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ABSTRACT

How do infants find the words in the speech stream? Computational
models help us understand this feat by revealing the advantages and
disadvantages of different strategies that infants might use. Here,
we outline a computational model of word segmentation that aims both
to incorporate cues proposed by language acquisition researchers and
to establish the contributions different cues can make to word segmen-
tation. We present experimental results from modified versions of
Venkataraman’s (2001) segmentation model that examine the utility
of : (1) language-universal phonotactic cues; (2) language-specific
phonotactic cues which must be learned while segmenting utterances;
and (3) their combination. We show that the language-specific cue
improves segmentation performance overall, but the language-universal
phonotactic cue does not, and that their combination results in the
most improvement. Not only does this suggest that language-specific
constraints can be learned simultaneously with speech segmentation, but
it is also consistent with experimental research that shows that there
are multiple phonotactic cues helpful to segmentation (e.g. Mattys,
Jusczyk, Luce & Morgan, 1999; Mattys & Jusczyk, 2001). This result
also compares favorably to other segmentation models (e.g. Brent,
1999; Fleck, 2008; Goldwater, 2007; Johnson & Goldwater, 2009;
Venkataraman, 2001) and has implications for how infants learn to
segment.

[*] This work was supported by a University of Delaware Research Foundation grant to the
second author, and by NIH (5R01HD050199) and NSF grants (BCS-0642529) to the
third author. We thank Vijay Shanker for valuable discussions, and Regine Lai and
Aimee Stahl for feedback on the manuscript. Address for correspondence : Daniel
Blanchard, University of Delaware – Computer & Information Sciences, 101 Smith Hall,
Newark, Delaware 19716, United States. e-mail : dsblanch@udel.edu

J. Child Lang., Page 1 of 25. f Cambridge University Press 2010
doi:10.1017/S030500090999050X

1



INTRODUCTION

How do infants come to identify words in the speech stream? Adults break
up speech into words automatically and effortlessly, without realizing that
there are no pauses between words in the same sentence. Unlike many
written languages, speech does not generally have reliable markers for word
boundaries (Cole & Jakimik, 1980). When such markers can be found, they
vary across languages (Cutler & Carter, 1987). These facts make the task of
isolating the cues used for picking out words from a speech signal especially
difficult. The task facing the human infant is more daunting. Adults have
a lexicon they can use to recognize familiar words in the speech stream, but
when infants are born, they have no pre-existing lexicon to consult. In
spite of these challenges, by the age of six months, infants are already
segmenting some words from speech (Bortfeld, Morgan, Golinkoff &
Rathbun, 2005).

Here we present an efficient word segmentation system called
PHOCUS, for PHonotactic CUe Segmenter, aimed to model how
infants accomplish this task. There are four main contributions of this
work. First, this model shows that the use of phonotactic cues improves
the accuracy of existing segmentation models. These findings support
the hypothesis that phonotactic cues are useful for segmentation (Mattys
et al., 1999; Mattys & Jusczyk, 2001). Second, the model shows that
it is possible to learn language-specific phonotactic constraints while
simultaneously segmenting words. These two processes feed each other
with the model initially learning phonotactic constraints from entire
unsegmented utterances. This helps the model segment later utterances,
which consequently helps the model refine the constraints it extracts
from the developing lexicon. Third, this model shows that the language-
universal concept of a syllable greatly facilitates the above results, but is
of little value when used on its own. Finally, we propose a general
phonotactic-learning model to be embedded within a word segmenter
in order to facilitate the study of the relative importance of a variety
of phonotactic cues. Such a model potentially allows the systematic
investigation of the contributions particular phonotactic cues and their
combinations make to the segmentation process at different epochs,
providing a framework within which collaborative efforts between modelers
and experimentalists can obtain a deeper understanding of how infants
come to segment speech.

Hereafter, we use the phrase ‘word segmentation’ to mean some process
which adds word boundary symbols to a text that does not already contain
them. A word segmentation model is a computational implementation of
this process. This begs the question of what constitutes a word, which
we discuss in the first section below. This paper does not directly address
the problem of segmenting auditory linguistic stimuli, but any word
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segmentation model could easily be plugged into a system that recognizes
phonemes from speech (e.g. Mohri, 2005).
PHOCUS is an unsupervised and incremental algorithm. That is, it

does not rely on pre-existing knowledge of a particular language, and it
segments the corpus one utterance at a time. This is in contrast to
supervised word segmentation algorithms (e.g. Teahan, McNab, Wen
& Witten, 2000). Essentially, supervised learners receive correct seg-
mentations as feedback. In practice, this amounts to supplying a lexicon
beforehand since these models are typically used for segmenting text in
documents written in languages that do not put spaces between their
words – like Chinese. The model presented here also differs from batch
segmentation algorithms (e.g. Fleck, 2008; Goldwater, 2007; Johnson &
Goldwater, 2009), which process the entire corpus at least once before
outputting a segmentation of the corpus. Unsupervised incremental
algorithms are of special interest in modeling infant segmentation given
that: (1) infants do not have an a priori lexicon; and (2) memory limitations
suggest that it is unlikely that infants process large batches of linguistic
information at once.
Unsupervised incremental algorithms are especially challenging to

develop, as there is very little information for learners to use to make
decisions at the beginning. This contrasts with supervised systems which
have an a priori lexicon, and batch systems which may examine the
whole corpus for trends before segmenting. Furthermore, because the
algorithm is unsupervised there is no external feedback which lets it
know when a particular segmentation is incorrect. Consequently if poor
decisions are made, it may be impossible for unsupervised incremental
algorithms to recognize the error and reverse the errors in the future.
Even worse, early errors can trigger many more (a relevant example is
given later).
This article first outlines a framework of word segmentation based on

what is known about how children segment utterances. We also describe
the Emergent Coalition Model (ECM) (Golinkoff & Hirsh-Pasek, 2006;
Hollich et al., 2000) of word learning, which serves as a theoretical impetus
for the view of multiple, competing cues for segmentation presented
here. The second section introduces the segmentation models of Brent
(1999) and Venkataraman (2001), which are very similar in character.
Venkataraman’s model forms the basis for PHOCUS, and therefore
becomes a baseline against which to compare it. The theoretical motivation
for using phonotactics for segmentation is covered in the third section.
The next two sections present the phonotactically enhanced segmentation
model, and compare its performance to different segmenters on multiple
corpora. We close with a discussion of future work and the conclusions we
can draw from the current results.
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A FRAMEWORK FOR WORD SEGMENTATION

Cues for segmentation

Although first investigated in the 1950s (Harris, 1954), word segmentation
is a research topic that has seen a surge in popularity in the past fifteen
years. Researchers have uncovered a number of cues that infants appear to
use to segment speech (Saffran, Werker & Werner, 2006). We consider two
classes of cues for which there is much evidence: use of familiar words and
phonotactic cues.

