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Abstract

People can apparently make surprisingly sophisticated in-
ductive inferences, despite the fact that there are constraints
on cognitive resources that would make performing exact
Bayesian inference computationally intractable. What algo-
rithms could they be using to make this possible? We show that
a simple sequential algorithm, Win-Stay, Lose-Shift (WSLS),
can be used to approximate Bayesian inference, and is consis-
tent with human behavior on a causal learning task. This al-
gorithm provides a new way to understand people’s judgments
and a new efficient method for performing Bayesian inference.
Keywords: Bayesian inference; algorithmic level; causal
learning

Introduction
In the last five years a growing literature has demon-
strated that people often act in ways consistent with optimal
Bayesian models (e.g., Griffiths & Tenenbaum, 2005; Good-
man, Tenenbaum, Feldman, & Griffiths, 2008). These ap-
proaches have provided a precise framework for characteriz-
ing intuitive theories and have provided an account of how
a learner should update her beliefs as evidence is acquired
(Gopnik & Schulz, 2004; Griffiths & Tenenbaum, 2009). The
theory-based Bayesian approach has met with much success
in describing the inferences made by adults (for a review see
Tenenbaum, Griffiths, & Kemp, 2006) and research in cog-
nitive development suggests that children can make similar
inferences (Gopnik & Schulz, 2007; Gopnik et al., 2004;
Gweon, Schulz, & Tenenbaum, 2010; Kushnir & Gopnik,
2007; Schulz, Bonawitz, & Griffiths, 2007). Taken together,
this research strongly suggests that Bayesian statistics pro-
vides a productive starting point for understanding human in-
ductive inference.

Theory-based Bayesian approaches have typically been
used to give a “computational level” (Marr, 1982) analysis
of the inferences people make when solving inductive prob-
lems, focusing on the form of the computational problem and
its ideal solution. However, it need not be the case that the
algorithms people are using to solve these problems actually
resemble exact Bayesian inference. Indeed, given the compu-
tational complexity of exact Bayesian inference (Russell &
Norvig, 2002) and the numerous findings that children and
adults alike have difficulty with explicit hypothesis testing
(e.g., Kuhn, 1989; Klahr, Fay, & Dunbar, 1993) and some-
times only slowly progress from one belief to the next (Carey,
1991; Wellman, 1990), it becomes interesting to ask how
learners might be behaving in a way that is consistent with
Bayesian inference.

Here we investigate the algorithms that learners might
be using in solving a particular kind of inductive problem

– causal learning. These algorithms need to approximate
Bayesian inference, but also need to be computationally
tractable. One strategy that has proven effective for approx-
imating Bayesian inference in computer science and statis-
tics is using sampling-based approximations, also known as
Monte Carlo methods. We introduce a new sequential sam-
pling algorithm based on the Win-Stay, Lose-Shift (WSLS)
principle, in which a learner maintains a particular hypothe-
sis until receiving evidence that is inconsistent with that hy-
pothesis. We show that this WSLS algorithm approximates
Bayesian inference, and can do so quite efficiently.

Previous work in cognitive psychology has shown that peo-
ple follow a WSLS strategy in concept learning tasks (Restle,
1962; Levine, 1975). We use this as the starting point for an
investigation of whether human behavior that approximates
Bayesian inference in causal learning might be explained in
terms of a WSLS strategy. We compare the WSLS algo-
rithm to simply sampling from the posterior distribution as
an account of human behavior in a simple causal learning
task. Both algorithms predict that people should behave in
a way that is consistent with Bayesian inference, but WSLS
also predicts that there should be a characteristic pattern of
dependency between people’s successive responses.

The plan of the paper is as follows. First, we introduce
the causal learning task that will be the focus of our analysis,
and summarize how Bayesian inference can be applied in this
task. We then introduce the idea of sequential sampling algo-
rithms, including our new WSLS algorithm. This is followed
by a mathematical analysis of the WSLS algorithm, show-
ing that it approximates Bayesian inference. The remainder
of the paper focuses on an experiment in which we evaluate
how well the WSLS algorithm captures people’s judgments
in our causal learning task.

