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Abstract

To acquire one’s native phonological system, language-specific phonological categories and rela-

tionships must be extracted from the input. The acquisition of the categories and relationships has

each in its own right been the focus of intense research. However, it is remarkable that research on

the acquisition of categories and the relations between them has proceeded, for the most part, inde-

pendently of one another. We argue that this has led to the implicit view that phonological acquisi-

tion is a ‘‘two-stage’’ process: Phonetic categories are first acquired and then subsequently mapped

onto abstract phoneme categories. We present simulations that suggest two problems with this view:

First, the learner might mistake the phoneme-level categories for phonetic-level categories and thus

be unable to learn the relationships between phonetic-level categories; on the other hand, the learner

might construct inaccurate phonetic-level representations that prevent it from finding regular rela-

tions among them. We suggest an alternative conception of the phonological acquisition problem that

sidesteps this apparent inevitability and acquires phonemic categories in a single stage. Using acous-

tic data from Inuktitut, we show that this model reliably converges on a set of phoneme-level catego-

ries and phonetic-level relations among subcategories, without making use of a lexicon.
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1. Introduction

In recent years, statistical approaches to language acquisition have generated much enthu-

siasm, especially in the domain of phonological acquisition (Chambers, Onishi, & Fisher,

2003; Maye, Werker, & Gerken, 2002; Saffran, Aslin, & Newport, 1996). The problem of
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how human children acquire phonological categories (phonemes) of spoken language

presents an ideal model problem for these approaches to language acquisition: We under-

stand a good deal about the time course of phonological development, how the perceptual

input to learning is represented, and what the desired end stage of acquisition is. Further-

more, there are very good reasons to model the acquisition process using well-understood

methods for statistical inference over perceptual input, as we describe below. However, the

general approach to phonological category formation as perceptually driven statistical infer-

ence has led to the view that the categorization acquired by the learner is in some sense iso-

morphic to all and only the distinctions present in the acoustics.

This view leads to a model of acquisition that is incomplete from the point of view of

contemporary models of phonological knowledge. This is because it is common for

phonological theories to distinguish between phones and phonemes. Phonemes are lan-

guage-specific, abstract categories used for the purposes of memory encoding in the lexi-

con. A single phoneme, however, may comprise a set of distinct pronunciations (or

phones) that reflect its phonological environment. For example, English is commonly

thought to have a single phoneme category ⁄ t ⁄ that comprises a number of distinct acous-

tic realizations (its allophones). An English word like ‘‘sit’’ is thought to be stored in the

lexicon using this abstract phonemic category as its final segment, typically written using

slash notation as in ⁄ sIt ⁄ . In pronunciation, the final ⁄ t ⁄ phoneme is typically mapped to an

unreleased [t }] phone (where brackets denote phonetic categories) in word-final position.

This acoustic realization can vary widely based on phonological context, however: The

morphological process of adding -ing to the verb root produces a predictable change in the

pronunciation of the root-final ⁄ t ⁄ , such that in ‘‘sitting’’ the ⁄ t ⁄ is pronounced as a flap [�],
a phone that is phonetically more like Spanish r than it is like other pronunciations of ⁄ t ⁄ .
This change is due to the phonological environment created by the addition of ‘‘ing’’: Here,

the ⁄ t ⁄ is flanked by a stressed vowel to its left, and an unstressed vowel to its right, a phono-

logical context that triggers the flap pronunciation. The mapping from ⁄ t ⁄ to its allophone in

context is referred to as a phonological rule or process. Thus, the ⁄ t ⁄ phoneme category in

English comprises many distinct acoustic phones. The presence of allophonic alternations of

this sort is ubiquitous in the world’s languages (see, e.g., Kenstowicz, 1994), and the set of

allophonic alternations a language may have is subject to wide cross-linguistic variation. As

such, allophonic processes are an important consideration for models of phonological

acquisition.

However, statistical models that cast phonological category learning as perceptual clus-

tering imply that the goal of learning is to discover phonetic, rather than phonemic, catego-

ries. If the goal of phonological acquisition is to discover the categories used in lexical

storage, then phonetic categories are not the desired end state of phonological acquisition.

There are varied theoretical approaches to the problem of learning abstract phoneme catego-

ries, and the problem of how to learn abstract phonological systems has itself generated a

sizeable body of research (Boersma & Hayes, 2001; Goldsmith & Xanthos, 2009; Harris,

1951; Peperkamp, Le Calvez, Nadal, & Dupoux, 2006; Tesar & Smolensky, 1998; among

others). However, modeling studies of this kind have typically assumed an input consisting

of sequences of phonetic categories, and, in doing so, have tacitly assumed that the learner
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is able to reliably identify these categories in a prior stage (see also Lin & Mielke, 2008,

who discuss this simplifying assumption).

As we argue, this disconnect between the statistically induced phonetic categories and

the phonemic categories that are the target of acquisition has led to an implicit two-stage

view of phonological learning. That is, learners first learn phones using statistical inference

over acoustic input, and then build phonemes and phonological systems by identifying

relations between these phonetic categories. In this article, we suggest that such a view is a

consequence of current models of first-stage statistical categorization, because these

approaches will converge on phonetic, rather than phonemic, categories. This requires a

second stage of acquisition that subsequently builds the relevant phonemic categories from

the phonetic categories.

Although the structure of current models of phonetic category formation seems to suggest

a two-stage model of phonological categorization, we argue in this article that this two-stage

approach is not inevitable. Indeed, the need for a close relationship between phonetic and

phonological learning has been noted by a number of researchers investigating the acquisi-

tion of phonological systems (Maye, Daland, & Goldrick, 2008; Seidl, Cristià, Bernard, &

Onishi, 2009). We present two arguments in favor of an alternative, single-stage approach

to the acquisition of phonological categories. First, we present simulation evidence with a

data set from Inuktitut that suggests that seemingly inconsequential errors during a phonetic

categorization stage impede a second-stage phoneme discovery procedure. Second, we show

that with this same data set, the correct phonemic categorization of the data can be obtained

with a single-stage categorization model that jointly learns phonemes and processes by

factoring out predictable alternations conditioned on environment, rendering subphonemic

categories epiphenomenal. The results show the viability of a single-stage conception of

phonological category acquisition and suggest that, for the data set examined here, such an

approach is in fact more successful than a two-stage approach to phoneme discovery.

1.1. The phonological learning problem

As alluded to above, the two-stage view of phonological acquisition parallels a distinction

that linguists have long drawn between phonetics and phonology. Phonetics refers to the

study of perception and production of speech, and phonology is concerned (sometimes

implicitly) with the encoding of speech in the lexicon (i.e., long-term memory). Much work

in phonetics stems from the observation that phonetic representations are finely detailed and

best represented as continuous rather than discrete values (Fant, 1960; Ladefoged, 2001;

Ohala, 1976). The phonological level is instead thought to abstract away from the detailed

properties of the phonetic representations to varying degrees, and it is almost always taken

to be a discrete rather than a continuous encoding (Chomsky & Halle, 1968; Goldsmith,

1976; Prince & Smolensky, 2004). The inventory of discrete phoneme categories varies

from language to language, and an infant acquiring his or her native tongue must identify

the phoneme categories that are relevant for his or her language. Part of this task is phonetic

in nature, as the infant must determine the distribution of each speech category in acoustic

and ⁄ or articulatory space. Determining which acoustic realizations (or articulatory
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movements) map to which phonemes is a prime example of an unsupervised learning prob-

lem. This characterization of the problem has allowed researchers to make direct contact

with a vast literature in statistics and machine learning and has led to important new models

of phonological acquisition.

