistical learning mechan-
ism are discussed, including how exposure to specific types of information can,
under some circumstances, generalize to never-before-observed information,
thereby enabling transfer of learning. © 2016 Wiley Periodicals, Inc.
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Whether one sees the newborn child as neurologi-
cally insufficient (Flechsig, 1920), cognitively con-
fused (James, 1890), narcissistic (Freud, 1905),
solipsistic (Piaget, 1927), or merely ugly (Hall,
1891), the distance between the new child and the
walking, talking, socially discriminating, and percep-
tive person whom we see hardly 500 days later is
awesome—Kessen, Haith, and Salapatek1

INTRODUCTION

Two giants in the field of animal learning created
paradigms that illustrated how behavior can be

shaped by stimuli that are paired with primary

rewards such as food. Ivan Pavlov2 used classical
conditioning of the salivary response in dogs to a
tone that signals impending delivery of meat powder,
and B. F. Skinner3 used operant conditioning in
pigeons and rats to elicit pecking or bar-pressing
behaviors when a cue signals the availability of a
food pellet. In both of these paradigms, the associa-
tions among stimuli, responses, and rewards involve
repeated exposure over many trials and a resultant
slow time course of learning. How might such
mechanisms enable the rapid learning that charac-
terizes human (and non-human) development?

Two solutions were proposed. Edward Tol-
man4 suggested that animals rarely rely on primary
reinforcers to learn about their environment, but
rather engage a mechanism akin to problem-solving
in which the causal relations behind the associations
observed by the animal are the fundamental motiva-
tion for and product of learning. Albert Bandura5

suggested that learners gain as much information
about the world by observing others as by actively
engaging in the learning process themselves. There is
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no question that mature learners, across a wide vari-
ety of species and domains, use both of these alterna-
tive mechanisms to speed up the learning process
beyond that described by Pavlov and Skinner. But is
it plausible for naïve learners, who are confronted
with hundreds of potential stimuli each minute in
their natural habitat, to determine which patterns of
stimuli are worthy of their attention and likely to be
informative for controlling their behavior without
the guiding hand of a ‘teacher’ (i.e., rewards or pun-
ishments)? Research in the past 15 years has revealed
that such a mechanism of learning ‘by mere expo-
sure’ is both rapid and present in early development.

WHAT IS STATISTICAL LEARNING?

In both the lab and the natural environment, we
learn about distributions. For the pigeon in a Skinner
box, those distributions consist of which stimuli (e.g.,
a green light) are present immediately prior to beha-
viors (e.g., pecking a key) that are followed by a
reward. There are many other stimuli that are present
prior to the pecking response that do not lead to a
reward. Thus, any animal that successfully learns the
contingencies established by the experimenter has, in
an implicit sense, created a ‘list’ of what works and
what does not work in that particular context. For-
mulating such a list in the context of a Skinner box
may seem fairly straightforward because the number
of potential stimuli has been constrained and the rele-
vant response has been shaped by the experimenter
to simplify which aspects of the situation are relevant
and how rapidly they are presented.

Now consider a more complicated situation in
which there is no reward and the rate of stimulus
presentation is greatly speeded up. Saffran, Aslin,
and Newport6 chose a task that must be solved by all
children as they learn language: determining in a
sample of speech spoken by their parents where one
word ends and the next word begins. Words are
composed of syllables from an inventory of sounds
(the phonemes) used in the particular natural lan-
guage to which the child is exposed. We know that
children begin to speak their first words at about
12months of age, so the process of solving the word-
segmentation problem must be at least partially
accomplished by the end of the first postnatal year.
Moreover, what makes the word-segmentation prob-
lem particularly difficult is that the acoustic cues that
define a word boundary are unreliable: some multi-
word utterances have no acoustic cues to word
boundaries (‘Where are you?’) and many words have
obvious acoustic cues within themselves (‘cookie’). If

infants relied solely on these acoustic cues, they
would incorrectly treat ‘Where are you?’ as one word
and ‘cookie’ as two words.

Saffran et al.6 asked whether infants could use
distributional information to solve the word-
segmentation problem. They eliminated all other cues
that are present in natural speech, such as the pauses
at the end of phrases and the modulations in pitch
and duration that occur as syllables are put together
to form fluent utterances (see Figure 1). It is impor-
tant to note that the word-segmentation problem is
not solved by the child’s parents. Parents neither
speak in one-word sentences (except for special
words like ‘no’ or the child’s name), nor do they
define by explicit instruction what a word is. Rather,
parents speak to their children in much the same way
they speak to other adults, except at a somewhat
slower rate and often with more modulation of pitch
and amplitude. Thus, the naïve learner is confronted
with an inventory of dozens of different syllables pre-
sented in child-directed speech at a rate of 3–5 per
second, and must keep track of the sequential pat-
terns embedded in a corpus of these sentences.