Bayesian inference and causal learning
While the algorithms that we present in this paper will apply
to any inductive problem with a discrete hypothesis space,
we will make our analysis concrete by focusing on a simple
causal learning problem. In this problem, there are three cat-
egories of objects: red, green, and blue blocks. Each of these
kinds of blocks activate a machine with different probability
when they are placed on the machine. The red blocks acti-
vate the machine on five out of six trials, the green blocks on
three out of six trials, and the blue blocks on just once out of
six trials. A new block is then presented, which has lost its
color, and needs to be classified as either a red, green, or blue
block, based on some observations of what happens when it
is placed on the machine over a series of trials. The question
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is what people will infer about the causal properties of this
block, and which class of blocks it belongs to.

Given this hypothesis space, we can consider how an ideal
learner should update his or her beliefs in light of the evidence
provided by its interaction with the machine. Assume that
the learner begins with a prior probability distribution over
hypotheses, P(h), where the probability assigned to each hy-
pothesis reflects the degree of belief in each hypothesis being
true before seeing any data. Given some observed data d, re-
flecting whether the block activates the machine on a single
trial, the learner obtains a posterior distribution over hypothe-
ses, P(h|d), via Bayes’ rule:

P(h|d) = P(d|h)P(h)
∑h�∈H P(d|h�)P(h�) (1)

where P(d|h) is the likelihood, indicating the probability of
observing d if h were true, and H is the hypothesis space.

Often, Bayesian inference is performed in a sequential set-
ting, with a series of observations being made one after an-
other, and the posterior distribution being updated after each
observation. This is the case with our causal learning prob-
lem, where we receive a sequence of observations of the block
interacting with the machine on successive trials, rather than
a single observation. Letting d1, . . . ,dn denote observations
after n trials, we are interested in the posterior distribution
P(h|d1, . . . ,dn). This can be computed via Equation 1, substi-
tuting d1, . . . ,dn for d. However, it can be simpler to follow a
sequential updating rule, which allows us to compute the pos-
terior after observing d1, . . . ,dn+1 from the posterior based on
d1, . . . ,dn. Formally, this is

P(h|d1, . . . ,dn+1) =
p(dn+1|h)p(h|d1, . . . ,dn)

∑h� p(dn+1|h�)p(h�|d1, . . . ,dn)
(2)

where we assume that the observations di are conditionally
independent given h (i.e., that a block has an independent
chance of activating the machine on each trial, once its color
is known).

Sequential sampling algorithms
The Bayesian analysis presented in the previous section pro-
vides an abstract, “computational level” (Marr, 1982) char-
acterization of causal induction, identifying the underlying
problem and how it might best be solved. We now turn to the
problem of how to approximate this optimal solution. Sim-
ply implementing Bayesian inference by listing all hypothe-
ses and then updating them following Bayes’ rule quickly be-
comes intractable, as it requires considering each hypothesis
after every observation. We thus consider the possibility that
people may be approximating Bayesian inference by follow-
ing a procedure that produces samples from the posterior dis-
tribution. This idea is consistent with the prevalence of Monte
Carlo methods for approximating Bayesian inference in com-
puter science and statistics (e.g., Robert & Casella, 2004), as
well as with behavioral evidence that people select hypothe-
ses in proportion to their posterior probability (Goodman et
al., 2008; Denison, Bonawitz, Gopnik, & Griffiths, 2010).

Independent sampling is the simplest kind of Monte Carlo
method, and is thus a parsimonious place to start in consid-
ering the algorithms learners might use. In particular, the
problem of sequentially updating a posterior distribution in
light of evidence can be solved approximately using sequen-
tial Monte Carlo methods such as particle filters (Doucet,
Freitas, & Gordon, 2001). A particle filter approximates the
probability distribution over hypotheses at each point in time
with a set of samples (or “particles”), and provides a scheme
for updating this set to reflect the information provided by
new evidence. The behavior of the algorithm depends on the
number of particles. With a very large number of particles,
each particle is similar to a sample from the posterior. With a
small number of particles, there can be strong sequential de-
pendencies in the representation of the posterior distribution.
Recent work has explored particle filters as a way to explain
patterns of sequential dependency that arise in human induc-
tive inference (Sanborn, Griffiths, & Navarro, 2006; Levy,
Reali, & Griffiths, 2009).

Particle filters have many degrees of freedom, with
many different schemes for updating particles being possible
(Doucet et al., 2001). They also require learners to maintain
multiple hypotheses at each point in time. Here, we inves-
tigate a simpler algorithm that assumes learners maintain a
single hypothesis, resampling from the posterior with a prob-
ability dependent on the degree to which the hypothesis is
contradicted by data. This is similar to using a particle fil-
ter with just a single particle, with a computationally expen-
sive resampling step being more likely to be carried out as
that particle becomes inconsistent with the data. Because of
its tendency to maintain a hypothesis that makes a successful
prediction and change hypotheses when this is not the case,
we call this the Win-Stay, Lose-Shift (WSLS) algorithm.