One way of modeling this sort of phonological knowledge is with a mixture model

(McLachlan & Peel, 2000). Mixture models are statistical models that describe a set of data

(e.g., a stream of acoustic observations) as coming from a probability distribution generated

by a finite set of component categories (e.g., phoneme segments). On this model of the pho-

netics–phonology mapping, the listener has an acoustic map that indicates how likely an

acoustic token is as a realization of a given phoneme, Pr(acoustics|phoneme). Furthermore,

each phoneme also has its own mixing probability Pr(phoneme) of occurring, so that an

ambiguous sound will be more likely classified as a more probable phoneme. Cast this way,

the task of the learner is to learn the parameters and the mixing probabilities of the compo-

nents that make up the mixture distribution; in this way, to fit a mixture model to data is to

specify these two probability distributions. This is a statistical formulation of the clustering

task in machine learning, because the observations form ‘‘clusters’’ associated with differ-

ent mixture components. Fitting such a model is an example of unsupervised learning,

because the knowledge of the component assignments that give the phonemic category of

any given token is not provided to the fitting algorithm. Instead, this information must be

guessed on the basis of the clusters formed by the input. Presumably, the problem faced by

the infant in learning phonological categories is an unsupervised clustering problem of this

sort, and so phonetic or phonological categorization can be usefully modeled as the search

for a mixture model that is optimal for the infant’s speech environment. As we detail below,

this basic model has formed the basis for a number of successful approaches to the acquisi-

tion of phonological categories.

However, this view of phonological category acquisition as unsupervised clustering is

complicated by contaminating factors such as environmental noise, speaker variation, and,

most important here, the non-trivial mapping between phonemic and phonetic representa-

tions because of the existence of phonological processes. In many theoretical approaches

that view phonological processes as operations over discrete units, the relation between the

phoneme and its pronunciations is stated as a process taking a discrete object (e.g., the pho-

neme ⁄ t ⁄ ) to another discrete representation (its phonetic realization as unreleased [t }] or

the flap [�]). If it is assumed that more detailed, quasi-continuous phonetic information is

filled in after all phonological processes have taken place, then there is a clear distinction

between two discrete levels of representation involved in phonological cognition. One is the

lexical level (the phoneme level); the other is the discrete ‘‘surface’’ level, which is

obtained following the application of all of the discrete contextual phonological rules, but

none of the phonetic-detail rules that fill in the details of how the segments are pronounced

(the phone level).

Although it is a useful (and nearly ubiquitous) theoretical device, it is not clear that there

is any independent motivation for assuming that a unique, coherent level of discrete repre-

sentation follows the application of all contextual rules. Nonetheless, many researchers

maintain discrete levels of phonetic and phonemic representation, and this has provided the
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implicit theoretical motivation for a two-stage model of phonological acquisition: Having

two discrete levels of representation allows for a view of phonological acquisition in which

the mapping between discrete phones and detailed phonetic information is learned before

the mapping between phones and phonemes.

1.2. The two-stage approach

The theoretical distinction between discrete phonetic and phonemic encodings is also

found in research on phonological acquisition, with research generally focusing either on

categorization of a phonetic nature or on the mapping between phonetic and phonological

categories. This division of labor has led to an implicit two-stage approach to phonological

acquisition. Such a model suggests that phonological acquisition proceeds by first

identifying phonetic-level categories, and then using those categories to discover phonemic

categories.

The first stage of phonological acquisition, the mapping from acoustics to phones, has

been explored in a large body of work on discovering category structure from acoustic data.

This work often employs explicit statistical models of inference (de Boer & Kuhl, 2003;

Coen, 2006; Feldman, Griffiths, & Morgan, 2009; Vallabha, McClelland, Pons, Werker, &

Amano, 2007). The acquisition target of these models is sometimes cast in a way that is neu-

tral between phones and phonemes: Vallabha et al. (2007), for instance, propose a model

for learning ‘‘sound categories’’ (p. 13273). On the other hand, Feldman et al. (2009)

explicitly note that although their model contains a lexicon, it is more likely to converge on

phonetic, rather than phonemic, categories. In both cases, this follows from the structure of

the model: Without explicit modeling of the phonological processes, this stage of acquisi-

tion is guaranteed to converge on categories that do not abstract out these phonological pro-

cesses. If the standard understanding of the relation between phones and phonemes is to be

preserved, then any one of the resulting categories in such a model is a phone, not a

phoneme, whether it happens to cover all, or only one, of the predictable allophones of a

given phoneme. For this reason, this line of research implicitly presents itself as one stage in

a two-stage process; if the end goal of acquisition is phonemic categories, then models that

do not explicitly encode this fact imply the existence of a second stage of acquisition to

reach the target state.

The observation that these previous approaches do not reach phonemic solutions is not

intended as an argument against statistical approaches to discovering category structure.

There is arbitrary variation in acoustic targets for the same phone or phoneme category

across languages (Flemming, 2001; Pierrehumbert, 2003), and so it seems that the learner

must acquire at least some of the phonetics–phonology mapping. Any fully specified model

of phonological acquisition should contain a mechanism for inferring category structure

over a perceptual space. Furthermore, given that not all acoustic tokens of a single category

within a language will be identical, a learning mechanism is needed that is statistical, in the

general sense that it deals with noisy data in some well-defined way. For this reason, the

alternative single-stage model we discuss below shares many of the assumptions of these

first-stage statistical models.
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However, a model of the acoustics-to-category acquisition process that can find only

phones requires a way of addressing the second half of the phonological learning problem:

the acquisition of the mapping from phones to units of lexical encoding (phonemes) and the

phonological grammar. One possibility for this stage is to trivialize this mapping and deny

the existence of phonemes, a position that we argue is not desirable on theoretical or empiri-

cal grounds. Assuming this is not tenable, it is necessary to develop an explicit theory of

how to group phones into phonemes. Ideas about this procedure are implicit in much of the-

oretical linguistics, including the well-known complementary distribution test (Harris,

1951). More recently, Peperkamp et al. (2006) have proposed solving this problem by com-

paring the sequence-level distributions of pairs of phones; that is, for each pair of phones p1,
p2, they examined the probability distribution over phones adjacent to p1 versus p2. They

proposed that phones with the most dissimilar context distributions are more likely to be

variants of the same phoneme, with the probability distributions reflecting a generalization

of the traditional notion of complementary distribution, subject to further naturalness con-

straints on possible phone-to-phoneme relationships. By investigating the context distribu-

tions of discrete phones, this algorithm implicitly assumes that phones have been uniquely

identified and categorized at a previous stage of acquisition. Note also that in this approach,

phonological learning is still not complete once the phonemes have been identified. The

learner must still learn the grammatical mapping between the phones and phonemes (i.e.,

the form of the relevant phonological processes).

An alternative conception of this second stage is seen in work on learning of optimality-

theoretic grammars (OT; Prince & Smolensky, 2004). On this approach, the set of phonolog-

ical processes (the phonological grammar) is a ranked set of well-formedness constraints,

which determine the correct pronunciation of a lexical item in its stored (phonemic) form.

There are several well-known, computationally explicit algorithms for learning these gram-

mars (Boersma & Hayes, 2001; Hayes, 2004; Pulleyblank & Turkel, 1998; Tesar & Smolen-

sky, 1998). Although they vary in their approaches, they also share the assumption that the

input to learning is a set of discrete, phone-level representations, and the grammar is derived

once these phones are identified. The work on phonetic learning by Boersma, Escudero, and

Hayes (2003) does incorporate low-level phonetic learning into an OT constraint-ranking

grammar, but these constraints do not incorporate any contextual or grammatical informa-

tion at the phonetic level of learning, and thus implicitly ascribe all the systematic contex-

tual pronunciation rules to the mapping between phonemes and phones. By taking the

output of a first-pass mapping from acoustics to phones, these approaches thus also implic-

itly endorse the two-stage view of phonological acquisition. There exist still other

approaches to the phoneme-finding problem (Dresher, 2009; Goldsmith & Xanthos, 2009;

Jakobson, 1941), but all are formulated under the assumption that a set of phones has

already been discovered.

The assumption of two-stage learning is not innocent, however, since, as we will detail

below, the success of a two-stage approach to phonological learning crucially depends on

the accuracy achieved in the first stage. Errors made in the phone acquisition stage could in

principle impair the ability of a second-stage mechanism to extract the correct phonology.

Furthermore, although a two-stage view of phonological acquisition appears to be implicit
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in the majority of research on phonological acquisition, it is not the only possibility.

