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Abstract

Are all three of Marr’s levels needed? Should they be kept distinct? We argue for the distinct
contributions and methodologies of each level of analysis. It is important to maintain them
because they provide three different perspectives required to understand mechanisms, especially
information-processing mechanisms. The computational perspective provides an understanding of
how a mechanism functions in broader environments that determines the computations it needs to
perform (and may fail to perform). The representation and algorithmic perspective offers an under-
standing of how information about the environment is encoded within the mechanism and what
are the patterns of organization that enable the parts of the mechanism to produce the phenome-
non. The implementation perspective yields an understanding of the neural details of the mecha-
nism and how they constrain function and algorithms. Once we adequately characterize the
distinct role of each level of analysis, it is fairly straightforward to see how they relate.

Keywords: Computational level; Environmental context; Representation and algorithmic level;
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1. Introduction

The term level is used in a wide variety of ways. One use refers to levels of organiza-
tion—a whole system is at a higher level than the parts that constitute it and the activities
the whole performs are at a higher level than those of its components (Craver & Bechtel,
2007). This is not the use Marr (1982) had in mind in distinguishing the computational,
representational and algorithmic, and implementational levels. These are levels of

Correspondence should be sent to William Bechtel, Department of Philosophy-0119, University of Califor-
nia, San Diego, 9500 Gilman Drive La Jolla, CA. E-mail: bill@mechanism.ucsd.edu



analysis, not levels of organization and so, contrary to French et al. (this issue), Marr is
not addressing topics such as the emergence of higher levels. The main question raised
by the various papers in this issue is whether all three types of analysis are required and,
if so, how they relate. The question of how they relate, we will argue, is fairly straight-
forward once we (a) characterize the distinctive role of each type of analysis and (b)
show how each type of analysis makes an important, non-redundant contribution to
understanding information-processing mechanisms.

Because the explanatory relevance of the implementational level is generally not con-
tested, we will not dwell on it. Within the context of a mechanistic framework of expla-
nation, it specifies the parts (e.g., neurons) and operations (excitation or inhibition of
other neurons) that are employed or recruited in the generation of the phenomenon of
interest. Challenges to Marr’s conception of levels focus on the representational and algo-
rithmic and the computational levels of analysis. The idea of algorithms governing the
transformations of representations is familiar from computer science but, as we will see,
is not limited to the sorts of representations and algorithms used in digital computers.
Rather, it allows for the identification of the organization of the mechanism that explains
how representations are manipulated to generate the phenomenon. We will show how this
contributes to explaining the phenomenon in a manner that is not redundant with what is
explained at the implementation level. The most distinctive, and least well understood, of
Marr’s three types of analysis is the computational level. As we will argue, Marr was
concerned not just to specify the function being computed but also to explain why this
function needs to be computed. This requires looking outside the mechanism to the envi-
ronment and to the tasks that need to be performed in that environment. We begin with
the computational level, then turn to the representation and algorithm level.

2. The computational level

Marr’s notion of computational-level theory has received a variety of interpretations
(Shagrir & Bechtel, in press). Many have argued that the computational level aims at stat-
ing the cognitive phenomenon to be explained; the explanation itself is then provided at
the algorithmic and implementation levels (Berm!udez, 2005; Hardcastle, this volume;
Ramsey, 2007). Others have lumped together the computational and algorithmic levels,
describing them as sketches that are “elliptical or incomplete mechanistic explanations”
(Piccinini & Craver, 2011, p. 284) to be later filled in by full-blown mechanistic explana-
tions. Yet others have associated the computational level with an idealized competence
and the algorithmic and implementation levels with actual performance (Craver, 2007;
Frixione, 2001; Horgan & Tienson, 1994; Polger, 2004; for a teleological variant, see
Anderson, this volume). Finally, Egan (2010) associates the computational level with an
explanatory formal theory, which mainly specifies the computed mathematical function
(see also van Rooij, 2008).

Proponents of Bayesian optimality analysis often refer to Marr, emphasizing that their
“focus is on computational-level theories, characterizing the functional capacities of
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human inference rather than specific psychological processes that implement those func-
tions” (Tenenbaum, Griffiths, & Kemp, 2006, p. 206). This level of analysis, they say, “is
focused entirely on the nature of the problem being solved—there is no commitment
concerning how the cognitive system actually attempts to solve (or approximately to
solve) the problem” (Chater, Tenenbaum, & Yuille, 2006, p. 290). While this probabilis-
tic viewpoint might fit with each of the interpretations above, it seems closest to the last
two interpretations. According to this viewpoint, probabilistic models of cognition provide
explanatory mathematical theories of a cognitive capacity without referring to specific
psychological and neural mechanisms.

