
Rational variability in children’s causal inferences: The
Sampling Hypothesis

Stephanie Denison a,⇑,1, Elizabeth Bonawitz b, Alison Gopnik b, Thomas L. Griffiths b

a University of Waterloo, Department of Psychology, 200 University Ave. West, PAS 4020, Waterloo, Ontario, Canada N2L 3G1
b Department of Psychology, University of California, Berkeley, United States

a r t i c l e i n f o

Article history:
Received 30 August 2011
Revised 26 October 2012
Accepted 29 October 2012
Available online 28 November 2012

Keywords:
Cognitive development
Causal learning
Sampling Hypotheses
Probability matching
Approximate Bayesian inference

a b s t r a c t

We present a proposal—‘‘The Sampling Hypothesis’’—suggesting that the variability in
young children’s responses may be part of a rational strategy for inductive inference. In
particular, we argue that young learners may be randomly sampling from the set of possi-
ble hypotheses that explain the observed data, producing different hypotheses with fre-
quencies that reflect their subjective probability. We test the Sampling Hypothesis with
four experiments on 4- and 5-year-olds. In these experiments, children saw a distribution
of colored blocks and an event involving one of these blocks. In the first experiment, one
block fell randomly and invisibly into a machine, and children made multiple guesses
about the color of the block, either immediately or after a 1-week delay. The distribution
of guesses was consistent with the distribution of block colors, and the dependence
between guesses decreased as a function of the time between guesses. In Experiments 2
and 3 the probability of different colors was systematically varied by condition. Preschool-
ers’ guesses tracked the probabilities of the colors, as should be the case if they are sam-
pling from the set of possible explanatory hypotheses. Experiment 4 used a more
complicated two-step process to randomly select a block and found that the distribution
of children’s guesses matched the probabilities resulting from this process rather than
the overall frequency of different colors. This suggests that the children’s probability
matching reflects sophisticated probabilistic inferences and is not merely the result of a
naïve tabulation of frequencies. Taken together the four experiments provide support for
the Sampling Hypothesis, and the idea that there may be a rational explanation for the var-
iability of children’s responses in domains like causal inference.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

Human beings revise their beliefs throughout develop-
ment, progressing towards an increasingly accurate
portrayal of the world. Recent research suggests that
young children perform this belief revision in a surpris-
ingly systematic and rational way. In fact, a growing body
of evidence suggests that children can revise their beliefs
in a way that is consistent with Bayesian inference

(Goodman et al., 2006; Gopnik, 2012; Gopnik et al., 2004;
Kushnir & Gopnik, 2007; Schulz, Bonawitz, & Griffiths,
2007; Schulz & Gopnik, 2004; Xu & Tenenbaum, 2007).
For example, Xu and Tenenbaum (2007) found that pre-
schoolers can systematically integrate prior knowledge
regarding the taxonomic structure of a domain with evi-
dence provided by a speaker in order to apply the correct
labels to a variety of objects in a word learning task. Simi-
larly, Schulz et al. (2007) and Kushnir and Gopnik (2007)
found that children’s causal inferences rationally depend
on both their prior beliefs and the observed evidence.

At first glance, the notion that preschoolers are
capable of rationally updating their beliefs might seem
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incompatible with another striking feature of children’s
reasoning, namely its variability. Children will often ex-
press different beliefs or give a range of different answers
to a question, even in the same testing session. This vari-
ability in responses might lead to some skepticism about
children’s reasoning abilities. For example, Piaget (1983)
argued that children do not reason systematically about
hypotheses until they reach the formal operational stage
in late childhood. Since Piaget, some researchers have
found evidence to corroborate this claim, demonstrating
that children often appear to navigate randomly through
a selection of different predictions and explanations (e.g.
Siegler & Chen, 1998). In fact, Siegler has argued that such
random variability may actually, in the long run, contrib-
ute to the learning process, comparing the learning process
to such selection processes as biological evolution (Siegler,
1996). Nevertheless, his view is still that the variability it-
self is simply random rather than part of a rational process.

How can we reconcile the variability of children’s re-
sponses with the apparent rationality of their inferences?
Many rational accounts of children’s behavior seem to at
least implicitly assume that children are ‘‘Noisy Maximiz-
ers’’—that they try to select the most likely hypothesis gi-
ven the observed data, but they do so noisily (e.g.
Kushnir & Gopnik, 2007; Sobel, Tenenbaum, & Gopnik,
2004). This noise is the result of cognitive load, context ef-
fects, or methodological flaws that lead children to sto-
chastically produce errors. This accumulation of random
noise accounts for the variability in children’s responding.
In this paper, we provide an alternative account of variabil-
ity of children’s responses—the ‘‘Sampling Hypothesis’’. On
this view, at least some of the variability in children’s re-
sponses may actually itself be rational. In particular, it
may reflect an unconscious but systematic process that
helps children select hypotheses that could explain the
data they have observed.

The basic idea behind Bayesian inference is that a lear-
ner begins with a set of hypotheses of varying probability
(the prior distribution). Then the learner evaluates these
hypotheses against the evidence, and using Bayes rule, up-
dates the probability of the hypotheses based on the evi-
dence. This yields a new set of probabilities, the posterior
distribution. But, for most problems, the learner can’t actu-
ally consider every possible hypothesis—searching exhaus-
tively through all the possible hypotheses rapidly becomes
computationally intractable. Consequently, applications of
Bayesian inference in computer science and statistics
approximate these calculations using Monte Carlo meth-
ods. In these methods, hypotheses are sampled from the
appropriate distribution rather than being exhaustively
evaluated. A system that uses this sort of sampling will
be variable—it will entertain different hypotheses appar-
ently at random. However, this variability will be system-
atically related to the probability distribution of the
hypotheses—more probable hypotheses will be sampled
more frequently than less probable ones. The Sampling
Hypothesis thus provides a way to reconcile rational rea-
soning with variable responding.

We present four experiments examining whether vari-
ability in children’s inferences in a causal task might reflect
this kind of sampling. We first describe the computational

accounts that motivate the Sampling Hypothesis and high-
light some connections to research with adults that are
consistent with this hypothesis. We then review earlier re-
search on children’s variability, particularly the phenome-
non of probability matching in reinforcement learning.
This is followed by four experiments, designed to distin-
guish the Sampling Hypothesis from noisy maximizing
and from simple reinforcement learning.

1.1. Belief revision and sampling

Demonstrating that people revise their beliefs in a way
that is consistent with Bayesian inference does not neces-
sarily imply that children or adults actually work through
the steps of Bayes’ rule in daily life. Evaluating all possible
hypotheses each time new data are observed would not be
feasible from either a formal or a practical standpoint, gi-
ven the large number of hypotheses that would need to
be considered. One way to think about how the mind
may be approximating Bayesian inference is to start with
good engineering solutions to this problem. Techniques
for approximating Bayesian inference have already been
developed in computer science and statistics, raising the
possibility that human minds might also be using some
version of these strategies.

One strategy for implementing Bayesian inference is
Monte Carlo approximation, which is based on the idea of
sampling from a probability distribution. Using sophisti-
cated Monte Carlo algorithms, it is possible to generate
samples from the posterior distribution without having to
evaluate all of the hypotheses assigned probability by that
distribution (Robert & Casella, 1999). Following this ap-
proach, people might be approximating Bayesian inference
by evaluating a small sample of the many possible hypoth-
eses that could account for the observed data. Formally, this
sample should be drawn from the posterior distribution,
p(h|d), which indicates the degree of belief assigned to each
hypothesis h given the observed data d. Recent work has
shown how Monte Carlo methods that approximate this
posterior distribution can account for human behavior in
a range of tasks (Levy, Reali, & Griffiths, 2009; Sanborn,
Griffiths, & Navarro, 2010; Shi, Feldman, & Griffiths,
2008). Other results suggest that people might be basing
their decisions on just a few samples from appropriate
probability distributions (Goodman, Tenenbaum, Feldman,
& Griffiths, 2008; Mozer, Pashler, & Homaei, 2008). Indeed,
in many cases an optimal solution is to take only one sam-
ple (Vul, Goodman, Griffiths, & Tenenbaum, 2009).

Sampling a hypothesis from a distribution necessarily
involves a degree of randomness. However, the process is
not entirely random in the conventional sense of giving
equal probability to each alternative as when we flip a coin
or roll a die. Hypotheses with high probability under the
distribution will be sampled more often than those with
lower probability. This strategy allows the learner to enter-
tain a variety of hypotheses and in the long run, ensures
that they will give more consideration to likely hypotheses
but will not overlook a lower probability hypothesis that
could turn out to be correct. The Sampling Hypothesis thus
suggests that at least some of the variability that appears
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in children’s responses should be systematic—determined
by the posterior distribution over hypotheses.