Familiar words. Infants, like adults, can use familiar words to help them
discover new words in the speech stream. However, it is not clear that
infants are associating any semantic information with these word forms.
This view is consistent with Jusczyk’s (1993) WRAPSA hypothesis that
infants first obtain phonological forms which are then filled with meaning.
Bortfeld et al. (2005) showed that six-month-olds could use familiar words
(their own name and some version of mother) to identify new words in
utterances. Using the Head-Turn Preference Paradigm (Nelson, Jusczyk,
Mandel, Myers, Turk & Gerken, 1995), Bortfeld et al. (2005) presented
infants with a novel word that followed their name (e.g. I like Sally’s wug).
At test, infants listened longer to the word that followed their own name
than to a word that followed someone else’s name with the same number
of syllables and the same stress pattern. Not only can children use familiar
content words, Shi & Lepage (2008) showed that French-reared eight-
month-olds could use frequent function morphemes, such as des and mes, to
segment speech. This research supports the hypothesis that once infants
recognize some words, they can use them to add new ones to their lexicon.

However, the question of how the first words are extracted is still
unanswered. According to Brent & Siskind (2001), infants learn these first
words from one-word utterances. If infants are predisposed to consider
utterances as words, then they will add entire multisyllabic utterances to
their lexicons at first. Although this results in many initial mistakes, as
long as some utterances infants hear consist of one word, this strategy could
be enough to bootstrap the lexicon. According to Brent & Siskind (2001),
as much as 10 percent of infant-directed speech is made up of one-word
utterances. It is also plausible that infants use discourse cues like rephrasing
(as when parents put the same word into different places in the utterance),
and that familiar phrases (such as Look at the __ !) would serve as indicators
of a word boundary just as well as individual words.

Phonotactic cues. The phonotactics of a language are language-specific
conditions that determine whether a word is well-formed or not (Chomsky
& Halle, 1965; Halle, 1978). For example, although English words may
contain the velar nasal [n] (e.g. sing [sIn], Lincoln [lInkn] ]), no words in
English begin with this sound. Furthermore, adult native speakers of
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English would not name objects or actions with logically possible words
which begin with [n], such as ngep [nEp]. They also judge nonce words
beginning with [n] ([nEp]) as ‘worse’ than words which are the same in
all other respects ([nEp]) (Sapir, 1925). Many other languages allow [n]
word-initially, so this phonotactic constraint is specific to English.
We consider phonotactics to be synonymous with word well-formedness,

and not exclusively to mean phoneme combinations. Thus, any rules that
govern how subunits of words may combine to form well-formed words
count as phonotactics. Consequently, even stress patterns can be considered
a kind of phonotactic constraint that operates across syllables.
Studies show that infants learn phonotactic patterns of different types

by roughly eight months of age (Friederici & Wessels, 1993; Jusczyk,
Friederici, Wessels, Svenkerud & Jusczyk, 1993; Jusczyk, Houston &
Newsome, 1999; Thiessen & Saffran, 2003). This has led researchers to
propose that infants use their knowledge of word well-formedness to help
them segment text. At the lowest level, infants’ sensitivity to permissible
allophonic variations helps them find word-like units. Jusczyk, Hohne &
Baumann (1999) showed that seven-and-a-half-month-olds use their
knowledge of allophonic variation to segment utterances (nitrate [naI.tjreIt]
vs. night rate [naIt reIt]). At the next level, knowledge of which phonemes
occur together in their language assists infants in making appropriate
segmentations. The idea is simple – if infants know that words do not begin
with [n], for example, then when faced with an utterance like Sing it! [sInIt],
they will not be tempted to segment the utterance into words [sI] and [nIt].
Similarly, Mattys & Jusczyk (2001) showed that nine-month-olds can seg-
ment speech by using the difference in probabilities between within-word
and across-word consonant clusters. For example, the novel phrase fang tine
[fan taIn] is segmented as it is because [nt] does not occur within English
words. On the syllabic level, infants come to identify predictable stress
patterns. Jusczyk, Houston & Newsome (1999) showed that seven-and-a-
half-month-olds take advantage of the trochaic stress pattern found in most
words in English to segment utterances.
Although word well-formedness is logically distinct from transitional

probability, a working hypothesis in probabilistic models of phonotactic
learning equates them (e.g. Coleman & Pierrehumbert, 1997; Hayes &
Wilson, 2008). This is because both transitional probabilities and phono-
tactics can be expressed in terms of conditional probability. Continuing the
example above, the probability that [t] follows [n] is vanishingly small.
Accordingly, word-internal [nt] sequences are considered ill-formed (so
infants posit word boundaries between them).
Finally, infants compute the transitional probabilities between syllables

or phonemes to find words in speech. Saffran, Aslin & Newport (1996)
showed in experiments that eight-month-olds segment utterances based
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on lower transitional probabilities that existed both at the syllabic
and phonemic levels of the training data. Under the working hypothesis
mentioned above, transitional probabilities between syllables can be con-
sidered a kind of phonotactic constraint : well-formed multisyllabic words
are those whose syllables have high transitional probabilities.

