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Imagine that it’s your 10th birthday and your parents have 
given you a new video game—but the instructions are miss-
ing. Surely you can figure it out. You flip on the power switch 
and a stream of sounds comes out of a loudspeaker and a cas-
cade of pictures moves across the display screen. The flow of 
information is overwhelming. What should you attend to: the 
sounds or the pictures? Is it the quality of the sounds or their 
temporal order that matters? Is it the identity of the objects in 
the pictures or their specific shapes and colors that matter?

The conditions in the foregoing scenario are not unlike those of 
the world confronting a naïve learner. There is structure in the 
world, we presume, and some set of principles that determines that 
structure. We can’t possibly learn the structure without gathering 
some input, yet we can’t wait for every potential structure to be 
available in the input before we make inferences about the “rules 
of the game.” However, there are an infinite number of structures 
that could be embedded in the input. In a video game, the sound 
that accompanies an alien’s appearance on the screen could predict 
whether the alien will attack or flee. Similarly, in the natural envi-
ronment, a child learning the names of objects must confront the 
ambiguity of what a word means: Does “doggie” refer to a type of 
animal, the color brown, a furry coat, or having four legs?

Statistical Learning in Language and Vision
The problem is that the learner must select the correct struc-
ture in a given set of data from an infinite number of potential 

structures, without waiting forever and without the aid of an 
instructor who can explain the principles underlying the data 
(Chomsky, 1965). Somewhat surprisingly, adults and even 
infants are quite good at extracting the organizational structure 
of a set of seemingly ambiguous data by merely observing (or 
listening to) the input. We demonstrated this powerful learning 
mechanism in an early study (Saffran, Aslin, & Newport, 
1996) in which we investigated whether 8-month-old infants 
could discover the “words” in a stream of speech when the 
only available source of information was the probability that 
certain syllables occurred in specific temporal orders. The 
infants heard a continuous stream of speech sounds compris-
ing four randomly ordered three-syllable nonsense “words,” 
with no pauses between the words and no pitch- or duration-
based cues to signal the location of word boundaries (see Fig. 
1). What defined a given word, therefore, was the fact that the 
first syllable was always followed by a specific second sylla-
ble, and the second syllable was always followed by a specific 
third syllable; in contrast, the last syllable of each word was 
followed by a number of different syllables (i.e., the first syl-
lables of any of the other words).
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Abstract

Statistical learning is a rapid and robust mechanism that enables adults and infants to extract patterns embedded in both 
language and visual domains. Statistical learning operates implicitly, without instruction, through mere exposure to a set of 
input stimuli. However, much of what learners must acquire about a structured domain consists of principles or rules that 
can be applied to novel inputs. It has been claimed that statistical learning and rule learning are separate mechanisms; in this 
article, however, we review evidence and provide a unifying perspective that argues for a single statistical-learning mechanism 
that accounts for both the learning of input stimuli and the generalization of learned patterns to novel instances. The balance 
between instance-learning and generalization is based on two factors: the strength of perceptual and cognitive biases that 
highlight structural regularities, and the consistency of elements’ contexts (unique vs. overlapping) in the input.
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Thus, the probability that one syllable followed another 
within a word (the transitional probability) was 1.0, whereas 
the transitional probability of syllable pairs at word boundar-
ies was 0.33. In a post-exposure test, the infants demonstrated 
their ability to learn which syllables formed words by respond-
ing differently to trisyllabic sequences that formed a word than 
they did to trisyllabic sequences that spanned the junctures 
between two words (called part-words). After listening to a 
continuous stream of syllables for only 2 minutes, without 
knowing whether or where words were present in the speech 
stream, the infants recognized the words—that is, they man-
aged to discover the correct underlying structure through mere 
exposure.

