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Abstract

Everyday human interaction relies on making inferences about
social goals: goals that an intentional agent adopts in relation
to another agent, such as “chasing”, “fleeing”, “approaching”,

29 ¢

“avoiding”, “helping” or “hindering”. We present a computa-
tional model of social goal inference that takes as input obser-
vations of multiple agents moving in some environmental con-
text. The model infers a social goal for each agent that is most
likely to have given rise to that agent’s observed actions, under
an intuitive theory that expects agents to act approximately ra-
tionally. We provide evidence for our theory-based approach
over a simpler bottom-up motion cue-based approach in a be-
havioral experiment designed to distinguish the two accounts.
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Even the simplest everyday social interactions are sup-
ported by complex mental representations and processes.
Contingent on the environment, our prior knowledge and our
desires, we form goals, beliefs, intentions and other mental
states with rich representational content. When we observe
or participate in social interactions, we make joint inferences
about the mental states of multiple interacting agents. For
instance, watching a short film of two people moving in-
side a house, we might interpret it as follows: “X is try-
ing to catch Y, and Y is trying to escape. X is sneaking
up on Y in the bedroom but doesn’t realize that Y has al-
ready seen him and is preparing to escape out the back.” In-
ferring such intentional descriptions of social interactions is
computationally challenging. Other agents’ mental states are
not directly observable, and the space of possible beliefs and
goals that one agent could have with respect to another is ef-
fectively infinite. Yet these inferences are remarkably quick
and robust. Adults (Heider & Simmel, 1944) and even in-
fants (Kuhlmeier, Wynn, & Bloom, 2003; Hamlin, Wynn,
& Bloom, 2007; Gergely, Nadasdy, Csibra, & Bir6, 1995)
can infer relational goals such as “chasing”, “helping”, and
“harming” from brief animations of simple shapes moving in
a two-dimensional environment.

To account for inferences like these, it has been proposed
that people draw on an intuitive theory of psychology, which
may already be present in infancy in some simpler form as
a rational agent schema (Gopnik & Wellman, 1992; Gopnik
& Meltzoff, 1997; Gergely et al., 1995). This approach casts
the interpretation of intentional action as a top-down process,
drawing on a causal model of how agents’ beliefs, intentions
and environmental and social context jointly influence their
behavior. Agents’ mental states are inferred from observed
social interactions through a process of “inference to the best
explanation”, positing the goals and beliefs under which their
observed actions are most plausible in the observed context.

A key challenge for theory-based accounts of action un-
derstanding is precisely specifying the nature of the causal
relation between intentions, context and behavior. Several
authors (Dennett, 1987; Gergely et al., 1995) have argued
that this relation embodies the principle of rationality: the
assumption that intentional agents should act to achieve their
goals as efficiently as possible, given their beliefs about the
world. The principle of rationality is appealing because it
applies very generally across agents, intentions, and con-
texts, providing a way to dynamically build causal models
of agents’ behavior in novel situations. However, the sense
of rationality that people apply can be nuanced, particularly
in the case of social interaction, where the rational strategy
of an agent might depend on its expectations of others’ be-
havior, whose rational strategies depend on expectations of
its behavior, and so on ad infinitum.

An alternative approach (Blythe, Todd, & Miller, 1999;
Barrett, Todd, Miller, & Blythe, 2005; Zacks, 2004) to speci-
fying the relation between mental states, context and behavior
emphasizes simple visual cues that can be computed through
bottom-up perceptual processes. Movements with a particu-
lar social intention, such as “chasing” or “fleeing”, are per-
ceived as instances of categories defined by prototypical mo-
tion patterns. For example, by measuring the relative direc-
tions and velocities of two agents’ motions, we might be able
to identify if one is trying to catch the other.

A simple cue-based approach appeals in part because it
seems to be the kind of computation that can be done rapidly,
robustly and in young infants without sophisticated cognitive
capacities. It can also be formalized precisely in computa-
tional models (Blythe et al., 1999). However, it is unlikely
to be sufficient to explain human social inference. The in-
ferences of both adults and infants are highly sensitive to the
environmental and task contexts in which actions take place,
in ways that are hard to explain by a bottom-up motion anal-
ysis but suggest a deeper causal basis (Gelman, Durgin, &
Kaufman, 1995). For instance, there are situations in which
Y may be trying to avoid X, but Y’s best action is to head
toward X rather than away from X; Y may be trapped in a
corner with only one route of escape that runs directly past X.