The WSLS principle has a long history both in computer
science, where it appears as a heuristic algorithm in rein-
forcement learning and game theory (Robbins, 1952; Nowak
& Sigmund, 1993), and in psychology, where it has been
proposed as an account of human concept learning (Restle,
1962). The WSLS strategy has also been shown in chil-
dren, especially between the ages of three- to five-years-old
(Levine, 1975). More recently, WSLS has been analyzed as
a simple model of learning that leads to interesting strategies
in game theory (Nowak & Sigmund, 1993). In the remain-
der of the paper, we show that this kind of strategy can yield
a simple method for approximating Bayesian inference, and
appears to be consistent with human behavior.

Analyzing the Win-Stay, Lose-Shift algorithm
A first step towards exploring the WSLS algorithm is to show
that it can be used to approximate Bayesian inference. In
this section, we define the WSLS algorithm we will be ana-
lyzing, and contrast it to simply sampling from the posterior
distribution (which we will term Random Sampling, or RS).
Random Sampling assumes that learners draw a new sample
from the posterior distribution every time they need to make
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a response, which requires evaluating all hypotheses or using
a sequential algorithm such as a particle filter with a large set
of particles. Taking independent samples from the posterior
distribution has two consequences. First, when we consider
the behavior of a group of people, the proportion of people
selecting each hypothesis will match the posterior probabil-
ity. Second, successive responses from an individual will be
independent of one another. We will show that WSLS shares
the first of these properties with RS, but not the second, mak-
ing it possible to separate these two algorithms empirically.

The simplest version of the WSLS algorithm assumes that
learners maintain their current hypothesis provided they see
data that are consistent with that hypothesis, and generate a
new hypothesis otherwise. This is the version explored by
Restle (1962). It is relatively straightforward to show that this
can approximate Bayesian inference in cases where the like-
lihood function p(di|h) is deterministic, giving a probability
of 1 or 0 to any observation di for every h, and observations
are independent conditioned on hypotheses. More precisely,
the marginal probability of selecting a hypothesis hn given
data d1, . . . ,dn is the posterior probability p(hn|d1, . . . ,dn),
provided that hypotheses are generated from the posterior dis-
tribution whenever the learner chooses to shift hypotheses.

We now turn to a proof of the more general case, in non-
deterministic settings. We will do this by considering the con-
ditions required for an argument by induction to apply. First,
we assume that hn ∼ p(hn|d1, . . . ,dn). We define the transi-
tion kernel of the WSLS algorithm, q(hn+1|hn), to be:

hn+1|hn ∼
�

δ(hn) with probability φ
p(hn+1|d1, . . . ,dn+1) with probability 1−φ

where δ(h) is the distribution putting all of its mass on h,
and φ is the probability of staying, which is a function of
d1, . . . ,dn+1 and hn. The distribution over hypotheses after
observing dn+1 is given by
q(hn+1 = h|d1, . . . ,dn+1)

= ∑
hn

q(hn+1 = h|hn)p(hn|d1, ...,dn)

= ∑
hn

�
δ(hn, j)φ+(1−φ)p(hn+1|d1, ...,dn+1)

�
p(hn|d1, ...,dn)

= p(hn+1 = h|d1, ...,dn+1)(1−E(φ))+φp(hn+1 = h|d1, ...,dn)

where the expectation, E(φ), is with respect to
p(hn|d1, ...,dn).

We now examine the conditions on φ such that
q(hn+1|d1, . . . ,dn+1) = p(hn+1|d1, . . . ,dn1), corresponding to
the conditions required for the marginal distribution under
WSLS to match the posterior. If we take

φ = c
p(hn+1 = h|d1, ...,dn+1)

p(hn = h|d1, ...,dn)
= c

p(dn+1|hn+1 = h)
p(dn+1|d1, ...,dn)

where c is a constant which can depend on d1, . . . ,dn+1 but is
invariant over hypotheses, we obtain

q(hn+1 = h|d1, . . . ,dn+1)

= p(hn+1 = h|d1, ...,dn+1)(1− c)+ cp(hn+1 = h|d1, ...,dn+1).

which is just p(hn+1 = h|d1, . . . ,dn+1). This is because

E(φ) = Ep(hn|d1,...,dn)

�
c

p(dn+1|hn+1 = h)
p(dn+1|d1, ...,dn)

�

= c∑h p(dn+1|h)p(h|d1, ...,dn)

p(dn+1|d1, ...,dn)
= c

This provides us a simple set of conditions under which
our criterion is satisfied, with q(hn+1 = h|d1, ...,dn+1) =
p(hn+1 = h|d1, ...,dn+1) for any c such that φ ∈ [0,1].

