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Abstract 
  

To acquire one's native phonological system, language-specific phonological 
categories and relationships must be extracted from the input. The acquisition of the 
categories and relationships have each in their own right been the focus of intense 
research. However, it is remarkable that research on the acquisition of categories and the 
relations between them has proceeded, for the most part, independent of one another. We 
argue that this has led to the implicit view that phonological acquisition is a 'two-stage' 
process: phonetic categories are first acquired, and then subsequently mapped onto 
abstract phoneme categories. We present computational simulations that suggest that this 
view is almost obligatory given current statistical models of category acquisition: they 
both under- and over-estimate category structure depending on the language. Solving the 
former problem incompletely will invariably exacerbate the latter problem, and so these 
approaches are guaranteed to converge on phonetic, rather than phonemic categories. We 
suggest an alternative conception of the phonological acquisition problem that sidesteps 
this apparent inevitability, and acquires phonemic categories in a single stage. Using 
actual acoustic data from Inuktitut, we show that this model converges on a set of 
phoneme-level categories once predictable acoustic variation is factored out. 
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Introduction 
  

In recent years, statistical approaches to language acquisition have generated 
much enthusiasm, especially in the domain of phonological acquisition. On the face of it, 
the problem of how human children acquire phonological categories (phonemes) of 
spoken language presents an ideal model problem: we understand a good deal about the 
time course of development, how the perceptual input to learning is represented, and 
what the desired end stage of acquisition is. There are very good reasons to model the 
acquisition process as a form of statistical inference over perceptual input, as we 
document below. However, the general approach to phonological category formation as 
perceptually driven statistical inference has led to the view that the initial categorization 
posited by the learner is in some sense isomorphic to all and only the distinctions present 
in the acoustics. That is, this approach implicitly suggests that such statistical approaches 
are meant to discover phonetic rather than phonemic categories. 

Phonetic categories are not the desired end state of phonological acquisition, 
however. Instead the learner must identify language-specific phonemes, phonologically 
relevant, abstract sound categories that may consolidate several distinct phonetic 
realizations into equivalence classes for the purpose of lexical, morphological and 
syntactic operations. There are varied theoretical approaches to this problem, but the 
problem of how to map phonetic categories to a higher-level phonological system of 
phonemes or relationships has itself generated a large body of work (Harris, 1951; Tesar 
& Smolensky, 1998; Boersma & Hayes, 2000; Peperkamp, Le Calvez, Nadal & Dupoux, 
2007, Goldsmith & Xanthos 2009, among others). By using phonetic categories as input 
to various learning algorithms, work on the phonetics-phonology mapping often tacitly 
assumes that the learner was able to reliably identify these categories in a prior stage. 

As we will see, this disconnect between the statistically induced phonetic 
categories and the target phonemic categories has led to an implicit ‘two-stage’ view of 
phonological learning: learners first learn phones, and then build phonemes and 
phonological systems by identifying relations between them. In this paper, we present 
simulation evidence that such a view is a necessity given current models of first stage 
statistical categorization, because current approaches are guaranteed to converge on 
phonetic, rather than phonemic categories. This demands a second acquisition stage that 
subsequently builds the relevant phonemic categories. We then argue that a two-stage 
approach is not inevitable, and present an alternative, ‘single-stage’ model that learns 
phonemes directly by factoring out predictable alternations conditioned on environment. 
 
The phonological learning problem  
 

The two-stage view of phonological acquisition mirrors a traditional distinction that 
linguists have long drawn between phonetics and phonology. Phonetics refers to the study 
of audition and production, and phonology is concerned (sometimes implicitly) with the 
encoding of speech in the lexicon (i.e. long-term memory). Much work in phonetics turns 
on the observation that phonetic representations are finely detailed, and thus best 
represented as continuous rather than discrete values (Fant, 1960; Ohala, 1976; 
Ladefoged, 2001; Silverman, 2006). The phonological level is instead thought to abstract 
away from the detailed properties of the phonetic representations to varying degrees, and 
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it is almost always taken to be in a discrete rather than a continuous encoding (Chomsky 
& Halle, 1968; Goldsmith, 1976; Prince & Smolensky, 2004). The inventory of 
phonemes varies from language to language, and an infant acquiring her native tongue 
must identify the phoneme categories that are relevant for her language. Part of this task 
includes determining the distribution of each phone or phoneme in acoustic and/or 
articulatory space. Determining which acoustic realizations (or articulatory movements) 
map to which phonemes is a prime example of an unsupervised learning problem. This 
characterization of the problem has allowed researchers to make direct contact with a vast 
literature in machine learning, and has led to important new models of phonological 
acquisition. 

The view of phonological category acquisition as unsupervised clustering is 
complicated by the non-trivial mapping between phonemic and phonetic representations 
because of the existence of phonological processes, systematic adjustments that affect the 
pronunciation of sounds in certain environments. For example, the realization of Spanish 
/b/ varies between fricative and obstruent in an entirely predictable fashion: roughly 
speaking, the fricative pronunciation occurs between two vowels, and the obstruent 
pronunciation occurs elsewhere (Harris 1969). Native speakers of Spanish have mastered 
this alternation, and it is productively deployed across the entire language. Learners must 
thus acquire this alternation and a single phoneme category /b/ (or equivalent 
knowledge), but the alternation appears to disrupt any straightforward mapping from 
acoustics to phonemes. 

A wide variety of theoretical approaches have viewed phonological processes as 
operations over discrete units (Chomsky & Halle, 1968; Prince & Smolensky, 2004). 
Thus, the relation between the two pronunciations of Spanish /b/ is a phonological 
process taking a discrete object (the phoneme /b/) to another discrete representation (e.g. 
the fricative [!]). It is often assumed that more detailed phonetic information is filled in 
after all phonological processes have taken place (Chomsky & Halle, 1968). This means 
that there are at least two discrete levels of representation involved in phonological 
cognition. One is the phonemic level. The other is the level of the phonetic categories 
(phones). Phones are representations that result from the application of phonological 
processes, and which serve as the input to the mapping to acoustic detail (Hockett, 1942; 
Hayes, 2009).  

Although it is a useful (and nearly ubiquitous) theoretical device, it is not clear that 
there is independent motivation for a discrete level of representation for phones, an 
‘intermediate’ level of abstraction from acoustics. In fact, the view that phonological 
representations contain rich acoustic information is gaining much attention in the 
theoretical literature; see Pierrehumbert (2003) and Silverman (2006) for an overview. 
Nonetheless, many researchers maintain discrete levels of phonetic and phonemic 
representation, and this has provided the theoretical backdrop for the two-stage model of 
phonological acquisition that we are concerned with here. Having two discrete levels of 
representation allows for a view of phonological acquisition in which the mapping 
between discrete phones and detailed phonetic information is learned before the mapping 
between phones and phonemes. Below we will argue that, although it is largely implicit, 
this view of phonological learning is pervasive in the language acquisition literature.  