Theory-based approaches seem to offer a deeper account of
social goal inference, but unlike bottom-up cue-based mod-
els, they have not been worked out computationally or tested
rigorously. These are the goals of our present paper. We give
a Bayesian formulation of the theory-based approach to infer-
ring social goals from observed action sequences. Our frame-
work can capture a range of theory-based models, differing in
how richly they model agents’ mental states. We show how



different theory-based approaches can be tested against each
other and against simpler cue-based approaches.

Previously (Baker, Tenenbaum, & Saxe, 2006, 2007) we
showed how to model action understanding as inverse plan-
ning: Bayesian inference about the structure of a goal-based
Markov Decision Problem (MDP), a rational model for prob-
abilistic planning. Here, we extend this work to model peo-
ple’s inferences about social goals, such as approaching and
avoiding, from observations of multiple agents interacting in
simple environments.

People’s representations of other minds might include not
just first-order content, such as agents’ intentions or beliefs
about the state of the world, but also second-order content:
representing agents’ strategies, contingent on their repre-
sentation of other agents. Second-order mentalizing is par-
ticularly important in social interaction, where understand-
ing social relations between agents such as helping, loving,
loathing, and empathizing require the ability to represent a
mind representing another mind. We show how to represent
both first- and second-order content in our framework.

The plan of the paper is as follows. We first introduce our
computational framework for theory-based social goal infer-
ence, and then describe several alternative heuristic motion
cue-based models which we consider. Next, we compare the
accuracy of both theory-based models and cue-based mod-
els in predicting how people categorize pairs of interacting
agents moving in simple environments. We close by dis-
cussing the insights gained into the representations and prin-
ciples underlying people’s social goal inferences.

Computational framework

Our theory-based framework represents the structure of the
causal relation between agents’ environmental and social
context, their mental states, and their behavior. Fig. 1 il-
lustrates how models of rational planning allow observers
to dynamically generate a conditional probability distribution
over agents’ actions (A;), given their goals (G;), their beliefs
about other agents’ goals (B;(G;); “social context”) and the
state of the world (W). For simplicity, we consider situations
with two agents, who both have complete knowledge of the
world state W = (S1,S>, E), which includes both agent states
S1,95; and the environment E. The environment is assumed
to be static, while agent states are dynamic. In Fig. 1, agents
choose their actions independently of each other, so the con-
ditional joint probability over actions factors into the product
of the conditional probability of each agent’s action:

P(A1,A2|G1,G2,B1(G2),B2(G1),W) =
P(A1|G1,B1(G2),W) - P(A2|G2,B2(G1),W). (1)
Inferring mental states given observed actions and the
world state is done by inverting this model using Bayes’ rule:
P(G1,G2,B1(G2),B2(G)|A1,A2,W) <
P(A1|G1,B1(G2),W) - P(A2|G2,B2(G1), W)
-P(G1,B1(G2)) - P(G2,B2(Gr)), (2)

called inverse planning. Equation 2 describes a kind of “inter-
action parse”, assigning social goals and beliefs about others’
goals to all agents by integrating bottom-up information from
observed actions with top-down information from the context
and the prior over agents’ mental states, P(Gj, Bi(G;)).
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Figure 1: Causal schema for an intuitive theory of social in-
teraction, specialized to two agents for simplicity.

We model first- and second-order content in people’s the-
ories with agents of type L1 and L2, respectively. Agents of
both types have social goals. We assume that L1 agents do
not represent other agents’ goals, and thus cannot anticipate
others’ actions. We model L1 agents’ predictions as being
maximally uncertain about other agents’ behavior, predict-
ing they will follow a random walk. L2 agents are assumed
to represent other agents’ social goals, and to model others’
planning processes to predict their future behavior, allowing
L2 agents to pursue their own goals more efficiently.

For concreteness, we consider two kinds of social goals
for L1 and L2 agents: Approach and Avoid. The meaning
of these goals roughly corresponds to the meaning of their
words in English; however, their precise semantics is defined
by their role in our theory-based models of social interaction.
We assume a uniform prior over goals, so that cooperation
and competition are equally likely. Next, we describe how
Equation 1 is computed for these social goals.

(Inverse) planning with social goals

The principle of rationality states that agents will take effi-
cient means to achieve their goals, given their beliefs about
the world. We assume that agents receive rewards that de-
pend on their goals, their own states and the states of their
conspecifics, and that agents plan to maximize their expected
future rewards minus the costs they incur, potentially using a
predictive model of the other agent’s behavior.