If children are selecting hypotheses by sampling from a
distribution, certain hallmarks of sampling should be pres-
ent in their behavior. The signature of sampling is the fact
that aggregating over numerous samples should return the
original distribution. If instead learners generate a single
‘‘best guess,’’ but do so noisily, then aggregating over
numerous samples should result in an inaccurate reflection
of the distribution, characterized by an overweighting of
the most likely hypothesis. This leads to the key prediction
of the Sampling Hypothesis: Response variability should
reflect the posterior distribution of hypotheses. Of course,
there may be additional noise in children’s responses—
because children may indeed stochastically produce errors
in responding. However, if at least some of the variability
in children’s responding is captured by the Sampling
Hypothesis, then responses should noisily reflect the pos-
terior distribution, rather than noisily maximizing.

The idea that children might be selecting hypotheses by
sampling from a probability distribution is related to two
other phenomena: the ‘‘wisdom of crowds’’ effect (Galton,
1907; Surowiecki, 2004) and probability matching (Estes,
1950; Estes & Suppes, 1959). In the remainder of this sec-
tion, we summarize the literature on these phenomena and
relate them to the Sampling Hypothesis. We close the sec-
tion by laying out the predictions that motivate our four
experiments.

1.1.1. The wisdom of crowds
Galton (1907) observed that the average of the guesses

of a group of people about the weight of an ox was closer to
its actual weight than any of the individual guesses and he
dubbed this phenomenon the ‘‘wisdom of crowds’’. Recent
work exploring the wisdom of crowds effect links some in-
stances of the effect to the Sampling Hypothesis. Vul and
Pashler (2008) asked individuals to make guesses about a
list of real-world statistics such as the percentage of the
world’s airports that are in the United States. Participants
were assigned to two conditions. In the immediate condi-
tion, participants were asked to make guesses about a vari-
ety of statistics and then asked the questions a second time
directly afterwards. In a delayed condition, the questions
were asked for the second time 2 weeks later. As a whole,
the average of the responses of all of the participants was
close to the true value of the statistic, consistent with the
wisdom of crowds effect. Averaging responses within a sin-
gle participant also produced a more accurate estimate,
showing that the merits of a crowd can be produced within
a single person. However, there was a greater benefit of
averaging guesses in the delayed group than in the imme-
diate group.

Viewed through the lens of the Sampling Hypothesis,
the results of Vul and Pashler (2008) suggest that their
adult participants were sampling guesses from an internal
distribution rather than always providing an optimal
guess. The dependency between those samples depended
on the amount of time that had passed, with the delayed
group producing something closer to independent samples
than the immediate group. The different effects of averag-
ing in the two groups reflects the fact that the value of

taking multiple samples increases when those samples
are independent. Vul and Pashler suggest that these results
may indicate that adults are sampling hypotheses. How-
ever, we do not know whether young children would be-
have in the same way.

1.1.2. Probability matching
Probability matching refers to the empirical observation

of a match between the frequency of different responses
and the probability that those responses are correct. There
is extensive evidence for probability matching in non-
human animals in the context of reinforcement learning
(see Myers, 1976 and Vulkan, 2000, for reviews). If non-
human animals are given a task in which one behavior is
reinforced 33% of the time and the other is reinforced
67% of the time, they will often adjust their behavior to
produce the first behavior 33% of the time and the second
67% of the time (Neimark & Shuford, 1959). From a rein-
forcement learning perspective this behavior is puzzling.
Of course if the agent aims to maximize reward, the better
strategy is to always produce the behavior that results in a
reward 67% of the time. However, it has been suggested
that the probability matching shown by animals such as
fish, birds and rats that is sub-optimal in the context of
individual reinforcement experiments may result from
the fact that probability matching can result in optimal re-
wards in competitive foraging settings (Seth, 2011). That is,
in a patchy environment with one food source producing,
for example, 70% of the reward and the other producing
30% of the reward, some types of animals will match prob-
abilities by distributing themselves in a 70:30 split to each
food source (Harper, 1982; Kamil & Roitblat, 1985; Lehr &
Pavlik, 1970). This matching behavior maximizes reward
for the entire group, and so might be an evolutionarily
determined strategy specifically designed for foraging con-
texts. An alternative hypothesis, however, is that the
agent’s aim might be to learn about the environment
rather than simply maximize reward. By continuing to test
the low probability option some of the time, the agent can
begin to estimate the distribution of rewards in the envi-
ronment (Stephens & Krebs, 1986). This alternative would
be more closely related to the Sampling Hypothesis, with
the assumption that these responses are intended to act
as tests of hypotheses rather than to produce rewards.

Probability matching has also been shown in children in
similar reinforcement paradigms. For example, if there are
two levers, one that generates a reward when depressed
70% of the time and another that generates the reward
30% of the time, young children learn (over a series of
100 trials) to favor the lever which generates the reward
more frequently. However, young preschoolers (i.e., 3-
year-olds) actually tend more towards maximization when
making probabilistic inferences, while 4- and 5-year-olds,
like non-human animals, show probability matching in
reinforcement learning (e.g. Jones & Liverant, 1960).

There has been much less work exploring probability
matching beyond simple reinforcement learning. Will
children probability match when they are formulating
hypotheses rather than simply learning reinforced
responses? In language learning paradigms, when children
are inferring more abstract linguistic hypotheses, they do
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not probability match but rather maximize, in fact they
trend more towards maximizing than adults do (Hudson
Kam & Newport, 2005, 2009). In the case of causal infer-
ence, there are some suggestive results in which the vari-
ability of children’s guesses does seem to be related to
the probability of different hypotheses (e.g., Bonawitz &
Lombrozo, 2012; Kushnir & Gopnik, 2007; Kushnir,
Wellman, & Gelman, 2008; Sobel et al., 2004). However,
this possibility has not been systematically tested—these
patterns of responding may reflect matching, or they may
reflect a noisy maximization process.

The Sampling Hypothesis predicts that the variability in
children’s hypotheses should reflect the posterior probabil-
ity of those hypotheses—more probable hypotheses will be
produced more often, while less probable hypotheses only
appear occasionally. This is a kind of probability match-
ing—the distribution of responses should match the pos-
terior distribution—but it implies a level of sophistication
that goes beyond what is typically assumed when the term
‘‘probability matching’’ is used. Rather than simply match-
ing the frequency of rewarded responses or the frequency
of particular linguistic constructions, we expect children to
match the posterior probabilities of different hypotheses.
By constructing tasks where these posterior probabilities
vary, and where the posterior probabilities differ from
the overall frequency of possible responses, we can sepa-
rate the Sampling Hypothesis from other strategies that
might result in probability matching.

1.2. Testing the predictions of the Sampling Hypothesis

Our experiments test the predictions of the Sampling
Hypothesis using a causal learning task that does not in-
volve reinforcement. In particular, children in our task
had to learn about the probability of different hypotheses
by considering the distribution of different colored blocks
in a bag. When a bag has twice as many red blocks in it
as blue ones, it is twice as likely that a random block that
falls out of the bag will be red rather than blue. Other stud-
ies show that even infants are sensitive to this sort of dis-
tributional information and can use it to make probability
judgments (Teglas, Girotto, Gonzalez, & Bonatti, 2007;
Teglas et al., 2011; Xu & Garcia, 2008). This technique also
allows us to fine-tune the probability of different hypothe-
ses quite precisely by manipulating the number of blocks
in the bag, and it means that children are never differen-
tially reinforced for their responses. Instead, the children
had to use the distribution to inform their guesses about
which block had fallen from the bag and caused an effect.

We use this paradigm as the basis for a series of exper-
iments. Experiment 1 tests the basic prediction of proba-
bility matching in two ways and examines the pattern of
dependencies in children’s responses as a function of time,
as in Vul and Pashler (2008). Experiments 2 and 3 provide a
more fine-grained investigation of probability matching,
varying the probabilities of different hypotheses and
examining how this affects children’s responses. Experi-
ment 4 investigates the level of sophistication of children’s
probability matching, using a more complicated procedure
to determine the probabilities of different hypotheses; this

ensures that children were not using a simpler strategy of
matching responses to the number of chips in the bag.

2. Experiment 1: Sampling and dependency

Experiment 1 examined whether children’s behavior
would match the basic prediction of probability matching
in our causal learning task. In addition, we took the oppor-
tunity to explore any patterns of dependency that appear
in children’s judgments and to see how these are influ-
enced by a delay. On each of three trials, children were
asked to guess the color of an unseen block that activated
a novel toy, taking into account the fact that the block fell
out of a bag containing a 4:1 ratio of red to blue blocks.
Children were split into two conditions: the short wait
condition, where children saw the three trials immediately
following one another in a single testing session, and the
long wait condition, where children saw each trial 1 week
apart. We test probability matching in two ways: We pre-
dict that across children, the distribution of the first guess
will closely match the distribution of blocks in the bucket.
We also predict that, when the dependency between
guesses is minimized, the distribution of the children’s
three guesses will similarly reflect the posterior distribu-
tion. Following Vul and Pashler (2008), we expect that chil-
dren in the long wait condition will show less dependency
between guesses than children in the short wait condition.
Thus, the distribution of guesses in the long wait condition
should be closer to the posterior distribution than in the
short wait condition.