 
The two-stage approach 
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 The theoretical distinction between discrete phonetic and phonemic encodings is 
echoed in research on phonological acquisition. As there are two distinct levels of 
representation to be acquired, research has focused on either one or the other of these 
levels. This division of labor has lead to an emergent two-stage approach to phonological 
acquisition. 
 The first ‘stage’ of the two-stage position focuses on the mapping from acoustics to 
phones. This is represented by a large body of work on discovering category structure 
from acoustic data, often using explicit statistical models of inference (de Boer & Kuhl, 
2001; Coen, 2006; Vallabha, McClelland, Werker, Pons, & Amano, 2007; Feldman, 
Griffiths, & Morgan, 2009). The aim of these models is sometimes cast in a theory-
neutral way: Vallabha et al (2007), for instance, propose a model for learning ‘sound 
categories’ (pp. 13273). On the other hand, Feldman et al (2009) explicitly note that their 
model is likely to acquire phonetic, rather than phonemic, categories. We will 
demonstrate below that Feldman’s characterization is exactly correct: without explicit 
modeling of the phonological processes, this first stage is guaranteed converge on 
phonetic rather than phonemic categories. In other words, this line of research, as 
presented, must be one stage in a two-stage process; it will not converge on phonemic 
categories by itself.  
 It is important to note, however, that the mapping from acoustics to categories that 
these approaches attempt to model is in some sense an irreducible problem for 
phonological acquisition. There is arbitrary variation in acoustic targets for the ‘same’ 
phone or phoneme category across languages (Pierrehumbert, 2003), and so the learner 
must have a way of acquiring this mapping. It is not clear that we can build an explicit 
model of phonological acquisition without a mechanism for inferring category structure 
over a perceptual space. As such, these first-stage models will form the backbone of the 
alternative model we are considering here, and we will discuss them in some detail 
below. 
  If, as is the case, our model of the acoustics-to-category acquisition process is 
guaranteed to converge only on phonetic categories, we must separately address the 
second half of the phonological learning problem: the phone to phoneme mapping, or the 
phonological grammar. One solution is to deny that there is any such mapping. We will 
not pursue this approach here; there are compelling theoretical and empirical reasons for 
rejecting this view, and we address these in the discussion. The only other option left is to 
develop an explicit theory of how to group phones into phonemes. This was the route 
taken by Zellig Harris, who formalized a now famous complementary distribution metric 
(Harris, 1951). More recently, there has been much interest in exploring alternative 
conceptions of this process using more sophisticated statistical measures such as 
Kullback-Leibler (KL) divergence (see Appendix C) (Peperkamp et al, 2006). Peperkamp 
and colleagues proposed a solution to this problem that compared the (statistical) 
distribution of different phones. Phones that had significantly divergent distributions 
were plausible candidates for variants of the same phoneme, subject to constraints on 
possible phone-to-phoneme relationships. By looking at distributions of different phones, 
this algorithm implicitly assumes that the phones have been uniquely identified and 
discretely categorized at some level. In other words, it assumes a successful first stage of 
acquisition, of mapping from acoustics to phones. Note that in this approach, 
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phonological learning is still not complete once the phonemes have been identified. The 
learner must still learn the grammatical mapping between the phones and phonemes (i.e. 
the form of the relevant phonological rule). This approach also suffers from an inability 
to recover certain allophonic relations, as discussed by Dunbar and Idsardi (2009).  

An alternative conception of this second stage is seen in work on learning of 
Optimality-theoretic grammars (Prince & Smolensky, 2004). On this approach, the 
grammar is treated as a ranked set of well-formedness constraints, which determine the 
correct surface pronunciation when combined with underlying forms for morphemes. 
There are several computationally explicit, well-known algorithms for learning these 
grammars (Tesar & Smolensky, 1998; Pulleyblank & Turkel, 2000; Boersma & Hayes, 
2001; Hayes, 2004).  Though they vary in their approach, they share the common 
assumption that the input to learning is a set of discrete, phone-level representations, and 
the grammar (and phoneme inventory) is derived only once these phones are identified. 
By taking the output of a first-pass mapping from acoustics to phones, these approaches 
also implicitly endorse the two-stage view of phonological acquisition. There exist still 
more approaches to the phoneme-finding problem (Jakobson, 1941; Goldsmith & 
Xanthos, 2009; Dresher, 2009), but all assume that a set of phones has already been 
discovered. 

As we will detail below, however, a successful mapping from acoustics to phones is 
far from given, and has been the focus of intensive research from both experimental and 
computational approaches. The success of a two-stage approach to phonological learning 
crucially depends on the accuracy achieved in the first stage, as errors made in the first 
stage mapping could fatally impair the ability of a second-stage mechanism to extract the 
correct phonology. Though we have sketched a two-stage view of phonological 
acquisition, and suggested that it appears to be implicit in the majority of research on 
phonological acquisition, it is clearly not the only possibility. In the remainder of this 
paper, we explore the feasibility of a single-stage approach to phonological 
categorization. Our approach is to focus on what we have termed here the first stage of 
phonological acquisition; in particular, we focus on statistical methods of category 
identification. All theories of phonological acquisition must address this mapping from 
acoustics to discrete categories, and there are good experimental and theoretical reasons 
for assuming it is some form of statistical inference over the input. Because of this fact, 
the feasibility of a single-stage approach turns on the possibility of folding the acquisition 
of processes and phoneme level categories into the initial mapping form acoustics to 
linguistic categories.  

 
Mapping from acoustics to linguistic categories in acquisition 

 
The relation between acoustic variation and linguistic categorization has been the 

subject of much research in psycholinguistics. Very young infants have famously been 
termed universal listeners, being able to discriminate amongst a wide range of sounds not 
present in their input (Aslin, Jusczyk, & Pisoni, 1998). A number of studies have shown 
that these discriminatory abilities soon decay as the infant develops. Declining sensitivity 
to non-native language vowel contrasts is apparent for vowels as early as 6 months (Kuhl, 
Williams, Lacerda, Stevens, & Lindblom, 1992), and by 8 months, similar effects are 
evident in consonant contrasts (Werker & Tees, 1983). A common observation about this 
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arc of development is that it seems to suggest that phonological category learning could 
in fact drive the building of a lexicon, rather than the other way around as had been 
previously hypothesized (Jusczyk, 1985; Best, 1995). Given that infants can reliably 
discriminate minimal pairs only later (around 18 months or so), it appears that at this age, 
higher-level constructs such as minimal pairs do not drive the development of contrast 
(Dietrich, Swingley & Werker, 2007). 
 Maye, Werker & Gerken (2002) hypothesized that distributional learning 
mechanisms are the fundamental building block of phonological development, a 
hypothesis that is fully compatible with the observed time-course of acquisition. Building 
on results that show that infants are sensitive to distributional information in other 
modalities, such as word-learning (Saffran, Aslin & Newport, 1996), they aimed to show 
that infants used distributional cues to bootstrap contrastive categories from the input. 
Infants at both 6 and 8 months of age were exposed to training sets that contained either 
bimodal or unimodal distributions over voice-onset times. When presented with bimodal 
distributions, infants showed greater sensitivity to differences between the modes in the 
VOT distribution, whereas for the infants in the unimodal condition, sensitivity was 
decreased for the same sounds. The authors interpreted these findings as showing that 
distributional characteristics of the input directly impacted what dimensions of the signal 
the infants viewed as relevant or contrastive. Werker. Pons, Dietrich, Kajikawa, Fais and 
Amano (2007) went on to show that, for the vowel space, the distributions in actual 
speech support the acquisition of relevant phonological contrasts. They showed that in 
infant-directed speech of both Japanese and English speakers, clear distributional cues 
support the relevant contrasts (e.g. duration cues for the Japanese vowel space), and 
minimize irrelevant dimensions of variation. 
 In addition to these experimental results, computational models have been more and 
more successful in modeling the acquisition of speech categories using various types of 
statistically informed frameworks. As an unsupervised learning problem, the acoustics-
to-category mapping can be modeled with a range of clustering techniques from machine 
learning. Clustering techniques come in many different forms, but all share the notion of 
carving out subsets of a data set and classifying them together based on a pre-defined 
distance metric in a given representational space (Everitt, Landau & Leese, 2001). An 
example of this cluster analysis approach is the work of de Boer and Kuhl (2001), who 
used a mixture of Gaussians (MOG) model to model the acquisition of vowel categories 
using the values for the first two formants. MOG models represent category structure as a 
set of parameterized Gaussian distributions (termed components of the model) in the 
input space, weighted by a mixing probability (for further explication and discussion of 
MOG models, see below and Appendix A). The model was fit with an Expectation-
Maximization algorithm (EM, see Dempster, Laird & Rubin, 1977; see also Appendix B), 
which is a family of hill-climbing algorithms that seeks to maximize a measure of 
likelihood for an unobserved category structure. Both the EM algorithm and the MOG 
approach have received a good deal of attention in the statistical and machine learning 
literature for the last two decades, and their properties are relatively well-understood 
(McLachlan & Peel, 2000; Frühwirth-Schnatter, 2006). De Boer and Kuhl applied these 
techniques to vowels that were recorded during mother-child interactions, focusing on the 
vowels at the extreme edges of the vowel space in English (/i/, /u/, and /a/) and limiting 
the MOG models to three-component mixtures only (that is, they pre-specified the 
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number of components in the model and supplied this prior information to the cluster-
fitting procedure). By applying this approach, and clustering separately for each speaker, 
they showed that the model was better able to acquire the categories on infant-directed 
speech than on adult-directed speech, suggesting one possible utility of infant-directed 
speech. 
 Another important contribution to the modeling of vowel acquisition was the 
Online Mixture Estimation (OME) model of Vallabha and colleagues (2007). Using both 
parameterized and non-parameterized versions of OME, Vallabha et al were able to 
model the acquisition of the Japanese and English data that was analyzed by Werker et al 
(2007). Their model fit four-dimensional Gaussians in the raw acoustic space (F1, F2, F3 
and duration), updating its weighting for relative weighting of the parameters after each 
input point. Applying this technique within speakers, they were able to achieve a good 
rate of success for most speakers, successfully learning the vowel systems 80% of the 
time for parameterized models, and 60% of the time for non-parameterized models. This 
model is important in that it is the most successful version of an online algorithm that 
processes each data point as it arrives. This is opposed to batch algorithms that try to 
estimate categories based on a large store of exemplars stored in memory in an ‘offline’ 
fashion.  
 Still other modeling attempts have tested different assumptions about what 
information is recruited to solve the phonological learning problem: Coen (2006) 
analyzed video samples of American English vowels, and used a cross-modal clustering 
technique (not the MOG approach assumed elsewhere) to form and cross-correlate 
clusters in both acoustic and visual space (i.e. shape of mouth). Feldman, Griffiths, and 
Morgan (2009) presented a hierarchical Bayesian model that used lexical information to 
separate highly overlapping categories. The already-impressive success of the basic 
MOG approach has thus been shown to benefit from the addition of extra disambiguating 
information.  
 The mapping from acoustics to linguistic categories proves to be an extremely 
challenging problem in its own right, and it forms an irreducible part of any phonological 
acquisition model. We now turn to a presentation of several computational simulations of 
this stage of acquisition, examining data from Turkish and Inuktitut. One primary result 
of these simulations is that the generic MOG approach is guaranteed to converge on 
phones, rather than phonemes. Even extracting the correct set of phones, however, proves 
extremely difficult. By considering an alternative conception of the first stage clustering 
process, however, we will show that it is in principle possible to extract phoneme level 
categories in the first stage clustering. When compared with the generic MOG approach 
on the same data, the single-stage approach will be see to converge more reliably on the 
language relevant categories.  
 