The only limits to the number and kind of phonotactic cues potentially
useful for word segmentation are the number and kind of phonotactic
patterns found in natural languages. In addition to the co-occurrence
restrictions and stress patterns mentioned above, it is plausible that infants
also make use of consonantal and vowel harmony patterns to segment speech,
though to our knowledge this has not been investigated experimentally.

The challenge. The evidence suggests infants do make use of phonotactic
cues to segment utterances. However, this leads to a chicken-and-egg
conundrum. Since phonotactic constraints govern the well-formedness
of words – as opposed to utterances – how do children learn these language-
specific phonotactic constraints without a lexicon? Many phonotactic-
learning models take word-sized units as input (e.g. Coleman &
Pierrehumbert, 1997; Hayes & Wilson, 2008; Heinz, 2007), which is not
necessarily representative of how infants approach the problem. Word
segmentation models, however, take as input utterances without word
boundary markers, necessitating that phonotactic constraint discovery
and word discovery happen simultaneously.

One of the main contributions of this paper is that we show that, with the
right model, the phonotactics of a language can be learned simultaneously
as children segment words. Essentially, our model jump-starts the lexicon
using isolated words as discussed above. This tiny lexicon allows the learner
to infer some rudimentary language-specific phonotactic constraints, which
in turn helps in segmenting additional words. Knowledge of familiar
words, combined with increasingly refined phonotactic constraints, support
and reinforce each other in speech segmentation. Brent & Cartwright (1996)
took a step toward using phonotactic cues for word segmentation with a
semi-supervised model, which learned acceptable consonant clusters at the
beginning and ends of unsegmented utterances, and then used those clusters
as phonotactic constraints for segmentation. Similarly, Fleck’s (2008)
WordEnds model segments by learning what clusters of phonemes of
variable length are most predictable word-initially and word-finally.
PHOCUS differs from both of these models in that it is neither learning
only word-initial and word-final constraints, nor making an initial pass
over the entire corpus to learn these constraints before outputting a
segmentation.

How multiple cues get along. The aforementioned cues have been studied
in isolation in controlled experimental contexts to determine whether they
were factors in word segmentation for a particular age group (but see
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Thiessen & Saffran, 2003; Toro, Nespor, Mehler & Bonatti, 2008). As a
result, researchers could know neither whether infants paid more attention
to one cue or another, nor at what age different cues became accessible to
infants. Later research has begun to address these questions. Some cues
come in before others – such as frequently occurring words (Bortfeld et al.,
2005) before stress patterns (Jusczyk, Houston & Newsome, 1999). This
is likely because frequency matters: infants often hear a core of highly
common words (their own name, mommy, etc.) in all positions within
utterances (initial, medial and final), but hearing a variety of words would
be especially useful for inferring their language’s dominant stress pattern.
Another byproduct of studying cues in isolation is that thus far there has

been little work on whether these cues complement each other. At the same
time, cues may form a ‘coalition’ and come together to determine plausible
segmentations; they may even compete, or interfere, with one another as
new cues come on-line. For example, Thiessen & Saffran (2007) have
argued that statistical cues (such as the probability that one syllable reliably
follows another) precede stress cues in their use. Furthermore, to our
knowledge no approach has yet attempted to uncover how the use of early
segmentation cues influences the emergence of subsequent cues.

Emergent Coalition Model of word learning as it applies to segmentation

The approach adopted here is inspired by the Emergent Coalition Model
(ECM) of word learning (Golinkoff & Hirsh-Pasek, 2006; Hollich et al.,
2000). Although word segmentation may be considered a different (though
not unrelated) process to word learning, there are many similarities.
The ECM is a hybrid model of word learning that has three fundamental

tenets. First, children are surrounded by multiple cues to word learning:
perceptual, social and linguistic. Each type of cue is not always accessible,
reliable or harnessed by the infant for word learning. Second, word-learning
cues change their relative importance over time. Although a range of cues in
the coalition is always available, not all cues are equally utilized in the
service of word learning. Children beginning to learn words rely on a
perceptual subset of the available cues in the coalition, and only later do
they recruit social cues like a speaker’s eye gaze and handling of an object to
learn words (Hollich et al., 2000). Third, the principles of word learning are
emergent, changing over time. Infants may start with an immature principle
of reference, such that a word will be mapped to the most salient object and
not necessarily to the one the speaker is naming. Later, children sensitive to
speaker intent map a word onto an object from the speaker’s point of view
by using the speaker’s social cues.
Although the cues differ in the domain of segmentation, the same general

tenets can be maintained. That is, there are multiple cues to segmentation
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(familiar words and a variety of phonotactic cues), though not every cue is
always accessible, reliable or harnessed. Children appear to rely on different
cues across developmental time (Thiessen & Saffran, 2003). Furthermore,
in the same way that the cues for word learning change over time, the later-
appearing cues for segmentation may emerge from the application of the
early-appearing cues. Thus, the process of segmentation itself undergoes
change with development as more cues are discovered by the infant.

Each of these tenets makes empirical predictions about the developmental
course of segmentation. The virtue of modeling segmentation is that it
helps us understand why certain cues fall out or emerge from the use of
earlier cues, potentially explaining earlier experimental results, as well as
suggesting further experiments to test predictions the model makes.

What is a word?

When developing a computational procedure to segment utterances into
words, one immediately faces a thorny question: What exactly constitutes a
‘word’? This question has proved difficult for linguists. Matthews (1991),
in a seminal book on morphology, waited until page 208 to say, ‘there have
been many definitions of the word, and if any had been successful I would
have given it a long time ago, instead of dodging the issue until now’.