The task set up by Saffran et al. mimicked this
situation by presenting 8-month-old infants with a
continuous stream of speech syllables, without the
benefit of pauses or intonation cues, and asked
whether infants could ‘compute’ the distributions of
how often each syllable occurred and how often
combinations of syllables occurred. If infants could
perform such computations, then in a post-
familiarization test phase they should discriminate
between sequences of syllables that varied in their
statistical properties. In particular, it was hypothe-
sized and confirmed in a follow-up experiment7 that
the probability of one syllable following another was
a crucial source of information for solving the word-
segmentation problem. The test phase presented
infants with two types of trials: a triplet of syllables

Word 1
(a)

(b)

. . .  pa bi ku go la tu da ro pi ti bu do  . . .

Test Word

TPʹs = 1.0

and 1.0

TPʹs = 0.5

and 1.0

Test Part-word

Word 2 Word 3 Word 4

FIGURE 1 | Illustration of the stimuli used by Saffran et al.6 to
study statistical learning in 8-month-old infants. (a) The inventory of
syllables and tri-syllabic words. (b) The statistical structure of the
words and part-words. TP, transitional probability. See Supporting
information for link to sound file.
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with a perfectly predictable order (i.e., a word) and a
triplet of syllables with a less predictable order because
they spanned a word boundary (i.e., a part-word).
Infants exhibited longer attention, as indexed by
looking-time to a blinking light, to the less statistically
consistent part-words than to the words. Note that
keeping track of these distributions—the relative fre-
quency of pairs of syllables and the transitional proba-
bility from one syllable to the next—when the syllables
were presented at a rate of 4 per second and when no
feedback is provided to guide the learning process, was
considered to be highly implausible for an infant.

The results of Saffran et al.6 and Aslin et al.7

demonstrated that 8-month-old infants could, indeed,
solve the word-segmentation problem only after a short
exposure to a stream of speech whose words were
defined solely on the basis of statistical cues. Impor-
tantly, as the stream of speech had never been heard by
the infants prior to the experiment, and half of the
infants were presented with a different stream that had
the opposite set of statistical cues, yet all infants learned
the relevant statistics, the overall pattern of results con-
firms that infants relied on statistical cues in these
streams of speech to solve the word-segmentation prob-
lem in the lab. These results also demonstrate that
months before infants have spoken their first word, and
presumably before they know the meanings of all but a
handful of words, they can utilize a statistical learning
mechanism to extract those chunks of syllables that are
most likely to become words in the language to which
they are exposed (see Samuelson and McMurray, What
does it take to learn a word?, WIREs Cogn Sci, also in
the collection How We Develop). Finally, these results
from infants confirm that statistical learning, like other
implicit learning tasks,8 is accomplished without direct
evidence of conscious hypothesis testing or feedback
from a teacher who identifies the problem to be solved
or the means to solve it.

LANGUAGE-SPECIFIC OR
DOMAIN-GENERAL?

One potential implication that could be drawn from
the initial work on statistical learning is that it is a
special mechanism employed by humans to rapidly
acquire language. If that were true, then it would
have limited relevance to the more general problem
of enabling the naïve learner to rapidly acquire infor-
mation in the environment that is relevant for solving
any task. Two lines of evidence quickly refuted the
language-specificity hypothesis. First, statistical learn-
ing operates over nonlinguistic stimuli including
auditory tones,9 visual shape-sequences,10 and tactile

patterns.11 Second, statistical learning of speech
streams is present in nonhuman species (rats) who
will never acquire language.12

But statistical learning is not limited to the tem-
poral domain. Fiser and Aslin13 created a family of
visual scenes (see Figure 2) that were composed from
an inventory of visual shapes, analogous to the com-
position of words from speech syllables, but now in
the spatial domain. By placing constraints on how
the shapes were positioned in the scenes, the spatial
statistics could be manipulated. At issue was whether
passive viewing of a set of such multi-shape scenes,
where each scene contained a subset of the shape
inventory but always following the rules of shape
combination, would enable adults to extract the
shape combinations that were more predictable. A
posttest after the 5-min exposure phase, in which
144 different six-shape scenes were presented every
2 seconds, revealed reliable sensitivity to the more

(a)

(b)

vs.

Inventory Familiarization Scenes Test Scenes

FIGURE 2 | The stimuli and design of the spatial version of the
statistical learning task from Fiser and Aslin13 with adults. (a) The
inventory of shapes and a sample of their arrangement in 3 × 3 grids.
The shape-pairs used during the post-test showing their joint and
conditional probabilities. The stimuli and design of the analogous task
used with 9-month-old infants by Fiser and Aslin.14 (b) The inventory
of shapes and sample scenes presented during familiarization. The
shape pairs used during the post-test and their underlying statistics.
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statistically coherent shape pairs. Further studies by
Fiser and Aslin15 showed that this sensitivity to spatial
statistics was not limited to shape-pairs, but could be
extended to whatever coherent structures (pairs, tri-
plets, quadruplets) that were present in the family of
scenes. Importantly, this spatial statistical learning
ability is also present in 8-month-old infants.14,16

Coupled with the voluminous evidence of tem-
poral statistical learning in humans for nonlinguistic
stimuli as well as visual statistical learning in the spa-
tial domain, it is now accepted that statistical learn-
ing is modality-, domain-, and species-general.