Saffran et al. (1996) suggested the term statistical learning to 
refer to the process by which learners acquire information about 
distributions of elements in the input. In this experiment, the ele-
ments were the syllables and the distributions were the statistics 
of how likely these elements were to occur in relation to one 
another (see Fig. 2a). Because the frequency of syllables was 

equated, learners could not use this statistic to segment words. 
However, another statistic—one that could be used to distinguish 
words from other sequences of syllables in the stream of speech—
was the transitional probability from one syllable to the next. If 
learners could keep track of this statistic for every pair of syllables 
in the stream, they would be able to discriminate between words 
and part-words. The results of the Saffran et al. study suggested 
that learners were indeed computing such a statistic (though with-
out being aware of performing such a computation).

Another example of statistical learning comes from the 
domain of speech perception. Maye and her colleagues (Maye, 
Weiss, & Aslin, 2008; Maye, Werker, & Gerken, 2002) pre-
sented infants with syllables that came from a continuum 
spanning two phonetic categories (see Fig. 2b). When the fre-
quencies of the various syllables in the exposure formed a uni-
modal distribution (i.e., the most frequently presented syllables 
were from the middle of the continuum), infants did not dis-
criminate the difference between the categories; however, 
when the syllables formed a bimodal distribution (i.e., the 
most frequently presented syllables were from the two ends of 
the continuum), discrimination was reliable. Thus, as in  
Saffran et al. (1996), infants extracted a statistic (in this case, 
syllable frequencies) from a corpus of speech to make implicit 
decisions about a test stimulus that came from that corpus.

Subsequent experiments have shown that these remarkable 
statistical-learning abilities are not limited to the domain of 
language. Kirkham, Slemmer, and Johnson (2002) reported 
that after exposure to a temporal sequence of visual shapes, 
infants as young as 2 months of age could discriminate 
between familiar and novel sequences of shapes. Fiser and 
Aslin (2002) showed that 9-month-old infants could learn the 
statistical consistency with which shapes were spatially 

. . .  pa bi ku go la tu da ro pi  ti bu do  . . .

Word 1

Test Word Test Part-word

Word 2 Word 3 Word 4

Fig. 1. Stimuli from Saffran, Aslin, and Newport (1996). In this study, infants 
heard a continuous stream of speech sounds comprising four randomly 
ordered three-syllable nonsense “words.” In a post-exposure test, we 
investigated whether infants distinguished words from part-words (i.e., 
trisyllabic sequences that consisted of syllables from two different words).
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Fig. 2. Distribution of transitional probabilities of syllable pairs within and across words in stimuli from Saffran, Aslin, and Newport 
(1996; a) and distribution of phonetic tokens lying along a /da/–/ta/ continuum from Maye, Werker, and Gerken (2002; b). In the graph 
on the right, the distribution indicated by the blue line is unimodal and the distribution indicated by the red line is bimodal.



Statistical Learning 3

arranged in visual scenes. In addition, recent studies have  
documented statistical learning of both auditory stimuli  
(Teinonen, Fellman, Naatanen, Alku, & Huotilainen, 2009) 
and visual stimuli (Bulf, Johnson, & Valenza, 2011) in new-
borns. Thus, statistical learning is a powerful and domain-gen-
eral mechanism available early in development to infants who 
are naïve (i.e., uninstructed) about how to negotiate a complex 
learning task.

These results show that a statistical-learning mechanism 
enables learners to extract one or more statistics and use this 
information to make an implicit decision about the stimulus mate-
rials that were present in the input. This ability is important for 
learning which syllables form words, for estimating the number 
of peaks in a distribution of speech sounds, and for discovering 
which visual features form the parts of a scene. But this does not 
address the question of how learners form rules—abstractions 
about patterns that could be generalized to elements that have 
never been seen or heard. How do learners who are exposed to a 
subset of the possible patterns in their input go beyond this to 
infer a set of general principles or “rules of the game”?

From Statistical Learning to Rule Learning
Several studies have documented that infants can make the 
inductive leap from observed stimuli to novel stimuli that fol-
low the same rules. Gomez and Gerken (1999) presented 
12-month-olds with short strings of nonsense words. These 
words formed categories similar to nouns and verbs, and 
infants showed evidence of learning that a grammatical noun–
verb pair that was not present in the exposure stimuli, but was 
composed of familiar words and followed the grammatical 
pattern, was nevertheless “familiar.”