Here we follow Dixon & Aikhenvald’s (2002) illuminating discussion of
words in natural language. There are phonological words, grammatical
words and orthographic words. Grammatical words are defined as consist-
ing of ‘a number of grammatical elements’ that cannot be separated, ‘occur
in a fixed order’ and ‘have a conventional coherence and meaning’ (Dixon
& Aikhenvald, 2002).1 Conversely, a phonological word can be defined
roughly as a unit of at least one syllable such that there are phonotactic
constraints governing its structure, and/or some phonological rules can
only apply within or between such units. One example highlighting the
difference between the two types of words in English is it’s. It’s consists of
two grammatical words (it and s), but only one phonological word (it’s).
This is because s is a clitic, and while it has a distinct meaning, it cannot
stand on its own as a phonological word, as it does not consist of at least
one syllable. Orthographic words, which are determined by a society’s
writing conventions, do not necessarily line up with either phonological or
grammatical words, though they often line up with one or the other (Dixon
& Aikhenvald, 2002).

As our computational model operates over phonetically transcribed text,
and one of our goals is to examine the contribution phonotactic cues make to

[1] There are a number of possible exceptions to these criteria, but in general, the definition
seems to hold.
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the segmentation process, our target unit for extraction is the phonological
word. If we were to use grammatical words, the model would not be
learning phonotactic constraints over the correct domain and would not be
developmentally appropriate, as they are not the type of words infants first
acquire.

PHOCUS : A PHONOTACTIC CUE SEGMENTER

Baseline model

In this section, we describe PHOCUS. Essentially, PHOCUS is a modified
version of Venkataraman’s (2001) model and is similar to MBDP-Phon
(Blanchard & Heinz, 2008). The code for PHOCUS, along with documen-
tation for installation and usage is available at http://cis.udel.edu/yblanchar/
research/.
What properties would a model of word segmentation have that would

most resemble what an infant might do? First, the model should work
incrementally, segmenting each utterance as it encounters it, rather than
waiting until it has seen the entire corpus. Second, the model should not be
heuristically biased such that it overlooks a possibly correct segmentation.
Finally, the model should base its segmentation decisions on the lexicon
it has acquired so far. Such a model allows the incorporation of word
well-formedness conditions that are acquired from the current lexicon.
One additional criterion when designing a model of word segmentation

is grounded in the computational domain. The model must be probabil-
istically sound; that is, it must describe a probability distribution over all
logically possible words that sums to one. This ensures that the model
functions in a more predictable fashion, making it easier to conduct analyses
of the factors that effect its performance.
There is one well-known model which satisfies the aforementioned

constraints: the one described by Venkataraman (2001). This model uses
the idea of isolated words at its core. That is, it adds whole utterances to its
lexicon when it is completely unsure of how to segment a string. It also
learns the most rudimentary of logically possible phonotactic constraints :
words that contain frequently observed phonemes are better than those
with rare phonemes (e.g. ‘words containing [n] are better than words
containing [n] ’). While this may seem like an overly simple approach to
deciding word well-formedness, Venkataraman’s model, along with
MBDP-12 (Brent, 1999), was the most accurate unsupervised word
segmentation systems until Goldwater (2007). Both Brent (1999) and
Venkataraman (2001) suggested that their models should be extended to

[2] MBDP stands for Model-Based Dynamic Programming. The ‘1’ indicates Brent’s desire
for the development of subsequent versions.
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incorporate more sophisticated, natural language-like phonotactic models,
such as the one presented here.

Although Venkataraman’s model is almost functionally identical to
Brent’s MBDP-1 (which Venkataraman (2001) explains is due to some of
the terms in his model being approximately equivalent to the terms in
Brent’s (1999) model and vice versa), there is one important difference.
Venkataraman’s model initially assumes a uniform probability distribution
over the phonemes, whereas MBDP-1’s initial state assumes no well-formed
probability distribution over the phonemes. Not only does this make
MBDP-1 not probabilistically sound, it makes its performance much less
predictable, as we discuss below (see Goldwater (2007) for additional
discussion). We implemented Venkataraman’s model and were able to
replicate the results in the 2001 paper.

PHOCUS, illustrated in Figure 1, is very similar to Venkataraman’s
(2001) model. It initially assumes an empty lexicon. When given an
utterance, PHOCUS chooses the most likely segmentation from all possible
segmentations. The likelihood of any particular segmentation is obtained by
multiplying together the probabilities of the individual words that make
up the segmentation. How PHOCUS determines the likelihood of any
particular word depends on whether it is familiar (i.e. exists in the current
lexicon) or not. If it is familiar, its probability is equivalent to, considering
all words posited so far, the percentage of words that are the familiar one.
When a word is unfamiliar (i.e. not in the lexicon), PHOCUS assigns a
likelihood to it based on its phonotactic well-formedness. When the most
likely segmentation is determined, the frequency counts in the lexicon are
updated. Consequently, any unfamiliar words in the segmentation are
added to the lexicon, and are henceforth considered familiar. As a result of

Input
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For each word...
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Fig. 1. PHOCUS: Venkataraman’s model with n-grams over phonemes, n>1.
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this procedure, the first utterance of any corpus is added to the lexicon
as a whole word, in accordance with Brent & Siskind’s (2001) observations
discussed earlier.
Where PHOCUS departs from Venkataraman (2001), is the phonotactic

cues employed which determine a word’s well-formedness. There are two
phonotactic cues used to evaluate unfamiliar words. The first determines
word well-formedness based on phoneme combinations. Since languages
differ in the kinds of phoneme combinations that are allowed within
words, this is a language-specific phonotactic that must be learned. The
idea is simple: segmentations that include words with unlikely phoneme
combinations are less well-formed. The second phonotactic is a universal
constraint : well-formed words must have at least one SYLLABIC sound.
A sound is syllabic if it is the nucleus of a syllable in a word. In English
all vowels are syllabic, and there are also syllabic [l,n,r] sounds (e.g. bottle
[batl]], button [bvtn] ], butter [bvtr]]). As explained below, the syllabic con-
sonants are transcribed differently from their non-syllabic counterparts in
the English corpus we test PHOCUS on.3 Unlike the phoneme combination
phonotactic, this constraint is plausibly a priori, and does not need to be
learned. This is because phonological words are made up of syllables, and
syllables must have a nucleus.