Let R (W,G;) be an agent’s real-valued reward function,
defined over the state of the world and the agent’s goal. We
assume the reward function for each goal is a linear function
of the geodesic (shortest-path) distance geo_dist(S;,S;) be-
tween agent i and agent j:

R(W,Approach) =
R (W,Avoid) =

—o-geo_dist(S;,S5;), (3)
o-geo_dist(S;,S;). 4)



Let C(S!,a},E) be the cost of taking action a/ from state
Si’ in environment E, defined to be the Euclidean distance of
the resulting movement. The rational behavior (or optimal
policy) ©} for an agent is defined to be the rule of action that
maximizes the expected sum of future rewards, while mini-
mizing the sum of incurred costs. The value function of 7},
defined over the world state W, agent i’s goal G;, and agent

i’s belief about agent j’s goal B;(Gj) is:
V™ (W,Gi,Bi(G))) =

B | 2 (R0V.6) =5l ) w0 = w5

where the discount rate 'y determines how much the agent val-
ues immediate rewards over future rewards.

To maximize their expected future rewards, agents must
choose actions that incur a low cost and lead to states with
high value. The value of action a/ in world W’, given G; and
B;(Gj) is defined as the reward of the current state, minus the
cost of the action, plus the expected discounted sum of future
rewards after the action:

*
i

Qn (ait?thGi’Bi(Gj)) = K(WtaGi) - C(SitvaitaE)“_
Y- Epwetwe af) (VT (W' Gy, Bi(G)))]. (6)

We assume that agents maximize rewards probabilistically,
and sometimes only approximate the optimal sequence of ac-
tions. The probability that agent i will take action a/ from
world state W', given G; and B;(G;) is:

P(air|GivBi(Gj)7Wr> o< exp(B' an‘ (afan7 GivBi(G/)))' (7

Given Equation 7, Equation 1 is computed as the product of
the probability of each agent’s actions over all time steps.

Computing the expectation involved in Equation 5 requires
averaging over all future state sequences, conditioned on W,
G;and B;(Gj). For L1 agents, B;(Gj) =Null, and we assume
their model of other agents is given by a uniform distribution
over available actions, predicting a random walk through the
state space. For L2 agents, representing other agents’ goals
allows anticipation of their future actions. We assume that L2
agents represent the other agent as having type L1, and first
compute the optimal policy 7; for this agent given B;(G;). L2
agents then predict other agents’ behavior using Equation 7,
and plan their own actions contingent on these predictions.
For both L1 and L2 agents, Equation 5 can be efficiently
approximated using dynamic programming algorithms (Bert-
sekas, 2001).

Motion cue-based models

In addition to the theory-based models L1 and L2, we con-
sider two models based on low-level motion cues, inspired
by a “simple heuristics” account of human social goal infer-
ence (Blythe et al., 1999; Zacks, 2004). Unlike theory-based
models, cue-based models do not represent other agents’

mental states or use a model of rational planning to reason
about how other agents’ behavior depends on the context.
Instead, these models directly associate social goals such as
chasing or fleeing with typical movement patterns that can be
computed efficiently from local information, like changes in
direction or velocity.

We denote our motion cue-based alternatives H1 and H2.
Both models assume that movements which decrease the dis-
tance to the other agent suggest the goal of approaching the
other agent, while movements that increase the distance from
the other agent suggest the goal to avoid. In H1, social goal
inferences are assumed to be independent of the environment,
and are computed solely based on movement relative to the
location of the other agent. In H2, the environment is as-
sumed to influence agents’ behavior in a local way: H2 is ex-
pected to move closer to or farther from the other agent along
the geodesic path, given its goal and subject to the constraints
of the environment, but without planning ways in which lo-
cally moving closer to or farther from the other agent may be
arational strategy.

For the sake of comparison with L1 and L2, we implement
H1 and H2 as degenerate cases of theory-based models with
no planning capacity. Let R (W', G;) and C(S!,a},E) be de-
fined as above. The probability of action a!, given the world
state and goal G; for an H1 or H2 agent is:

P(ait|GivBi(Gj)ﬂWt) o<
exp (B(Epgyrt e ap [ROVH,G)] = C(S]al,E)) ). ®)

Compared with L1 and L2, H1 and H2 could be considered to
have “zero-th order representational content”. Next, we de-
scribe an experiment designed to distinguish the predictions
of these models and provide evidence for higher-order repre-
sentational content in human social goal inference.