There are two interesting special cases to consider. The
first arises when we take c= p(dn+1|d1, ...,dn+1). In this case,
φ = p(dn+1|hn+1 = h). This results in a simple algorithm that
makes a choice to resample based on the likelihood associated
with the current observation, given the current h. That is,
with probability proportional to this likelihood, the learner
resamples from the full posterior.

The second special case is the most efficient algorithm of
this kind, in the sense that it minimizes the rate at which sam-
pling from the posterior is required. This corresponds to tak-
ing c = p(dn+1|d1,...,dn+1)

maxh p(dn+1|h) , resulting in φ = p(dn+1|hn+1=h)
maxh p(dn+1|h) . For

some hypothesis spaces, it may be possible to compute φ in
advance for all possible data and hypotheses. After this single
costly computation is complete, the learner need only look up
the values.

This proof shows that the marginal distribution over hy-
potheses after observing dn will be the same for any n. How-
ever, there are still important differences in what Win-Stay,
Lose-Shift predicts for the dependency between guesses for
a particular individual as compared to Random Sampling.
Namely, there is no dependency between hn and hn+1 in RS,
but there is for WSLS: if the data are consistent with hn,
then the learner will retain hn with probability proportional
to p(di|hn) rather than randomly sampling hn+1 from the pos-
terior distribution. We can use this difference to attempt to
diagnose the algorithm that people are using when they are
solving a causal learning problem.

Evaluating inference strategies in people
We now turn to the question of whether people’s responses
are well captured by the algorithms described above. Namely,
we might expect that if participants behave in ways consistent
with the WSLS algorithm we should observe dependencies
between their responses; specifically, participants should re-
tain hypotheses that are consistent with the evidence, and re-
sample proportional to the likelihood, p(d|h). However, if
participants behave in ways consistent with Random Sam-
pling, then responses will be resampled from the posterior
distribution regardless of previous guesses, such that there are
no dependencies between responses.

Methods
Participants and Design Participants were 65 undergradu-
ates recruited from an introductory psychology course. The
participants were split into 2 conditions (N = 28 in the “On-
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First” condition; N = 32 in the “Off-First” condition; 5 par-
ticipants were excluded for not completing the experiment).

Stimuli Stimuli consisted of 13 white cubic blocks (1cm3).
Twelve blocks had custom-fit sleeves made from construction
paper of different colors: 4 red, 4 green, and 4 blue. An ac-
tivator bin large enough for 1 block sat on top of a [15” x
18.25” x 14”] box. Attached to this box was a helicopter toy
that lit up when activated. The activator button for the toy was
inside the box hidden from view. There was a set of On cards
that pictorially represented the toy in the on position, and a
set of Off cards that pictorially represented the toy in the off
position. Because participants were tested in large groups, a
computer slideshow that depicted the color of the blocks and
the cards was used to illustrate the evidence shown.

Procedure Participants in each condition were tested on
separate days in two large groups. Participants were in-
structed to record responses using paper and pen and not to
change answers provided for previous questions after view-
ing subsequent evidence. Participants were told that different
blocks possess different amounts of “blicketness,” a fictitious
property. Blocks that possess the most blicketness almost
always activate the machine, blocks with very little blick-
netness almost never activate the machine, and blocks with
medium blicketness activate the machine half of the time. A
red block was chosen at random and placed in the activator
bin. The helicopter toy either turned on or remained in the
off position. The experimenter explained that a correspond-
ing On or Off card was placed on the table to depict the event
and the computer slidehow slide showed the same evidence.
The card remained on the table and the computer slideshow
remained on the screen throughout the experiment. After 5
more repetitions using the same red block for a total of 6
demonstrations, participants were told that red blocks have
the most blicketness (they activated 5/6 times). The same
procedure was repeated for the blue and green blocks with
the blue blocks having very little blicketness (activating 1/6
times), and green blocks having medium blicketness (activat-
ing 3/6 times). All evidence remained visible on the computer
slideshow. To ensure that participants were paying attention,
they were asked to match each color to the proper degree of
blicketness (most, very little, medium) by writing down their
responses.