We have defended a different interpretation (Shagrir, 2010; Shagrir & Bechtel, in
press) that emphasizes the role of the environment in Marr’s notion of computational
analysis. Marr characterizes the computational type of analysis as specifying “what the
device does and why” (1982, p. 22). Whereas most commentators have addressed only
the what aspect, Marr insists it includes the why aspect whose aim is to demonstrate the
basis of the computed function in the physical world (1977, p. 37). Marr associates this
why aspect with what he calls physical constraints, which are physical facts and features
in the physical environment of the perceiving individual (1982, pp. 22–23). These are
constraints in the sense that they limit the range of functions that the system could com-
pute to perform a given visual task successfully.

What exactly are the relations between the physical constraints and the computed func-
tion? How do these constraints substantiate the basis of the computed function in the
physical world? The gist of our interpretation is that Marr assumes implicitly that the
visual system mirrors or preserves certain structural relations in the visual field. By struc-
tural relations we mean “high order” mathematical, geometrical, or other formal rela-
tions. The visual system would preserve these relations if there were an isomorphic
mapping from the visual system onto the visual field; more realistically, we talk about
homomorphism or partial-isomorphism and acknowledge that even these mappings
involve a vast amount of approximation and idealization so that a precise morphism rela-
tion never actually obtains. Nonetheless, our claim is that a computational analysis
appeals to the physical constraints in order to underscore these morphism relations,
which, in turn, play both explanatory and methodological roles in theories of vision.
Explanatorily they serve to demonstrate the appropriateness and adequacy of the com-
puted function to the information-processing task (Marr, 1982, pp. 24–25). Methodologi-
cally they serve to guide discovery of the function that the visual system computes
(Hildreth & Ullman, 1989).

Marr never discusses isomorphism or structural similarities explicitly. Nevertheless, we
have shown that it is central to his computational analysis of edge detection and stereo
vision (Shagrir, 2010; Shagrir & Bechtel, in press). Thus, to take the theory of edge-
detection, early visual processes compute the zero-crossings of (Laplacian) second deriva-
tive filterization of the retinal images. These mathematical relations reflect sharp changes
in light reflection in the visual field that often occur along physical edges such as object
boundaries (whereas the latter changes can be described in terms of extreme points of
first-derivatives or zero-crossings of second derivatives of the reflection function). This
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physical fact (“constraint”)—that sharp changes in reflection often occur along physical
edges—explains why the visual system computes derivation, and not (say) factorization
or exponentiation, for the task of edge-detection. It also guides the visual theorist in
discovering the mathematical function that the system computes, namely, derivation.

Here, we focus briefly on another, non-visual, example—the neural integrator in
the oculomotor system. This example indicates that Marr’s notion of computational
analysis is not confined to vision but is widely applicable in computational cognitive
neuroscience.

The neural integrator converts eye-velocity inputs to eye-position-outputs, and thus
enables the oculomotor system to move the eyes to the right position (Leigh & Zee,
2006; Robinson, 1989). The inputs arrive from fibers coding vestibular, saccadic, or pur-
suit movements (Fig. 1); the system produces eye-position codes by computing mathe-
matical integration over these eye-velocity-encoded inputs. In cats, monkeys, and
goldfish, the network that computes horizontal eye movements appears to be localized in
two brainstem nuclei, the nucleus prepositushypoglossi (NPH) and the medial vestibular
nucleus (MVN).

Mathematical integration characterizes operations performed in two very different
places. One is in the neural representing system, namely, the neural integrator. It per-
forms integration on the neural inputs to generate neural commands. This is, of course,