In the remainder of this article, we explore the feasibility of a single-stage approach to

phonological categorization. In particular, we focus on statistical methods of category

identification. As noted above, all theories of phonological acquisition must address this

mapping from acoustics to discrete categories. Because of this fact, asserting the feasibility

of a single-stage approach amounts to asserting the possibility of folding the acquisition of

processes and phoneme-level categories into the initial mapping from acoustics to linguistic

categories.

1.3. Mapping from acoustics to linguistic categories in acquisition

The relation between acoustic variation and linguistic categorization has been the subject

of much research in psycholinguistics. One important and reliable finding is that young

infants are initially able to discriminate a wide range of speech sounds, even those not present

in their linguistic input (Werker & Tees, 1983, 1984). A number of studies have shown that

these discriminatory abilities quickly decay as the infant develops. Declining sensitivity to

non-native language vowel contrasts is apparent as early as 6 months (Kuhl, Williams, Lacer-

da, Stevens, & Lindblom, 1992), and by 8 months, similar effects are evident in consonant

contrasts (Werker & Tees, 1984). This changing sensitivity is taken to reflect the development

of perceptual models of speech sound categories (whether phone-level or phoneme-level).

The early onset of this development raises the possibility that this category learning may not

be entirely driven by the building of a lexicon, as has been sometimes assumed (Best, 1995;

Jusczyk, 1985). Infants at this age know relatively few words (Fenson et al., 1994), and if the

relevant lexical knowledge is knowledge of minimal pairs, it may be that these are too rare to

have such a reliable effect so early (Dietrich, Swingley, & Werker, 2007).

For these reasons, some researchers have hypothesized that distributional learning mech-

anisms play an important role in phonological development (Chambers et al., 2003; Maye

et al., 2002; see also Vallabha et al., 2007), and there is experimental evidence in support of

this hypothesis. For example, Maye et al. (2002) trained infants at 6 and 8 months of age by

exposing them to sets of stop consonants with either bimodal or unimodal distributions over

voice-onset times (VOTs). When presented with bimodal distributions, infants showed

enhanced sensitivity to differences between points at the extremes of the VOT ranges.

Infants in the unimodal condition were less able to discriminate endpoints on the VOT con-

tinuum, suggesting that they had classified them together on some level. Building on results

that show that infants are sensitive to distributional information in other modalities, such as

word-learning (Saffran et al., 1996), the authors interpreted these findings as showing that

distributional characteristics of the input directly impact the dimensions of the signal the

infants view as relevant or contrastive. Werker et al. (2007) went on to show that, for the

vowel space, clear distributional cues in the infant-directed speech of both Japanese and

English speakers appear to support the relevant contrasts (e.g., duration cues for the

Japanese vowel space) and minimize irrelevant dimensions of variation.

In addition to these experimental results, computational models have been more and more

successful in capturing the acquisition of speech categories using various types of statistically
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informed frameworks. As discussed above, the acoustics-to-category mapping can be mod-

eled with a range of statistical techniques, with mixture models playing a prominent role.

For example, de Boer and Kuhl (2003) used a mixture of Gaussians (MOG) to model the

acquisition of vowel categories using the values for the first two formants. MOG models are

a form of mixture model that represents category structure as a set of parameterized Gauss-

ian distributions in the input space, each weighted by a mixing probability (see above). The

authors fit MOG models to vowels recorded during mother–child interactions using expecta-

tion maximization (EM, an algorithm used for maximizing the likelihood of a model with

unobserved structure; see Dempster, Laird, & Rubin, 1977). They focused on the vowels at

the extreme points of the vowel space in English ( ⁄ i ⁄ , ⁄ u ⁄ , and ⁄ a ⁄ ), and they fixed the num-

ber of components in the model at three when fitting the model. By applying this approach,

and clustering separately for each speaker, they showed that the model was better able to

acquire the categories on infant-directed speech than on adult-directed speech, suggesting

one possible utility of infant-directed speech.

Vallabha et al. (2007) also used a MOG to model the acquisition of the Japanese and

English data that was analyzed by Werker et al. (2007). The models were sets of four-

dimensional Gaussians in the raw acoustic space (F1 · F2 · F3 · duration), the parameters

of which were updated iteratively after processing each input point online. While similar to

standard EM, their method of fitting the MOG acquired categories online, as opposed to

batch processing over a corpus of data (as in standard EM). The online nature of the

Vallabha et al. model is arguably closer to the procedure used by human infants. Applying

this technique on several distinct data sets, each from a different speaker, the model matched

the true vowel systems 80% of the time; an alternate model that dropped the assumption of

Gaussian components was successful 60% of the time. McMurray, Aslin, and Toscano

(2009) also used a version of this online algorithm to model the acquisition of phonetic

categories.

Still other modeling attempts have tested different assumptions about what information is

recruited to solve the phonological learning problem: Coen (2006) analyzed video samples

of American English vowels and used a cross-modal manifold learning technique (not the

MOG approach assumed elsewhere) to form and cross-correlate clusters in both acoustic

and visual space (i.e., shape of mouth). Feldman et al. (2009) constructed a hierarchical

Bayesian model, including an embedded MOG that jointly solved the problem of inferring

categories and a lexicon, allowing for the construction of a base of lexical knowledge that

delivered impressive performance in separating highly overlapping categories in English

vowel data. The success of the simple MOG approach has thus been shown to benefit from

the addition of extra disambiguating information.

Despite these successes, the mapping from acoustics to linguistic categories remains an

extremely challenging problem in its own right. Because it appears to vary between lan-

guages, this mapping must be learned and is an essential part of any phonological acquisi-

tion model. We now turn to a more detailed examination of these models. We first focus on

the problem of acquiring phonetic categories using a MOG approach. Using data from

Inuktitut, we demonstrate that the sorts of models explored in the literature up to now are at

risk of extracting categories that are either insufficiently fine-grained, or too poorly aligned
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with the real categories of the language, to enable learners to discover the systematic rela-

tions between phones in a second stage of acquisition. With this data set, it does not appear

that a two-stage approach to acquiring the Inuktitut phonemes is likely to be successful. In

light of this, we consider an alternative conception of the first stage of category acquisition.

We show that it is possible to extract categories which correspond better to the phoneme

level than the phone level in the acoustic clustering stage (a single-stage approach to phone-

mic category acquisition), rather than leaving that step for a second stage of acquisition.

When compared with a basic MOG approach, the single-stage approach returns a more real-

istic set of phoneme categories. This provides initial evidence that a single-stage approach

to the acquisition of phonological categories is in principle possible, and on the Inuktitut

data set considered here, this approach outperforms two-stage approaches by providing a

categorization of the acoustic space that better fits the target of acquisition.

2. Experiment 1: Mixture of Gaussians

As noted above, human infants learning speech sound categories may be said to be discov-

ering mixture models of the speech segments they encounter, regardless of the representa-

tional level (phonetic or phonemic) of the categories acquired. Most of the models of this

learning problem in the literature have assumed each category to be a single multivariate

Gaussian in acoustic space; for vowels, this is typically the first two or three formant values,

as extracted from the speech spectra. Previous results indicate that, at least in simple settings,

a Gaussian mixture model with categories approximating the true categories can be found

using the standard techniques applied to this problem in statistics. This has been taken to sug-

gest that our understanding of this part of the infant’s learning problem is already fairly clear.

This has been demonstrated primarily for simple phonetic category systems; it becomes pro-

gressively more difficult to discover the true categories underlying a data set as the clusters

become more poorly separated in the input space when the clusters are not actually generated

in a way that satisfies the model assumptions (e.g., to the extent that MOG is an inaccurate

approximation of the learner’s perceptual map). We argue, however, that previous

approaches may find significant difficulty for even fairly simple systems, for other reasons.