The MOG approach: Bounding the problem from above and below 
 

We adopt a mixture of Gaussians (MOG) approach to modeling the acquisition 
and representation of the vowel space, following recent successful attempts (de Boer & 
Kuhl, 2001; Vallabha et al, 2007). The mixture of Gaussians approach represents the 
vowel space as a mixture of normal distributions or components. Used as a model of the 
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vowel space, each MOG component is viewed as a phoneme category, and the 
component describes the location and spread of that phoneme is acoustic space.  
 In this section we present MOG simulations that effectively bound the learning 
problem from above and below. The MOG approach, as we will see, is both too powerful 
and not powerful enough, as a function of the particular vowel system under 
consideration. In particular, we will show that the crowded front vowel space of Turkish 
obscures the true phonemic category structure from our MOG model. However, the very 
same model overestimates the category structure of the Inuktitut vowel space in response 
to predictable allophonic processes. It is this fact that makes the two-stage approach seem 
like a conceptual necessity: we need more and more sensitivity to separate out categories, 
but this distances us from our goal of phoneme identification. In order to separate the 
phoneme categories for Turkish, we are guaranteed to converge on phonetic categories 
for Inuktitut. If we are assured of converging on phonetic categories, then complete 
phonological acquisition requires a second mechanism to identify phonemes given the 
phonetic inventory. 
 
Turkish 
  
We first consider the application of the MOG approach to the Turkish front vowel space. 
The Turkish front vowel space contains four vowel phonemes: /i/, /e/, /y/ and /ø/. This is 
similar in organization to the English and Japanese front vowel spaces considered by 
Vallabha et al (2007), but rather than length, it is vowel quality (namely, height and 
rounding) that distinguishes vowel phonemes (see Figure 1). The Turkish space under 
consideration provides an interesting test case because of the discrepancy in frequency 
among the vowel categories. Previous approaches (Vallabha et al, 2007; but cf. Feldman 
et al, 2009) have modeled the vowels as equi-probable in the input, an assumption that 
can be quite misleading. Consider Table 1, which presents the ratios of occurrence of 
acoustically close contrasts in child-directed speech in a number of languages. Notably, 
Turkish front vowel contrasts are among the more equally distributed. The Japanese 
length contrast, on the other hand, provides a much more skewed distribution. As seen in 
Figure 1, the Turkish vowel phonemes considered here are quite close in acoustic space. 
The frequency discrepancy among these phonemes compounds the learning problem. The 
simulations on Turkish presented here examine whether or not the generic MOG 
approach can overcome these obstacles to reliably separate out the four phoneme 
categories present in the front vowel space of Turkish.  

 
  

Contrast Ratio 
Estonian /e/-/ø/ 38:1 
Japanese /e/-/e:/ 15:1 
Japanese /i/-/i:/ 14:1 
Estonian /i/-/y/ 10:1 
Swedish /i/-/y/ 9:1 
Swedish /e/-/ø/ 8:1 
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Turkish /e/-/ø/ 6:1 
Turkish /i/-/y/ 5:1 

  
  

Table 1: Approximate ratios of occurrence of acoustically similar contrasts across a 
sample of languages. Ratios are based on occurrence in child-directed speech found in 

CHILDES corpora (McWhinney, 2000; Plunkett & Strömqvist, 1992; Strömqvist, 
Richthoff, & Andersson, 1993; Kohler, 2004; Slobin, 1982; Miyata, 1992; Miyata, 1995; 

Miyata, 2000; Noji, 1973-77). 
  

All vowel data presented here were drawn from the METU speech corpus (Salor, 
Ciloglu & Demirekler, 2006). Speakers varied in age, gender, dialect region, and 
educational background, although for the simulations reported below, only data from 
female speakers was modeled. For each vowel in the corpus, formants were automatically 
extracted using the Snack package for TCL. For this, we used a 12-pole LPC analysis, 
using 30 ms time bins with Hamming windowing. Each token was labeled with an F1, 
F2, and F3 value drawn from the center of the vowel. In order to avoid errors in formant 
tracking or mislabeling of formants, tokens for which any formant value was more than 2 
standard deviations from the mean for a given vowel were excluded. In all, 51,687 vowel 
tokens were collected, and 1298 (2.5%) were excluded according to these criteria, 
resulting in 50,389 vowel tokens.  

The parameters for each of the front vowel categories (F1, F2, F3, and duration) 
were estimated from this set of tokens on a speaker-by-speaker basis. For ease of 
comparison with other work, we only analyzed data from female speakers. Of the 42 
female speakers represented in the corpus, any speaker who had less then 10 productions 
for any given front vowel was excluded. According to this criterion, 15 speakers were 
excluded. Of the remaining 27 speakers included in the simulation, the average number 
of vowel tokens used in estimating the Gaussian parameters of the vowel category was 
45. These categories were subsequently resampled to provide the actual training and test 
sets, following the method used by Vallabha et al (2007) and Feldman et al (2009).  

Simulations in this experiment were performed by fitting mixtures of Gaussians 
using the expectation maximization algorithm (sees Appendices A and B). This was done 
using the R statistical computing environment (R Development Core Team, 2008), using 
the package MClust (Fraley & Raferty 2002; Fraley & Raferty, 2006). On any given run, 
a training set containing a total of 2,500 tokens was produced by sampling from the 
estimated 4-dimensional Gaussians, with values for F1, F2, F3 and duration. On runs for 
which the mixing frequency of the vowel categories was equal (uniform distribution 
training sets), there were 625 tokens of each vowel category. On runs for which the 
mixing frequencies matched the frequencies of each phoneme in the corpus (empirical 
distribution training sets), there were 1125 /e/ tokens (~45%), 975 /i/ tokens (~39%), 175 
/ø/ tokens (~7%) and 225 /y/ tokens (~9%). As in Vallabha et al (2007), 10 independent 
runs were conducted for each speaker in the simulation. A ‘run’ consisted of 
independently generating both an empirical distribution training set and a uniform 
distribution set, and fitting a mixture model to both. In what follows, we report the 
number of categories in the best-fit model. A ‘successful run’ was defined as a run for 
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which the resultant mixture model had four components that had a combined mixing 
probability of at least 98%.  

In order to assess the goodness-of-fit for successful runs, we employed the 
Kullback-Leibler distance (see Appendix C) as a measure of how similar the estimated 
category distribution was to the actual distribution. In order to calculate this value for 
each vowel category, we first assigned each estimated component in the mixture model to 
an underlying vowel category. This was done by calculating the Euclidean distance 
between the Gaussian centers of all estimated components and all actual vowel 
distributions, forming a distance matrix. The trace of the resultant matrix was then 
minimized, finding the best alignment of mixture model categories to vowel categories 
by minimizing the distance between their centers. Once the alignment was obtained 
between mixture components and vowel categories, the KL distance between the 
estimated category and its corresponding vowel distribution was calculated. 