Experiment

Our experiment was designed to distinguish the predictions
of theory-based models L1 and L2 from motion cue-based
models H1 and H2. We collected people’s judgments in a
task of inferring two agents’ social goals toward one another
given short observations of their interactions in a simple, two-
dimensional maze-like environment. Subjects were told that
the agents could have a variety of social goals, such as catch-
ing or meeting up with the other agent, or trying to flee, es-
cape or avoid it. They were then asked to categorize each
agent in terms of its social goal.

Our experimental design varied the environmental and
social context and the relative motion patterns of the two
agents to assess our models’ accuracy in predicting people’s
judgments. We hypothesized that only theory-based models
would be able to explain the interaction between people’s sen-
sitivity to subtle environmental changes and the highly salient
motion cues provided by agents’ action sequences. In partic-
ular, by holding agents’ relative motion fixed while changing
the context in ways that affected the relative value of differ-



ent actions for theory-based models, but not for motion cue-
based models, we hypothesized that cue-based models would
fail to account for people’s social goal inferences across all
conditions.

Method

Participants Participants were 20 members of the MIT
community, 13 female and 7 male.

Stimuli Our stimuli were designed following previous re-
search showing that simple two-dimensional animations of
moving shapes evoke strong impressions of animacy and in-
ferences of mental states (Tremoulet & Feldman, 2000). All
experimental stimuli are shown in Fig. 2. Each stimulus dis-
played two agents, represented by red and green dots respec-
tively. As agents moved along their trajectories, smaller dots
of the same color trailed behind them, recording their path
history. Agents’ paths were either 4 steps or 6 steps long.
The environment was a discrete grid of 23 squares wide by
23 squares high, with walls represented as solid black lines.
Agents’ movements were restricted to adjacent squares, with
directions {N,S,E,W,NE,NW,SE,SW}. Up-down orientation
of the display was counterbalanced within subjects, yielding
56 stimuli in total. The side on which red and green agents
appeared, and the order of the “Avoiding/Approaching”
options were randomized between subjects (but constant
throughout the experiment for individual subjects). Stimuli
were presented in random order.

Our experimental design combined four different relative
movement conditions with 7 different environmental and so-
cial contexts. The four relative movement conditions were:
— <, ——, «—+—, and «<—. These movement conditions are
shown across the rows of Fig. 2.

The 7 different contexts are shown across the columns of
Fig. 2. Conditions 2-6 varied the environmental context by
modifying the pattern of gaps in the wall of the maze, and
contexts 3-5, marked with a star above in Fig. 2, displayed
identical motion patterns in all contexts to isolate the effect
of the different contexts on people’s inferences. Conditions 1
and 7 varied the length of the agents’ paths, displaying two
more steps than the other conditions.

Procedure Subjects were first presented with a cover story
about intelligent aliens interacting in their natural environ-
ment. They were told that the aliens could not move through
walls in the environment but that they could move through
gaps in walls, and that they could see past walls and knew the
complete state of the world at all times. Several possible so-
cial goals, such as “trying to catch, ..., approach, ..., meet up
with, ..., and engage with” were given as reasons for trying
to get closer to the other alien, and “trying to flee, ..., escape,
..., avoid, ..., or disengage” were given as reasons for trying
to get farther away. They were then told that each of the four
combinations of social goals was equally likely. During the
experiment, subjects viewed short animations of agents’ in-
teractions and made forced-choice decisions between the op-
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tions “Approaching”, “Avoiding” and “Can’t tell” for both
agents in each stimulus.

Modeling We applied Equation 2 to model people’s judg-
ments. For L2 agents, computing the posterior marginal over
goals was done by marginalizing over the agent’s beliefs
about the other agent’s goal, assuming a uniform prior over
Approaching and Avoiding.

For each stimulus, the model provided the posterior prob-
ability that each agent had goal Approaching (the probabil-
ity that an agent had goal Avoiding was the complement of
this). To compare people’s judgments to these model pre-
dictions, we first coded the Approaching rating as 1, the
Avoiding rating as 0, and the “Can’t tell” rating as 0.5.
We then averaged over the counterbalanced orientation con-
ditions within subjects, and averaged over ratings between
subjects and computed the standard errors of these means.

ForL1and L2, weuseda=.5,f=1,and y=.9. o was set
by hand to yield Q values that were of comparable magnitude
to action costs, and B was set to 1 by default. We explored a
range of 7y values, with Y= .9 providing the best fit to peo-
ple’s judgments, although nearby values yielded comparable
results. For H1 and H2, we used B and o values of 1. LI
and L2 made similar predictions for our stimuli at the chosen
parameter values; we only display L2. H1 and H2 yielded
similar predictions as well; only H2 is shown.