Phoneme combinations

According to the phoneme combination cue, the likelihood of an unfamiliar
word is determined by the likelihood of phoneme combinations within it.
This differs from Venkataraman (2001), which only uses the likelihood
of individual phonemes. The probabilities of phoneme combinations can
be modeled with a traditional N-GRAM model over phonemes. An n-gram
model is one that estimates the probability of a sequence by calculating
how frequently different subsequences of phonemes (of length n) occur
in the corpus (Jurafsky & Martin, 2008). For example, suppose PHOCUS
encounters the string He’s right [hizrait] and then considers the one-word
segmentation [#hizrait#] (# is the word boundary symbol). With n set to
two, the n-gram model estimates the probability of the word [#hizrait#]
by multiplying the conditional probabilities of the phoneme pairs that it
consists of ([#h], [hi], [iz], [zr], [ra], [ai], [it] and [t#]). The likelihood of a
phoneme n-gram is determined by dividing its frequency by the frequency
of its (nx1) long prefix. PHOCUS initially assumes a uniform probability
distribution over the phoneme n-grams. In the example above, if none of
[hiz], [rait] or [hizrait] is in the lexicon, the idea is that PHOCUS may

[3] The syllabic consonants are plausibly distinguished acoustically from their non-syllabic
counterparts (Toft, 2002; Xie & Niyogi, 2006).
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prefer the segmentation [#hiz#rait#] over [#hizrait#] because by this point
the bigram [zr] has such a low likelihood (i.e. by this point the algorithm
has learned [zr] is such an unlikely combination), that it drastically reduces
the overall score of [#hizrait#], but not [#hiz#rait#].

PHOCUS updates the frequency counts of the phoneme n-grams
immediately after it updates the lexicon. The frequency counts of the
phoneme n-grams are calculated from the lexicon, not the corpus (i.e. we
measure n-gram frequencies from word types, not word tokens; see
Venkataraman, 2001, for discussion).

We refer to the model which keeps track of phoneme n-grams as
PHOCUS-n (PHOCUS-1 is identical to Venkataraman’s (2001) model).
In other words, the model can be made to find words and at the same
time keep track of single phonemes (PHOCUS-1), phoneme pairs
(PHOCUS-2) or phoneme triples (PHOCUS-3). Below we report results
for PHOCUS-1, PHOCUS-2 and PHOCUS-3. We do not consider
n-grams n greater than 3 since such models often run into the problem of
overfitting (Jurafsky & Martin, 2008). That is, when the length of the
phoneme n-grams is too long, the model will not see enough examples of
n-grams of that length (as there are exponentially more possible n-grams
as the value of n increases), and will not learn general enough phonotactic
constraints.

Requiring syllabic sounds

The other phonotactic cue PHOCUS uses is a constraint that requires
hypothetical words to have syllabic sounds. If a hypothetical word does
not have a syllabic sound, it receives a likelihood of zero. Because the
probability of any segmentation is the product of the probabilities of each
word in it, any segmentation of an utterance which contains a word with
no syllabic element receives a probability of zero. For example, the
segmentation of he’s right as [#hi#zr#ait#] would receive a likelihood of
zero because the hypothetical word [zr] has no syllabic element.

We refer to the model with only this syllabic constraint, and no attention
to phoneme combinations, as PHOCUS-s. In the next section we report
results with PHOCUS-s, as well as its use in combination with PHOCUS-2
and PHOCUS-3.

MODEL EVALUATION

The corpora

Computational models are evaluated by studying their performance
on different corpora. Generally, a model is deemed more successful if it
effectively segments utterances in a variety of languages. Here we used two
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child-directed corpora, one in English and one in Sesotho (Bantu), to test
the model’s generality.
Bernstein-Ratner (1987) corpus. The Bernstein-Ratner (1987, hereafter

BR) corpus from the CHILDES database (MacWhinney & Snow, 1985)
consists of 9,790 utterances containing 33,399 words of English infant-
directed speech. The BR corpus is the same one that Brent (1999),
Venkataraman (2001), Goldwater (2007), Fleck (2008) and Johnson &
Goldwater (2009) used to evaluate their models, and it has become the de
facto standard for segmentation testing ever since it was phonemicized by
Brent & Cartwright (1996).
The transcription system described in Brent & Cartwright (1996) makes

some unorthodox choices. In particular, complex sounds traditionally
transcribed with multiple symbols are transcribed with only one. These
include diphthongs and vowels followed by /r/. Another decision was to use
different symbols for stressed and unstressed syllabic /r/ – that is, there are
different symbols for the /r/ in butter and the /r/ in bird – though stress is not
marked elsewhere in the corpus. Following Blanchard &Heinz (2008), we use
a modified version of the corpus where the bi-phone symbols were split into
two4 and the syllabic /r/ symbols were collapsed into one. Blanchard & Heinz
(2008) showed that current segmentation models do worse on the modified
BR corpus, because the models have to learn that the diphthongs always
co-occur without incorrectly grouping them together into their own words.
Sesotho corpus. Johnson (2008) trimmed the Demuth (1992) corpus from

the CHILDES database (MacWhinney & Snow, 1985) of speech between
mother–child dyads to include only the child-directed speech. He did not
convert the orthography to phonemes, because the writing system for
Sesotho is nearly phonemic to begin with.5 The final corpus contains 8,503
utterances consisting of 21,037 word tokens.

Evaluation procedure

As a general guide to a model’s performance, we used a standard metric in
computational linguistics : a combination of precision and recall, known as
the F0 score. Precision (also known simply as accuracy in the cognitive
science community) is the percentage of items identified that are correct.
Recall (also known as completeness) is the percentage of correct items
identified. To illustrate the difference between these two measures, a
segmentation system could achieve a boundary precision of 100% by simply

[4] Only diphthongs whose first phoneme can occur in isolation in English were split, so the
vowels in bay and boat were not split.