CONSTRAINTS ON
STATISTICAL LEARNING

The presence of a powerful statistical learning
‘engine,’ especially early in development, provides a
path toward rapid learning. But unless statistical
learning is constrained, it suffers from being too
powerful: learners do not have sufficient processing
resources to extract and retain in memory the vast
number of potential statistics that are available in the
natural environment. Four types of constraints have
been identified that enable statistical learning to be
tractable given access to highly complex stimuli.
(1) Attention that is manipulated by overt instruction
to adults serves as a powerful ‘filter’ on what infor-
mation is analyzed in a statistical learning task.17,18

Although infants cannot be instructed in a similar
manner, they are constrained by implicit attentional
cues, such as the direction of gaze exhibited by a par-
ent.19 Moreover, Kidd, Piantadosi, and Aslin20

showed that infants appear to have an implicit sense
when attention is likely to lead to further information
and when it is likely to be a ‘dead end,’ either
because information is too simple (already known)
or too complex (unknowable).

(2) Perceptual biases that enable some stimuli
to be encoded more readily than others act as a pow-
erful constraint. For example, stimuli that are pre-
sented adjacent in time are easier to associate than
the same stimuli when separated by an intervening
stimulus. Adults have greater difficulty learning non-
adjacent statistics than adjacent statistics unless some
common feature binds them together. In the musical
domain, this binding is accomplished by having tones
come from the same octave21 and in the speech
domain it is based on category similarity (e.g., vowels
vs. consonants22,23).

(3) Prosody is the large-scale variation in pitch
and duration that overlays the individual words in
an utterance. Prosody operates in a language-specific

way at the level of words by dictating patterns of
strong and weak stress (e.g., baggage in English
vs. baguette in French). But prosody also operates in
a language-general way by partitioning sentences into
phrases [e.g., (The little baby) (drank her milk)].
Shukla, White, and Aslin24 showed that 6-month-old
infants use language-general prosody, which signals a
‘gap’ between the two phrases, to prevent statistics
from being computed across a phrase-boundary.

(4) Primacy and Familiarity also play a role in
constraining statistical learning. Gebhart, Aslin, and
Newport25 showed that if adults are exposed to a
single stream of syllables that had one statistical
structure in the first half and a different structure in
the second half, they learn the first but not the sec-
ond. Even a change in the voice of the speaker is
insufficient to induce adults to learn the second statis-
tical structure unless that change in voice occurs
repeatedly.26 Familiarity also plays an important role
in statistical learning. When sounds are unfamiliar,
such as arbitrary noises rather than speech, adults
are unable to encode them efficiently and statistical
learning is prevented unless the rate of presentation
is slowed considerably.27

MECHANISMS, MODELS, AND
GENERALIZATION

The early work on statistical learning focused on
extracting structured information from the input. But
a hallmark of learning is the ability to go beyond the
specific input to which the learner has been exposed.
This process of generalization is crucial in many
domains, like language, because a learner could never
be exposed to every possible input. The ability to
generalize to novel exemplars that bear some similar-
ity to exemplars that have been experienced has been
referred to as a process of abstraction or rule learn-
ing. Marcus, Vijayan, BandiRao, and Vishton28

demonstrated rule learning in 9-month-old infants by
exposing them to 16 different three-syllable
sequences, separated by pauses, that each conformed
to a uniform pattern (e.g., ABB, AAB, or ABA; see
Figure 3). After familiarization, a new set of syllables
was presented in a posttest, with half of the novel syl-
lables forming the familiar pattern and half a novel
pattern. Despite the fact that all post-test strings were
novel, infants discriminated the novel pattern (e.g., a
shift from AAB to ABB) from the familiar pattern.

As in the case of the original findings on statis-
tical learning, these findings on rule learning could be
interpreted as unique to language, but follow-up
studies showed that this form of rule learning is
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present in the visual modality,30,31 for nonlinguistic
auditory stimuli,32 and in nonhumans.33,34 Thus, rule
learning is another example of a powerful mechan-
ism that is both domain- and species-general.