After the memory check, a novel white block that lost its
fitted-sleeve was presented and participants were asked to
write down an initial guess about what color fitted-sleeve the
white block should have (red, green, or blue). The white
block was then placed into the activator bin four times and
each time the participant saw whether or not the toy acti-
vated. After each demonstration, the appropriate On or Off
card was chosen and the slideshow was advanced to repre-
sent the state of the toy. Participants were asked to record
their best guess about what color they believed the block to
be after each demonstration, but before each guess was made

Figure 1: Bayesian posterior probability and human data for
each block, red (R), green (B), and blue (B) after observing
each new instance of evidence, using parameters estimated
from fitting the Bayesian model to the data.

the participants were told, ”It’s okay if you keep thinking it is
the same color and it is also okay if you change your mind.”
In the On-first condition the toy turned on for the first trial,
and did not activate on the three subsequent trials. In the Off-
first condition the toy did not activate on the first trial, but
turned on for the three subsequent trials.

Results
Comparison to Bayesian inference Responses were
uniquely and unambiguously categorized as “red”, “green”,
and “blue”. There was a slight bias to favor green blocks
(60%), with red (25%) and blue (15%) blocks being less fa-
vored.1 We determined the parameters for the prior distri-
bution and likelihood in two ways. For the first way (“initial
responses”) priors were determined by the participants’ initial
block color predictions and the likelihood of block activation
was determined by the initial observations of block activa-
tions during the demonstration phase (5/6 red, 1/2 green, 1/6
blue). For the second way (“maximized”) we searched for the
set of priors and the likelihood activation weights that would
maximize the log-likelihood for the model.2 Using either set
of parameters, participant responses were well captured by
the posterior probability (initial responses: r(22) = .76, p <
.001; maximized: r(22) = .85, p < .0001, see Figure 1). The
primary difference between the model and data is that peo-
ple seem to change their beliefs more strongly than the model
predicts. This may be a consequence of pedagogical reason-
ing, a point we return to in the Discussion.

1Such a bias is consistent with people’s interest in non-
determinism; the green blocks were the most stochastic in that they
activated on exactly half the trials.

2The maximized priors were .27 red, .48 green, .25 blue; these
priors correspond strongly to the priors represented by participants.
The maximized likelihood was .85 red, .5 green, .16 blue which also
corresponds strongly to the likelihood given by the initial activation
observations.
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Comparison to WSLS and RS To compare people’s re-
sponses to the WSLS and RS algorithms, we first calculated
the “switch” probabilities under each model in the two ways
previously described: using the parameters from the initial
responses and using the previously estimated maximized pa-
rameters. Calculating switch probabilities for RS is relatively
easy: because each sample is independently drawn from the
posterior, the switch probability is simply calculated from the
posterior probability of each hypothesis after observing each
piece of evidence. Switch probabilities for WSLS were cal-
culated such that resampling is based only on the likelihood
associated with the current observation, given the current h.
That is, with probability equal to this likelihood, the learner
resamples from the full posterior. Responses were much bet-
ter captured by the WSLS algorithm using the maximized pa-
rameters (r(15) = .81, p < .0001) and the parameters given
by participant initial responses (r(15) = .78, p < .001) as
compared to the RS algorithm (maximized: r(15) = .58, p =
.02; initial responses: r(15) = .39, p = ns). See Figure 2.
We also computed the log-likelihood scores for both models.
The WSLS model better fit the data than the RS model (ini-
tial responses: p(d|WSLS) =−221, p(d|RS) =−262; maxi-
mized: p(d|WSLS) =−215, p(d|RS) =−251). These results
suggest that the pattern of dependencies between people’s re-
sponses are better captured by the WSLS algorithm than by
an algorithm such as RS that produces independent samples.

Discussion
Our results show how tracking learning at the level of the in-
dividual can help us understand the specific algorithms that
learners might be using to approximate Bayesian inference.
First we introduced an algorithm, Win-Stay, Lose-Shift that
approximates Bayesian inference by maintaining a single hy-
pothesis over time, and proved that the marginal distribution
over hypotheses after observing data will always be the same
for this algorithm as for sampling from the posterior (Random
Sampling). That is, both algorithms return a distribution over
responses consistent with the posterior distribution obtained
from Bayesian inference. We provided an analysis of WSLS
with two special cases. The first case resulted in a simple
algorithm that makes a choice to resample based on the like-
lihood associated with the current observation, given the cur-
rent hypothesis. The second is the most efficient algorithm
of this kind in that it minimizes the rate at which sampling
from the posterior is required, and may thus be of interest for
approximating Bayesian inference in other settings.