[5] In addition to vowels, nasals sounds and the lateral liquid [l] can be syllabic in Sesotho.
However, these sounds are not marked as such in the transcription, and so we treated all
[l] and [n] sounds as non-syllabic.
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inserting one correct boundary into the entire corpus, because 100% of the
boundaries it inserted would be correct (although lacking all others). On the
other hand, a segmentation model could achieve a boundary recall of 100%
by inserting word boundaries between every phoneme in the corpus,
because it would insert all of the correct boundaries (in spite of many
extras). It is clear that neither precision nor recall is sufficient, and so
the harmonic mean is used, called F0.

6 We follow earlier researchers in
reporting precision, recall and F0 scores for word identification (as opposed
to boundary), since words are the ultimate goal of the segmentation process
(Brent, 1999; Goldwater, 2007).7

Despite representing an appropriate balance between precision and recall,
F0 can still be misleading for several reasons. First, precision and recall are
measured with respect to orthographic words, though PHOCUS is trying
to segment phonological words. We would like to see phonological word
corpora developed in the future, but this time-consuming process is beyond
the scope of this work.

Second, the kinds of errors the segmenters make can be more informative
thanF0. Generally, a segmenters’ errors can be classified three ways. Consider
the utterance you see the doggy [#ju#si#De#dcgi#]. OVER-SEGMENTATION

ERRORS are those when the segmenter segments a true word into multiple
words (e.g. the segmenter segments doggy [dcgi] as [#dc#gi#]). UNDER-
SEGMENTATION ERRORS are those when the segmenter segments a sequence
of true words as a single word (e.g. the segmenter guesses [#Dedcgi#] is a
single word). MIXED ERRORS are those when the segmenter segments a word
which is both under-segmented and over-segmented (e.g. [#edcg#]).

For PHOCUS, under-segmentation errors are preferred over over-
segmentation errors. This is because once the segmenter adds a word to its
lexicon, nothing can ever subtract it. Consequently, it becomes more likely
that this word will be segmented out of future utterances, potentially
creating more and more errors. For example, if the segmenter errs by
adding [dc] to its lexicon (instead of doggy [dcgi]), it is very likely that it will
segment [dclr] ] as [#dc#lr]#], which causes [lr] ] to be added to the lexicon.
On the other hand, if the segmenter adds [Dedcgi] to its lexicon, it can
overcome this error in principle by later adding [De] and [dcgi] to the
lexicon.8

[6]
F0=

2rprecisionrrecall

precision+recall
:

[7] See http://cis.udel.edu/yblanchar/research/ for complete results including boundary and
lexical precision, recall and F0 scores.

[8] We calculate that PHOCUS prefers [#De#dcgi#] to [#Dedcgi#] only when the product of
the lexical frequency of [De] and [dcgi] divided by the square of the size of the lexicon is
greater than the lexical frequency of [Dedcgi]. Generally, if w1, w2 _ wn and w1w2 _ wn

are words in the lexicon, l(w) is the lexical frequency of w, and L is the sum of the
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We measured each model’s performance on all utterances except those in
the first tenth of the corpus. We did this because we are primarily interested
in the performance of the segmenter once it stabilizes. Unsupervised,
incremental models spend the first several hundred utterances learning
before their performance levels off and can make many errors during this
learning time. If not excluded from the evaluation, these early learning
errors are counted against incremental models. Considering the model’s
performance after its learning curve is behind it allows one to make a fair
comparison between batch and incremental models, since unsupervised
batch models do all their learning prior to any segmentation. Thus, for the
BR corpora, we excluded the first 1000 utterances, and for Sesotho, we
excluded the first 800 utterances in the results reported below.

Results

We report several comparisons of the different versions of PHOCUS to
each other as well as to other models on the two corpora described above.
Our main results compare PHOCUS to other incremental segmenters:
Venkataraman’s (2001) model (i.e. PHOCUS-1), MBDP-1 (Brent, 1999)
and MBDP-Phon (Blanchard & Heinz, 2008). We also include comparison
to the batch models of Goldwater (2007) and Johnson & Goldwater (2009,
hereafter Johnson), since the code to run them was available from the
authors and we were interested if the computationally simpler PHOCUS
could achieve comparable performance. We also refer readers to the website
http://cis.udel.edu/yblanchar/research/, which contains comprehensive
outputs of the computational experiments, summaries of the results and
more detailed error analyses.
Our main results support the conclusion of Blanchard & Heinz (2008)

that phoneme combinations help incremental unsupervised models. Figure 2
shows that PHOCUS-2 achieves a higher F0 score than Venkataraman’s
model (PHOCUS-1) on both the modified BR and Sesotho corpora.
The fact that PHOCUS-2 also outperforms PHOCUS-3 is due to reasons
discussed below.
Although PHOCUS-2 shows an improvement over PHOCUS-1, the

improvement is not as great as we might expect on the modified BR corpus.
To get a sense of what the maximum possible benefit of phoneme n-grams
is in principle, in one experiment we trained the phonotactic component
of the grammar on the BR lexicon, and then ran PHOCUS (initialized
with an empty lexicon but with the mature phonotactic grammar) on the
unsegmented BR corpus. With phoneme bigrams this semi-supervised

frequencies of all the words in the lexicon, PHOCUS segments utterance [w1w2 _ wn] as
[#w1#w2 _ #wn#] only if P1fifnl(wi)

Lnx1 >l(w1w2 . . .wn):
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model achieved a F0 of 73.8% and with trigrams of 80.4%. We conclude
that: (1) phoneme combinations are potentially very useful for word
segmentation; and (2) there must be a reason that PHOCUS does not
realize this potential.

We hypothesize that the reason is that early errors condemn future
segmentation choices and these snowball into increasingly many mistakes.
For example, after observing the one-word utterance block [blak],
PHOCUS-2 adds it to its lexicon. Later, since block [blak] is a familiar word
when the learner encounters an utterance with blocks [blaks], it segments it
as [#blak#s#]. Now s is considered a familiar word, and is consequently
picked off everywhere. The first error creates others elsewhere and the
errors compound. With PHOCUS-3, the problem is worse because an
examination of its output reveals that it segments much earlier than
PHOCUS-2 and the resulting snowball is much larger (hence its lower F0).
These kinds of errors are not unique to PHOCUS-2 and PHOCUS-3; they
occur with all incremental unsupervised models. PHOCUS-3 does worse
than PHOCUS-2 because it is prone to segment earlier and therefore more
likely to make unrecoverable errors, resulting in more mistakes later on.