2.1. Methods

2.1.1. Participants
Forty 4- and 5-year-olds were tested individually in

quiet rooms at preschools located on the U.C. Berkeley
campus. The children were randomly assigned to one of
two conditions, each consisting of 20 children: the long
wait condition (12 females; Mean age = 54.1 months;
R = 48.4–62.8 months) and the short wait condition (9 fe-
males; Mean age = 53.5 months; R = 48.1–59.0 months).
One additional child was tested and excluded due to failing
a comprehension check. The children’s ethnicities and
socioeconomic status reflected the composition of the area.

2.1.2. Stimuli
A large box (12 in. (30.48 cm) ! 12 in. (30.48 cm) ! 18

in. (45.72 cm)) constructed out of cardboard and covered
in yellow felt was used. A toy consisting of a transparent
sphere connected to a cylindrical shaft was inserted in a
hole in the top of the box on the front right corner such
that only the sphere (which had a spinner and lights)
was visible to the children. The toy was activated by press-
ing a button on the shaft, causing the sphere portion to
light up and play music. An opaque activator bin, made
of a plastic container and construction paper, was placed
on the back left corner of the box. Additional stimuli in-
cluded red, blue, and green domino sized wooden blocks;
a rigid green bag; and a transparent container (see Fig. 1).
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2.1.3. Procedure
Each testing session in all experiments was videotaped

for data retrieval and a second experimenter recorded all
responses online.

In both the long wait and short wait conditions, the
experimental session began with the child and experi-
menter sitting across from one another at a table with
the large yellow box in between them—the front side fac-
ing the child and the back side facing the experimenter.
The experimenter introduced children to the large yellow
box saying, ‘‘This is my big toy and I’m going to show
you how it works.’’ The experimenter then took two blocks
of each color (red, blue, and green) and placed them on the
table. One block at a time, the experimenter picked up a
block of each of the three colors and dropped it into the
activator bin. She showed the children that when a red
block or a blue block is placed in the activator bin, the
toy lights up and plays music, and when a green block is
placed in the bin, the toy does not activate. In reality, the
experimenter was surreptitiously activating the toy by
pressing a button hidden from view.

Previous work using this causal scenario suggests that
children (and even adults) find this manipulation compel-
ling and that use of the ineffective green block helps to
establish that the red and blue blocks cause the effect
(Bonawitz & Lombrozo, 2012).

In a comprehension check, children were asked
whether each of the three colors would make the machine
go. The experimenter picked up a block and asked, ‘‘What
will happen if I put a [red, blue, green] block into the

machine?’’ In order to be included in analyses, children
had to remember that red and blue blocks make the toy
go and green blocks do not. Order of colors was random-
ized across children for the initial demonstrations and
the comprehension check, except that the green block
was never demonstrated first in the initial demonstrations.

On Test Trial 1, the experimenter and child counted out
20 red blocks and 5 blue blocks (i.e., an 80:20 distribution)
one at a time and placed them into a transparent container.
Which block color was counted first was counterbalanced
across children. After counting the blocks, the experi-
menter asked, in the same order as she counted, ‘‘So how
many red ones did we count? And how many blue ones?’’
and corrected the child if (s)he was incorrect. Then she
shook the blocks in the container to mix them and poured
them into the rigid opaque bag. She placed the container
upside down in front of the activator bin on the yellow
box and placed the bag on top of the container. She then
‘accidentally’ knocked the bag over toward the activator
bin. Just after the bag fell over, the experimenter activated
the toy and said, ‘‘Oh, I think one of the blocks must have
fallen into the toy and made it go! Can you tell me which
color it was?’’ Once the child answered the question, the
experimenter pretended to remove the block while turning
off the toy. Finally she asked, ‘‘And why do you think it was
a [red, blue] block?’’ Occasionally children initially re-
sponded ‘‘both’’ when asked which color fell in. The exper-
imenter would then prompt the child by saying, ‘‘The toy
only works when just one block falls in. What color do
you think it was?’’

Fig. 1. Stimuli and procedure used for testing the Sampling Hypothesis in children.
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In the short wait condition, once children provided an
answer for Trial 1, the experimenter began Trial 2 by say-
ing, ‘‘That was kind of funny how I accidentally tipped
the bag over and it made the toy go. Should I try to make
that happen again? First we have to count our blocks
again.’’ The second and third trials progressed exactly the
same as Trial 1, with 20 red and 5 blue blocks. The exper-
imental session took approximately 9 min.

The long wait condition was identical to the short wait
(20 red and 5 blue blocks on all trials) except that children
completed Trial 1 in the first testing session, Trial 2 in a
second testing session 1 week later, and Trial 3 in a third
testing session 1 week after Trial 2. Children were re-
minded that the blue and red blocks make the machine
go and green blocks do not at the beginning of each testing
session. Each experimental session (i.e., each trial) took
approximately 3 min.

2.2. Results

There were no age differences between groups
(t(38) = 0.11, p = .544). Responses were coded by first
author and reliability coded by a research assistant blind
to experimental hypotheses for 75% of the trials. All re-
sponses uniquely and unambiguously were either ‘‘red’’
or ‘‘blue’’ and agreement was 100%. There was no effect
of gender or which color was counted first in either of
the two conditions; we collapsed across these variables
for subsequent analyses.

2.2.1. Probability matching on initial trial
As should be expected, there were no differences be-

tween conditions for children’s first predictions, v2 (1,
N = 40) = 1.9, p = .168. To assess whether or not children
probability matched, we averaged the first response of
children in both the long wait and short wait conditions.
Overall, children’s responses reflected probability match-
ing (28/40 trials, 70% providing the more probable chip re-
sponse and 30% providing the less probable chip response).
Though there was some noise not accounted for by proba-
bility matching, the children were not simply randomly
guessing, as responses were significantly different from
chance (binomial test, p = .017) but not significantly differ-
ent from the predicted distribution of .8 (binomial test,
p = .175). Similarly, children did not appear to ‘‘maximize’’
by always providing the most probable response (i.e. al-
ways choosing the red block), or responses would have ap-
proached ceiling.

2.2.2. Probability matching across all trials
The previous result suggested that there was probabil-

ity matching across children – a kind of ‘‘wisdom of
crowds’’ effect. Was there evidence of probability matching
within individual children’s responses, as in Vul and
Pashler (2008)? We first computed the predictions of
independent sampling; that is, given probability h of sam-
pling a particular block, what should the distribution of
three responses look like? Because there are two possible
responses (red (r) or blue (b)) and there are three trials,
there are simply 2 ! 2 ! 2 or 8 possible hypotheses (rrr,
rrb, rbr, rbb, . . . ,bbb). Thus, assuming independence

between trials, the probability of any particular hypothesis
(e.g., rrb) is simply the probability of sampling each block
(i.e. (.8) ! (.8) ! (.2)). In this way, we can compute
probabilities for all eight hypotheses. We compared this
expected distribution to the observed distribution given
by children in the short wait and long wait conditions
(see Table 1). Both the long wait condition and short wait
condition were significantly different from the expected
distribution (long wait: v2 (7, N = 20) = 33.91, p < .001;
short wait: v2 (7, N = 20) = 77.75, p < .001).2 However, there
was also a significant difference between children’s
responses in the short wait condition and the long wait
condition, v2 (7, N = 40) = 22.3, p = .002, suggesting that
the manipulation had an effect on children’s pattern of
responding.

An examination of children’s response patterns shows
that two children in the long wait condition produced
the ‘‘blue, blue, blue’’ response pattern, regardless of its ex-
tremely low predicted probability. When we exclude these
two children from analyses, the pattern of the remaining
18 children’s responses is only marginally different from
the predicted distribution, v2 (6, N = 18) = 12.7, p = .09.
This suggests that the responses from these two children
heavily contributed to the initial difference found between
the expected and empirically produced distributions. In
contrast, the children’s responses in the short wait condi-
tion were much further removed from the expected distri-
bution. By far the most frequent response was for children
to alternate responses across trials in spite of the relatively
low probability of that hypothesis.