 
[INSERT FIGURE 1 HERE] 
[INSERT FIGURE 2 HERE]  

 
 The performance on the Turkish front vowel space simulations is summarized in 
Tables 1-2. Table 1 shows the number of speakers who had at least one successful run in 
the 10 trials. Almost all speakers achieved at least one successful run with the uniform 
training set, but almost 20% of speakers fail to achieve this landmark in the empirical 
training set case. For each speaker who had at least once successful run, we also present 
the average number of training runs that were considered successful. A majority of runs 
were successful with uniform training sets; empirical training sets, on the other hand, 
were far more often failures than successes. A second measure of performance is given in 
Table 3. Table 3 presents the KL distances between the estimated categories and the 
actual generating vowel categories, for successful runs only. The results show that the 
results from uniform training runs were far better matched to the generating categories 
than were the results obtained from empirical training sets. For reference, Figure 2 shows 
examples of the underlying distributions and the estimated categories for a single 
representative speaker, along with the corresponding KL values for each vowel. 

 

Training set # of speakers with 
successful runs 

Average # of successful 
runs (± 1 SE) 

Uniform 26 / 27 6.96 ± 2.31 
Empirical 22 / 27 2.2 ± 1.12 

  
 Table 2: Performance on individual runs in the Turkish front vowel space.  

 

Training set /i/ /e/ /y/ /ø/ 

Uniform .04 ± 0.06 .03 ± 0.04 .05 ± 0.09 .05 ± 0.07 
Empirical .31 ± 0.69 .40 ± 1.31 .63 ± 1.50 .49 ± 1.05 

  
  Table 3: Average KL distances (with standard deviations) between estimated categories 

and actual vowel categories, for successful runs in the Turkish front vowel space. 
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These results show that on the uniform training problems, the vowel space was 

readily recovered for a majority of speakers and trials. However, there was a significant 
decline in performance when the actual empirical mixing probabilities for the front 
vowels were used, and the correct vowel categories were only rarely obtained. These 
simulations reported here suggest that the problem of statistical clustering of phonetic 
categories in acoustic space in some ways more robust and in other ways more difficult 
than previously reported. On the one hand, our results suggest that adult-directed speech 
contains cues to category structure as reliably as infant-directed speech. When the 
training data contained a uniform distribution over the vowel category mixing 
probabilities, our success was comparable to that of Vallabha et al (2007), who used 
infant-directed speech elicited in the laboratory. The MOG approach was able to reliably 
converge on the four target categories for all speakers, and did so on approximately 69 % 
of runs. In those cases where it did converge, an analysis of the KL distance between 
actual and estimated categories revealed an extremely tight fit between them. 

However, the results suggest a dramatic decrease in success once the vowel 
tokens were distributed according to the empirical mixing probabilities of their respective 
categories. Only 80% of speakers achieved a single successful run with the empirical 
training sets, and among those who did, only 22% of runs were successful on average. 
The KL distances in these cases were much larger than in the uniform case (for reference, 
see the KL distances in Figure 2), suggesting much less reliable category estimates were 
produced for empirical distribution training sets. 

As mentioned above, such discrepancies in mixing probabilities are rampant in 
natural language, and the Turkish case does not present a particularly extreme example. 
The current results suggest that learners of Japanese or Estonian cases face a particularly 
difficult task in acquiring the less frequent categories of long vowels (for Japanese) or 
front rounded vowels (for Estonian). Available experimental evidence shows that 
difficult contrasts do not entirely impede learning in the first year of life. Kuhl et al 
(1992) show that Swedish 6-month olds show language-specific category prototype 
effects for Swedish /y/, despite the fact that it occupies a position in the vowel space that 
could obscure its presence. As seen in Table 1 above, the Swedish /i/-/y/ contrast may in 
fact be more unbalanced than the Turkish case presented here. However, the current 
results are in line with experimental findings that show that infants show decreased 
discrimination for difficult acoustic contrasts. Sabourin, Werker, Bosch, and Sebastian-
Galles (submitted) show that for infant learners of Canadian English, the contrast /e/-/!/ is 
distinguished less reliably than /!/-/ɛ/, despite roughly similar acoustic distances. In 
spoken English, /!/ is about 2.3 times as frequent as /e/, but occurs approximately as often 
as /ɛ/ does (Mines, Hanson & Shoup, 1978). This may be taken as evidence that the 
category structure of /e/ as distinct from /!/ is less robustly represented during the stage of 
acquisition. The current modeling results suggest that this could be due in part to the 
differential rates of occurrence in the input, a point noted by Sabourin et al.  

The most crucial outcome of the Turkish simulations is that whatever the solution 
employed by human learners or modelers to overcome this particular problem, it will be 
one that requires a more powerful category-detecting apparatus. To learn Turkish, we 
need to be able to reliably find more categories than we presently do. As we will see, 
however, using the exact same learning mechanism on Inuktitut data will force exactly 
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the opposite conclusion: we already are too sensitive to category structure to recover 
phoneme categories. In the context of the general MOG approach to category acquisition, 
this will demand a second stage in phonological acquisition that acquires higher-level 
phoneme categories.  

 
Inuktitut 
  

We observed that for the present MOG approach, certain common cross-linguistic 
distributional patterns obscure category structure during acquisition. We now focus on 
the Inuktitut vowel system to ask if the reverse situation ever obtains: does the MOG 
approach ever reliably overestimate the phonemic structure of the language under 
consideration? Inuktitut is an Eskimo-Aleut language spoken in northern Canada. Like 
many other Inuit languages, Inuktitut has three vowel phonemes: /i/, /u/, and /a/. The 
quality of a vowel, however, is often affected by a following uvular consonant (either /q/ 
or /r/), in a way that varies across different dialects (Dorais, 1986). In the dialect under 
consideration, uvular consonants lower all vowel tokens to some degree (Denis & 
Pollard, 2008), suggesting the presence of six phonetic categories (see Figure 3), though 
this effect is often not reported with the low vowel /a/. An important question for the 
MOG approach is whether or not this predictable allophonic variation leads to ‘spurious’ 
category formation during the acquisition of phoneme categories. 

The Inuktitut vowel corpus that we employed comes from a study on Inuktitut 
phonetics performed by Derek Denis and Mark Pollard (2008). All vowel tokens were 
measured from elicited speech of a speaker from Cape Dorset (Kinngait), and were hand-
labeled by trained phoneticians for F1 and F2 values. 239 vowel tokens were measured in 
this way. Note that although Experiment 1 used reconstructed data to provide larger, 
more well-behaved training sets, no such technique was used in Experiment 2. This was 
because resampling the data required making an assumption as to the actual modes or 
categories contained in the data. Raw data was used to ensure that the result was not 
biased towards any certain number of categories. An additional benefit of using raw data 
is that we make no assumptions about the mixing probabilities of the categories: the 
relative frequency of the different phones in the Inuktitut data set roughly mirrors the 
frequency of the phones in the language more generally. The Inuktitut vowel data is 
presented visually in Figure 3, with Gaussian estimates of relevant categories present in 
the data.  

Because of the relatively small number of tokens relative to the Turkish data, and 
the fact that there was only one speaker, a slightly different analysis method was 
employed. Recall our question of interest--in both the Turkish and Inuktitut cases--is 
whether the number and identity of components in the best fitting MOG correspond to the 
adult phonology. To answer this for Inuktitut, we assessed the number of components in a 
MOG approach that best fit the Inuktitut data using a bootstrap analysis for number of 
categories was performed (McLachlan, 1989; see Appendix D). This analysis proceeds 
by assuming the null hypothesis that the data is best fit by K categories, starting at K = 1. 
We can estimate whether or not adding a new component into the mixture significantly 
improves the fit by first calculating the observed log-likelihood ratio between K- and 
K+1-component models on the original data. The observed log-likelihood ratio is then 
compared with a bootstrap estimate of the null distribution of that ratio to see if there is a 
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significant increase in log-likelihood with the addition of an extra component. If there is, 
then the procedure is repeated with K+1 categories. The K for which no significant 
increase in log likelihood is gained by adding a new component is the minimum number 
of components that best fits the data set. This procedure was done over the raw data with 
no resampling so as not to bias the solution towards the number of Gaussians that were 
sampled. As before, simulations were performed by fitting mixtures of Gaussians using 
the expectation maximization algorithm (sees Appendices A and B).  
  The results of the simulations are clear. The Inuktitut data is reliably fit by 4 
components, as summarized in Table 4. For each component, the gain in the log-
likelihood statistic that occurred when an additional component was included was 
assessed relative to the null-distribution for a model of similar size and complexity (see 
appendix D). Since there is no significant increase in this statistic when a four-category 
model is given an extra component to model the data, we can conclude that this data 
reliably contains four categories. A four-category solution implies that the model 
converges on neither phonetic nor phonemic categories that are present in the data.    
 Once the number of best-fitting categories was determined, a mixture model with 
that number of components was fit to the data. The fitting procedure was constrained to 
only consider models with unconstrained, full covariance structures (for a discussion on 
model-based fitting of mixture models, see Fraley & Raftery, 2002). The fit of the model 
against the underlying allophonic categories is shown in Figure 4. It can be seen that 
there is tight registration between two estimated categories and the surface phones 
comprising /i/ (i.e. [i], [e]), but the two acoustic phones are collapsed into one component 
for other phonemes (/u/, /a/). Thus, the model does not uniformly recognize phonetic or 
phonemic categories. 
 