In what follows, we examine the role of phonological processes in the speech sound cate-

gory learning problem. We use data from Inuktitut. Inuktitut is an Eskimo-Aleut language

spoken in northern Canada. Like many other related languages, Inuktitut has three vowel

phonemes: ⁄ i ⁄ , ⁄ u ⁄ , and ⁄ a ⁄ . The quality of a vowel, however, is often affected when fol-

lowed by one of the uvular consonants ( ⁄ q ⁄ or ⁄� ⁄ ; Dorais, 1986). In the dialect of Kinggait

(Cape Dorset), uvular consonants lower all vowel tokens to some degree (Denis & Pollard,

2008), suggesting the presence of six phonetic categories (see Fig. 1). Three vowels plus a

strong retraction effect before uvular consonants is a fairly common phonological system;

similar systems are found in Quechua and Modern Standard Arabic (Kuriyagawa, 1984;

Pasquale, 2009). Such a system could potentially make each phoneme acoustically bimodal.

The presence of additional contextually determined subcategories of the three phonemic

vowels (for convenience, we will refer to these as [e], [o], and [A], three contextual
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allophones of ⁄ i ⁄ , ⁄ u ⁄ , and ⁄ a ⁄ , respectively) suggests the presence of six phonetic catego-

ries. For such a system, a two-stage model of phonological acquisition must first satisfacto-

rily recover these six categories before any procedure that discovers links between phones

can successfully operate. In Experiment 1, we ask whether learning under a simple MOG

model does in fact return the set of six adult phonetic categories which could be used as

input to a second stage of acquisition. If the result of learning were nicely consistent in giv-

ing these six phonetic categories, we would have some indication that a two-stage model is

plausible for this data set, although this would still leave open the question of how learners

come to have systematic knowledge of phonological processes.

2.1. Materials

The Inuktitut vowel corpus that we employ comes from a study on Inuktitut phonetics

(Denis & Pollard, 2008). All vowel tokens were measured from elicited speech of an

Inuktitut speaker from Kinggait and were hand-labeled by trained phoneticians for first

formant (F1) and second formant (F2) values; these measurements were chosen because

these two acoustic parameters are known to be highly informative indicators of vowel

height and backness, respectively. Two hundred and thirty-nine vowel tokens were mea-

sured in this way; we resampled simulated corpora for use in training containing 1,000

and 12,000 tokens from this data set nonparametrically using a two-dimensional kernel

density estimate using the ks package for R (Duong, 2011; R Development Core Team,

2008), respecting the frequencies of each of the phones in Inuktitut, balanced according

to the natural mixing proportions obtained from the Nunavut Hansard corpus (version

(A) (B)

Fig. 1. Plots of Inuktitut vowels, both grouping (A) and splitting (B) predictable allophones, in F2 · F1 (back-

ness by height) space. The ellipses mark a 66% confidence region for Gaussians estimated by maximum likeli-

hood on the points from the indicated category.

B. Dillon, E. Dunbar, W. Idsardi ⁄ Cognitive Science 37 (2013) 353



2.0; Martin, Johnson, Farley, & Maclachlan, 2003). These proportions differed from the

proportions found in the raw phonetic corpus mainly in the relative frequency of the two

back phones [u] and [o].1

2.2. Methods

There are various methods for optimizing over the set of possible mixtures of Gaussians.

We chose a standard Bayesian estimator: a point estimate taken from a sample from the

posterior distribution. The posterior distribution of interest was over mixtures of Gaussians

given a Dirichlet process prior (an infinite MOG: Escobar & West, 1995; Ferguson, 1973).

This represents a particular way of stating formally that the hypothesis space is all possible

Gaussian mixture models, including models with different numbers of categories, along

with a particular way of weighting different mixture models (a Dirichlet process in this con-

text is essentially a certain prior probability distribution over mixture models). After this

choice of prior is made, the remainder of the solution is a standard problem in Bayesian

statistics.

Bayesian inference makes use of the posterior distribution over hypotheses, that is, the

measure of how probable a hypothesis is (in this case how likely any given Gaussian mix-

ture model is) that would be derived by a rational agent under the specified prior distribution

(set of modeling assumptions). A ‘‘rational’’ agent is simply one that obeys the axioms of

probability theory for making decisions under uncertainty. For formal justification, see Cox

(1946) and Jaynes and Bretthorst (2003); see also Oaksford and Chater (2001) for empirical

justification of the common use of the term ‘‘rational’’ for such models.

A Bayesian estimator is useful in this context because joint inference can be done

straightforwardly on problems of potentially arbitrary complexity. This is advantageous, for

example, when inferring the number of categories in a mixture model (a crucial part of the

problem of phonetic category learning). In contrast, frequentist methods (e.g., the traditional

EM algorithm) explicitly prohibit the statement of probabilities over model parameters, and

this is a serious liability given the inherently hierarchical nature of this problem. There are

standard methods available for deriving estimators for the underlying set of mixture compo-

nents and mixing probabilities justified by the data, assuming some particular fixed number

of categories. However, because the learner by hypothesis needs to estimate the number of

categories justified by the data, Bayesian estimators that incorporate uncertainty over this

part of the model provide a more attractive option for modeling acquisition.

The Bayesian solution to hierarchical problems like this is to treat the parameters as

unobserved data and put a prior probability measure on them; the parameters of this prior

probability (the hyperparameters) can in turn be learned in exactly the same way, and we

can continue to place hyperpriors on the parameters until we have reached a level of model

complexity that we believe mirrors that of the human learner relatively well (keeping in

mind that adding more learned parameters to the model will not be much better than simply

specifying them manually if we do not have enough relevant data). Just as in frequentist

estimation, the result will be sensitive to the modeling assumptions, but these assumptions

can in principle be as vague (lack of bias) or as precise (strong bias) as desired.
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In the case of the number of mixture components, the standard Bayesian solution is to put

a prior probability measure on sets of mixture components (in this case, on sets of

Gaussians) and associated mixing probabilities and compute the posterior probability over

hypotheses given the observed data set. One common probability measure used for this pur-

pose is the Dirichlet process, which has as free parameters a concentration parameter, a,

controlling the a priori tendency to add new categories, and a base distribution, G0, the prior

distribution on individual Gaussian components. This can be seen as a method for regulari-

zation in which there is a penalty to the likelihood not only for the number of categories but

also for having mixture components that do not adhere to some prior expectation about rea-

sonable mixture components (the base distribution).

A posterior sample from a Dirichlet process MOG was drawn using a Gibbs sampler with

component parameters drawn from a normal–inverse Wishart distribution with fixed inverse

scale matrix and degrees of freedom parameter, and with location parameter M and inverse

scale parameter x; M was itself sampled from a normal distribution centered at zero, and x
from an inverse Gamma distribution; a was sampled from a Gamma distribution (see Esco-

bar & West, 1995; West, 1992; Neal, 2000, for the basic details of the algorithm). To fit each

model, a sample of 500 points was drawn from the Gibbs sampler at a lag of 10 after 1,200

burn-in samples. The sample with the highest joint posterior density was used as a point esti-

mate. Hyperparameters were tuned to ensure that they were appropriate to find between one

and seven categories on the raw data from which the training corpus was sampled.

Although the use of an informative prior guards against overfitting, we chose to also train

each model using 10-fold cross-validation—that is, partitioning each data set into 10 subsets

and, for each subset, training on its complement. By testing on the held-out subset, we can

verify that the model fits are not overly sensitive to idiosyncracies of the training set. A sin-

gle chain giving one point estimate was derived from each of the 10 training subsets, for

each of the three different sized training sets (raw data, 1,000-point sample, 12,000-point

sample). Geweke’s z-statistic (Geweke, 1992) was computed on all real-valued parameters

and hyperparameters for each chain (comparing the first 10% and second 50% of the chain)

to test for stationarity; only runs for which all variables had two-sided normal p-values

above 0.001 were retained. Three runs of the 1,000-point model were dropped by this

criterion.