2.2.3. Dependency measures
We investigated the dependency of children’s responses

in two ways. A quick examination of Table 1 suggests that
children in the short wait condition were alternating
guesses, a strategy that demonstrates dependencies among
those responses. To directly compare the two conditions,
we coded children’s responses in terms of whether they re-
peated a guess (e.g. ‘‘red’’ then ‘‘red’’ again) or alternated
(e.g. ‘‘red’’ then ‘‘blue’’), both patterns that would reflect
dependencies among the responses. Comparing condition
by repetition/alternation revealed significant differences
both when we coded for repetition/alternation over all
three responses, Fisher Exact (N = 33), p < .001, and when
we coded for repetition/alternation over two responses,
Fisher Exact (N = 80), p < .001.3 Children were more likely
to repeat or alternate guesses in the short wait than in the
long wait condition.

Another way to think about dependency is to model
children’s responses as a Markov process and consider
the transition matrix. We computed the empirical frequen-
cies with which children moved from a ‘‘red block’’ re-
sponse to a ‘‘blue block’’ response, and so forth (see

2 Because the approximation to the v2 distribution is unreliable with
small cell entries, we computed the null distribution numerically. We
generated 10,000 contingency tables with these frequencies, computed v2

for each, and then computed p values by examining the quantile of the
observed v2 value.

3 We use Fisher Exact tests for consistency due to small sample sizes on
some tests.
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Table 2). If children are producing independent samples,
the probability of producing a particular response should
be the same regardless of the previous response. However,
this analysis revealed a strong dependency between re-
sponses in the short wait condition, Fisher Exact (N = 20),
p < .001, and a much weaker dependency in the long wait
condition, Fisher Exact (N = 20), p = .029. These results sug-
gest that although children’s pattern of responses in the
long wait condition was close to the predicted distribution,
there were still some dependencies between a single
child’s guesses. Indeed, this is particularly suggested by
the anomalous frequency of the blue, blue, blue responses
in the long wait condition, responses that might well have
reflected a pattern of dependency even in the long wait
condition; that is, these children may simply have repeated
the response they made on the previous trial.

2.3. Discussion

This experiment examined whether the variability in
children’s hypotheses in a simple causal reasoning task re-
flected sampling from a probability distribution. The re-
sults provide evidence in support of the main prediction
of the Sampling Hypothesis: children were probability
matching. As a group, children provided a percentage of
red and blue initial guesses that corresponded with the ac-
tual distribution of red and blue blocks in the population,
rather than maximizing and choosing the red block on
every guess or randomly guessing each color 50% of the
time. Children in the long wait condition also generated a
pattern of guesses that reflected probability matching
within children across trials. The distribution of responses
across trials reflected a sampling process more clearly in
the long wait than in the short wait condition. The results
thus suggest that this was due to the fact that the re-
sponses in the long wait condition were closer to a set of
independent samples from the relevant distribution than
were the responses in the short wait condition.

The Sampling Hypothesis suggests that in both short
and long wait conditions children respond in a way that

reflects sampling after each new query, and because re-
sponses are sampled close together, there are likely to be
greater dependencies between guesses in the short wait
condition. These dependencies could arise for a number
of reasons; for example, recent research suggests that chil-
dren’s sensitivity to the knowledge and helpfulness of an
interviewer can explain children’s tendency to switch
guesses on repeated questioning (Gonzalez, Shafto,
Bonawitz, & Gopnik, 2012). Regardless of the specific
factors that cause greater dependency when samples are
generated over shorter intervals, the overall response
pattern of the preschoolers is consistent with the results
of Vul and Pashler (2008) with adults. There is some evi-
dence for a ‘‘crowd within’’ effect and the effect is weaker
when there is more dependency between responses.

While the results of this experiment seem consistent
with the Sampling Hypothesis, they only provide prelimin-
ary evidence against alternative accounts of variability in
children’s responses. These children did not seem to be
responding at chance or to be maximizing, but they might
have been noisy maximizers. Children might have simply
followed a strategy of choosing the more probable chip
every time but sometimes failed to succeed because of
memory or attention limitations, and this noise might have
just happened to lead to a 70:30 distribution of guesses.
We cannot know for certain that children were not maxi-
mizing without varying the proportion of blocks of differ-
ent colors and examining the effect that this has on
children’s responses. This is what we did in Experiment 2.

3. Experiment 2: varying proportions

To determine whether children’s responses truly reflect
probability matching with some noise or instead reflect
noisy maximization where all the variability is the result
of noise, we manipulated the ratio of red to blue blocks
in our causal learning scenario. Three groups of children
were presented with different distributions of blocks with
ratios of 95:5, 75:25, or 50:50. This design allows us to
tease apart four possible strategies children might use in
this task: (1) They may guess randomly, in which case chil-
dren in all three conditions should choose each block on
roughly 50% of trials. The probability matching results
from Experiment 1 suggest this is not the case; however,
additional data would provide further support for this
claim. (2) They may use a maximization strategy and
choose the majority-color block near ceiling in both the
95:5 condition and the 75:25 condition. Because children

Table 1
Experiment 1: Pattern of responses expected under independent sampling compared with frequencies in the long wait and short wait conditions.

Responses Expectation Long wait (frequency) Short wait (frequency)

Red, red, red .512 .500 (10) .050 (1)
Red, red, blue .128 .050 (1) .050 (1)
Red, blue, red .128 .100 (2) .500 (10)
Red, blue, blue .032 .150 (3) .000 (0)
Blue, red, red .128 .000 (0) .050 (1)
Blue, red, blue .032 .050 (1) .300 (6)
Blue, blue, red .032 .050 (1) .050 (1)
Blue, blue, blue .008 .100 (2) .000 (0)

Table 2
Experiment 1 transition matrices in the two conditions.

Long wait Short wait

Next r Next b Next r Next b

Current r 21 7 4 17
Current b 4 8 18 1
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in Experiment 1 initially produced the more probable re-
sponse 70% of the time (rather than 100%), we can also be-
gin to rule out this account; however, additional data
would also be useful. (3) They may maximize with
noise—showing above chance predictions but no difference
between the 95:5 and 75:5 condition (the noisy-max strat-
egy). (4) They may match sampling from the distributions
(as indicated by the Sampling Hypothesis) with a small
amount of noise. In this case we should see a decreasing
preference for the more probable block such that children
in the 95:5 condition would guess that the majority-color
block activated the machine most of the time, children in
the 75:25 condition would choose the majority-colored
block less often, and children in the 50:50 condition would
randomly choose between the two colors. Thus, by manip-
ulating the ratios, we can tease apart the noisy-max strat-
egy from the predictions of the Sampling Hypothesis and
reveal which strategy children actually use.

3.1. Method

3.1.1. Participants
Participants were 75 four- and five-year-old children

who were either attending a U.C. Berkeley campus pre-
school and were tested in a quiet room in their school or
were recruited and tested at a local museum. Children
were split into three conditions: the 95:5 condition con-
sisted of 25 children (12 females; Mean age = 58.9 months;
R = 48.1–71.5 months); the 75:25 condition consisted of 25
children (8 females; Mean age = 58.3 months; R = 49.3–
67.1 months); the 50:50 condition consisted of 25 children
(15 females; Mean age = 61.8 months; R = 48.6–
71.9 months). An additional 8 children were tested but
not included in the final analyses. Children were excluded
for interference from a sibling or parent (95:5 condition = 1
child; 50:50 condition = 1 child) or failing the comprehen-
sion check (95:5 condition = 1 child; 75:25 condition = 2
children; 50:50 condition = 3 children).

3.1.2. Stimuli
The stimuli were the same as in Experiment 1.

3.1.3. Procedure
The procedure was the same as Experiment 1, Trial 1

except that the distribution of red and blue blocks was
manipulated across three conditions: In the 95:5 condition,
the experimenter and child counted out 19 blocks of one
color (either red or blue—counterbalanced across children)
and 1 block of the other color. In the 75:25 condition, there
were 15 blocks of one color and 5 blocks of the other color,
and in the 50:50 condition, there were 10 blocks of each
color. Which block color was counted first was counterbal-
anced. The experimental session lasted approximately
3 min, and children at the museums received a small gift
for participating in the experiment.

3.2. Results

All children generated a unique and unambiguous re-
sponse of either ‘‘red’’ or ‘‘blue;’’ an assistant blind to con-
dition and hypotheses coded 40% of the trials in each

condition and agreement was 100%. There was a margin-
ally significant difference in the ages of children across
conditions (F(2,72) = 2.73, p = .07). This difference was lar-
gely due to the children in the 50:50 condition being
slightly older than children in the other two conditions,
as children in the 95:5 and the 75:25 conditions did not
differ reliably in age, t(48) = .03, p = .863. There were no ef-
fects of gender, which color block (red or blue) was used as
the majority color, or which color was counted first in any
of the three conditions; we collapsed across these variables
for subsequent analyses.