Results

Results of the experiment are shown in Fig. 3. People’s judg-
ments are shown in column 1, demonstrating significant sen-
sitivity to environmental factors. For instance, in contexts
3-5, people’s ratings showed significant variability within the
movement conditions, despite the fact
that the paths were identical across the three environments.
L2 predicted this variability, while H2 predicted no variabil-
ity in any of the contexts, basing its predictions on superficial
motion features every time.

In addition to predicting the sensitivity of people’s judg-
ments to environmental factors very accurately across con-
texts 3-5, there are several specific phenomena that confirm
L2’s predictions as well. Consider L2’s predictions for con-
texts 3 and 5 for movement —+«—: in context 3, L2 rates Red’s
movement as being very ambiguous, as do people. However,
in context 5, where the gap is located on the other side of the
environment, L2 predicts that Red is probably trying to ap-
proach Green, in accord with people’s judgments again. A
replication of this effect occurs for Red between contexts 3
and 5 for the —— movement as well.

Another example of a dramatic shift in judgments occurs
between contexts 2 and 3 for movements —+«— and ——. In
these cases, in context 2, people rate the probability of Red
trying to approach Green very highly, presumably because if
it were trying to escape, it would have gone through the exit
behind it. However, in context 3, when this exit is eliminated,
people are now uncertain about whether Red is approaching
or avoiding. L2 predicts this effect very accurately.

— <, ——, and «—
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Figure 2: Experimental stimuli. The experimental design combined four different relative movement conditions with 7 different
contextual conditions. In contexts 3-5, marked above by an “*”, contexts and movement patterns varied independently, allowing

the effect of the different contexts to be isolated.

The L2 model also provides a plausible explanation for
why people make the inferences they do. For instance, for
movement —«— in context 3, Red’s action appears to be an
equally sensible option whether it is approaching or avoiding,
which the model confirms. In the cases where L2 strongly fa-
vors one interpretation over the other, both people and the
model see the agent’s actions as unambiguously supporting
this interpretation.

In contrast, because H2 does not incorporate planning into
its predictions, it assumes that agents with the avoid goal will
head directly away from the other agent, and that agents with
the approach goal with head directly for the other agent. Be-
cause of this, H2 makes the same predictions in every context
for the movement condition, failing to account for the effect
of context on people’s judgments, as originally hypothesized.

Conclusion

How can we reason about the social goals of other people,
effortlessly inferring that “she’s chasing him” and “he wants
her to notice him”? On one side, bottom-up approaches fo-
cus on simple, easily computed cues such as the relative mo-
tion between two agents. On the other side, theory-based ap-
proaches cast these inferences as top-down processes draw-
ing on abstract knowledge and sensitive to context and back-
ground knowledge. The theory-based approach is attractive
for its promise of capturing more realistic interactions across

a very general set of contexts, but can be quite difficult to
interpret in a precise, computational way.

This paper presented a family of theory-based models of
social goal inference. These models all embody the principle
of rationality and use inverse planning as their core inferential
engine, but vary in the sophistication of representations re-
quired. At one end, the simplest of these models (L1) allows
agents to represent only the properties of other agents (such as
location), but not their goals. The most sophisticated of these
models (L2) realizes second-order social goal inference: rea-
soning about agents’ representations of other agents’ goals.
We distinguished simple cue-based models from our theory-
based models using an experiment based on simple motion
patterns of pairs of agents, but both first-order and second-
order models accounted for people’s judgments.

Further work is needed to better distinguish between first-
and second-order content in social goal inference, and to un-
derstand the factors that affect people’s use of these various
representational abilities. More generally, the inverse plan-
ning approach can be applied to a much wider range of social
goals than we have considered here. We are particularly in-
terested to model goals such as “helping” or “hindering”, in
which agents take as their reward function some function of
another agent’s reward. Inference to these goals has recently
been shown to be within the reach of human infants. Though
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Figure 3: Experimental results. Column 1: average subject ratings with standard error bars for all stimulus conditions. Column
2: predictions of L2 for all stimuli. L2 closely matches the trends of people’s judgments. Column 3: Predictions of H2 for all
stimuli. H2 makes the same predictions for every context, failing to account for the differences in people’s judgments due to

changes in the environment.

computationally challenging, inferring these goals still falls
under the scope of our inverse planning framework, and is an
exciting direction for future research.
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