Marcus, Vijayan, Bandi Rao, and Vishton (1999) went even 
further. They showed that 7-month-olds who listened to three-
word strings containing a repeating word in either the first two 
or the last two positions (i.e., AAB or ABB) were able to gen-
eralize that repetition rule to completely novel words. As in 
the case of statistical learning, learning of this AAB or ABB 
pattern of repetition is not limited to linguistic stimuli but also 
applies to visual stimuli and to musical sequences (Dawson & 
Gerken, 2009; Johnson et al., 2009; Marcus, Fernandes, & 
Johnson, 2007; Saffran, Pollak, Seibel, & Shkolnik, 2007).

Some researchers have claimed that statistical learning and 
rule learning are two separate mechanisms, because statistical 
learning involves learning about elements that have been pre-
sented during exposure, whereas rule learning can be applied 
to novel elements and novel combinations (see Endress & 
Bonatti, 2007; Marcus, 2000). But why do learners sometimes 
keep track of the specific elements in the input they are 
exposed to and at other times learn a rule that extends beyond 
the specifics of the input? An alternate hypothesis is that these 
two processes are in fact not distinct, but rather are different 
outcomes of the same learning mechanism.

For example, some stimulus dimensions are naturally more 
salient than others. If stimuli are encoded in terms of their 

salient dimensions rather than their specific details, then learn-
ers will appear to generalize a rule by applying it to all stimuli 
that exhibit the same pattern on these salient dimensions. 
Returning to the scenario of the instruction-less video game, 
as sounds are playing and objects are flying across the screen, 
it may be extremely difficult for the 10-year-old to remember 
the specific sounds or shapes of objects, but you know imme-
diately that all the sounds are high pitched (or not) and that all 
the objects are falling (or not). These highly salient dimen-
sions constrain the way in which the learner encodes the 
potential structure in the input, dramatically reducing the 
ambiguity about what the learner should attend to. If high-
pitched sounds predict a hostile invader and falling objects 
provide protection, the learner can quickly induce the rules 
that enable longevity in the game.

Salient perceptual dimensions can also constrain the statis-
tical patterns that learners most readily acquire. Temporal 
proximity is a powerful constraint: Learners rapidly acquire 
the statistical patterns among elements that immediately fol-
low each other. Moreover, infants are particularly attentive to 
the immediate repetition of a stimulus (Marcus et al., 1999), 
even infants as young as 1–2 days of age (Gervain, Macagno, 
Cogoi, Pena, & Mehler, 2008). However, temporal proximity 
does not always dominate learning. Adults automatically 
attend to the musical octave of a sequence of tones, and this 
(more than temporal proximity) can constrain how they learn 
the statistical relationships between tones. Learners acquire 
the melodic patterns among tones in the same octave even if 
they do not immediately follow one another, whereas melodic 
patterns among interleaved and adjacent tones in different 
octaves are not acquired (Creel, Newport, & Aslin, 2004; 
Dawson & Gerken, 2009). More generally, gestalt principles 
of perceptual grouping (e.g., temporal proximity and percep-
tual similarity) serve as important constraints on the element 
groupings whose statistical regularities are most readily 
learned (Creel et al., 2004; Endress, Nespor, & Mehler, 2009). 
These constraints influence whether adults learn statistical 
regularities among elements that are temporally adjacent or 
that span an intervening element (Gebhart, Newport, & Aslin, 
2009; Newport & Aslin, 2004).

Rule Learning Without Perceptual Cues
Although perceptual cues can serve as powerful constraints on 
statistical learning, perceptual salience is not how most rules 
are defined in the natural environment. For example, all chairs 
have some perceptual similarity, but it is the function of a 
chair, not its form, that defines it. Similarly, in language, verbs 
do not sound alike, and they do not consistently sound differ-
ent from nouns. What allows a naïve learner to induce a gen-
eral rule that applies to a set of elements rather than just one 
instance but has no perceptual basis? One possibility is that 
learners are sensitive to contexts that signal this important dis-
tinction: They acquire rules when patterns in the input indicate 
that several elements occur interchangeably in the same 
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contexts, but acquire specific instances when the patterns 
apply only to the individual elements. For example, Xu and 
Tenenbaum (2007) have shown that if children hear the word 
“glim” applied to three different dogs, they will infer that 
“glim” means dog. In contrast, if “glim” is used three times to 
refer to the same dog, children interpret it as the dog’s name. 
The same contrast between learning items and learning rules 
can occur for syllable and word sequences.