Importantly, the categorical distinction between
statistical learning and rule learning may be over-
emphasized. Gerken29 showed that infants tested in a
paradigm very similar to Marcus et al.28 shifted their
response from a broad generalization (e.g., AAB) to a
narrower generalization (e.g., AA ‘ends in a specific syl-
lable’) depending on how the learning strings were con-
structed (see Figure 3). Thus, infants switched from
attending to ‘abstract’ patterning to attending to ‘sur-
face’ features of the input, suggesting that rule learning
and statistical learning may lie along a continuum rather
than acting as discrete and separable mechanisms.

Further support for this hypothesis comes from
Reeder, Newport, and Aslin35 who conducted a series
of experiments with adults and varied the patterning
of how often certain nonsense words were paired with
other nonsense words. The structure of this patterning
defined the ‘grammar’ of sentences in this artificial
language. In a passive exposure phase, adults listened
to several hundred sentences containing the inventory
of nonsense words, and in a subsequent test phase
they rated whether the sentences were grammatical,
according to the rules used to generate the sentences
in the exposure phase. As expected, familiar sentences
were rated as highly grammatical and novel sentences
that violated the grammatical rules were rated as
ungrammatical. But novel sentences that did not vio-
late the grammatical rules were also rated as gram-
matical, thereby demonstrating generalization or
transfer of knowledge from what adults heard in the
exposure phase to novel sentences. Importantly, when

the exposure phase presented sentences that had per-
sistent ‘gaps’ in the way that certain words were not
paired with other words, adults did not generalize to
fill these gaps. For example, if the word ‘dax’ was fol-
lowed by ‘lif,’ ‘neem,’ and ‘zilk,’ but the word ‘flug’
was only followed by ‘lif’ and ‘neem,’ the gap created
by the absence of ‘zilk’ was judged as real and not
accidental. Thus, depending on the patterning of
words in sentences, adults shift the degree of generali-
zation from an abstract rule (i.e., generalizing to novel
sentences) to judging novel sentences as violating that
rule (i.e., restricting generalization).

A critical issue in studies of statistical learning is
the computational mechanism that enables extraction
of structure and generalization to novel exemplars. It
is possible that this mechanism is invariant over devel-
opment, but it is also possible that new computational
sub-mechanisms emerge as the overall statistical
learning process expands to encompass more complex
environmental input (see Oudeyer, What do we learn
about development from baby robots?, WIREs Cogn
Sci, also in the collection How We Develop). The
original idea proposed by Saffran et al.6 was that lear-
ners rely, at least in part, on computing transitional
probabilities between adjacent syllables (see Figure 1).
But a variety of other models have been proposed
over the past 15 years, including ones that extract
‘chunks’ of syllables using a form of discrete sampling
as attention waxes and wanes,36,37 and ones that
posit an implicit causal structure that generates the
exemplars38 (see Frank et al.39 for a review of com-
peting models). The causal structures approach has
also been successfully applied to visual statistical
learning in the spatial domain.40 Importantly, a vari-
ety of models exhibit the gradient property of general-
ization from specific exemplars (statistical learning) to
abstract principles (rule learning) that is observed in
human learners,28 including connectionist architec-
tures41 (see review by Aslin and Newport42).

WHAT DEVELOPS?

One of the most impressive aspects of statistical
learning in humans is that it appears to be functional
from birth.43–45 Given such a powerful learning
mechanism, it is seductive to conclude that there are
no interesting developmental differences between the
newborn and the adult. Although there is no compel-
ling evidence for a qualitative developmental differ-
ence, there are certainly quantitative differences in
how the statistical learning ‘engine’ gains access to
structured information. For example, infants are
notorious for having limited attentional skills,

Syllable B

Syllable A

di

le

wi wi wi di wi wi je

ji ji ji di ji ji je

de de de di de de je

wi wi li

ji ji li

de de li

wi wi we

ji ji we

de de we

le le di le le je le le li le le we

je li we

FIGURE 3 | The design of the Marcus et al.28 experiment on rule
learning in which 9-month-olds were presented with a large inventory
of syllables with a uniform ABB pattern. The test items presented after
familiarization were composed of entirely novel syllables that either
conformed to the familiar ABB pattern or exhibited a novel AAB
pattern. The Gerken29 experiment used two subsets of the overall
inventory of stimuli from Marcus et al. Blue highlight = broad
generalization. Red highlight = narrow generalization.
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especially their ability to sustain attention.46 Infants
also have limited working memory,47 have sluggish
control over motor systems such as eye movements
that sample the visual environment,48 and must be
exposed to certain types of stimuli before those sti-
muli are familiar enough to be easily encoded.49 All
these information-processing deficiencies limit the
availability and/or quality of structured information
upon which the statistical learning mechanism can

operate. Thus, the development of statistical learning
may be determined largely by the changes in ‘input
systems’ that open a window to enable the extraction
of higher-order structures that are initially ‘invisible’
because of low-level constraints. Future research on
this issue will reveal how these quantitative efficien-
cies cascade to create qualitative changes in the
organization of learning and memory systems over
development.
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