3.2.1. Probability matching
Children in the 95:5 condition guessed the majority-

color block on 21/25 (84%) trials, which was significantly
different from chance (binomial test, p < .001) and not sig-
nificantly different from the expected (95%) distribution
(binomial test, p = .07). Children in the 75:25 condition
guessed the majority color block on 15/25 (60%) trials; this
was not significantly different from either chance or the
expected frequency of .75 (binomial tests, p = .42; p = .14,
respectively). As predicted, children in the 50:50 condition
chose each block roughly equally—the red block on 14/25
trials and the blue block on 11/25 trials, which did not dif-
fer from chance (binomial test, p = .689). A comparison of
children’s responses in the 95:5 condition to children’s re-
sponses in the 75:25 condition reveals a marginally signif-
icant difference in choosing the majority color block
between these conditions (p = .06, one tailed). These re-
sults thus provide some additional support for the hypoth-
esis that the children were probability matching.

3.2.2. Comparing the probability matching and the noisy-max
model

To directly compare the probability matching and the
noisy-max strategy, we performed three additional analy-
ses. Recall that the sampling prediction is that the propor-
tion of blocks of a particular color in the sample would
have a linear effect on the children’s responses—as the pro-
portion of blue blocks goes up, children should be propor-
tionately more likely to guess that the causal block was
blue. In contrast, noisy-max predicts no difference be-
tween those groups. We performed a logistic regression
to test whether or not assignment to a particular condition
significantly increased the log odds ratio of guessing the
majority color block. Because the method for the initial
predictions (i.e., Trial 1) in the 80:20 condition of Experi-
ment 1 are identical to the 95:5 and 75:25 conditions here,
we included these data in our analyses, providing yet an-
other distribution to test. We dummy coded children’s re-
sponses into 1’s and 0’s—children received a 1 for guessing
the majority color block and a 0 for guessing the minority
color block (the 50:50 condition was arbitrarily coded such
that the color block children saw first when the distribu-
tions were counted was given a score of 1). We entered
the data from all four conditions into the model and found
that the odds ratio for choosing the majority color block
was significant in the 95:5 and 80:20 conditions but not
in the 75:25 condition (see Table 3 for significance tests
for all conditions).
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In our second analysis, we conducted a logistic regres-
sion with distribution of blocks in the bag (i.e., condition)
as an ordered predictor variable (95:5; 80:20; 75:25;
50:50). We scaled the Condition variable to more accu-
rately reflect the magnitude of the differences between
conditions: the 95:5 Condition was scaled to log(19); the
80:20 Condition = log(4); the 75:25 Condition = log(3);
and the 50:50 Condition = log(1). The regression found evi-
dence for a linear increase in the proportion of choices of
the more numerous block based on condition (Wald test:
df = 3; z = 2.99, SE = .199, p = .003). This is consistent with
the hypothesis that the children’s responses are sensitive
to the distribution of blocks, with a linear relationship
being what we should expect if children are probability
matching. The analysis also confirms that this probability
matching is imperfect, as the coefficient for the linear mod-
el is .595, 95% Confidence Interval = (0.205, 0.985).

Finally, we compared the likelihoods of observing the
data under a model of probability matching and a model
of the noisy-max account. Both models predict random
responding for the 50:50 condition, so we did not include
responses for this condition in either model. We did in-
clude the responses in the 80:20 condition in Experiment
1. Both models are a mixture of chance responding and a
variable h, mediated by a free parameter a. The probability
matching model is: a " chance + (1 # a) " h, where chance
given two chips is .5 and h reflects the probability of that
block by condition (i.e. h = .75 in the 75:25 condition). Be-
cause the noisy max model predicts always selecting the
maximally likely hypothesis, h is 1 for all conditions such
that the noisy max model is simply: a " chance + (1 # a).
The single free parameter a can be thought of as the
parameter that varies how many children are chance
responding and how many children perfectly match to h.
Thus, when a = 1 chance responding is predicted, and
when a = 0 all responses are driven by h. We selected the
a that best fit the data for each model. The a that best ac-
counted for the noisy-max model was .58, indicating that
the best fit for this model assumes that more than half
the children guess at chance and predictions should always
fall at around 71% of the more probable block. The a that
best fit the probability matching model was .3, indicating
that the majority of children probability match but a few
children guess at chance and draw response distributions
towards .5. The probability matching model was a better
fit to the data (log-likelihood = #46.7) than the noisy-
max model (log-likelihood = #48.0); see Fig. 2.

3.3. Discussion

Children’s tendency to guess the majority-color block
decreased as the proportions in the distribution became

less extreme—from 95:5 to 80:20 to 75:25 to 50:50. In
addition, children’s behavior did not deviate from the per-
formance predicted by the Sampling Hypothesis in any of
the conditions. There was, however, evidence against the
maximizing hypothesis—children guessed the majority-
color block more often in the 95:5 condition than in the
75:25 condition, and the probability matching model out-
performed the noisy-max model. Children in the 95:5 con-
dition also chose the majority color block at greater than
chance levels; combining these results with those from
Experiment 1 rules out the possibility that children were
confused by the data and were simply responding at
chance and suggests that a noisy-max model that requires
a high level (58%) of chance responding to fit the data is
unlikely.

There are however, other possible formulations of the
noisy max model that might better fit the data. It is possi-
ble that children’s memories of the distributions were af-
fected by noise and children maximized on the
remembered counts, rather than the true counts. A noisy
max model that does not predict a constant amount of
noise for each distribution, but rather a larger amount of
noise as the distributions approach chance could provide
a better fit than the mixture model that we presented. Such
a model would require additional free parameters to ac-
count for whether noise was contingent on the ratio be-
tween the majority color chip and all other chips of any
color, or between the majority color chip and only the next
most populous chip, as we will explore in Experiment 3.
Although our current experiment cannot determine
whether or not the remembered counts were affected by
a model that takes into account this kind of noise, it seems
somewhat unlikely due to the fact that children were
asked about and reminded of the number of each color
block after counting, and the sampling event took place
less than 1 min later. Nonetheless, although we may be
able to explain the data with a potentially less parsimoni-
ous process model, the overall pattern of a linear decrease
in choosing the majority color block as the distributions
become less extreme is consistent with probability
matching.

There was a linear decrease in the number of guesses
indicating the majority color block from the 95:5 to the

Table 3
Experiment 2: Wald tests for the 95:5; 80:20 (Experiment 1); and 75:25
conditions.

Condition Odds estimate Std. error z-Value p Value

95:5 1.899 .678 2.801 .005
80:20 1.089 .531 2.052 .04
75:25 0.647 .574 1.127 .26

Fig. 2. Results of children’s predictions in Experiment 2 and the 80:20
first predictions from Experiment 1, as compared to predictions of the
noisy-max and the probability matching models.
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80:20 (Experiment 1), to the 75:25 conditions; however
we did not find the predicted statistically significant differ-
ence between children’s responses in the 95:5 and 75:25
conditions, but only a trend towards such a difference.
Moreover, children’s responses in the 75:25 condition
were not significantly different from chance responding
of 50%. This may be due to the fact that our experimental
design, which allows for just one data point from each par-
ticipant, and where chance is 50%, lacked enough statistical
power to uncover these differences. To further investigate
whether or not children are producing responses consis-
tent with the Sampling Hypothesis, we assessed probabil-
ity matching in a third experiment. This additional
experiment introduces three potential hypotheses from
which children can choose. This moves chance responding
from 50% to 33% and allows us to test whether or not chil-
dren produce responses consistent with probability match-
ing when three potential responses are possible, rather
than just two.

4. Experiment 3: varying proportions with three
alternatives

In this experiment, we tested the probability matching
prediction with a different, more complex set of hypothe-
ses. Do children continue to produce guesses that reflect
probability matching when more than two alternative
hypotheses are available? In this experiment, children
were given distributions that included three different col-
ors of objects, all of which made the toy activate. The de-
sign was similar to Experiment 2, as the distributions
were systematically manipulated across two conditions:
an 82:9:9 condition and a 64:18:18 condition.

4.1. Method

4.1.1. Participants
Participants were 100 four- and five-year-old children

who were either attending a U.C. Berkeley campus pre-
school or were recruited and tested at a local museum.
Children were split into two conditions: the 82:9:9 condi-
tion consisted of 50 children (28 females; Mean
age = 58.6 months; R = 50–70 months); the 64:18:18 con-
dition consisted of 50 children (23 females; Mean
age = 58.7 months; R = 48–71 months). An additional 9
children were tested but not included in the final analyses.
Children were excluded for interference from a sibling or
another child (82, 9, 9 condition = 1 child; 64, 18, 18 condi-
tion = 3 children); walking around to the back of the ma-
chine and discovering the way the machine truly worked
(64, 18, 18 condition = 1 children); experimenter error
(64, 18, 18 condition = 3 children); or refusing to agree that
any blocks of any color made the machine work (82, 9, 9
condition = 1 child).

