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Abstract

 

When learning language, young children are faced with many seemingly formidable challenges, including discovering words
embedded in a continuous stream of sounds and determining what role these words play in syntactic constructions. We suggest
that knowledge of phoneme distributions may play a crucial part in helping children segment words and determine their lexical
category, and we propose an integrated model of how children might go from unsegmented speech to lexical categories. We
corroborated this theoretical model using a two-stage computational analysis of a large corpus of English child-directed speech.
First, we used transition probabilities between phonemes to find words in unsegmented speech. Second, we used distributional
information about word edges – the beginning and ending phonemes of words – to predict whether the segmented words from
the first stage were nouns, verbs, or something else. The results indicate that discovering lexical units and their associated syntactic
category in child-directed speech is possible by attending to the statistics of single phoneme transitions and word-initial and
final phonemes. Thus, we suggest that a core computational principle in language acquisition is that the same source of
information is used to learn about different aspects of linguistic structure.

 

Introduction

 

One of the first tasks facing an infant embarking on
language development is to discover where the words are
in fluent speech. This is not a trivial problem, because
there are no acoustic equivalents in speech of the white
spaces placed between words in written text. To find words,
infants appear to be utilizing several different cues, including
lexical stress (e.g. Curtin, Mintz & Christiansen, 2005;
Jusczyk, Cutler & Redanz, 1993; Jusczyk, Houston &
Newsome, 1999), transitional probabilities between
syllables (e.g. Aslin, Saffran & Newport, 1998; Saffran,
Aslin & Newport, 1996), and phonotactic constraints
on phoneme combinations in words (e.g. Friederici &
Wessels, 1993; Jusczyk, Friederici, Wessels, Svenkerud &
Jusczyk, 1993; Mattys & Jusczyk, 2001). Among these
word segmentation cues, computational models and
statistical analyses have indicated that, at least in
English, phoneme distributions may be the single most
useful source of information for the discovery of word
boundaries (e.g. Brent & Cartwright, 1996; Cairns,
Shillcock, Chater & Levy, 1997; Hockema, 2006; see Brent,
1999, for a review), especially when combined with infor-

mation about lexical stress patterns (Christiansen, Allen
& Seidenberg, 1998).

Discovering words is, however, only one of the first
steps in language acquisition. The child also needs to
discover how words are put together to form meaningful
sentences. An initial step in this direction involves deter-
mining what syntactic roles individual words may play in
sentences. Several types of  information may be useful
for the discovery of lexical categories, such as nouns and
verbs, including distributions of word co-occurrences (e.g.
Cartwright & Brent, 1997; Mintz, Newport & Bever, 2002;
Monaghan, Chater & Christiansen, 2005; Monaghan,
Christiansen & Chater, 2007; Redington, Chater & Finch,
1998; for a review, see Redington & Chater, 1998), frequent
word frames (e.g. 

 

I X it

 

; Mintz, 2003; Monaghan &
Christiansen, 2004; see also Chemla, Cristophe, Bernal
& Mintz, this issue), and phonological cues (e.g. Cassidy
& Kelly, 1991, 2001; Christiansen & Monaghan, 2006;
Durieux & Gillis, 2001; Monaghan 

 

et al.

 

, 2005, 2007; Shi,
Morgan & Allopenna, 1998; see Kelly, 1992; Monaghan
& Christiansen, 2008, for reviews). Indeed, merely pay-
ing attention to the first and last phoneme of a word has
been shown to be useful for predicting lexical categories
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across various languages, such as English, Dutch, French
and Japanese (Onnis & Christiansen, 2008).

During the first year of life, infants become perceptually
attuned to the sound structure of their native language (see
e.g. Jusczyk, 1997; Kuhl, 1999, for reviews). We suggest that
this attunement to native phonology is crucial not only for
word segmentation but also for the discovery of syntactic
structure. Specifically, we hypothesize that phoneme dis-
tributions may be a highly useful source of information
that a child is likely to utilize in both tasks. In this paper, we
present an integrated model to test this hypothesis through
a two-stage corpus analysis. In Stage 1, we first use informa-
tion about phoneme distributions to segment words out of
a large corpus of phonologically transcribed child-directed
speech. The output – including errors – from the first stage
then provides the input for Stage 2, in which phoneme-
distributional information is used to predict the lexical
category (noun, verb, or other) of the words segmented
in Stage 1. Finally, we discuss the limitations of the current
model and how infants may utilize the information that
our model shows is inherent in phoneme distributions.