2.3. Results

To assess the quality of the fitted phoneme models, we first constructed ideal sets of

Gaussian phonetic and phonemic categories using the maximum likelihood estimators for

each phoneme (sample means and sample covariances), for each different data set used to

train the model (see Fig. 1 for a representative plot). Using these Gaussians as category

models, we classified the data sets from which the Gaussians were constructed using a

Bayes-optimal decision rule, labeling a point according to the mixture component with the

highest posterior probability given that point. This decision rule is optimal in the sense that

it minimizes the probability of classification error under the simple zero-one loss function

(Duda, Hart, & Stork, 2000).
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We summarize the baseline levels of performance provided by these optimal classifica-

tions in Table 1 using three statistics: pairwise precision, pairwise recall, and pairwise
F-measure (Amigó, Gonzalo, Artiles, & Verdejo, 2009). Pairwise refers to the fact that the

statistics are constructed by examining every pair of data points and asking whether the two

are in the same class (according to either the fitted model or the ideal model). Pairwise sta-

tistics are used in clustering evaluation to avoid the issue of constructing a mapping between

the model’s categories and the true categories; they are still meaningful even if the model

finds the wrong number of categories. We obtained the model’s predictions about shared

class membership, compared them with the true classifications, and computed the precision

(percentage of pairs predicted as the same which actually are), recall (percentage of pairs

which actually are the same that were predicted as the same), and F-measure (the harmonic

Table 1

Classification performance for ideal Gaussian models. These values represent the highest possible pairwise F
scores (see text) for comparisons between the ideal models’ predictions and the data. Two different versions of

the true classification are evaluated with this baseline: a three-category phonemic solution (phoneme labels,

K = 3) and a six-category phonetic solution (phoneme labels plus an indicator for a following uvular, K = 6)

K F Prec Rec

Raw (239 points) 3 0.84 0.83 0.85

6 0.64 0.66 0.63

1,000 points 3 0.79 0.79 0.79

6 0.69 0.64 0.76

12,000 points 3 0.78 0.78 0.78

6 0.68 0.63 0.74

Table 2

Results of Experiments 1–3, 10-fold cross-validation on each of three Inuktitut data sets. Left of table shows

distribution over number of resulting categories, and right of table shows pairwise scores at test (see text for

discussion of scores). In parentheses is the difference from scores on training data. Comparisons to both three-

and six-category (italicized) classifications are shown for Experiment 1

K = 1 2 3 4 5 6 F Prec Rec

Experiment 1: general mixture of Gaussians

1,000 0 0.125 0.625 0.125 0 0 0.70 (+0.02)

0.60 (+0.01)

0.66 (+0.01)

0.50 (+0.01)

0.74 (+0.03)

0.76 (+0.02)

12,000 0 0.1 0.5 0.1 0.2 0.1 0.65 (+0.01)

0.58 (+0.02)

0.68 (+0.01)

0.53 (+0.01)

0.63 (+0.02)

0.63 (+0.02)

Raw 0.1 0.2 0.7 0 0 0 0.65 ()0.03)

0.47 ()0.04)

0.59 ()0.03)

0.34 ()0.01)

0.76 ()0.03)

0.81 ()0.02)

Experiment 2: general mixture of Gaussians, process-corrected data

1,000 0 0.4 0.5 0.1 0 0 0.73 (+0.02) 0.67 (+0.02) 0.82 (+0.02)

12,000 0 0 0.875 0.125 0 0 0.74 (+0.02) 0.72 (+0.02) 0.76 (+0.02)

Raw 1.0 0 0 0 0 0 0.63 ()0.01) 0.49 ()0.02) 0.88 ()0.01)

Experiment 3: mixture of linear models

1,000 0 0.111 0.889 0 0 0 0.75 (+0.02) 0.71 (+0.02) 0.80 (+0.02)

12,000 0.143 0 0.571 0.286 0 0 0.69 (+0.02) 0.65 (+0.02) 0.76 (+0.02)

Raw 0.125 0.125 0.75 0 0 0 0.69 ()0.01) 0.64 ()0.00) 0.79 ()0.01)
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mean of precision and recall). The same statistics were then computed for each of the mod-

els fit for each data set and averaged (geometric mean). Results for models fit in Experi-

ments 1–3 are shown in Table 2.

The results shown in Table 2 show that the MOG model is capable of finding three-

category solutions that are not unlike the phonemes of Inuktitut; this is seen in the classifica-

tion scores for the 1,000-point models: The F scores are reasonably close to the F scores for

the ideal models (compare Table 1) and are reasonably well balanced between precision

and recall. See Fig. 2 for a representative example.

More fine-grained phonetic solutions become apparent as the number of data points

increases, which is to be expected, partly because of the prior, and partly because the likeli-

hood term, which will come to dominate the prior as the number of data points increases.

The likelihood term, all other things being equal, prefers larger numbers of categories (the

mixture model with the highest possible likelihood would generally be obtained with as

many categories as data points). See Fig. 3 for representative plots of five- and six-category

solutions found by this model.

2.4. Discussion

Experiment 1 replicates previous work (de Boer & Kuhl, 2001; Feldman et al., 2009;

Vallabha et al., 2007) in showing that a MOG approach to vowel categorization appears to

provide a good starting point for modeling the acquisition of language-specific sound

Fig. 2. Plot of a representative three-category model found for the 12,000-point data set in F2 · F1 (backness

by height) space, in Experiment 1. Outlined ellipses mark a 66% confidence region for the estimated Gaussians.

Shaded ellipses mark a 66% confidence region for individual Gaussians estimated by maximum likelihood for

the true phoneme categories.
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categories. On the Inuktitut data, smaller data sets led to three-category solutions, whereas

larger data sets tended to give solutions with more vowel categories. The results of Experi-

ment 1 suggest that a learner assuming Gaussian categories (a simplifying assumption

shared with previous research) could come to a phonemic analysis of Inuktitut vowels with

the appropriate biases, but also that an analysis with phone-like categories could also be found

with the appropriate bias. The role of bias is important here, as these solutions are not ‘‘in the

data’’: The learning outcome depends on the specific bias implied by the model and its hyper-

parameter settings, in conjunction with the amount of data the model is given. In particular, as

the number of data points increases, models tend to prefer a greater number of mixture com-

ponents. It should not be surprising that much more research in psychology and speech

perception is still needed before we can obtain a complete picture of what that bias looks like.

However, both types of ‘‘complete’’ solutions found by the simple MOG in Experiment

1—three-category and six-category solutions—represent at best an incomplete representa-

tion of the target phonological knowledge. Consider first the case of the three-category solu-

tions discovered by the learner modeled in Experiment 1. Although it appears that these

models arrive at knowledge that approximates the target phonemic categorization, by imme-

diately jumping to phoneme-like phonetic categories, such a model would require a second

stage wherein learners rediscover the systematic relationships between particular contexts

and the pronunciations of these categories. Importantly, the systematic relationship between

a phoneme and its retracted allophone in Inuktitut forms an active piece of knowledge that

speakers must acquire: Even in novel words, speakers adapt the pronunciation of the pho-

neme to its phonological environments. Novel words with the appropriate combination of

morphemes are easy to construct, given the complex, polysynthetic nature of Inuktitut

(A) (B)

Fig. 3. Plot of representative six-category (A) and five-category (B) models found for the 12,000-point data set

in F2 · F1 (backness by height) space, in Experiment 1. Outlined ellipses mark a 66% confidence region for the

estimated Gaussians. Shaded ellipses mark a 66% confidence region for individual Gaussians estimated by maxi-

mum likelihood for the true phonetic categories.

358 B. Dillon, E. Dunbar, W. Idsardi ⁄ Cognitive Science 37 (2013)



morphology. For example, Inuktitut has a productive process of noun incorporation with

certain verbs that allows the direct object and the verb to form a single phonological word

(Johns, 2009). Any incorporated noun ending in a vowel will be subject to the effect of a fol-

lowing uvular. Thus, a word like ⁄ titi � auti ⁄ , ‘‘pen,’’ becomes [tite � aute] in the expression

⁄ titi � autiqaqtunga ⁄ , ‘‘I have a pen,’’ which is pronounced as [tite � auteq � qtunga]. If the

phonemic three solution category arrived at by the simple MOG model here is correct, then

some other mechanism would be needed to allow speakers to recover the knowledge of the

allophone subcategories necessary to capture these facts about Inuktitut.