4.1.2. Stimuli
We used the stimuli from Experiments 1 and 2 and a

second analogous set of materials. This second set of mate-
rials consisted of a box made of cardboard and multi-
colored construction paper (mostly black and orange),

and it had an airplane toy that spun and lit up when the
button was pressed. The objects for counting were poker
chips covered in black, white, and yellow electrical tape
and the bag was yellow.

4.1.3. Procedure
The procedure unfolded as in Experiment 2, except that

children were shown that objects of all colors make the
machine work. The comprehension check simply consisted
of the experimenter asking the children what colors the
blocks were and if they made the machine work. Children
in the 82:9:9 condition counted, for example, 18 red, 2 blue
and 2 green blocks or 18 white, 2 yellow and 2 black chips.
Children in the 64:18:18 condition counted, for example,
14 red, 4 blue and 4 green blocks or 14 white, 4 yellow
and 4 black chips. The majority color block or chip was
counterbalanced across children in both conditions.

4.2. Results

All children generated a unique and unambiguous re-
sponse of one of the six colors, and an assistant blind to
condition and hypotheses coded 50% of the trials in each
condition and agreement was 100%. There were no differ-
ences in the ages of children across conditions
(F(1,98) = 0.01, p = .921). There were no effects of gender,
which toy was used (NNew Toy(82:9:9) = 8; NNew Toy(64:18:18) = 5),
which color block was used as the majority color, or which
color was counted first in either condition; we collapsed
across these variables for subsequent analyses.

4.2.1. Probability matching
Children in the 82:9:9 condition guessed the majority-

color block on 36/50 (72%) trials, which is significantly dif-
ferent from chance of 33% (binomial test, p < .001) and not
significantly different from the expected frequency of 82%
(binomial test, p = .11). Children in the 64:18:18 condition
guessed the majority color block on 24/50 (48%) trials; sig-
nificantly different from chance of 33% (binomial test,
p = .04) and but also significantly different from the ex-
pected frequency of .64 (binomial test, p = .03), consistent
with the idea that while there is a pattern of probability
matching, there is also some noise in children’s respond-
ing. Importantly, and consistent with the probability
matching model, children in the 82:9:9 condition chose
the majority color more often than children in the
64:18:18 condition, v2 (1, N = 100) = 5.06; p = .025).

4.2.2. Comparing the probability matching and the noisy-max
model

As with Experiment 2, we compared the likelihoods of
observing the data under a model of probability matching
and a model of the noisy-max and compared the majority
color chip choices to the combined minority color chip
choices. Whether using the a that best fit the data for each
model in Experiment 2 or choosing a new a for each model
that best fit only the data from Experiment 3, the
probability matching model was a better fit to the data
(log-likelihood = #65.7 when a set from Experiment 2
(a = .30); log-likelihood = #65.4 when a fit to data (a = .43))
than the noisy-max model (log-likelihood = #70.1 when
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a set from Experiment 2; log-likelihood = #67.3 when a fit
to data (a = .80)). Note also that while the best value for a
in the noisy max model varies greatly for the results of
Experiments 2 and 3 (from .58 in Experiment 2 to .80 in
Experiment 3) the best a in the probability matching mod-
el is relatively constant across the two experiments (.30
and .43 respectively) indicating that the probability match-
ing model is a more robust model.

4.3. Discussion

The data from the experiments we have described thus
far support the probability matching prediction of the
Sampling Hypothesis. However, the factors that are influ-
encing children’s hypotheses in these tasks may be more
or less sophisticated. For example, children’s attention
may have simply been more strongly drawn toward the
majority-colored block in the 95:5 condition (Experiment
2) and the 82:9:9 condition (Experiment 3) because there
were more of these blocks shown overall compared to
the minority-color blocks. Although using a low-level,
naïve frequency matching strategy to make inferences on
these tasks would produce probability matching behavior,
ideally, we would like to confirm that children are instead
reasoning in a more sophisticated way about the probabil-
ity that each type of block fell out of the bag. One way of
showing that children are using a more advanced strategy
than simple frequency matching is to test whether they
can consider the process by which the data were gener-
ated, effectively integrating prior probabilities into their
judgments.

5. Experiment 4: beyond frequency matching

In Experiment 4, we designed a task that directly pits
naïve frequency matching against a more sophisticated
sampling strategy. The design consists of a set of events
in which the more numerous color block was actually less
likely to have made the machine go than the less numerous
color block. For example, there might be more red blocks
overall, but it is more likely that a blue block fell into the
machine. We asked whether children correctly reasoned
about how a sample could be generated by integrating
the distributional information overall with information
about the physical separation of the population of objects
into two distinct distributions. Previous research using
looking-time with infants suggests that they can compute
probabilities in situations where overall numerosity and
probability conflict, based on a physical constraint on the
sampling process (Denison & Xu, 2010; Teglas et al., 2011).

To disentangle probability from numerosity, we split
the blocks into two separate containers. The experimenter
counted 14 red blocks and 6 blue blocks into Container 1
and 2 blue blocks into Container 2. Hence, there were
many more red blocks than blue blocks overall. In what
we will call the separate distributions condition, the blocks
were transferred from each transparent container into
corresponding separate opaque bags, then a single bag
was selected at random and this bag was knocked over,
causing the machine to activate. Correct predictions for

children in this condition require the integration of multi-
ple sources of information: First, children must realize that
the population of objects is now physically separated so
that the objects in each container cannot transfer from
one distribution to another or simply be summed over.
Second, if children assume that the sampled bag was ran-
domly selected, then they must combine the 50% probabil-
ity of choosing either distribution (bag) with the
probability of sampling a particular object color within
each distribution. Thus, the probability of a blue block fall-
ing out is: the probability that the first bag was selected
(50%) times the probability of a blue block being selected
given that bag (6/20), plus the probability of the second
bag being selected (50%) times the probability of a blue
block falling from that bag, given selection (100%). This
equals a sum total 65% probability that a blue block acti-
vated the machine, in spite of the fact that only 36% of
the blocks were blue. If, on the other hand, children are
engaging in a simpler strategy of naïve frequency match-
ing, they should probability match across the entire popu-
lation. That would mean choosing the more numerous red
blocks rather than the more probable blue blocks: 64% of
the blocks overall are red, but given the causal situation,
there is only a 35% probability that a red block activated
the machine.

Children in a second control group, called the merged
distributions condition, saw the blocks being separated
into two transparent containers in the same proportions
as described above. However, these children then saw all
of the blocks being poured into a single opaque bag so that
the distributions were no longer separated for the remain-
der of the procedure. We expect that children in this con-
dition, like those in Experiments 1 and 2, will probability
match across the entire population, favoring the more
numerous red blocks in their guesses.

5.1. Method

5.1.1. Participants
Participants were 33 four- and five-year-old children

who were either attending a U.C. Berkeley campus pre-
school or were recruited and tested at a local museum.
The children were randomly assigned to two conditions:
the separate distributions condition (20 children; 10 fe-
males; Mean age = 56.4 months; R = 49.3–62.3 months)
and the merged distributions condition (13 children; 8 fe-
males; Mean age = 57.8 months; R = 50.0–70.7 months). In
the separate distributions condition, no additional children
were tested and excluded, but because there were three
trials in this task, two children had one of the three trials
excluded for failing a comprehension check. In the merged
distributions condition, two additional children were
tested but excluded from final analyses, one because of
experimenter error and another for failing the comprehen-
sion checks on every trial. Three children had a single trial
excluded for failing to pass the comprehension check for
that particular trial.

5.1.2. Stimuli
Identical stimuli were used for both conditions. Because

we know that children show dependence between re-
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sponses when asked a question on the same toy (Experi-
ment 1), in this experiment, we introduced a completely
novel toy for each trial, with novel activation rules and no-
vel activator objects. This allowed us to ensure that a
child’s response on the first trial would not influence their
responding on subsequent trials. For Trial 1, identical stim-
uli to Experiment 1 were used with the following addi-
tions: two transparent containers were used rather than
one, two identical blue rigid bags were used rather than
the one green bag, and two cards mounted on black con-
struction paper with color-printed pictures depicting the
separate distributions of blocks contained in the transpar-
ent containers were used.

For Trial 2, a different large box made of cardboard and
decorated with multi-colored (mostly purple, green, and
yellow) construction paper and a toy fan that functioned
similarly to the sphere and cylinder toy were used. The
blocks used for Trial 2 were approximately 1 in (footnote
3). Lego pieces covered in orange, purple, and brown elec-
trical tape. The two identical bags were yellow and green,
and there were two pictures depicting the two separate
distributions of the Lego blocks in the transparent
containers.

For Trial 3, the new box and poker chips used for some
of the children in Experiment 3 were used (yellow, black
and white chips). The two identical bags were yellow with
flowers, and there were two pictures depicting the distri-
butions of the poker chips in the transparent containers.