Our results provide the first demonstration of an integrated
model in which it is possible to get from un-segmented speech
to lexical categories using only information about the dis-
tribution of phonemes in the input. Thus, as a core com-
putational principle, we suggest that the child may be using
the same source of information (e.g. phoneme distributions)
to learn about different aspects of linguistic structure
(e.g. word segmentation and lexical-category discovery).

 

Stage 1: Discovering words

 

Infants are proficient statistical learners, sensitive to
sequential sound probabilities in artificial (e.g. Aslin

 

et al.

 

, 1998; Saffran 

 

et al.

 

, 1996) and natural (e.g. Friederici
& Wessels, 1993; Jusczyk 

 

et al.

 

, 1993; Mattys & Jusczyk,
2001) language. Such statistical learning abilities would
be most useful for word segmentation if  natural speech
was made up primarily of two types of sound sequences:
ones that occur within words and others that occur at
word boundaries. Fortunately, natural language does appear
to have such bimodal tendencies (Hockema, 2006). For
example, in English, /tg/ rarely, if ever, occurs inside a word
and thus is likely to straddle the boundary between a
word ending in /t/ and another beginning with /g/. On
the other hand, the transition /

 

IŒ

 

/ (the two phonemes
making up 

 

–ing

 

) almost always occurs word-internally.
Here we demonstrate that sensitivity to such phoneme
transitions provides reliable statistical information for
word segmentation in English child-directed speech.

 

Method

 

Corpus preparation

 

For our analysis we extracted all the adult utterances spoken
in the presence of children from all the English corpora

in the CHILDES database (MacWhinney, 2000). Because
most of these corpora are only transcribed orthographically,
we obtained citation phonological forms for each word from
the CELEX database (Baayen, Pipenbrock & Gulikers, 1995)
using the DISC encoding that employs 55 phonemes for
English. In the case of homographs (e.g. 

 

record

 

), we used
the most frequent pronunciation. Another 9,117 non-
standard word type forms (e.g. 

 

ain’t

 

) and misspellings in
CHILDES were coded phonetically by hand. Sentences
in which one or more words did not have a phonetic
transcription were excluded, eliminating 124,189 utterances
containing 537,083 words. The resulting corpus contained
4,933,794 words distributed over 1,369,574 utterances.

 

Analyses

 

We first computed the probability of encountering a
word boundary between each possible phoneme transition
pair in the corpus. There were 3,025 (55

 

2

 

) possible phoneme
transition pairs. Transitions across utterance boundaries
were not included in the analyses. Having obtained the type
probability of word boundary between each pair of pho-
nemes, we made another pass over the corpus and used
this information in a simple procedure that inserted word
boundaries in any transition token whose type probability
was greater than .5. That is, we went through the unseg-
mented stream of phonemes and inserted a word boundary
whenever the probability of such a boundary occurring
for a phoneme transition pair was greater than .5.

 

Results and discussion

 

Of the 3,025 possible phoneme transition pairs, 1,119 (37%)
never occurred in the corpus. Figure 1 provides a histogram
showing the distribution of phoneme transition pairs as
a function of how likely they are to have a word boundary
between them, given the proportion of occurrences in
our corpus for which a boundary was found. Each
phoneme transition pair was weighted by its frequency
of occurrence across the corpus in order to approximate
the distribution of the phoneme-transition-pair tokens
that a child might actually come across in the input. The
bar height indicates the percentage of phoneme transition
pairs with a given probability of having a word boundary
between them. There are 50 bins in the histogram, so each
bin accounts for a probability range of .02. Figure 1 illustrates
that the distribution of used phoneme transition pairs was
strongly bimodal. Most phoneme transitions either were
associated only with a word boundary or occurred only
within a word, but not both. Indeed, the left- and right-
most bins account for 56% of the transitions heard in eve-
ryday speech. The fact that the left-most bin is 3.2 times
as high as the right-most bin is because that only 1 in
every 3.6 phoneme transitions involved a word boundary.