 

# of 
components p 

1 .00 

2 .00 

3 .04 

4 .30 
 
  Table 4: p-values for the addition of a new vowel component on the raw Inuktitut data, 

given the existing number of components, as determined by bootstrap of the log-
likelihood statistic (McLachlan, 1989; see Appendix D). 

 
This straightforward result demonstrates that for the Inuktitut data considered, the 

MOG approach reliably overestimates the categories present in the input by attributing 
extra components to allophonic variants of some vowel phonemes. The spurious 
categories that were estimated aligned very closely with the allophones of the phonemic 
categories. In other cases, it did not appear to be sensitive enough to reliably distinguish 
the phonetic variants of a single phoneme. Instead, in these cases, the allophonic variants 
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were collapsed into a single component. The MOG approach--the same applied to 
Turkish above--now appears to be too sensitive to be an adequate model of the phoneme-
learning process. Allophonic variation, which is extremely common across languages, 
warps the distribution of the input data in a way that obscures the underlying phonemic 
category structure. In the case of the Inuktitut data under investigation here, this meant 
that our model was unable to capture either the phonemic or phonetic categorization of 
the space. 

The positing of spurious phonetic categories is exactly what is predicted under the 
two-stage view: each important phonetic variant should be separately clustered, as only 
then can they serve as effective input to the second stage of phoneme recognition. Note, 
however, the phonetic categories estimated with the current Inuktitut data would not 
support a second-stage phoneme learning procedure, because it does not converge on the 
correct number of phonetic categories. For both the Turkish and the Inuktitut problems, a 
failure to correctly identify the first-stage phones would foil any attempt to build 
phoneme-level categories from phone-level information. 

The simulations from Turkish and Inuktitut above serve to effectively bound the 
learning problem. Our current approach is not able to recover the category information 
for Turkish; this demands more sensitivity to category structure. However, the same 
approach is already too sensitive to the category structure of the vowel space: the 
Inuktitut simulation shows that it overestimates the number of phonemes in the language. 
If we increase our sensitivity to category structure to capture the Turkish space, we will 
be guaranteed to converge on phonetic categories for Inuktitut. If one is dedicated to 
maintaining a general, MOG approach to the acquisition of sound categories, then there 
are a number of possible answers to this situation. One approach is to reject phonemes as 
an object of acquisition, which we do not consider here (see discussion in detail below). 
The other approach is to invoke a second stage of phonological acquisition, calling upon 
extra mechanisms to account for the distribution of phones and to detect the underlying 
phonemes. If the first-stage is as noisy as our simulations suggest, the second stage could 
well require mechanisms to group allophones into phonemes and also to split apart 
incorrectly agglomerated categories. In what follows, we show that such extra 
mechanisms are not necessary, and that an alternative, single-stage conception of the 
phonological acquisition problem provides empirical and conceptual advantages to 
models of acquisition. 

 
The single-stage approach 

 
When jointly considered, the Turkish and the Inuktitut simulations present a 

particular challenge to the recovery of phonemes using general statistical approaches. On 
the one hand, the present approach under-estimates the relevant Turkish vowel 
phonemes. The very same approach, however, over-estimates the number of vowel 
categories in a language like Inuktitut. If one attempts to address one or the other problem 
within the same general machine-learning framework, it will exacerbate the problem for 
the other. That the Turkish problem could eventually be solved by more clever machine 
learning methods is entirely reasonable: Feldman et al (2009), for example, present an 
alternative vowel category acquisition technique based in a hierarchical Bayesian 
framework that outperforms the generic MOG approach. But with increased sensitivity 
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comes more non-phoneme categories, compounding the phoneme-learning problem that 
is already evident for a language like Inuktitut. If the number of distinct categories grows 
with increasing power of the learning algorithm, then we simply push the phoneme-
learning problem into the second stage.   

 Given the trading relation between the two levels of representation in the two-
stage problem, a re-conception of the phonological learning problem is desirable. In what 
follows we sketch the outline of one way to do this, by suggesting a single-stage 
approach. We then present a simple proof of concept that this approach not only works, 
but in fact fares much better on the Inuktitut data than does the phone-clustering attempt 
presented above. 
 
Factoring out processes 
 
 In order to map from acoustics to phonemes in a single acquisition stage, the 
primary difficulty that the learner faces are the multiple processes that obscure that 
relation; these processes range from co-articulatory dependencies between segments to 
abstract phonological mappings. If the learner can estimate these effects while learning 
the categories, and factor them out, then she will be left with the irreducible clusters from 
which the variety of surface forms are generated: the phonemes. At a more abstract level, 
the general MOG approach we have been considering maintains an independence 
assumption: each vowel token is sampled from its category without regard to the 
environment. The single-stage presented below jettisons this assumption by explicitly 
modeling the effect of context on vowel quality. 

In order to accomplish this, we can recast the learner’s ‘phonology’ in a formal 
statistical model. In the general MOG approach, the learner’s task is simply to estimate 
the parameters of the components in the mixture. In order to account for context effects, 
we may instead model the learner is trying to estimate a regression model of the 
following form: 

 
  

! 

! 
F observed =

! 
F k + "1kI1 + "2kI2 + ...+ "nkIn  

 
This model simply states that any observed acoustics for a given vowel phoneme k-
Fobserved-is a linear combination of an ‘underlying’ set of formant values Fk and n 
conditioning environments. Each conditioning environment serves to offset the original 
underlying value of the formants by some amount B. In equation (1) above, I represents 
an indicator variable, which serves to weight the contribution of the relevant conditioning 
environment. This formalization is a simple but powerful foundation to give a learner, 
and we will see that this simple model gives us a framework within which a learner can 
learn vowel phonemes directly from the acoustics. 
 In what follows, we present a proof of principle that having knowledge of the 
regression coefficients makes learning more reliable and robust, and allows the learner to 
converge on the underlying phonemic categories. At this point, it is worth introducing 
some modeling assumptions we make in order to make the argument. As with any 
modeling endeavor, we make a number of simplifying assumptions to present the results 
in a succinct way. Below we describe in some detail these assumptions, but we note here 
at the outset that almost none are crucial to the success of the model, and in fact, many 
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will need to be dismantled before a fully specified learning model for this type of 
phonological acquisition can be presented. 
 The model specified above is essentially a mixture of regressions: each vowel 
category has its own intercept (Fk), and its own regression coefficients. In the model we 
present here, the learner is constrained such that each category must share the same 
regression coefficients with all the others. In other words, it assumes phonological 
processes affect all phonemes similarly, as happens to be the case in Inuktitut (and which 
may be the case for certain classes of co-articulation effects). This model will severely 
underperform when the vast range of allophonic vowel variations are considered: there 
are numerous examples of phonological processes that target specific phonemes or 
phoneme classes. This assumption restricts the possible solutions that the model can 
consider, and relaxing this assumption will only increase the power of this learner. This 
assumption conveys benefits in model estimation: for simplicity, we can estimate the 
regression coefficients using simple techniques given that we know the structure of the 
correct answer (as we discuss below), and with this estimate, we can ask the question of 
interest: do the underlying acoustic values (the intercepts in the regression) correspond to 
phonemic categories? Note that the way in which we estimate the regression coefficients, 
however, is not intended as a model of the coefficient estimation process employed by 
the learner. To provide this, we must extend this model to include joint estimation of 
coefficients (allophonic shifts) and intercepts (phonemic cluster means). There exist a 
number of possible implementations that allow for this sort of estimation procedure 
(more sophisticated versions of EM and hierarchal Bayesian methods, among others).  
 A second assumption here is that learners can uniquely identify the conditioning 
environments, and can determine which ones will be worth modeling. This assumption, 
too, can be relaxed or dropped with no loss of generalization. This can, in principle, be 
folded into the estimation problem along with the intercepts and coefficients using the 
very same estimation procedures. Furthermore, the environments need not be discrete; 
the structure of the model allows for continuous regressors. For ease of presentation, we 
assume the regressor environments to be discrete and fixed, but this is not intended as a 
psychological claim about the learner’s capacities. Our aim here is much more modest: 
we simply aim to ask if the residue from this process corresponds to the phonemic 
categories of interest in the language, and if this category structure can be reliably 
estimated. This assumption also raises the empirical question of which categories the 
infant learner can use to build such a model. If the distribution and identity are estimated 
in tandem with everything else, then one predicts that the notion of possible phonological 
rule is quite liberal. An alternative possibility is that infants use pre-existing perceptual 
biases to form these conditioning environments, perhaps drawing on the fact that infants 
can distinguish certain consonant classes more readily than others (Narayan, Werker & 
Beddor, in press). Either option is entirely compatible with the model, although they 
make different predictions about the generalizations a learner might make. 
 In what follows we show that by factoring out the predictable effect of a 
conditioning environment on vowel formant values, we obtain a more robust clustering of 
the data (i.e. one that corresponds better to the underlying categories). Furthermore, the 
components of such a model correspond to phonemic, rather than phonetic clusters. This 
recasting of the learning problem presents a proof of principle that this alternative 
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conception does convey advantages in acquisition, and opens new lines of inquiry in the 
modeling of phonological acquisition. 
 