Although a three-category solution is problematic, a six-category, phonetic categorization

could potentially provide the necessary first step for a two-stage model of phonological cate-

gory acquisition. If learners gain knowledge of two separate allophones for a phoneme, they

must have the means of learning which of the allophones is to be deployed in any given con-

text. The traditional understanding of this relationship among linguists has been that the

phonetic and the phonemic categories occupy different representations in the discrete space

of possible lexical representation. This implies that, at the perceptual level, speakers treat [i]

and [e] differently, and equate them at a higher, more abstract level of processing. A six-cat-

egory mixture is consistent with this claim, with the addition of a phonological rule relating

the two. Thus, it is natural to ask whether the phone-like mixtures reported above would be

amenable to a search for such a phonological rule—a second ‘‘stage’’ of learning.

Visual inspection of the resulting five- and six-category models suggests that these mod-

els would not provide adequate input to a second stage of learning based on a complemen-

tary distribution test. For example, in Fig. 3, it appears that the high back phoneme ⁄ u ⁄ has

been divided into more fronted and more backed subphonemic categories, rather than the

more high and more retracted categories suggested by the ideal model in Fig. 1. In order for

five- or six-category solutions to provide the input to a second stage of phonological cate-

gory acquisition, it should be the case that the acquired categories align with the phonetic

categories of the target system; it might, however, be the case that the apparent errors at this

stage impede the discovery of higher level phonological categories. To determine this, we

examined the five- and six-category solutions obtained by the learner in Experiment 1 and

examined the phonetic models obtained in order to ascertain whether a simple distribution-

based test would confirm the presence of a rule relating the predictable allophones. Note that

we include five-category solutions under the assumption that the phonetic difference

between the low allophones of ⁄ a ⁄ is subtle, and if learners form a single perceptual cate-

gory for ⁄ a ⁄ , one might speculate that this retraction might just be the result of a low-level

physiological coarticulation process, not perceived or learned. We do not claim that this is

true, but since the five-category solutions were not substantially different from the six-cate-

gory solution with respect to the high vowels, examining them alongside the six-category

solutions simply allowed us to form a better picture of what model performance in a second

stage might be.

In order for the phonetic categorization to support a second-stage phoneme acquisition

process, it must be the case that the retracted allophones are reliably found in the context of

uvular segments, while non-retracted segments are not. To determine this, we applied

the symmetrized Kullback–Leibler divergence criterion of Peperkamp et al. (2006).
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Symmetrized KL divergence (SKLD) is a standard information-theoretic quantity that is

used to ascertain how different two probability distributions are; it can take on any non-neg-

ative real-number value, and larger numbers represent more different distributions. Follow-

ing Peperkamp and colleagues, we examined the probability of observing a uvular

consonant versus a non-uvular consonant following each of the five categories constructed

by the model, and computed the SKLD for each pair of categories. In Tables 3 and 4, we

present the SKLDs for each phone found by the model (for the five-category solutions, the

average over the two models along with maxima and minima); the category labels were

clear and easy to assign by visual inspection (see Fig. 3).

Peperkamp and colleagues’ statistically grounded complementary distribution test

attempts to find allophonically related pairs of phones by looking for large values of SKLD;

large values suggest more divergent context distributions, and thus a relation closer to com-

plementary distribution. There is no obvious prior notion of ‘‘large’’ SKLD in this context,

and Peperkamp et al. used a threshold determined from the distribution of SKLD scores.

From this point of view, the pattern in the SKLDs is clear: The SKLD for [i]–[e] is consis-

tently among the highest values found, suggesting that complementarity-based metrics for

discovering phonemic identity could readily recover the relation between these two phones

given this MOG. However, [o]–[u] consistently had some of the lowest SKLD scores. This

is consistent with the visual observation that the models did not correctly identify [o]–[u],

Table 3

Symmetrized KL divergences for the distribution of uvulars following each of the phonetic categories, for the

six-category solution found among the model solutions in Experiment 1. Phonetic labels were assigned to the

categories by visual inspection. Phone pairs that are true allophones in Inuktitut are in bold

[i] [e] [u] [o] [a] [A]

[i] 0 0.810 0.033 0.321 0.330 0.846

[e] – 0 0.478 0.098 0.093 0.000

[u] – – 0 0.138 0.143 0.504

[o] – – – 0 0.000 0.109

[a] – – – – 0 0.104
[A] – – – – – 0

Table 4

Average symmetrized KL divergences (with standard deviation) for the distribution of uvulars following each of

the phonetic categories, for each of the two- to five-category solutions found among the model solutions in

Experiment 1. Phonetic labels were assigned to the categories by visual inspection. Phone pairs that are true allo-

phones in Inuktitut are in bold

[i] [e] [u] [o] [a]

[i] 0 0.686 ± 0.025 0.304 ± 0.019 0.183 ± 0.011 0.598 ± 0.018

[e] – 0 0.068 ± 0.016 0.142 ± 0.021 0.003 ± 0.002

[u] – – 0 0.014 ± 0.001 0.043 ± 0.003

[o] – – – 0 0.106 ± 0.002

[a] – – – – 0
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instead splitting the ⁄ u ⁄ phoneme in an inappropriate way. The low SKLD values make it

unlikely that the five- or six-category MOG solutions found for this data could provide input

to a second stage of learning, because the MOG categories do not properly align with the

target allophones.

One surprising finding about the MOG model solutions is that they split the ⁄ u ⁄ phoneme

into front and back variants, rather than the expected [o] and [u]. This suggests that the sub-

stantive assumptions implicit in the MOG model are not being met by the data. If the gener-

ating categories are not truly Gaussians centered on these phones, then there is no guarantee

that an MOG model will converge on the correct classification. In training on raw data and

data sampled in a non-parametric fashion, we depart from previous literature that generally

trains on data sampled from an ideal MOG. This resampling procedure preserves deviations

from the multivariate Gaussian distribution in the raw [o] ⁄ [u] data, and so such deviations

will make it less likely that the model will be capable of discovering the [o] ⁄ [u] categories.

The failure of the MOG model to find the correct phonetic categories given these data does

suggest that the assumptions of a simple model of the ⁄ u ⁄ phoneme as two Gaussians corre-

sponding to [o] and [u] are not being met. This may be because Gaussian phonetic catego-

ries are overall a poor model of vowel phones, or it may be because there are additional

phonological processes that lead to fronting of the ⁄ u ⁄ phonemes (as are attested in the

related language Kalaallisut; see Rischel, 1974). The first explanation would imply that

human learners do not expect Gaussian phonetic category distributions, but rather make

some other distributional assumptions that are not yet understood. Further research is

necessary to distinguish these two possibilities.

Thus, Experiment 1 suggests that, although a phonetic category system with enough pho-

netic categories might be discovered by a learner with a simple Gaussian MOG model, the

correct phonemic system would be unlikely to be detected in a second stage of phoneme dis-

covery that uses conventional complementarity-based criteria. The model was able to

recover the correct three-category phoneme solution, but we argued that directly accessing

phoneme categories in a MOG model creates a problem for the learner: Without the pho-

netic distinctions between subphonemic categories, it is unclear how the learner could arrive

at a full phonological system. The results from Experiment 1 thus suggest that the Inuktitut

data presented here provide a challenge to two-stage models of phonological acquisition, as

the phonetic categories are not discovered well enough to provide input to a second stage in

acquisition. In Experiment 2, we begin to explore an alternative, single-stage model of

phonemic category acquisition.

3. Experiment 2: Corrected mixture of Gaussians

In Experiment 1, we showed that the two-stage model of phoneme learning is susceptible

to a previously overlooked type of problem: The early phonetic categories must align well

with all the phones of the language or else later stages in the acquisition process will be

adversely affected. Above we showed that phonetic clustering is likely to pick out systems

of discrete categories for Inuktitut that do not align well enough with the phones of the
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language for a second stage of learning based on co-occurrences to work, despite a fairly

close resemblance to the phones; small differences in the individual category models have

serious negative consequences for such distribution-based methods. In Experiments 2 and 3,

we develop a model that takes a substantially different approach to solving the same prob-

lem by factoring out predictable acoustic variation that arises due to the grammatical rules

of the language in the acoustic space, rather than waiting to discover them based on strings

of discrete categories.