 

1

 

1

 

 Words were, on average, 3.0 phonemes long (

 

SD

 

 = 1.2), but not all
words were preceded or followed by a boundary transition (because
some occurred on utterance breaks).
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To assess the usefulness of  this type of  phoneme
distribution information for lexical segmentation, we
determined how well word boundaries can be predicted
if  inserted whenever the probability of  boundary
occurrence for a given phoneme transition pair is greater
that .5. In all, 3,152,842 word boundaries were inserted
within the 1,369,574 utterances, yielding 4,522,416 potential
words. To determine how well complete words could be
discovered using this simple model, we used a conservative
measure of  word segmentation in which a word is
considered to be correctly segmented only if  a lexical
boundary is predicted at the beginning and at the end of
that word without any boundaries being predicted
word-internally (Brent & Cartwright, 1996; Christiansen

 

et al.

 

, 1998). For example, if  lexical boundaries were
predicted before /k/ and after /s/ for the word /kæts/
(

 

cats

 

), it would be considered correctly segmented; but if
an additional boundary was predicted between /t/ and
/s/ the word would be counted as missegmented (even
though this segmentation could be useful for learning
morphological structure). Using this measure, the model
discovered 3,413,064 actual words.

We used two measures – accuracy and completeness –
to gauge word segmentation reliability. Accuracy is
computed as the number of correctly segmented words
(hits) in proportion to all predicted lexical candidates,
both correct word candidates (hits) and incorrectly
segmented candidates (false alarms). Completeness is
calculated as the number of correctly segmented words
(hits) in proportion to the total number of words in the
corpus, that is, the correct words (hits) and the words that
the model failed to segment out (misses). Thus, accuracy

provides an estimation of the percentage of the segmented
lexical candidates that were actual words, whereas com-
pleteness indicates the percentage of words that the model
actually found out of all the words in the corpus.

Using this conservative measure we computed seg-
mentation accuracy and completeness for segmented
words. Overall, the model identified 69.2% of the words
in our corpus (completeness), and 75.5% of the lexical
candidates it identified were valid words (accuracy). The
missegmented words were classified into word fragments
(where a boundary had erroneously been inserted within
a word; for example, the word 

 

picnic

 

 got split into two
fragments, /pIk/ and /nIk/) and combination words (‘combo-
words’, where a boundary had been missed causing two
words to be conjoined; for example, the boundary between

 

come

 

 and 

 

on

 

 was missed, yielding a single lexical candidate,

 

comeon

 

). There were 614,931 fragments and 494,421 combo-
words, of which 31,627 and 76,582 were unique, respectively
(see Table 1 for additional information). Interestingly,
the top-three most frequent fragments were /d/, /s/ and
/t/ (29,142, 25,759 and 16,269 occurrences respectively),
all of which are very common morphological suffixes.
Meanwhile, the top-five most frequent combo-words
were 

 

that’s_a

 

 (6,210), 

 

this_is

 

 (6,179), 

 

look_at

 

 (4,667),

 

I_know

 

 (3,865), and 

 

it’s_a

 

 (3,558), which arguably all
represent atomic, deictic concepts or speech acts. These
intriguing results invite more exploration into possible
interactions among the processes of learning to segment
speech, learning morphology and word learning. As a
first step, we treat some of the combo-words in Stage 2
as actual words when analysing the usefulness of
phoneme distribution information for discovering lexical
categories.

 

Stage 2: Discovering lexical categories

 

The results from Stage 1 replicate what was found in
previous work (Hockema, 2006), this time using a larger
inventory of phonemes, a different lexicon for pronunci-
ations, and an even larger, more diverse corpus of child-
directed speech: phoneme transitions contain enough
information about word boundaries that a simple model
that attends only to these can do well enough to boot-
strap the word segmentation process. However, perform-
ance was not perfect, as evidenced by the considerable
number of word fragments and combo-words. The question
thus remains whether the imperfect output of  our
segmentation procedure can be used in Stage 2 to learn
about higher-level properties of language.

Figure 1 The distribution of phoneme transition pairs given 
the probability of encountering a word boundary between 
the two phonemes in the corpus of child-directed speech. 
A probability of 1 indicates that the two phonemes never occur 
together as a pair inside a word but always straddle a word 
boundary, whereas a probability of 0 implies that the phoneme 
pair always occurs inside a word and is never separated by 
a word boundary.