Next we examine the effect of adding the language-universal phonotactic
that all words must consist of at least one syllabic sound. Every version of
PHOCUS improves dramatically after this addition, with PHOCUS-3s
obtaining the highest F0 of 80.8% on the BR corpus (Figure 3). The reason
for the improvement is that this language-universal constraint eliminates
the over-segmentation errors described above. For example, the [s] in
[blaks] cannot be peeled off as its own word because it is not a syllabic
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Fig. 2. F0 of PHOCUS-1, -2 and -3 on modified Bernstein-Ratner and Sesotho corpora.
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element. This reduces the overall number of exclusive over-segmentation
errors. In other words, this constraint makes the learner more conservative
in introducing words into the lexicon, which makes it less prone to make
irreversible, costly mistakes at the beginning.
Although the ‘require syllabic’ constraint greatly improves the perform-

ance of the PHOCUS models that use phoneme combinations, it is almost
entirely ineffective by itself. When we ran a version of PHOCUS that
included the syllabic constraint, but which assigned unfamiliar words a
small constant probability9 instead of one based on phoneme n-grams, we
found that the best F0 obtained for a variety of different constant values
was 19.30%. In fact, when we ran a version of PHOCUS with neither
the ‘require syllabic’ constraint nor the phoneme combinations, the output
was identical. This is because, when assigning a constant probability to
unfamiliar words, longer words receive the same probability as shorter
words, so there is no incentive to segment an utterance in such a way that it
contains unfamiliar words and, consequently, single-word segmentations
become very likely. The only type of utterance that this model segments
is one made up of multiple utterances that the model has already added
to its lexicon. Therefore, PHOCUS without any phoneme combinations
exclusively makes under-segmentation errors. As the ‘require syllabic’
constraint only helps prevent over-segmentation errors, we conclude that
it is the combination of the language-universal syllabic constraint and
the simultaneous learning of language-specific phoneme combinations that
results in the high level of performance of PHOCUS-3s.
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[9] The probability was chosen to be small to ensure that familiar words would still be more
likely than unfamiliar ones.
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Interestingly PHOCUS-1s beats PHOCUS-2s in terms of F0, and an
error analysis reveals why. As can be seen in Figure 4, 34.0% of the words
PHOCUS-1 finds are over-segmentation errors, and y3% are under-
segmentation errors. For PHOCUS-2, only 25.4% of found words are
over-segmentation errors and 8% of found words are under-segmentation
errors. Consequently, there are substantially fewer consonant-only
over-segmentations for the ‘require syllabic’ constraint to prevent when
added to PHOCUS-2, and thus the F0 improvement is less pronounced
than with PHOCUS-1.

Next we compare the top-performing version of PHOCUS
(PHOCUS-3s) on the modified BR corpus to the top-performing versions
of the unsupervised batch algorithms developed by Goldwater and Johnson
(Figure 5). PHOCUS-3s outperforms Goldwater (81% vs. 71% F0). While
PHOCUS-3s does not come out ahead of Johnson’s best adaptor grammar,
it does begin to close the gap between incremental and batch systems (81%
vs. 86% F0).

However, the above comparisons ought to be interpreted with some
caution. First, the models are not implementing the same set of cues.
For example, both Goldwater and Johnson’s models build in sensitivity
to frequent word collocations to reduce the number of exclusive under-
segmentation errors which PHOCUS currently does not. Second, neither
model is sensitive to phoneme combinations, though Johnson’s adaptor
grammars include the concept of a syllable and require every word to have
one. We expect that Goldwater’s and Johnson’s results will also improve
if they include more phonotactic cues like PHOCUS. Also, while we
are explicit that the aim of our model is to segment phonological words,
other researchers have not been explicit about exactly what kinds of words
their models aim to segment. In the case of phonological words, some

Tr
ue

 W
or

ds

Fo
un

d 
W

or
ds

Tr
ue

 W
or

ds

Fo
un

d 
W

or
ds

Tr
ue

 W
or

ds

Fo
un

d 
W

or
ds

Tr
ue

 W
or

ds

Fo
un

d 
W

or
ds

Tr
ue

 W
or

ds

Fo
un

d 
W

or
ds

Tr
ue

 W
or

ds

Fo
un

d 
W

or
ds

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

                 PHOCUS-1               PHOCUS-1s              PHOCUS-2                PHOCUS-2s                PHOCUS-3              PHOCUS-3s

Correctly Segmented Over-segmented Under-segmented Mixed Errors

Fig. 4. Found word and true word errors for PHOCUS models on modified Bernstein-
Ratner corpus. ‘Correct’ for found words is precision, and ‘correct’ for true words is recall.

BLANCHARD ET AL.

18



of the errors PHOCUS makes may not really be errors – for example the
determiner a [e] is frequently under-segmented (e.g. a boy is segmented as
[#ebc#], but it is plausible that this is actually one phonological word, with
the determiner sticking to the noun in the same way that s sticks to it in it’s.
Until a corpus is uncontroversially segmented into phonological words,
such issues will go unaddressed.
The models’ performances on Sesotho highlight the importance of testing

acquisition models on data from a variety of languages because the results
can be so different than from what is obtained with English corpora.
For example, MBDP-Phon outperforms all other models on the Sesotho
corpus, as shown in Figure 6. As MBDP-Phon does not start with a
uniform distribution over the phoneme n-grams, it is not probabilistically
sound, which makes determining why it performs better on Sesotho
difficult. Also, PHOCUS-2s and PHOCUS-2 are about the same on
Sesotho (but requiring a syllabic sound makes a difference for PHOCUS-1s
vs. PHOCUS-1, and for PHOCUS-3s vs. PHOCUS-3). This is again due to
PHOCUS-2making fewer over-segmentation errors than either PHOCUS-1
or PHOCUS-3 (Figure 7). It may appear there is not as reliable of an
improvement when adding the language-universal cue when PHOCUS is
evaluated on Sesotho. This is because the over-segmentation errors that
the models make in Sesotho are almost entirely with single vowel sounds.
As such, the ‘require syllabic’ constraint does not prevent these early
over-segmentations from snowballing into a massive problem. For example,
the most common isolated word in the corpus is [e] ‘yes, what’, and
of course many words contain this sound as well, which results in much
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over-segmentation (e.g. [ee] ‘no, this ’ is segmented as [#e#e#] 224 times).
Despite these complications, the same general result as seen with the
BR corpus can be reported about Sesotho: adding richer phonotactic cues
improves the performance of incremental segmenters.