Inuktitut revisited 
 
 Recall that the MOG approach we applied to the raw Inuktitut data converged on 
a vowel space with four, rather than three categories. We noted that this solution is 
unsatisfactory for a number of reasons, even if one assumes a two-stage acquisition 
process: the Inuktitut dialect arguably has six, not four, phonetic categories that need to 
be learned (Denis & Pollard, 2008), and of the ones that were recovered, there was a 
rather poor fit to the underlying phonetic categories. Here we repeat that simulation with 
a slightly different data set to ask whether or not the correct set of phonemic categories 
can be recovered once the predictable processes were factored out. 
  In order to factor out the predictable vowel lowering process, we estimated the 
average format values for a vowel that directly preceded a uvular segment (/q/ or /r/; 
labeled here [+uvular] vowels), and the average formant values for a vowel that did not 
([-uvular]). Importantly, all transforms were derived without knowledge of underlying 
category structure; they were estimated and applied uniformly across all vowel tokens. 
From these, we calculated the average spectral shift in formant space that occurred as a 
result of being in the context of a uvular. Once this was obtained, a process-transformed 
data set was derived by subtracting the average spectral shift from every vowel token that 
occurred in the environment of a uvular. Thus, the subset of vowel points that occurred in 
the environment of a uvular were shifted by a constant amount, such that the mean of the 
distribution of [-uvular] and [+uvular] vowels were the same. The spectral shift lowered 
the first formant of [+uvular] vowels by 92.27 Hz, and raised their second formant by 
374.00 Hz. This process is outlined visually in Figures 5 and 6, which plot the estimated 
Gaussian distributions for [+uvular] and [-uvular] vowels. Prior to the spectral 
transformation (Figure 5), there is an appreciable distance between the means of these 
distributions, and after the transformation (Figure 6), they differ only in variance.    
 

[INSERT FIGURE 5 HERE] 
 

[INSERT FIGURE 6 HERE] 
 

 Once the process-transformed data set was created, model fitting and evaluation 
proceeded in the same fashion as before: the best-fitting number of categories was 
determined by bootstrap test, and the model-fitting procedure estimated an unconstrained 
mixture model with that number of categories for the data. The results of the bootstrap 
test for number of components are summarized in Table 5, and the resulting categories 
are plotted against the underlying vowel distributions in Figure 8. The process-
transformed data is best fit by three categories, and there is a clear registration between 
these categories and the underlying phonemic categories.  
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# of 
components p 

1 .00 

2 .01 

3 .49 
 

  Table 4: p-values for the addition of a new vowel component on the process-
transformed Inuktitut data, given the existing number of components, as determined by 

bootstrap of the log-likelihood statistic (McLachlan, 1989; see Appendix D). 
 

[INSERT FIGURE 7 HERE] 
 

[INSERT FIGURE 8 HERE] 
 
 In this example, the MOG approach was able to successfully converge on 
phonemic categorization of the Inuktitut data by applying a maximally simple spectral 
correction derived from a consideration of the average shift in formant values in the 
presence of a uvular environment. This stands in contrast to the results obtained on the 
raw data with exactly the same approach, which obtained a poor fit to either phonetic or 
phonemic categories.  
 
Discussion 
  
 In this article we argued that there is a widespread, but often implicit, consensus 
that phonological category learning is essentially a two-stage process. By running 
simulations on Turkish and Inuktitut vowel data, we determined that this position is 
practically obligatory given the general MOG approach: the current methods are 
alternately too sensitive to category structure (Inuktitut), and not sensitive enough 
(Turkish). Though we did not pursue a solution to the latter problem in the current work, 
any such solution will require more powerful category learning mechanisms, perhaps in 
the vein of research currently underway (Coen, 2006; Feldman et al, 2009). However, by 
increasing the sensitivity to category structure, such models will inevitably converge on 
phonetic-level categories. Given the general MOG approach, this aggravates the 
phoneme-learning problem, and requires a ‘second-stage’ that will generalize these 
phones into phoneme-level categories. Viewed as a clustering problem (Everitt et al 
2001), this is essentially divisive followed by agglomerative clustering procedures. 

However, we argued that the problem of spurious phonetic clusters did not, in 
fact, require this second-stage of learning. We presented an alternative model of the 
phonological acquisition process that learned phoneme categories in a single stage. If the 
learner factors out predictable variation in acoustic space during the course of the 
learning process, she will converge on phonemic categories as the underlying 
components of the vowel space. By simulating the acquisition process using a slightly 
modified MOG approach, we found that the single-stage approach more reliably 
converged on the language specific phoneme categories. Specifically, we found that 
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when the raw acoustic Inuktitut data was considered, a poor fit to either phonological or 
phonetic categories was achieved. A simple correction for a regular vowel-lowering 
process conditioned on uvular segments, however, helped the model to converge on the 
phonemic solution in one clustering step. There remains much work to be done to further 
evaluate the viability of such a model of learning. In particular, we have not presented 
here a model that fully estimates all regression coefficients and relevant environments in 
tandem with the phonological categories. Instead, we simply demonstrated that once 
predictable processes were removed, the vowel space is cleanly clustered into phonemic 
categories.  

The very general nature of the Inuktitut lowering rule made this demonstration 
relatively straightforward, and future work will be dedicated to extending this modeling 
to more complex systems. For example, consider a closely related language, West 
Greenlandic. West Greenlandic has a lowering process that is very similar to the Inuktitut 
process presented above. However, the West Greenlandic lowering process only applies 
to the high vowels /i/ and /u/, which are pronounced (and written) as [e] and [o] when 
they precede a uvular.  In addition, there is a vowel fronting process that fronts /u/ in the 
context of a coronal consonant (/t/, /s/, or /n/) (Saddock, 2003). Thus, West Greenlandic 
has at least 6 distinct surface phones that are generated from three underlying phonemes, 
and two regular allophonic processes. It is not obvious that these effects can be estimated 
just considering the general effect of uvular or coronal consonants across the entire vowel 
space, as was possible in the Inuktitut dialect considered here. Instead, such a system 
would require the estimation of phonological processes to be truly embedded in the 
category learning procedure. As mentioned above, there are a number of possible 
computational solutions to this problem, including more sophisticated versions of EM 
and hierarchical Bayesian modeling. In order to acquire the more difficult West 
Greenlandic vowel space, the single-stage model must be augmented with a more 
sophisticated estimation procedure that allows category-restricted transformations.  