Table 1 The type and token distributions of the lexical
candidates, words, fragments and combo-words from Stage 1

Lexical candidates Words Fragments Combo-words

Types  117,472  9,263 31,627 76,582
Tokens 4,522,416 3,413,064 614,931 494,421
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Experimental evidence suggests that both children
(Slobin, 1973) and adults (Gupta, 2005) are particularly
sensitive to the beginnings and endings of words. From
previous work, we know that beginning and ending
phonemes can be used cross-linguistically to discriminate
the lexical categories of words from pre-segmented input
(Onnis & Christiansen, 2008). In Stage 2, we explore
whether such word-edge cues can still lead to reliable
lexical classification when applied as part of an integrated
model to the noisy output of our word segmentation
procedure. We hypothesized that missegmented phoneme
strings would not cause too much difficulty because such
phoneme sequences are more likely to have less coherent
combinations of word-edge cues compared with lexical
categories such as nouns and verbs.

 

Method

 

Corpus preparation

 

The imperfectly segmented corpus produced by the
segmentation procedure in Stage 1 was used for the word-
edge analyses. The lexical category for each word was
obtained from CELEX (Baayen 

 

et al.

 

, 1995). Several words
had more than one lexical category. Nelson (1995) showed
that for these so-called dual-category words (e.g. 

 

brush

 

,

 

kiss

 

, 

 

bite

 

, 

 

drink

 

, 

 

walk

 

, 

 

hug

 

, 

 

help

 

 and 

 

call

 

) no specific
category is systematically learned before the other, but
rather the frequency and salience of adult use are the most
important factors. Moreover, research in computational
linguistics has shown that a procedure that simply picks
the most frequent syntactic category for each word in a
corpus is able to tag about 90% of the words correctly
(Charniak, Hendrickson, Jacobson & Perkowitz, 1993). We
therefore assigned dual-category words their most frequent
lexical category from CELEX. In total, there were 117,472
distinct lexical-candidate types, of which 9,263 were words,
with the reminder being combo-words and fragments (see
Table 1). Among words, 4,783 were nouns (447,658 tokens)
and 1,727 were verbs (667,401 tokens).

 

Cue derivation

 

Given that the CELEX DISC encoding used in Stage 1
employed 55 phonemes, we represented each lexical item
as a vector containing 110 (55 beginning + 55 ending)
bits. The bits in the vector that corresponded to beginning
and ending phonemes were assigned 1; all others were
assigned 0. Thus, the encoding of  each word in the
corpus consisted of a 110-bit vector, with most bits having
the value 0 and two having a value of 1, along with the
word’s associated lexical category.

 

Analyses

 

We considered the 5,000 most frequent lexical candidates
from the segmented output of Stage 1. There were 2,117
unique words, whose summed frequencies accounted for

98.7% of word tokens in the whole corpus; there were
1,620 unique combo-words, which accounted for 61.8%
of combo-word tokens in the whole corpus; and 1,263
unique fragments, which accounted for 86% of fragment
tokens in the whole corpus. In total, the 5,000 most
frequent lexical candidates from the segmented corpus
accounted for 92.9% of the corpus.

Children’s early syntactic development is perhaps
best characterized as involving fragmentary and coarse-
grained knowledge of linguistic regularities and constraints
(e.g. Tomasello, 2003). Thus, it seems more reasonable to
assume that the child will start assigning words to very
broad categories that do not completely correspond to
adult lexical categories (Nelson, 1973). In addition, the
adult-like lexical categories likely to emerge first will be
the ones most relevant to children’s early syntactic
productions. For example, noun and verb categories are
learned earlier than mappings to conjunctions and
prepositions (Gentner, 1982). Our analyses therefore focus
on three broad lexical categories: 

 



 

, 

 



 

 and 

 



 

,
plausibly reflecting early stages of lexical acquisition, in
which 

 



 

 forms an amalgamated ‘super-category’
incorporating all lexical items that are not nouns or
verbs. Given that many combo-words correspond to
word combinations that a child may plausibly treat as a
single lexical unit (e.g. 