Our analysis also made it clear that there are important dif-
ferences in what WSLS and RS predict for the dependency
between guesses, making it possible to separate these algo-
rithms empirically. We explored the algorithms that peo-
ple use for solving inductive inference problems through
an experiment using a simple causal learning task. In this
experiment, people’s overall responses are consistent with
Bayesian inference, but people show dependencies between
responses characteristic of the WSLS algorithm, rather than

Figure 2: Correlations between the probability of switching
hypotheses in the models given the maximized parameters
and the human data, for (a) the Win-Stay Lose-Shift algo-
rithm and (b) Random Sampling.

independently sampling responses each time from the poste-
rior. These results extend previous work exploring WSLS
strategies, showing that at least one strategy of this kind
provides a viable way to approximate Bayesian inference,
demonstrating that causal induction contains problems from
this class, and providing evidence that WSLS is an appropri-
ate algorithm for describing people’s inferences.

Connecting the computational and algorithmic levels is a
significant challenge for Bayesian models of cognition and
this is only a beginning step in understanding the psycho-
logical processes at work in causal inference. We believe
that there are several important directions for future research
in this area. First, it would be interesting to test the algo-
rithm’s predictions across various psychological experiments
that have relied purely on a Bayesian inference approach;
this would allow for a better assessment of the WSLS algo-
rithm’s efficiency. Second, both algorithms can be seen as ex-
treme versions of particle filters: Random Sampling in cases
where there are a large set of particles drawn from the poste-
rior and randomly drawing one member of the set at random
for each query; and, Win-Stay Lose-Shift, which is similar
to using a single particle that is resampled from the posterior
when the particle becomes inconsistent with the data. There
may be some value in exploring algorithms that lie between
these extremes, with a more moderate number of particles as
well as exploring algorithms that shift from one hypothesis
to the next by modifying the current hypothesis in a princi-
pled and structured manner. Considering intermediate models
would also allow future work to examine the degree to which
fewer or greater numbers of particles capture inference and
to what degree these constraints change with age and expe-
rience. Third, we constrained our space to a modest number
of hypotheses, but other work has begun to examine how hy-
pothesis spaces may be learned and simultaneously searched;
this should be jointly developed with approaches taken here
that explore the space of plausible algorithms that capture
people’s causal inferences. Fourth, in this particular task,
the aggregate distribution of adult responses shifted more dra-
matically than the Bayesian model presented here predicted.
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It is likely, given the context of showing participants a pre-
determined computer slideshow, that adults were making a
pedagogical assumption (Shafto & Goodman, 2008) which
would better capture the data. Future work may investigate
this possibility.

Young children have particularly limited cognitive re-
sources (e.g., German & Nichols, 2003; Gerstadt, Hong, &
Diamond, 1994; Siegler, 1975), but are nonetheless capable
of behaving in a way that is consistent with optimal Bayesian
models. Children must thus be especially adept at manag-
ing limited resources to approximate Bayesian inference. Ar-
guably, many of the most interesting cases of belief revision
happen in the first few years of life (Wellman, 1990; Bul-
lock, Gelman, & Baillargeon, 1982; Carey, 1985; Gopnik &
Meltzoff, 1997). Understanding more precisely how specific
algorithms shape children’s learning may provide a potential
solution to the problem of how limited cognitive resources
and Bayesian frameworks of children’s cognition can be rec-
onciled. We are currently investigating these questions.

While there is still important work to be done, connect-
ing the algorithmic level to the computational level is a first
step in understanding the algorithms that learners may be
using to approximate Bayesian inference. We have demon-
strated that the WSLS algorithm, previously provided as a
model of human hypothesis testing, can be used to approxi-
mate Bayesian inference. This provides a way to perform se-
quential Bayesian inference while maintaining only a single
hypothesis at a time, and leads to an efficient approximation
scheme that might be useful in computer science and statis-
tics. We have also shown that a WSLS algorithm seems to
capture people’s judgments in a simple causal learning task.
Our results add to the growing literature suggesting that even
responses by an individual that may appear non-optimal may
in fact represent an approximation to a rational process.
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