Of course, an alternative response to the finding that MOG approaches are 
guaranteed to return phonetic level categories is that phonetic levels categories are the 
only discrete representations in the linguistic system, and that all linguistic encoding is 
done in terms of phonetic categories. This view rejects the existence of phonemes as 
phonologically active representations, a view that has been espoused by a number of 
authors (Johnson, 1997; Port & Leary, 2005; Silverman, 2006). There are, however, 
compelling theoretical and empirical reasons for rejecting this view. One type of 
empirical evidence for this view is that alternations of the sort considered here are 
psychologically active in virtually every language. Recall that in Inuktitut, /i/ is 
approximately pronounced as [e] whenever it appears before /q/. This alternation is active 
in the sense that speakers will reliably pronounce /i/ sounds as [e] even in words they 
have never encountered before. This is quite easy to see in Inuktitut, because of its 
extremely productive morphology. Consider the past-tense suffix /qqau/, which begins 
with a uvular segment /q/. Any verb stem this attaches to will be subject to the 
phonological processes associated with the uvular; thus, the verb /kii/ “bite” suffixed with 
/qqau/ gets pronounced as [keeqqau] and not *[kiiqqau]. Like other phonological 
processes, this reliably occurs with new, unseen words (a fact made famous by Jean 
Berko-Gleason’s “wug” test, Berko-Gleason (Berko, 1958)). In order to become a 
competent speaker of Inuktitut, the learner must master this active alternation. If one 
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chooses to deny the phoneme as an account of these alternations, then one is faced with 
the theoretical problem of devising an alternative account for this set of facts.  

In addition to these observations, there is experimental evidence from infant and 
adult speech perception that suggests that phoneme-level distinctions, rather than 
phonetic level distinctions, are implicated in common measures of discrimination 
(Whalen, Best & Irwin, 1997; Peperkamp, Pettinato & Dupoux, 2003; Kazanina, Idsardi, 
& Phillips, 2006; White, Griffiths & Morgan, 2008). For example, Kazanina et al (2006) 
used magnetoencephalography to show that one neural signature of sound discrimination 
(the mismatch field, MMF) to a [t]-[d] distinction only obtained for speakers for whom it 
was a phonemic distinction (Russian speakers). Korean speakers, whose language also 
has these two phones but only as allophonic variants of the same phoneme, showed no 
such discrimination. White and colleagues presented similar results by studying infants 
using the head-turn preference task. They showed that infants trained on an artificial 
language with no associated meaning were able to generalize across regular allophonic 
variation to extract phonemes. At test, infants treated strings of sounds that contained the 
same sequence of phonemes as one word, regardless of their phonetic content. These 
results are also important because the infants did not require meaning to detect the 
allophonic alternation. These results are entirely compatible with the model presented 
here, but run against the predictions of models that rely on similarity in meaning to 
explain allophonic variation (Silverman 2006). Thus there is convergent evidence from 
linguistics, speech perception and acquisition research that points to a level of sound 
categorization above the level of the phone. 
 Although we presented empirical results that suggested that the single-stage 
approach would fare better than the two-stage approach on the Inuktitut data, there are 
also conceptual advantages to a single-stage approach. Even if one assumes a two-stage 
process for learning categories, the phonological acquisition process is still not complete. 
An algorithm that clusters phones into phonemes based on distributional facts (as in 
Peperkamp et al, 2007), gives the learner only limited insight into the processes that 
generated those allophonic distributions. Yet another stage of learning must be invoked to 
learn the rules (or constraint rankings) that generated the observed patterns. In exploiting 
the processes in the category acquisition stage, however, the single-stage approach 
returns a much more deployable set of phonological knowledge: a set of phonemes, and 
the processes that relate them to their allophones. In the case of Inuktitut, the learner 
converged on three phoneme categories, and a process that predictably shifted the target 
pronunciation in front of uvular segments. This subsymbolic shift in acoustic space 
represents the knowledge that might be described by a phonological rule. Together with 
the phoneme categories, this knowledge gives the language user all the knowledge 
necessary to produce an appropriate vowel token given a phonological environment. 
 The single-stage model also makes a claim about possible levels of representation 
in phonology. Just as the two-stage model learned two distinct, discrete representations, 
the single-stage model learns only one. As discussed in the introduction, the assumption 
of distinct phonetic and phonemic levels of representation has been the hallmark of 
generative approaches to phonology for more than half a century. The single-stage model 
rejects that view in favor of a system in which the phoneme is the only discrete level of 
categorization in the system. The surface pronunciations are only that: acoustic or 
articulatory targets with no discrete or categorical status. All variations in the 
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pronunciation of a phoneme category--from abstract allophonic processes to hard co-
articulatory facts--are described in a sub-symbolic manner as predictable perturbations in 
the underlying phoneme’s acoustics. This predicts that purely allophonic variants of a 
given phoneme--ones that do not have phonemic status in their own right elsewhere in the 
language--should simply fail to show effects of categorical status. This generates 
predictions for phonological processing and phonological typology. For processing tasks 
that are sensitive to categorization, a single-stage approach predicts that the allophonic 
variants should not necessarily convey the same perceptual advantage that fully 
phonemic contrasts do (a prediction borne out by Kazanina et al, 2006). If this 
representation is coupled with the assumption of categorical conditioning environments, 
then this model predicts the impossibility of phonological processes that are conditioned 
on allophonic variants alone. So-called feeding orders of allophonic phonological 
processes, where one allophonic change creates the environment for another, are not 
predicted to be possible in the sub-symbolic domain. Instead, the single-stage much must 
instead rely on phoneme-to-phoneme changing processes (i.e. changing the categorical 
label; this corresponds approximately to morpho-phonemic processes in Harris 1951 or to 
structure-preserving lexical processes in Kiparsky 1982) to implement such an order. As 
such, this formulation of the model predicts the impossibility of purely allophonic 
feeding processes, where an allophone (with no categorical status, by hypothesis) triggers 
another phonological process.  
 The single-stage model presented here also provides a novel way of approaching 
the problem posed by opacity in phonological acquisition (so-called counterfeeding and 
counterbleeding orders). Opacity results when a generalization is not “surface true” 
(Kiparsky, 1973; Bakovic, 2007). This occurs when one phonological process destroys 
the environment for a second process, but that second process applies anyway. Consider a 
well-known case from Canadian English. Canadian English famously has a process that 
raises the diphthongs /ai/ and /au/ before voiceless consonants, causing “write” /rait/ to be 
pronounced as [r"it]. Like many other North American Englishes, Canadian English also 
has a rule that causes /t/ and /d/ to be ‘flapped’ between vowels, causing the final 
consonant in “beat” /bit/ to be pronounced as a flap in “beating” [bi"!#]. Importantly, in 
an environment where both of these processes could apply, they do: “writing” is 
pronounced as [r"i"!#]. This interaction of processes is said to be opaque because the 
generalization that the diphthong /ai/ is raised before voiceless segments is not true in this 
case. This dialect produces the raised variant of /ai/ before a segment that is voiced on the 
surface. In this case, it is the ‘voicelessness’ at the level of the underlying phoneme that 
appears to condition the application of the rule. Opacity is readily accounted for in serial 
rule-based models of phonology, as in Chomsky & Halle (1968). The rule that raises the 
vowel simply applies before the rule that turns the /t/ into a flap (which could be modeled 
as a transform effecting an extreme reduction in the closure duration). However, it is 
somewhat more difficult to state these generalizations in surface-based theories like 
Optimality Theory (Mielke, Armstrong & Hume, 2003; Bakovic 2007). From the point of 
view of the model presented here, however, this interaction is straightforwardly captured 
without any explicit notion of rule ordering (and bears a striking resemblance to the 
account given by Harris 1951: 71). If one assumes that only categorical information can 
trigger (serve as the conditioning environment for) phonological processes, then the 
surface pronunciation of /t/ as a flap by reduction of its closure duration is expected to 
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have no effect on the effects it has on neighboring segments. As the categorical identity 
of the flap remains /t/ regardless of surface pronunciation, the opaque interaction results 
without rule ordering. The two transforms (vowel raising and closure shortening) can 
apply independently and simultaneously. This is a surprising result that stems directly 
from limiting the possible levels of discrete representation in phonology. It remains to be 
seen if limiting phonological theorizing to a single level of discrete representation will 
produce theories that have the same empirical purchase as current theories do. Our main 
concern here has been instead to argue that this restriction conveys advantages in 
modeling the acquisition process.  
 