 

look_at

 

, 

 

show_me

 

, 

 

want_to

 

), we
treated all combo-words beginning or ending with a verb
as belonging to the category of  

 



 

 for the purpose
of classification, and similarly combo-words beginning
or ending with a noun were treated as being 

 



 

.
Combo-words that included both a noun and a verb
were designated as belonging to 

 



 

. Words that had
a lexical category other than noun or verb were assigned
to 

 



 

, along with fragments and combo-words that
did not include nouns or verbs.

To assess the extent to which word-edge cues can be used
reliably for this three-way lexical-category classification,
we performed a linear discriminant analysis dividing words
into 

 



 

, 

 



 

 or 

 



 

. Discriminant analyses
provide a supervised classification of items into categories
based on a set of predictor variables. The chosen classifi-
cation maximizes the correct classification of all members
of the predicted groups. In essence, a discriminant analysis
inserts a hyper-plane through the word space, based on
the cues that most accurately reflect the actual category
distinction. An effective discriminant analysis classifies
words into their correct categories, with most words
belonging to a given category separated from other words
by the hyper-plane. To assess effectiveness, we used a
‘leave-one-out cross-validation’ method, which provides
a conservative measure of classification performance,
and works by predicting the classification of words that
are not used in positioning the hyper-plane. This
means that the hyper-plane is constructed on the basis
of the information from all words except one, and then
used to determine the classification of the omitted word.
This is repeated for every word, and the overall classifi-
cation performance can then be determined.
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Previous analyses of the potential usefulness of pho-
nological cues for lexical-category discovery have tended
to focus on analyses of word types (e.g. Cassidy & Kelly,
1991; Durieux & Gillis, 2001; Monaghan 

 

et al.

 

, 2005).
However, children are not exposed to word types but
have to learn about their native language from tokens
that occur with varying frequency. For example, in our
corpus of child-directed speech the most frequent word,

 

you

 

, occurs 234,744 times, whereas 

 

acrobats

 

 occurs only
once. As demonstrated in the Appendix, log frequency
provides a reasonable approximation of the word token
statistics to which a child is likely to be sensitive. In
our discriminant analyses, we therefore weighted each
word-edge vector by its log frequency.

To establish chance-level performance, a baseline
condition was generated using Monte Carlo simulations.
The file containing the data from the corpus had 111
columns: the 110 columns of binary word-edge predictors
(independent variables), plus one column that contained
dummy variables, 1, 2, or 3, for the three lexical categories
(dependent variable). This last column contained 1,549
values of 1 (

 



 

), 1,018 values of 2 (

 



 

) and 2,433
values of 3 (

 



 

). We randomly scrambled the order
of  the entries in the lexical-category column while
leaving the other 110 columns (the word-edge predictors)
unchanged. Such scrambling maintains information
available in the vector space, but removes potential
correlations between specific word-edge cues and lexical
categories, and thus represents an empirical baseline
control. We created 100 different scramblings and tested
the ability of the 110 word-edge cues to predict the
scrambled lexical categories in 100 separate discriminant
analyses. In this way, it was possible to test whether the
actual distribution of beginning and ending phonemes
within nouns and verbs in the experimental condition
provided for better lexical-category classification than
did the randomly scrambled baseline condition.

 

Results and discussion

 

Using the word-edge cues, 53% of the cross-validated
lexical tokens were classified correctly.

 

2

 

 This result
compared well with 33% overall baseline classification.
The results for each lexical category are illustrated in
Figure 2 (left). For nouns, word-edge cues yielded 63%
correct classification, compared with 34% for the baseline.
Verb classification was 55%, compared with a baseline of
34%, and other classification was 48%, compared with
33% for the baseline.

These results provide an estimate of the completeness
of the classification procedure; that is, of how many of
the words belonging to a given category were classified

correctly as being in that category. We further measured
the accuracy of the classifications for each of the three
categories; that is, how many of the lexical candidates
classified as being in a given category actually belonged
to that category. The lexical-classification accuracy is
reported in Figure 2 (right), and includes a comparison
with the baseline condition. These results show that more
than 50% of  both nouns and verbs can be classified
correctly using the word-edge cues alone, and that such
classifications are reasonably accurate: approximately
40% of words classified as nouns and verbs were classified
correctly as such. For all classifications, word-edge cues
provided for significantly better classification than the
baseline (

 

p

 

’s < .001; see also Figure 2). This suggests that
nouns and verbs utilize separate and fairly coherent clusters
of word-edge cues, indicating that word-edge cues are
useful for the discovery of nouns and verbs even when
provided with suboptimally segmented input. Moreover,
the results compare well with those of Onnis and Chris-
tiansen (2008), who used a perfectly segmented corpus
as input.