5.1.3. Procedure
Trial 1 proceeded as in Experiment 1 until the end of the

comprehension check. The experimenter then brought out
two transparent buckets and placed them in front of the
child about a foot apart on the table. The experimenter
said, ‘‘Look at these two buckets. Let’s count 14 red blocks
into this bucket here (pointing to the bucket on her left).’’
The experimenter then did the same with 6 blue blocks,
placing them in the same bucket and mixed the blocks
around in the bucket. She asked the child how many red
blocks and how many blue blocks were in the bucket. Then
she pointed to the other container and said, ‘‘Can you help
me count two blue ones into this one here?’’ After placing
them in the bucket, she said, ‘‘How many blue ones are in
here? And are there any red ones?’’ Next she told the child
they would play a fun matching game. She showed the
child two pictures, each displaying the contents of one
bucket, and the child was asked to indicate by pointing
which picture looked like which bucket.

In the separate distributions condition, the experi-
menter then brought out the two identical blue bags and
said, ‘‘Look at my two bags, they look the same! I’m going
to take all of these blocks here (picking up the container on
her left) and pour them into this bag. There they go! Now
I’m going to take this other bag over here, and I’m going to
pour all of these ones (picking up the container on her
right) into here.’’ Next the experimenter told the child they
were going to play a switching game and started trading
the places of the bags in a circular fashion so that the child
could not tell which bag was which. Then she brought the
bags back up and said, ‘‘Now I’m gonna choose a
bag. . .hmm, which bag? I know; I’ll play eenie, meenie,

miney, moe’’, and chose the bag apparently at random. In
the merged distributions condition, the experimenter in-
stead poured all the objects into one bag. The trial then
continued as in the separate distributions condition,
excluding any parts that made reference to separate distri-
butions or multiple bags.

The two conditions were then identical: the experi-
menter took the bag and said, ‘‘I’m just going to put the
bag on my toy for a second.’’ As she placed the bag on
the large toy, she ‘accidentally’ tipped it over, just as in
Experiment 1, exclaiming, ‘‘Oh, a block fell out and made
the machine go’’ as the toy activated. She asked the child
what color they thought fell in to cause the toy to activate
and why. After this, she brought out the two pictures again
and asked the child to point to the picture of the distribu-
tion they thought was in the bag that was knocked over.

Trials 2 and 3 were identical to Trial 1 except the other
sets of toys, blocks, bags, and pictures were used. For Trial
2, children saw that purple and orange blocks activated the
fan and brown blocks were inert. The distributions were 14
purple and 6 orange blocks in one bucket and 2 orange
blocks in the other bucket. For Trial 3, children saw that
white and black poker chips activated the fan and yellow
poker chips were inert. The distributions were 14 black
and 6 white poker chips in one bucket and 2 white poker
chips in the other bucket. This made purple and black the
more probable objects for the merged distribution condi-
tion and orange and white the more probable objects for
the separate distribution condition for Trials 2 and 3
respectively. Each experimental session took approxi-
mately 13 min. In the separate distributions condition, 10
of the 20 children were only given a single trial with the
blocks; 10 children completed all three trials.4 In the
merged distribution condition all children completed all
three trials. The order of counting blocks and chips into
the buckets (14 red then 6 blue into a single bucket, 6 blue
then 14 red into a single bucket, or 2 blue into a single buck-
et) was counterbalanced. The bag chosen for placement on
the toy was counterbalanced. Each experimental session
took approximately 13 min.

5.2. Results

Responses fell unambiguously in one of the two color
categories. An assistant blind to hypotheses coded 48% of
the trials with 100% agreement. There were no differences
in performance based on gender or which color objects
were counted first in either condition. In the separate dis-
tributions condition, there were no differences in perfor-
mance between children who completed just the first
trial (N = 10) or all three trials (N = 10), z = 0. We collapsed
across these variables for the remainder of the analyses.

In the separate distributions condition, children chose
the correct color (blue, orange, or white—i.e., the overall
less numerous color) on 26/38 (68%) of trials. This was
not different from the predicted distribution of 65% for

4 Children completed either 1 or 3 trials because we developed the
multi-toy testing method part way into data collection; we did not feel it
was appropriate to discard data from the first 10 children using the
identical, but single response method.

296 S. Denison et al. / Cognition 126 (2013) 285–300



the rational sampling strategy predicted by the Sampling
Hypothesis (binomial test, p = .798), and it is higher than
chance (50%) performance (binomial test, p = .034) and
also different from the naïve frequency matching predic-
tion of 36% (binomial test, p < .001). This suggests that chil-
dren were in fact able to combine the 50% probability of
choosing a particular distribution with the 30% and 100%
probability of obtaining the correct colored object within
each of these containers (dual color vs. uniform color). In
the merged distributions condition, children chose the
overall more numerous object color (red, purple, or black)
on 24/36 (67%) of trials. This is not different from the pre-
dicted distribution of 64% (binomial test, p = .886) and is
marginally different from chance (50%) (binomial test,
p = .065). It is also significantly different from children’s
choices in the separate distributions condition (24/36 trials
vs. 12/38 trials), t(72) = 3.18, p = .002.

5.3. Discussion

The results of Experiment 4 suggest that children are
using a sophisticated sampling strategy. Preschoolers in
the two conditions provided different patterns of re-
sponses based on the distributional information and how
data were generated. In the separate distributions condi-
tion, children integrated their prior knowledge about
how the blocks were selected with their knowledge about
the frequencies of different colors. In the merged distribu-
tions condition, children guessed the more numerous color
at a rate equivalent to the expected distribution when
summed across the entire population, as in Experiments
1 through 3.

The results from the merged distributions condition
control for other possibly simpler explanations of the chil-
dren’s behavior in the separate distributions task. For
example, one might wonder if children simply chose the
more probable object because it appeared in both bags.
Such arguments become less likely given the findings in
the nearly identical merged distributions condition. Thus,
the results from Experiment 4 suggest that children are
using a more sophisticated sampling strategy than simply
naïve frequency matching. Children appear to be reasoning
about how a sample could be generated by integrating the
distributional information overall with information about
the physical separation of the population of objects into
two distinct distributions.

The results from Experiment 4 not only support the
Sampling Hypothesis but they also suggest that preschool-
ers are strikingly sophisticated in making probabilistic
inferences in general. Previous research on probabilistic
inference in preschoolers has rarely gone beyond asking
children to make predictions about the likelihood of a sam-
ple from a single population or the likelihood of obtaining a
particular object from two populations with different
proportions of the target object. Indeed preschoolers are
generally assumed to have difficulty with more complex
probabilistic inferences. However, in a recent experiment,
Girotto and Gonzalez (2008) asked children to make more
complex probabilistic inferences, testing their ability to
combine prior probability with subsequent information.
In one of their experiments, children were shown a distri-

bution containing, for example, four black circles, three
white squares and one black square and were asked what
color the experimenter was likely to pull out on a random
draw. Then the experimenter drew an object blindly from
the distribution and said that he could feel it was, for
example, a square. School-aged, but not preschool-aged
children correctly inferred that, initially a black object
was more likely to be drawn, but after receiving the updat-
ing information, a white object was more likely. Our task,
in the separate distributions condition, requires children
to engage in a slightly different computation. We did not
provide disambiguating information about which distribu-
tion was selected, thus children had to combine the 50%
probability of either bag being chosen with the 0:2 and
6:14 distributions of items.

We cannot say with certainty why 4- and 5-year-olds in
our experiment were able to combine probability in this
sophisticated way. One possibility is that the physical sep-
aration of the distributions into two sets assisted young
children in making accurate inferences in our task. Girotto
and Gonzalez used a single distribution, separable only on
the basis of object features or categories (e.g., shape), and
this may have made their task more challenging for very
young children. A second possibility is that use of a causal
inference task helped children reveal earlier competence.
Evidence from previous experiments suggests that adults
are better at making judgments that require probability
computations when causal variables are made clearer, as
they are less likely to engage in base-rate neglect in these
circumstances (Krynski & Tenenbaum, 2007). Additionally,
evidence suggests that children perform better in probabil-
ity tasks when they are encouraged to use intuitive
estimation strategies, rather than reason explicitly about
numbers or likelihood (Ahl, Moore, & Dixon, 1992; Bonawitz
& Lombrozo, in press; Boyer, Levine, & Huttenlocher, 2008;
Jeong, Levine, & Huttenlocher, 2007). Our paradigm may
lead children to think less explicitly about the proportions
of objects in the distributions and rely on a more intuitive
probability sense by asking them to make a causal infer-
ence about an accidentally falling block, rather than asking
what item was ‘‘mostly likely’’ to be drawn from a
distribution.