Fig. 1. The neural integrator (NI) receives eye-velocity-coded inputs, _E, and, by performing integration, gen-
erates eye-velocity-coded outputs, E. The hypothesis is that the integrator is common to vestibular, saccadic,
and pursuit movements, thus receiving vestibular ( _Ev), saccadic ( _Er), and pursuit ( _Ep), velocity-coded inputs.
On the right it is shown how the head velocity signals (Ḣ) are converted into eye-velocity codes ( _Ev). These
codes are projected directly to the motoneurons (mn), which have to produce velocity commands, but also
the NI, which produces position codes projected to the motoneurons for position commands (from Robinson,
1989, p. 35).
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the reason that the system is known as integrator. Another and very different place, how-
ever, is in the target domain being represented, in our case, the eyes. The relation
between position and velocity of the eye can be described in terms of integration, too!
The distance between the previous and current positions of the eye is determined by inte-
grating over its velocity with respect to time. So what we have here is an (iso-)morphism
between the representing sensory-motor neural system (the integrator) and the represented
target domain (the eyes and their properties). The neural integrator mirrors or preserves
certain relations in the target domain, namely the distances between two successive eye
positions. By computing integration, the neural function mirrors, reflects, or preserves the
integration relation between eye velocity and eye positions.

Let us put these findings in the context of Marr’s notion of computational analysis. The
what aspect describes the mathematical function, integration, computed by the neural inte-
grator. The why aspect relates the computed function with the physical environment,
namely, the eyes with their properties. The analysis invokes a physical constraint, which in
our case is the relation between eye velocity and the distance between successive eye posi-
tions. Using this constraint, it is shown that there is a morphism mapping relation between
the neural function and the target domain. This mapping relation is underscored by the fact
that the two domains have a shared structure, which is mathematical integration.

As said, the morphism relation plays both explanatory and methodological roles. On
the explanatory side, it serves to explain why computing integration is appropriate for the
task of controlling eye movement. The neural network computes integration and not, say,
multiplication, exponentiation, or factorization, because integration preserves the integra-
tion relation between eye movement and eye positions in the target domain. Factorizing
numbers would not result in moving the eyes to the right place, precisely because it does
not preserve relations in the target domain that are relevant to eye movements. Integration
does: When you compute integration over eye-velocity-encoded inputs, you mirror the
integration relation between velocity and position; hence, you output representations of a
new eye position. The algorithmic and implementation levels complement this explana-
tion by specifying how this integration function is carried out in the neural system.

On the methodological side, the morphism relation is instrumental in discovering what
function is computed. In our example, experimental electrophysiological results indicated
that the neural system converts eye-velocity pulses into eye-position codes. Looking at
the relation (“physical constraint”) between the represented velocity and position, theore-
ticians quickly inferred that the internal relations between the representing states must be
integration. This logic of discovery assumes that the computed function is integration
since the computed function must correspond to the velocity–position integration relation,
which is already known.

How does this interpretation relate to the Bayesian approach to cognition? It is not
easy to answer this question because there appear to be multiple Bayesian approaches
(Jones & Love, 2011). We will make few preliminary points. It is obvious that both Marr
and the Bayesians hold the conviction that theories of cognition go above and beyond
mechanisms, whether algorithms or their neural implementations. And they both think
that the computational analysis of the task does not focus on psychological and neural
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mechanisms; rather it highlights and identifies non-mechanistic elements of a cognitive
phenomenon. Marr and the Bayesians are also in full agreement that this computational
analysis ideally produces mathematical or formal descriptions, and that these descriptions
are explanatory.

Another point of convergence between Marr and the Bayesians is that computational
analysis provides some sort of optimal solution to the problem. Marr says that computa-
tional theories state “that what is being computed is optimal in some sense” (p. 19), and
he compares Chomsky’s notion of competence with his computational theories (p. 28).
Bayesian models aim to show how a problem can be solved in principle, which amounts
to how rational agents should update their beliefs in light of new data (Griffiths, Kemp,
& Tenenbaum, 2008). Despite the similarities, there is an important difference—Marr’s
theories aim at the characterization of the real (even if idealized) mathematical function
computed by the cognitive system, whereas the Bayesian models aim at the characteriza-
tion of the function that the cognitive system should compute and assume that the actual
cognitive system approximates this solution.

A further point of divergence concerns the elements that are being included in compu-
tational models. Marr definitely assumes that some elements at the computational level
are representations. However, he thinks that questions about kinds of representations
belong to the algorithmic level. To use his example of an adding machine, the computa-
tional level specifies that the machine computes addition; part of the specification is that
the inputs and outputs represent numbers. But whether the machine uses an Arabic,
Roman, or binary representational system is a question left to the algorithmic level (Marr,
1982; p. 20ff). Bayesians, it seems to us, put more emphasis on the kind and structure of
representations involved in cognitive functions, and their models often refer to internal
representational structures. For example, they show that relations between different bio-
logical species could be represented by a tree, a ring, a set of clusters, or a low-dimen-
sional space (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010).