 

General discussion

 

In this paper, we have presented a two-stage integrated
model of the usefulness of information about phoneme
distributions for word segmentation and lexical-category
discovery. To our knowledge, this is the first time that
a combined approach has demonstrated how a single
probabilistic cue (i.e. phoneme distributions) can be used
to get from unsegmented speech to broad lexical categories.
Crucially, both stages utilized very simple computational
principles to take advantage of the phoneme distributional
cues, requiring sensitivity only to phoneme transitions
and word edges. Importantly, these two sensitivities are
in place in infants (transitional probabilities: Aslin 

 

et al.

 

,

 

2

 

 A three-way discriminant analysis inserts two distinct hyper-planes to
divide up the word space, each described by a separate function. In the
current analyses, Function 1 explained 55.4% of the variance, Wilk’s
lambda = .719, 

 

χ

 

2

 

 = 8295, 

 

p

 

 < .001; Function 2 explained 44.6% of the
variance, Wilk’s lambda = .862, 

 

χ

 

2

 

 = 3732 

 

p

 

 < .001.

Figure 2 The completeness (left) and accuracy (right) of 
classification into lexical categories of the top-5000 lexical 
candidates from the segmentation procedure using the first and 
last phoneme in each lexical candidate (white bars) compared 
with baseline classifications (grey bars – error bars indicate 
standard error of the mean).
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1998; Saffran 

 

et al.

 

, 1996) and young children (word edges:
Slobin, 1973). The integrated two-stage model also dem-
onstrates that segmentation does not have to be perfect
for it to be useful for learning other aspects of language.
Thus, we propose that a core computational principle
in language acquisition is the use of  the same source
of probabilistic information to learn about different
aspects of language structure; here, the use of phoneme
distributions to inform word segmentation and lexical-
category discovery.

A limitation of the current work is that we have not
presented a complete developmental model showing
how information about phoneme distributions may be
utilized to get the child from unsegmented speech to
lexical categories; rather, we have presented analyses of
the potential usefulness of such information. Thus, it is
an open question as to how infants might make use of
the phoneme-transition-pair regularities demonstrated
in our Stage 1 analysis. One possibility is that infants
may attend to phoneme transition probabilities, with
relatively infrequent transitions indicating word bound-
aries. We evaluated the potential of  this strategy by
computing the correlation between biphone transition
probabilities and the actual probability of finding a word
boundary across phoneme pairs. As expected, this was
significantly negative (

 

r =

 

 

 

−

 

.25, 

 

p

 

 < .00001), but perhaps
not strong enough to completely support the process,
suggesting that infants relying on dips in transition
probability to detect word boundaries would need to
supplement this strategy with other cues (such as lexical
stress). This, however, does not rule out other strategies
that could rely solely on pairwise phoneme statistics.
For example, infants might bootstrap segmentation by
building a repertoire of phonemes that frequently occur
at word edges (first learned perhaps from isolated words).
Our data show that transitions among these will very
reliably indicate word boundaries. Note that for phoneme
transition statistics to be useful, infants do 

 

not

 

 have to
pick up on them directly, they just have to attend to
word edges, which, given the regularity we found in the
language, could be enough to bootstrap segmentation.

A related issue arises with regard to the use of super-
vised discriminant analyses in our Stage 2 model of lexical-
category discovery. Nonetheless, despite its seeming
statistical complexity, a linear discriminant analysis is a
simple procedure that can be approximated by simple
learning devices such as two-layer ‘perceptron’ neural
networks (Murtagh, 1992). Onnis and Christiansen (2008)
therefore trained perceptrons to predict the lexical category
(

 



 

, 

 



 

 and 

 



 

) given word-edge vectors as
input for the top-500 most frequent words. The networks
were then tested on their ability to generalize from these
500 words to a new set of 4,230 words, and demonstrated
a reasonably high level of performance (43.5% overall
correct classification). The underlying theoretical idea is
that the child may use a variety of cues to learn an initial
set of  words, including approximations of  how they
may be used syntactically, and would then be able to use

word-edge cues to help determine the lexical category of
subsequently encountered words. This perspective is
consistent with data indicating that 4-year-olds are able
to use phonological information to help them learn
novel nouns and verbs (Cassidy & Kelly, 2001).