Gerken (2006) has made this argument by reconsidering 
and modifying the design of the Marcus et al. (1999) rule-
learning experiment (see Fig. 3). Marcus et al. presented 16 
different AAB strings in the learning phase of their experi-
ment. Notice in Figure 3 that four strings ended in di, four 
ended in je, four ended in li, and four ended in we. Thus, 
infants could have learned the general AAB rule, or they could 
have learned a more specific pattern: that every string ended in 
di, je, li, or we. The more consistent or reliable cue was the 
repetition of the first two syllables—the AAB rule—because it 
applied to every string, whereas the “ends in di (or je, or li, or 
we)” rule applied to only one-fourth of the strings.

Gerken (2006) asked whether infants presented with a sub-
set of the 16 strings from the Marcus et al. (1999) study would 
favor the “repetition of the first two syllables” rule or the 
“ends in di, je, li, or we” rule. Infants who heard only four 
AAB strings that ended in the same syllable (e.g., di in the 
leftmost column of Fig. 3) were tested on two equally plausi-
ble rules: (1) all strings involve an AAB repetition, and (2) all 
strings end in di. These infants failed to generalize the first 
rule to a novel string that retained the AAB pattern but did not 
end in di. In contrast, infants who heard only four AAB strings 
lying along the diagonal in Figure 3 replicated the Marcus  
et al. result. Because these strings shared an AAB pattern but 
ended in four different syllables, only the AAB rule was 
reliable.

In recent work, we (Reeder, Newport, & Aslin, 2009, 2010) 
demonstrated a similar phenomenon—and described some of 
the principles for its operation—in the learning of an artificial-
language grammar. In our experiments, adult learners were 
presented with sentences made up of nonsense words that 
came from three different grammatical categories (A, X, and 

B), much like subjects, verbs, and direct objects in sentences 
such as “Bill ate lunch.” Depending on the experiment, the 
input included sentences in which all of the words within a 
particular category occurred in the same contexts (e.g., words 
X1, X2, and X3 all occurred after any of the A words and before 
any of the B words), or the input included only sentences in 
which the X words occurred in a limited number of overlap-
ping A-word or B-word contexts.

Adult learners are surprisingly sensitive to these differ-
ences. Our results showed that participants’ tendency to gener-
alize depended on the precise degree of overlap among word 
contexts that they heard in the input, and also on the consis-
tency with which a particular A or B word was missing from 
possible X-word contexts. Adults generalize rules when the 
shared contexts are largely the same, with only an occasional 
absence of overlap (i.e., a “gap”). However, when the gaps are 
persistent, adults judge them to be legitimate exceptions to the 
rule and no longer generalize to these contexts. Thus, similar 
to the results of Gerken (2006), our findings showed that it 
was the consistency of context cues that led learners to gener-
alize rules to novel strings, and it was the inconsistency of 
context cues that kept learners from generalizing and led them 
to treat some strings as exceptions.

The key point here is that in terms of the reliability of con-
text cues, statistical learning and rule learning are not different 
mechanisms (see Orban, Fiser, Aslin, & Lengyel, 2008). When 
there are strong perceptual cues, such as the repetition of ele-
ments in an AAB sequence, a statistical-learning mechanism 
can compute the regularities of the repetitions (i.e., they are 
either present or absent) or of the elements themselves (e.g., 
the particular syllables). And, as hypothesized by Gerken 
(2006) and Reeder et al. (2009, 2010), even when there are no 
perceptual cues, the consistency of how the context cues are 
distributed across strings of input determines whether a rule is 
formed—enabling generalization to novel strings—or whether 
specific instances are learned. According to this hypothesis, 
statistical learning is a single mechanism whose outcome 
applies either to elements that have been experienced or to 
generalization beyond experienced elements, depending on 
the manner and consistency with which elements are patterned 
in the learner’s input. Importantly, this balance of learning is 
accomplished without instruction, through mere exposure to 
structured input.