Conclusion 
 
 In this article, we examined the general MOG approach to phoneme category 
acquisition. By considering data from Turkish and Inuktitut, we bounded the learning 
capacity of the MOG approach from above and below: in order to achieve the sensitivity 
to extract phonemes from some languages (Turkish), we are guaranteed to converge only 
on phonetic categories in others (Inuktitut). This fact apparently demands a two-stage 
solution to phonemic category acquisition: first, infants must acquire their language-
specific phonetic categories, and only then can they determine the phoneme categories.  
 We argued, however, that the phoneme acquisition process can instead be 
conceived of as a single-stage process if learners actively factor out predictable variations 
in the acoustics. By comparing single- and two-stage approaches to a sample of Inuktitut 
data, we showed that the single-stage reliably converged on phoneme categories in one 
clustering step, while the two-stage approach struggled to extract either phonetic or 
phonemic categories on the same data. This simple proof of concept demonstrates the 
utility of this alternative conception of the phonological acquisition problem, which we 
also argued has conceptual and theoretical advantages over a two-stage approach.   
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Appendix A: Mixture models 
 
 A mixture model assigns a probability to an observation xi from a set of n d-
dimensional observations {x1, x2,…, xn} through a combination of constituent probability 
distributions, as in (4) (for reference, see McLachlan & Peel, 2000 and Frühwirth-
Schnatter, 2006).  
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! 

f (xi |") = #k fk (xi |$ k )
k=1

K

%

" = (#T ,$ T )T
 

 
 A mixture model ! containing K component distributions is parameterized by a 
vector of component probability (") and component parameters ($; for normals, this 
consists of a mean µ and covariance %). This model acts to assign a probability to any 
observation xi by summing the probability of that observation conditioned on each of the 
K components (i.e. p(xi|$k) for each component k), weighted by that component's mixing 
probability "k. In order to fit a mixture model, the parameter vector ! (containing mixing 
probabilities and component parameters) must be estimated.  
 
Appendix B: Expectation-Maximization for mixture models  
  
 There is no closed form expression for the maximum-likelihood estimator (MLE) 
for a mixture of normal distributions, and so estimation of mixtures often proceeds by 
employing iterative computational methods (McLachlan & Peel, 2000). One popular 
option is the expectation-maximization algorithm (Dempster et al, 1977).  
 In estimating a mixture model with the EM algorithm, the data is viewed as 
incomplete: given our observations {x1, x2,…, xn} there are associated, unobservable 
component labels {z1, z2,…, zn}. The EM algorithm treats these labels as missing data, 
and proceeds in two steps: the expectation (E) step, which computes the conditional 
expectation of the labels and the maximization (M) step, which employs those 
expectations to find new model parameters that maximize the likelihood of the data.  
 The algorithm is initialized by selecting random, valid starting values for all 
parameters (where valid means that probabilities must sum to 1 where appropriate). The 
E-step evaluates the ‘responsibility’ that each component has for each observed value, 
where the responsibility the probability of a given label for that observation.  
 

! 

"(znk ) = p(znk =1 | xn ) =
# kN(xn | µk,$k )

# jN(xn | µ j ,$ j )
j=1

K

%
 

 Thus the E-step results in a matrix Z, where each entry Znk corresponds to #(znk): 
the conditional expectation (given the current estimated model parameters) of the missing 
data label k given a data point xn. Using these expectations (or ‘responsibilities’), the M-
step re-estimates the parameters in ! using the following ML estimators: 
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 Where Nk refers to the expected number of observations in each category, and N is 
the total number of observations. This procedure is iterated until convergence, and is 
guaranteed to increase the log-likelihood of the model with each iteration (see proof in 
Dempster et al, 1977).  
 
Appendix C: Kullback-Leibler distance  
 
 Kullback-Leibler (KL) distance (also known as KL divergence or relative 
entropy) is an information-theoretic measure that is often used to quantify the distance or 
similarity between two probability densities. The general form of the KL distance 
between two densities f and g is: 

! 

DKL ( f || g) = f (x)" log
f (x)
g(x)

dx  

  
For two Gaussian distributions N0 and N1, this can be expressed in closed form as 

the following (Hershey & Olson, 2007): 
 

! 

DKL (N0 ||N1) =
1
2
(loge (

det"1
det"0

) + tr("
1

#1"0) # d + (µ1 # µ0)
T"1

#1(µ1 # µ0)) 

 
 Where d is the dimensionality of the Gaussians. The KL distances reported in this 
paper were computed with the closed form expression, which uses a logarithm with base 
e. Thus all reported KL distances are in nats, rather than bits (another common unit for 
KL distances). 
 Note that the KL distance is not a true metric because it is not symmetrical: DKL(f 
||g) is not generally equal to DKL(g ||f). In practice, one distribution is designed as ‘true’ 
and the other distribution the ‘target’. We calculated all KL distances by setting the truth 
to be the parameters of the underlying vowel category (N0), and the target distribution 
(N1) was specified by the parameters of the estimated category. 
 
 
Appendix D: Bootstrap test for number of model components 
 
 Rather than allow EM to automatically determine the number of components K 
for a model, we employed bootstrap methods to estimate level of significance for each K 
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given the data X = {x1, x2,…, xn}. In order to do so, we generated bootstrap distributions 
of -2 log &, following McLachlan (1989). All tests take the form of a simple hypothesis 
test: the null hypothesis Ho is that the data is best fit by a K-component mode, and the 
alternative hypothesis H1 is that the model is instead best fit by a K+1-component model. 
To proceed, we first fit a K-component model !B to the original data X. From this 
estimated model (with K components), a sample X’ of n observations is produced. The 
value of -2 log & is then determined by fitting both a K component model and a K+1-
component model to X’, and measuring the difference in the log-likelihoods of the 
models This process is iterated independently B times, and doing so generates a boostrap 
approximation to the null distribution of -2 log &. Once we obtain the null distribution of 
our test statistic, we may then evaluate the significance of the actual observed value of -2 
log & on the data.   

To do this, we compare a K+1-component model to a K-component model fit to 
the original data X. The difference in the likelihood scores is used to estimate the test 
statistic -2 log &. From this, we obtain an estimate of the level of significance p of the 
observed increase in model likelihood (i.e. the probability that the null hypothesis is 
correct}. In other words, if the resultant p-value reaches a preset ', we determine that the 
data is significantly better fit by K+1 components. This procedure is iterated with 
increasingly larger K until a K is found for which the null hypothesis Ho cannot be 
rejected. This value of K is the lowest number of components for which we cannot reject 
Ho; in other words, it is the number of components that best fits the data.  
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Figure 1: Underlying vowel categories (grey) and estimated mixture model components 
(red) for a uniform training set a representative Turkish speaker plotted in F2-F1 space. 
Ellipses delimit .20 of the Gaussian’s probability mass. KL distances between mixture 
components and their corresponding vowel distributions are .14 (/i/-2), .03 (/y/-1), .39 

(/e/-3), and .07 (/ø/-4). 
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Figure 2: Underlying vowel categories (grey) and estimated mixture model components 
(red) for an empirical training set for a representative Turkish speaker plotted in F2-F1 

space. Ellipses delimit .20 of the Gaussian’s probability mass.  
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Figure 3: Plot of Inuktitut vowel data in F2-F1 space. Ellipses delimit .20 of the 

probability mass of a Gaussian estimate of the distribution of vowel productions in uvular 
environments ([+u]) and in non-uvular environments ([-u]). 
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Figure 4: Plot of Inuktitut vowel distributions (grey) in F2-F1 space, along with best-fit 
four-category solution (components in red). Ellipses delimit .20 of the probability mass of 

the corresponding Gaussian. 
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Figure 5: F2-F1 plot of distributions of Inuktitut vowels in uvular contexts ([+uvular]) 
and in non-uvular contexts ([-uvular]) prior to process-transformation. Ellipses delimit 

.20 of the probability mass of the corresponding Gaussian estimate. 
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Figure 6: F2-F1 plot of distributions of Inuktitut vowels in uvular contexts ([+uvular]) 
and in non-uvular contexts ([-uvular]) after process-transformation. Ellipses delimit .20 

of the probability mass of the corresponding Gaussian estimate. 
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Figure 7: Plot of process-transformed Inuktitut vowel data in F2-F1 space. Ellipses 
delimit .20 of the probability mass of a Gaussian estimate of the distribution of vowel 

productions for each phoneme category. 
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Figure 8: Plot of process-transformed Inuktitut vowel distributions (grey) in F2-F1 
space, along with best-fit three-category solution (components in red). Ellipses delimit 

.20 of the probability mass of the corresponding Gaussian. 
 
 
 
 