More generally, evidence exists that infants can utilize
the kind of phonological distributional information
revealed by our analyses to learn about language. First,
infants are able to use both transitional probabilities
of syllables (Aslin 

 

et al.

 

, 1998; Saffran 

 

et al.

 

, 1996) and
phonemes (Newport, Weiss, Wonnacott & Aslin, 2004)
to do word segmentation. Second, 12-month-olds are
capable of using the same source of information (syllable
distributions) both to segment an artificial language and
to learn about the possible ordering of words (Saffran &
Wilson, 2003). Thus, infants are likely to take advantage
of the probabilistic information inherent in phoneme
distributions to help them get from unsegmented speech
to broad lexical categories.

In future work, we plan to integrate segmentation and
lexical-category discovery more closely in a developmental
model. Children probably start working out how to use
word forms while they are still honing their segmentation
skills. A model that worked in a less serial fashion than
the current two-stage one would perhaps be better at
capturing developmental trends in both segmentation
and lexical-category discovery. Such a model might also
be useful for studying the effects of more coarse-grained
probabilistic representations instead of  the current
categorical phonemic input. Children are sharpening
their phoneme categories as they learn how to segment
speech, and this may influence lexical-category discovery
in important ways, perhaps resulting in specific develop-
mental patterns of errors that can be the subject of further
empirical studies.

Our results have underscored the usefulness and potential
importance of phoneme distributions for bootstrapping
lexical categories from unsegmented speech. However, a
complete model of language development cannot be based
on this single source of input. Rather, young learners are
likely to rely on many additional sources of probabilistic
information (e.g. social, semantic, prosodic, word-
distributional) to discover different aspects of the structure
of their native language (e.g. Christiansen & Dale, 2001;
Gleitman & Wanner, 1982; and contributions in Morgan &
Demuth, 1996; Weissenborn & Höhle, 2001). Our previous
work has shown that the learning of linguistic structure
is greatly facilitated when phonological cues are integrated
with other types of  cues, both at the level of  speech
segmentation (e.g. lexical stress and utterance boundary
information: Christiansen 

 

et al.

 

, 1998; Hockema, 2006)
and of syntactic development (e.g. word-distributional
information: Monaghan 

 

et al.

 

, 2005, 2007; Reali,
Christiansen & Monaghan, 2003). This suggests that the
phoneme distributional cues explored here could in
future work be incorporated into a more comprehensive
computational account of language development through
multiple-cue integration.
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Appendix

 

The use of log frequency is common in connectionist
modelling (e.g. Harm & Seidenberg, 1999; Plaut,
McClelland, Seidenberg & Patterson, 1996; Seidenberg &
McClelland, 1989), and allows learning to be sensitive
to token frequency information while preventing low-
frequency tokens from being swamped by high-frequency
items. Importantly, log frequency of word forms has also
been shown to be an excellent predictor of the age at
which words are acquired (e.g. Wijnen, Kempen & Gillis
2001; Zevin & Seidenberg, 2004). To establish whether
raw frequency or log frequency best predicted age of
acquisition for the words in our corpus of child-directed
speech, we carried out regression analyses involving three
different sets of  age-of-acquisition norms: Zevin and
Seidenberg (2004), the Bristol Norms (Stadthagen-
Gonzalez & Davis, 2006), and Gilhooly and Logie (1980).
As can be seen from Table A, word log frequency accounts
for between 32.7 and 44.1% of the variance in age of
acquisition, nearly 10 times more than the 3.0

 

–

 

4.9%
obtained for raw word frequency. Thus, log frequency
provides a reasonable approximation of the word token
statistics to which a child is likely to be sensitive.

 

Table A

 

Variance in age of acquisition accounted for by raw
and log frequency of word occurrence in the corpus of child-
directed speech
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