What is the role of the environment in the computational analysis? Jones and Love
(2011) argued that the Bayesians downplay the role of the environment in their analysis.
Chater et al. (2011) responded that as a matter of fact Bayesian analysis is often based,
explicitly, on assumptions about environmental structure. In this respect, the Bayesian
conception of computational analysis might not be very different from Marr’s (as we
interpreted him). But our interpretation emphasizes the role of the environment in the
analysis. We have shown, first, that the environment underlies the explanatory power of
the computational analysis. The explanatory role of the environment extends to the Baye-
sians examples as well. A directed graph is a better model of the properties generated by
a causal transmission process (Tenenbaum et al., 2006) precisely because a directed graph
preserves the formal structure of the causal process, whereas (say) a taxonomic tree does
not.

The environment also plays a role in fixing the appropriate mathematical description.
Chater et al. (2011) say that what is distinctive about Bayesian approach is “a top-down,
or ‘function-first’ research strategy, as recommended by Marr (1982): from computa-
tional, to algorithmic, to implementational levels” (p. 196; see also Griffiths et al., 2010).

W. Bechtel, O. Shagrir / Topics in Cognitive Science 7 (2015) 317



They give as an example a pocket calculator that uses input and output symbols we do
not well understand. Their claim is that we are much more likely to understand what
algorithms are carried out if we first realize that the system computes addition rather than
the other way around. This claim is certainly in accord with Marr’s approach. The ques-
tion, however, is how do we figure out that the system computes addition and not another
function. Marr’s answer is that when we study cognitive systems, we use cues from the
environment that constrain the computed function. We see that the relation between the
encoded velocity and the encoded position is that of integration to conclude that the neu-
ral system is an integrator. Marr was overly optimistic about this method, thinking that
the environmental constraints are always apparent to us; however, it is often not the case
(Shagrir & Bechtel, in press). In this respect, techniques developed in the Bayesian analy-
sis might constitute an important contribution to the proposed function-first methodology
(Yuille & Kersten, 2006). What we emphasize, however, is that the prospects of this
methodology crucially depend, as Marr noticed, on successful deployment of cues from
the environment.

3. The representation and algorithm level

Those authors who downplay the distinction between the representation and algorithm
type of analysis and the implementation type of analysis (Bickle, this issue; Hardcastle,
this issue) implicitly hold that the specific details of the neural implementation are all that
is required for explanation. But while the specific parts and operations are certainly rele-
vant to explaining a phenomenon, they are not the only relevant factors. As any engineer
or designer knows, it is also crucially important to understand the way in which the parts
and operations are organized and how this organization facilitates generation of the phe-
nomenon. Different ways of putting the same parts together will result in different phe-
nomena (many of them not very interesting) and the challenge for a designer or engineer
is to discover an organizational design that is able to generate the phenomenon they
desire. For scientists, the challenge is much the same, although they are typically engaged
in reverse engineering—trying to discover the organization that enabled the parts together
to produce the phenomenon.

Someone critical of treating the representation and algorithm level as distinct from the
implementation level might note that in any implementation a particular organization is
realized. However, crucial to the endeavors of both designers and scientists is the discov-
ery of design principles—patterns of organization that produce the same results across a
wide range of different implementations. If there were no such principles, then investiga-
tors would have to analyze each specific mechanism to determine its effects by, for
example, representing the important properties of all of its parts and their interactions in
differential equations, identifying the correct parameters, and simulating the behavior of
the whole. To explain why a given physical system behaved a particular way one could
do no more than appeal to such a simulation. But designers and increasingly scientists
have found success with a different strategy—identifying design principles that generate
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the same phenomenon when realized in mechanisms composed of different parts
performing different operations as long as they maintain the required relations to each
other. These relations are often presented in graphs in which nodes represent entities and
edges the effects of specific nodes on others.

Identifying design principles requires abstracting from the details of a particular instan-
tiation (Levy & Bechtel, 2013). A graph such as the one below showing a double-nega-
tive feedback motif (Fig. 2) does not indicate what plays the roles of X and Y, only that
each inhibits the activity of the other. To determine what will happen in a mechanism in
which such a design is implemented, researchers turn to computational modeling. For
example, after finding the double-negative feedback motif occurring frequently in gene
regulation networks in eukaryotic cells, Tyson and his collaborators (Tyson, Chen, &
Nov!ak, 2003; Tyson & Nov!ak, 2010) developed computational models and demonstrated
that this design can, under a broad range of parameter values, generate a bistable switch
that requires a high level of the input to turn on but will only turn off when the input
drops to a significantly lower level. This is particularly useful in forcing normally revers-
ible processes to operate sequentially.