In conclusion, these results show that the performance of an incremental,
unsupervised segmentation model greatly improves when it is equipped
with both a language-specific phonotactic learning component (here
phoneme n-grams) and a language universal phonotactic constraint (words
have at least one syllabic element). We have also shown how these two
components work together – language-specific knowledge of phoneme
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n-grams helps to correctly identify likely positions of word boundaries, and
the language-universal constraint helps prevent earlier errors that derail the
learning process. Furthermore, PHOCUS-2s and PHOCUS-3s compare
favorably to state-of-the-art unsupervised batch algorithms.

SIGNIFICANCE OF FINDINGS AND FUTURE WORK

The findings reported above are significant to researchers from many
disciplines who are interested in word segmentation. Our findings suggest
that knowledge of even simple phonotactic constraints is useful for seg-
mentation. Specifically, having a phonotactic component that keeps track of
likely phoneme combinations within words helps the model’s performance
in at least two ways. First, the model can learn which phonemes are more
likely to start and end words, because they will be parts of bigrams or
trigrams that contain the word boundary symbol. Second, the model can
make decisions about the well-formedness of novel words by evaluating the
probabilities of the phoneme combinations within words. This is analogous
to the infants in the Mattys & Jusczyk (2001) experiment who segment
[fan taIn] fang tine properly by realizing that [nt] is not a valid phoneme
combination within English words.
Our results also suggest that a plausible language universal phono-

tactic – well-formed words have at least one syllabic sound – helps the cue
above by reducing the number of errors made in the learning curve that
later prove to be costly. The language-universal cue seems to especially help
in languages like English, which do not contain many one-word utterances
where the word is a single vowel sound, unlike Sesotho. This result is
consistent with the claim within the Emergent Coalition Model that there
are multiple cues, which can reinforce (and compete with) each other.
Generally, the analysis of the performance of PHOCUS adds support to the
results from developmental studies which suggest that infants use multiple
sources of phonotactic information to aid word segmentation.
Although it is standard in computational linguistics to evaluate the worth

of models on their performance on multiple corpora, it is also important to
look at the fundamental properties of the models in relation to the task at
hand. In the case of modeling infant language segmentation, it is important
for the model to utilize the types of cues that infants do, and combine them
in a way that does not conflict with data on how infants process language.
Under these two criteria, an incremental segmenter that makes use of both
phonotactic and familiar word cues is a desirable model of how infants
segment speech. The fact that PHOCUS – an incremental segmenter which
uses phonotactic cues – comes close to (and in some cases surpasses) the
performance of batch segmenters lends support to the idea that PHOCUS is
on the right track.
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One aspect of the model we would like to change in the future is the
relationship between the implementation of the familiar word cue and the
phonotactic cues. Currently, the model only relies on the phonotactic
cues when a hypothetical word is unfamiliar. Ultimately, we would like to
implement a model that, like the Emergent Coalition Model, considers
all available cues simultaneously, perhaps some more than others. In the
computational linguistics literature, a common approach for many tasks
which involve multiple sources of information is to weight them and then to
determine the ‘best’ weights for each of the various sources. However, such
models are exclusively either supervised (and so weights can be updated
appropriately and confidently) or batch (so trends in the data can be
established and then optimal weights can be assigned). In general, it is
unknown how to assign and update weights for unsupervised and
incremental models. The problem of how to assign and update weights
incrementally when there is very little information and no feedback is an
open problem in computer science and computational linguistics.

We would also like to see segmentation models which make use of a
variety of phonotactic cues. As discussed earlier, phonotactic constraints
can encompass more than just ordering restrictions over phonemes, and
infants seem to use many types of constraints for segmentation. To this
end, we argued that a more general concept of word well-formedness
is appropriate: a well-formed word is made up of frequently occurring
subsequences of units. These units can be syllables, phonemes/phones or
even bundles of phonological features. Additionally, the subsequences could
be of any length, including one, or even non-contiguous (e.g. in order to
describe vowel or consonantal harmony in languages like Finnish or
Navajo; see Heinz, 2007). Once implemented, this generalized notion of
word well-formedness allows a model to keep track of different cues shown
to be useful by previous researchers: transitional probabilities between
syllables (Saffran et al., 1996), phonotactic constraints (Mattys & Jusczyk,
2001), allophonic variation (Jusczyk, Hohne & Baumann, 1999) and stress
(Jusczyk, Houston & Newsome, 1999).

CONCLUSION

Three important findings have emerged from the development of this
model for infant speech segmentation. First, evidence from the computer
simulations conducted here suggests that both language-specific and
language-universal phonotactic constraints are useful for word seg-
mentation, and that language-specific constraints can be learned at the same
time that the model segments speech. Second, incremental models with a
phonotactic component come close to achieving (and in some cases surpass)
the same level of accuracy as state-of-the-art batch models. Given that
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infants are more likely to process their input incrementally, the computa-
tional complexity of batch models may not be necessary for the task of
segmentation. This suggests that the present model has some psychological
reality. Finally, the research program outlined here investigates the utility
of different types of phonotactic cues to word segmentation, shows how
to quantitatively evaluate how such cues interact with one another and
highlights an area of common interest shared by language acquisition
researchers and computational linguists.
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