Language Universals and  
Statistical Learning
Perceptual salience and the patterning of context cues are not 
the only factors that can influence what learners acquire via a 
statistical-learning mechanism. An extensive literature in lin-
guistics has argued that languages of the world display a small 
number of universal patterns—or a few highly common pat-
terns, out of many that are possible—and has suggested that 
language learners will fail to acquire languages that do not 
exhibit these regularities (Chomsky, 1965, 1995; Croft, in 

Syllable B

Syllable A

le

wi

ji

de

di je li we

wiwidi wiwije wiwi li wiwiwe

ji ji di ji ji je ji ji li ji ji we

dededi dedeje dedeli dedewe

leledi leleje leleli lelewe

Fig. 3. The design of Marcus, Vijayan, Bandi Rao, and Vishton (1999).The two 
sets of four words used by Gerken (2006) are highlighted in red and blue.
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press; Greenberg, 1963). Recently, a number of studies using 
artificial grammars have indeed shown that both children and 
adults will more readily acquire languages that observe the 
universal or more typologically common patterns found in 
natural languages.

For example, Hudson Kam and Newport (2005, 2009) and 
Austin and Newport (2011) presented adults and children with 
miniature languages containing inconsistent, probabilistically 
occurring forms (e.g., nouns were followed by the nonsense 
word ka 67% of the time and by the nonsense word po the 
remaining 33% of the time). This type of probabilistic varia-
tion is not characteristic of natural languages, but it does occur 
in the speech of nonnative speakers who make grammatical 
errors. Adult learners in these experiments matched the proba-
bilistic variation they had heard in their input when they pro-
duced sentences using the miniature language, but young 
children formed a regular rule, producing ka virtually all of the 
time, thereby restoring to the language the type of regularity 
that is more characteristic of natural languages.

Other artificial-language studies (Culbertson & Legendre, 
2010; Culbertson, Smolensky, & Legendre, 2011; Fedzechkina, 
Jaeger, & Newport, 2011; Finley & Badecker, 2009; Tily, Frank, 
& Jaeger, 2011) have shown that even adult learners preferen-
tially learn languages that follow universal linguistic patterns and 
often alter the languages to be more in line with these universals. 
In adult learners, these alterations are very small, but such changes 
can accumulate over generations of learners, shifting languages 
gradually through time (Tily et al., 2011).

It is not always clear why learners acquire certain types of 
patterns more easily than others (and why languages therefore 
more commonly exhibit these patterns). Some word orders 
place prominent words in more consistent positions across dif-
ferent types of phrases; other patterns are more internally reg-
ular or conform better to the left-to-right biases of auditory 
processing. A full understanding of the principles underlying 
these learning outcomes awaits further research. What is clear, 
however, is that statistical learning is not simply a veridical 
reproduction of the stimulus input. Learning is shaped by a 
number of constraints on perception and memory, at least 
some of which may apply not only to languages but also to 
nonlinguistic patterns.

Summary and Future Directions
Studies of statistical learning have revealed a remarkably 
robust mechanism that extracts distributional information in 
different domains and across development. There remain two 
fundamental challenges for the future: (1) to provide a com-
prehensive theory of the statistical computations that suffice to 
explain such learning, and (2) to understand the neural mecha-
nisms that support statistical learning and determine whether 
and how these mechanisms change over development (see 
Abla, Katahira, & Okanoya, 2008; Abla & Okanoya, 2008; 
Friederici, Bahlmann, Helm, Schubotz, & Anwander, 2006; 
Gervain et al., 2008; Karuza et al., 2011; McNealy, Mazziotta, 

& Dapretto, 2006, 2010; Teinonen et al., 2009; Turk-Browne, 
Scholl, Chun, & Johnson, 2009).
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