The example we just offered is from molecular biology, not cognitive science or neu-
roscience. Accordingly, while it might seem that one can describe a motif like the dou-
ble-negative feedback loop in an algorithm, it does not seem to be operating over
representations and involved in information processing. As such, it might not seem appro-
priate to invoke Marr’s levels of analysis. But in fact molecular biologists are increas-
ingly employing information-processing vocabulary to describe circuits like these whose
parts (e.g., transcription factors) carry information that needs to be processed by the cell
in determining its responses. Moreover, very similar analyses are currently being devel-
oped by Sporns and his colleagues (Sporns, 2010; Sporns & K€otter, 2004) in their
attempts to understand the patterns of connection in the brain. Treating whole brain
regions as units (that serve representational functions), they find the dual-dyad motif
(Fig. 3) occurring particularly frequently in contexts in which the apex node is a hub-
region that has an especially large number of connections to other regions. Computational
analysis of this motif reveals that it is especially effective in promoting synchronization
of activity with zero phase-lag across long distances (Vicente, Gollo, Mirasso, Fischer, &

Fig. 2. Double-negative feedback loop motif.
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Pipa, 2008), a function important in connecting regions representing related information
and so underlying cognitive performance.

We have identified two simple motifs that have been shown to have important infor-
mation-processing functions either in cells or in the brain. Both cell and brain networks
are enormously complex, and identifying motifs is only one tool for understanding their
function. Other tools are being developed to analyze larger scale networks (see van den
Heuvel & Sporns, 2011, for discussion of what is called the “rich-club” hub structure in
the primate brain). What is important is that these network analyses abstractly character-
ize the organization in the mechanism and use computational analysis to determine the
contribution to the performance of a phenomenon. These results are established without
knowing what entities implement the activity of the nodes and what operations implement
the edges. Moreover, we contend that such accounts are indicative of the type of analysis
Marr had in mind in emphasizing the importance of the representation and algorithm
level of analysis and differentiating it from the implementational level.

4. Conclusion: Relating Marr’s levels

In the two previous sections we have emphasized (a) the distinctive role of Marr’s
computational and representation and algorithmic analyses and (b) shown how both make
an important contribution to understanding information-processing mechanisms that is
non-redundant to that of the other or of the implementation level. What remains to dis-
cuss is how these levels are related. Each offers answers to different questions that none-
theless are related to each other. This can be seen by recognizing that we are dealing
with information-processing mechanisms and that understanding mechanisms requires
integrating different pieces of information. First, one requires information about the phe-
nomenon being explained by the mechanism. The computation level, by focusing on the
structure of the environment from which organisms need to acquire information to live
their lives, specifies the phenomenon to be explained. Empirical, including experimental,

Fig. 3. Dual-dyad motif.
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investigation at this level is crucial since our intuitive understanding of the task may be
wrong, and if it is, so are the explanations offered for it. Second, in any situation where
the operations of the individual parts are organized in a complex manner, explaining how
the mechanism works requires understanding the contribution of the organization. The
discovery and articulation of design principles provide accounts of what types of phenom-
ena may be produced, given those designs. As in engineering, identifying the relevant
design principles and understanding what behavior they will generate under a range of
implementations is different than determining what is actually performing the various
roles in a specific mechanism. This is not to discount the implementation level. Since not
every implementation will satisfy the conditions for the algorithm (design), it is important
to investigate the actual implementation. Moreover, many features of the phenomenon
result from the details of the implementation.

In addition to answering different questions about a mechanism, research at each of
Marr’s three levels of analysis can productively constrain research at other levels. Work-
ing from the top down, knowing the structure of the environment and the information it
makes available to the organism limits the types of information-processing algorithms
that can utilize that information. Likewise, having identified a mode of organization and
the conditions under which it will generate a form of behavior can guide the search for
the components that implement the design. Constraints also arise from the bottom up.
Knowing features of the implementation can put constraints on the search for algorithms.
Some algorithms might not be implementable, given the components available, and alter-
natives must be sought. Likewise, knowing the algorithm that seems to be functioning
can guide investigations into the environment and reveal different features of its structure
that are relevant to the organism.
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