6. Analysis and discussion of children’s explanations

Finally, we measured and analyzed one additional as-
pect of children’s performance in all four of the experi-
ments that warrants discussion. In every experiment, the
experimenter ended each trial by asking children: ‘‘Why
do you think it was a [child’s produced response] one that
fell in?’’ All responses fell into one of five bins: (1) No
explanation (e.g., ‘‘Just because’’); (2) an appeal to the acti-
vation of the toys (‘‘because it makes it spin’’) (3) a random
response (e.g., ‘‘Because red is the color of hot lava’’; (4) an
appeal to the order of counting (e.g., ‘‘the red went in
first’’); or (5) an appeal to the distribution of the chips or
how they were sampled (‘‘Because blue was the most’’).

Of 220 children, on 337 trials (excluding children in the
Experiment 2, 50:50 condition and children that were not
asked, due to experimenter error, N = 3), only 19 total
explanations were produced that appealed to the distribu-
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tion (6%), with only 16 individual children producing a re-
sponse of this nature on at least one trial (7%). The most
common responses fell into Category 1 (40% of all re-
sponses), followed sequentially by 2 (34%), 3 (15%), and 4
(6%). This was the case even though the ‘‘distribution’’
explanations were counted very liberally, as any explana-
tion that appealed to anything about the number of blocks
in the distribution was counted (e.g., ‘‘Because there were
lots of red ones’’ or ‘‘There were 19 blues’’). No children ap-
pealed to the proportions of the objects or made any at-
tempts at describing the random nature of the process.

Despite this inability to coherently explain why they
guessed a particular color, children in all experiments
guessed the more probable object color reliably more often
than would be expected by chance. This finding is in agree-
ment with other experiments examining probabilistic
inference in early childhood (Denison, Konopczynski,
Garcia, & Xu, 2006). Our results are also consistent with
other research that demonstrates a gap between children’s
success on implicit measures of evidential reasoning (e.g.
Schulz & Bonawitz, 2007) and their failures to explicitly
demonstrate understanding of ambiguous evidence (e.g.
Bindra, Clarke, & Schultz, 1980). Future experiments could
explore why children struggle with explanations in these
tasks where evidence is indeterminate, in contrast to find-
ings suggesting that children as young as 3-years of age
can produce sensible explanations in tasks examining
non-probabilistic concepts (Bartsch & Wellman, 1989).
Do children struggle specifically with probabilistic expla-
nations? Or, do children more generally struggle to explain
how they come to know particular facts from observed evi-
dence? In any event, the explanation data from the present
experiments suggests that children’s probabilistic infer-
ences are intuitive and unavailable for conscious reflection.

7. General discussion

We have suggested that rationality and variability
might be reconciled by the Sampling Hypothesis. Some
variability in children’s responding may0020indeed be
caused by random guessing or by factors such as cognitive
load, methodological problems, or context effects. How-
ever, our results suggest that, at least in contexts like cau-
sal inference, a rational strategy of sampling responses
from a distribution could also account for variability. The
Sampling Hypothesis can be distinguished from a random
guessing or noisy-max strategy by its hallmark: Response
variability should be determined by the posterior distribu-
tion over hypotheses—learners should select hypotheses
with probabilities that match the posterior.

Children in Experiment 1 showed probability matching
in their initial guesses as well as in the distribution across
three responses in the long wait condition. Children in
Experiments 2 and 3 provided additional evidence of prob-
ability matching as the distribution of block colors was
systematically manipulated across conditions. Finally,
children in Experiment 4 demonstrated a capacity to go be-
yond naïve frequency matching. These children integrated
the 50% probability of obtaining one of two sets of objects
with the distributions contained in the two sets.

We also observed a consequence of sampling—
dependency in responses decreases as the time between
generating samples increases, and decreased dependency
leads to a closer fit to the underlying distribution. We
observed this signature dependence relationship between
successive guesses in the causal inference task of Experi-
ment 1. Specifically, children who provided three guesses
in close temporal proximity showed more dependence
than children who experienced a long delay between
guesses, and those children’s guesses were also less likely
to reflect a sampling pattern. In general, children’s guesses
matched the distribution of the blocks in the bag more
closely as the responses became more independent.

These results also suggest that children are demonstrat-
ing a level of sophistication that goes beyond what is tradi-
tionally referred to as ‘‘probability matching.’’ In particular,
the results of Experiment 4 suggest that children are not
simply making guesses based on the number of blocks in
the bucket; they use information about how the samples
are generated to formulate a hypothesis about which block
fell in the machine. These results also extend beyond tradi-
tional reinforcement learning tasks, which often show fre-
quency matching. Children were never reinforced in our
tasks; in fact, they received no feedback at all. They simply
observed the evidence and then expressed a hypothesis
about the contents of the machine.

Although we predicted probability matching in our
experiments, one might question whether probability
matching is, in fact, a sign of optimal inference. Much of
the literature in economics and psychology highlights irra-
tional cases of probability matching in decision-making.
For example, consider a game in which an experimenter
presents a person with multiple trials, and their task is to
predict which of two options is most likely to occur to gain
rewards (one has say a 67% probability of occurring).
Rather than optimizing and always choosing the more
probable outcome in these games, adults and school-age
children often match the probabilities, thus decreasing
their returns. Researchers studying this type of phenome-
non often posit that probability matching arises from an
incorrect belief that one can ‘‘outsmart’’ a game of chance
(see Vulkan, 2000, for a review).

Although this is undoubtedly a poor strategy in some
tasks, recent research suggests that probability matching
can actually arise from more rational strategies. As we dis-
cussed earlier the rational choice changes if an agent is
motivated to learn about the world, in general, rather than
merely to maximize the gain of a particular choice. Choos-
ing an option that leads to a particular outcome not only
gives you the utility of that outcome, it also can provide
you with information about other options and outcomes.
In fact, people who are more committed to finding patterns
in data are more likely to probability match; moreover,
they are also more likely to discover patterns if they exist
even at the cost of failing to maximize gains on particular
trials (Gaissmaier & Schooler, 2008). Children are particu-
larly likely to be motivated to discover new information
rather than to achieve a particular goal, and it is possible
that they might probability match on a variety of tasks
for this reason. It is sensible to assume that children should
be ‘‘riskier’’ in their hypothesis testing than adults both
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because they are less sure overall of how things in the
world work, and because their protected immaturity
means that they are more sheltered from the consequences
of their decisions. If children simply maximized at all
times, they might miss out on hypotheses that, although
initially low in probability, actually turn out to be correct.

Additionally, sampling may be involved in rational pro-
cesses for approximating Bayesian inference, and so lead to
probability matching behavior, rather than being a strategy
for inference or action itself. Sampling from the distribu-
tion is a rational strategy because people are typically
unable to test all competing hypotheses, and so need a pro-
cess to choose which hypotheses to evaluate. Sampling is
involved in most of the effective machine learning
algorithms that solve this problem. The nature of selecting
samples from a distribution requires that when the indi-
vidual samples are aggregated over many sampling events,
the distribution will be returned. Thus probability match-
ing behavior might be an epiphenomenon of a more gener-
ally useful and internal processing algorithm.

What might such an algorithm be like in detail? Though
we have found evidence that suggests children are sam-
pling from a distribution, we have not proposed how these
samples are generated for a learner. That is, we can ask:
How are children representing a distribution initially, and
what are the specific algorithms they might be using to
generate samples? How do those algorithms operate as
new evidence is gathered? One important direction for
future work is to investigate the role of evidence in
children’s hypothesis generation and sampling. By examin-
ing how children’s pattern of responses change following
newly observed evidence, we can begin to identify the spe-
cific strategies, consistent with the Sampling Hypothesis,
that children may be using to initially generate and then
evaluate hypotheses. For example, current work with
adults suggests that the learner may use a specific
algorithm (the Win-Stay, Lose-Shift strategy) that requires
only occasionally resampling a hypothesis from the full
posterior distribution. This algorithm may therefore be
more computationally tractable than resampling after each
new observation (Bonawitz, Denison, Chen, Gopnik, &
Griffiths, 2011). Other more complex algorithms, such as
particle filters (Levy et al., 2009; Sanborn, Griffiths, &
Navarro, 2006) and Markov chain Monte Carlo (Ullman,
Goodman, & Tenenbaum, 2010), can also be used to draw
samples from a posterior distribution and may play a role
in explaining how children are capable of making probabi-
listic inferences with limited computational resources.

8. Conclusions

We proposed that the Sampling Hypothesis might help
to explain some competing findings on children’s hypoth-
esis testing and theory building strategies. If children are,
in fact, approximating rational inference by sampling
hypotheses as our results suggest, this provides an account
of the variability that is often observed in patterns of
responding and connects that variability to computational
level accounts. More generally, the Sampling Hypothesis
also suggests that while children’s responses can appear

irrational when examined individually, they may actually
reflect a rational strategy overall.
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