To illustrate this idea, we briefly present a second MOG model for Inuktitut that imple-

ments this idea directly. In Experiment 2, we manually remove the phonetic effect due to

following uvulars from all vowel tokens occurring in that context. We then train a MOG

model on the resulting transformed data to demonstrate the usefulness of factoring out such

transforms; in Experiment 3, we take up the question of how these transforms are acquired.

The phonetic category model that results from this procedure is one in which finding phones

becomes irrelevant, because the uvular retraction rule has already been handled at the pho-

netic level. This avoids the problems of a two-stage model in which the phonetic category

learning module does not have access to information about which tokens occurred in which

contexts and cannot take into account possible effects of grammatical processes when learn-

ing categories. In a two-stage model, despite this indifference to the existence of grammati-

cal rules, the category-finding component must nevertheless deliver phonetic categories that

will form the basis for finding these rules. Our alternate conception of the learning problem

implies that the category learning component does know that uvulars can potentially affect

vowel quality, and that it treats the effect of uvulars as a phonetic rule.

3.1. Materials

The materials were the Experiment 1 materials, with one difference. The mean F1, F2

value for all the points that occurred before a uvular was computed (F+u); the mean F1, F2

value for all the points that did not occur before a uvular was computed (F)u); and the points

that occurred before a uvular were corrected for the effect of the following uvular consonant

by subtracting (F+u ) F)u) from the formant value. This correction was calculated once for

all three vowel phoneme categories, so that all pre-uvular points had the same vector sub-

tracted, regardless of whether they were ⁄ i ⁄ , ⁄ a ⁄ , or ⁄ u ⁄ tokens.

3.2. Methods

Methods were as in Experiment 1. Application of the Geweke-based criterion for non-sta-

tionary chains resulted in the rejection of two runs of the 12,000-point model and two runs

of the raw-data model.

3.3. Results

As in Experiment 1, pairwise classification scores were computed for held-out test data.

(Note that, as the test data, like the training data, already had the effect of uvularity
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removed, it would not have made sense to test the model’s classification against the six-way

phone classification.) Table 2 shows the results of this classification. It can be seen that

across both small and large training sets, three-phoneme solutions are the most common

solution reached by the model. The distribution of the phonemes in a three-category solu-

tion, as in Experiment 1, line up closely with the target phonemic categories.

The results shown in Table 2 show phoneme classification scores that are higher than any

of those seen in Experiment 1 and show a better balance between precision and recall (for

the 12,000-point data set). This is because some of the overlap between categories has been

removed; this model approximates a listener that can make use of the context in which a

segment occurred to adapt its acoustic models (as humans do: see, for example, Nearey,

1990; Whalen, Best, & Irwin, 1997), thus making some regions of uncertainty less ambigu-

ous, and making better phonemic category models available to the learner.

3.4. Discussion

Experiment 2 provided an initial test of a different conception of the phonetic category

learning problem than has traditionally been assumed. We removed the effect of a phonologi-

cal rule before providing the data to the category learning component, and in doing so, we

combined two separate stages of the learning problem into the phonetic component. Result-

ing model fits often returned three-category solutions, and these lined up well with the

expected phonemic categorization. By directly linking phonological processes and phonetic

categorization in a single space, some of the problems we raised with the results of Experi-

ment 1 are avoided. For three-category solutions, we have effectively coded the knowledge

of the phonological process into the learner, resulting in a system that has the phonological

process and the phonemic categories, rather than only the undifferentiated categories that

were sometimes acquired in Experiment 1. Because contextual rules are directly applied in

the phonetic component to undo predictable alternations prior to categorization, the problems

with combining phones into higher level phonemic categories are sidestepped altogether.

Although Experiment 2 demonstrates the feasibility of folding together rules and catego-

ries during acquisition, this demonstration raises serious questions about acquisition of the

rules. We did not require our learner to discover the Inuktitut uvular retraction rule: The

knowledge of a uvular rule and the knowledge of the effect of that rule were directly given to

the learner to investigate the effect on categorization. A fully specified model of a single-stage

approach to categorization should be able to acquire the rules and the categories jointly. In

Experiment 3, we address this by presenting a statistical model that jointly estimates a set of

categories and a set of phonetic rules. This model can learn a phonetic system while simulta-

neously taking into account the effect of predictable rules that are not provided in advance.

4. Experiment 3: Mixture of multivariate linear models

Experiment 1 provided a baseline for the performance of statistical learning of phonetic

categories on Inuktitut vowel data using a standard MOG model. In Experiment 2, we gave

B. Dillon, E. Dunbar, W. Idsardi ⁄ Cognitive Science 37 (2013) 363



an initial demonstration of a different, single-stage conception of the problem. We factored

out productive rules at the phonetic level, which demonstrates that the traditional two-stage

model is not a necessity, and that a single-stage approach that jointly models rules and cate-

gories can provide a satisfactory model of phonological acquisition. In Experiment 3, we

present a more complete statistical model of the single-stage approach to phonemic acquisi-

tion that jointly estimates processes and categories from a set of acoustic inputs.

To accomplish this, we implement one crucial change in the model structure. Rather than

constructing a single Gaussian phonetic model for each category (as in Experiments 1 and

2), we model the learner as searching for a set of sets of subcategories, where the subcatego-

ries within a set are related by some rule. In other words, each phoneme is defined by a set

of Gaussians, in this case, a pair: one for the pre-uvular realizations of that phoneme and

another for realizations of that phoneme in other contexts. The idea of a category consisting

of a set of subcategories is found in other related areas. For example, in the automatic

speech recognition literature, Hidden Markov Models often model an acoustic category as a

MOG, rather than a single Gaussian (Jurafsky & Martin, 2000). Another example is the

work of Griffiths, Canini, Sanborn, and Navarro (2007), who present Bayesian models of

psychological category formation in which each category is modeled by some number of

subcategories.

With respect to the current model, these other models are similar in that they would take

data that are often modeled as a single Gaussian distribution and instead model the data

using multiple Gaussians, to get a more fine-grained, less biased representation of a set of

data. An additional constraint we impose in our model is that the data points which are

attributed to the two Gaussians need to be in complementary distribution: One Gaussian

models the points appearing in a conditioning environment, and the other models the points

appearing elsewhere. Any resulting phonemic category generated by the model consists of

these two linked Gaussians. Furthermore, to obtain a model that has a straightforward

interpretation as ‘‘phonemes plus rules,’’ we add an additional constraint of homogeneity

of variance. This means that for the allophonic subclusters making up each phoneme, the

covariance matrix of the Gaussian (which defines its size, shape, and orientation) must be

the same. This should be familiar because it is exactly the constraint that defines a linear

model in statistics. The distribution of the response variable is taken to be a Gaussian dis-

tribution with a location (mean) that is a linear function of the value of a predictor vari-

able, whether continuous (as in regression) or discrete (as in an anova). This model is

important because it gives us a straightforward way of measuring the effect of the predic-

tor. If the only effect of the predictor variable is to shift the mean by some fixed amount,

then we can reduce the effect to a single number or, in the present case of multivariate

responses, a single vector.

In the model presented below (a multivariate mixture of linear models, henceforth MLM),

the predictor is the presence or absence of the allophonic conditioning environment (one or

zero, respectively). The learner must construct a set of categories, each of which is a linear

model predicting the phonetic values for the set of segments being categorized (in this case,

vowels) from this discrete indicator variable. Because it is a linear model, the learner there-

fore finds, for each category, an intercept (unperturbed category mean F1 and F2), and an
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effect of conditioning environment (a shift in phonetic space), in addition to estimating

variance. In this way, the model can thus be said to simultaneously discover a set of pho-

neme categories and a set of associated phonetic rules. In doing so, the model begins to

address the problem of learning parts of the phonological system beyond the simple pho-

netic inventory, and does so in a way which allows the learner to fully leverage the available

information.

4.1. Materials

The materials were the same as those for Experiment 1, except that, in Experiment 3, we

annotated the data points with a vector of indicator variables marking the presence or

absence of a following uvular consonant.

4.2. Methods

The principal difference between this model and the previous model was that each point

was modeled as having been drawn from a Gaussian centered at ATb, where A is a 2 · 2

matrix of regression coefficients and b is an augmented predictor vector, with the pre-uvular

indicator (zero or one) as the second element, and one as the first element. The first row of A
was thus the intercept (a point in the two-dimensional F1 · F2 input space), and the second

row the effect of uvularity on the given phoneme. The covariance matrix, R, was again

learned and was uniform for all the points assigned to a given category in accordance with

the homogeneity of variance assumption. The Gaussians centered at the intercept and at the

sum of the intercept and the uvularity effect make up the model’s representation of the two

allophones of a single phoneme. Regression matrices A were drawn from a base distribution

that was compound matrix normal–inverse Wishart with fixed inverse scale matrix and

degrees of freedom parameter as well as a location parameter (L), and a row covariance

matrix (X).2 M was sampled from a matrix normal distribution centered at zero with identity

row covariance. X was sampled from an inverse Wishart distribution. Note that this model

has a simple MOG as a special case, when there are no predictor variables; the Experiment

1 and 2 models were fit using the exact same algorithm, with the only difference being the

extra hyperparameters needed in this model. Apart from the introduction of the full matrix

of regression coefficients, along with X, and the accompanying hyperparameters, the fitting

procedure was as before. Again, we ran on three separate data sets and performed 10-fold

cross-validation on each. Application of the Geweke-based criterion for non-stationary

chains resulted in the rejection of three runs of the 12,000-point model, one run of the

1,000-point model, and two runs of the raw-data model.

4.3. Results

As in Experiment 2, the results shown in Table 2 show that, overall, phoneme classifica-

tion performance is better than in Experiment 1. In particular, when the classification scores

for either of the data sets are compared with the corresponding classification scores from
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Experiment 1, they are seen to be higher. This is true for all data sets. A plot of a representa-

tive three-category mixture of linear models is shown in Fig. 4.

As in Experiments 1 and 2, pairwise classification scores were computed; in this case,

however, predictions about category membership of test points were made in a way that

explicitly took into account the presence or absence of a following uvular. That is, for

points without following uvular consonants, a decision among the various possible cate-

gory assignments was made on the basis of the density given by the Gaussian centered at

the intercept, and for points with following uvular consonants, the decision was made on

the basis of the density given by the Gaussian centered at the intercept plus the effect of

uvularity. In other words, for the purposes of this evaluation, the classifier was not asked

to assign points to one of the phonetic subcategories induced by the model, but to recon-

struct the phoneme from the segment plus the context. Table 2 shows the results of this

classification.

As in Experiment 1, the model finds three categories fairly reliably, with a slight shift

toward larger numbers of categories for larger numbers of data points. However, when the

model does find three categories, its classification performance is better than that of the

three-category MOG models. For the three-category solutions, all three performance statis-

tics are statistically significantly higher for the mixture of linear models than for the MOG

model. Excluding raw data, the average precision for MLM models (a multivariate mixture

Fig. 4. Plot of a representative three-category mixture of linear models found for the 12,000-point data set in

F2 · F1 (backness by height) space by the mixture of linear models (Experiment 3). Outlined ellipses mark a

66% confidence region for the sample mean of the estimated Gaussians, each of which is itself part of a linear

model which sets up two subcategories for that phoneme; the dotted outlines represent the subcategories shifted

by the uvular retraction rule. Shaded ellipses mark a 66% confidence region for individual Gaussians estimated

by maximum likelihood for the true phonetic categories.
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of linear models, henceforth MLM) was 0.69 compared with 0.67 for MOG models

(t = 3.9, Welch df = 22.92, p < .001; arcsine-transform applied to proportions), and the

average recall was 0.74 for MLM models compared with 0.69 for MOG models (t = 4.4,

Welch df = 22.94, p < .001). The average value of the F statistic was 0.71 for MLM mod-

els, and 0.67 for MOG (t = 5.0, Welch df = 22.96, p < .001). This same pattern of results

also obtains for all the solutions taken together (t test for coefficient of main effect of model

type in two-way model · data anova on arcsine-transformed data: for F statistic,

t(31) = 2.5, p < .05; for precision, t(31) = 2.43, p < .05; for recall, t(31) = 2.48, p < .05;

raw data excluded). Note that although the MOG models are less complex than the MLM

models in Experiment 3, this does not mean that the better categorization performance for

the MLM models reflects overfitting of the training data by a more powerful model. As all

models were evaluated on held-out test data, correct performance requires generalization

beyond the training set. Therefore, the MLM model appears to better approximate the true

structure of the phonemic categories, rather than idiosyncracies of the training data. These

results suggest that a mixture of linear models, while more complex, provides a more realis-

tic model of speech perception.

4.4. Discussion

Experiment 3 demonstrates a novel approach to the problem of learning speech sound

categories in human language, contrasting with the standard two-stage model in two ways.

First, as in the demonstration model presented in Experiment 2, it encodes the processes

relating predictable allophones using phonetic-level information. Despite this increased

model complexity (i.e., larger search space), the model is able to arrive at phonemic-level

categories which are as good as or better at predicting unseen data than those found using a

standard MOG model. Second, while the model is similar to conventional two-stage models

in invoking notions of phonetic similarity and complementarity to determine whether a law-

ful process holds between two phones, it differs in that it does not use the complementary

distribution test per se, nor the minimal pair test. In fact, it does not support a notion of

‘‘minimal pair’’ at all, because it does not assume any sort of lexicon.

Importantly, the mixture of linear models approach explored in Experiment 3 reliably

acquires three phonemic categories in addition to rules that relate allophones of those catego-

ries to one another in phonetic space. This is a more robust demonstration of the main idea

explored in Experiment 2, showing that processes and categories can in fact be acquired in a

single stage of acquisition. Because the model represents both processes and categories in the

same phonetic space, they can be jointly acquired easily. This led to better categorization than

basic MOG models, but it also has the benefit of providing a more complete model of the link

between acoustic input and phonemic categorization. One problem with the results of Experi-

ment 1 was that it was unclear how to go from the MOG categorization to the target phonemic

categories. Solutions were either uninformative about subcategories (as in the MOG three-

category solution), or they returned phone categories that were different enough from the tar-

get phone categories to impede second-stage acquisition of higher level phoneme categories.
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Note that this model does not make use of complementary distribution directly, but it can

easily be shown that, all other things being equal, a linear model will be more likely to

appear in a model fit if it increases the KL divergence of the two allophonic subcategories

with respect to the predictor. This is mediated, however, by the Gaussian likelihood function

that acts as the phonetic category map; if the pair of Gaussians cannot be made to fit the data

well, then the model is equally capable of fitting two separate categories, one for each

phone, even if the two are in perfect complementary distribution. The constraint imposed by

the linear model likelihood is that the covariance of the two phones must be the same, and if

this is violated sufficiently severely by two phones, an appropriate phonemic category will

not be found. To our knowledge, this is a novel phonetic similarity constraint on allophonic

rules, and it is the first that has been explicitly incorporated into a model of phonetic catego-

ries. We are not aware of any fine-grained psychophysical data that would suggest that this

is unreasonable as a model of phoneme perception, although more work in both production

and comprehension of allophonic variants needs to be done to provide further evidence for

this constraint.

5. General discussion

We presented three computational experiments examining the ability of statistical models

to categorize an unlabeled set of vowel tokens from Inuktitut. We contrasted the simple

MOG approach (Experiment 1), which is generally understood as one part in a two-stage

process of phonological acquisition, with an alternative approach to categorization that deals

with phonological processes and acoustic clustering in the same stage of acquisition (Exper-

iments 2 and 3). By incorporating the process of discovering phonological processes into

the process of discovering sound categories, our approach to sound categorization may be

said to be a single-stage approach to the acquisition of phonological categories. Rather than

learning phones, the model presented in Experiments 2 and 3 settles on abstract, language-

specific phoneme categories during the initial process of categorizing perceptual input. The

single-stage approach was seen to give a better fit to the target Inuktitut system in Experi-

ment 3, and it had the added benefit of explicitly learning the phonological process associ-

ated with uvular retraction in Inuktitut. Simple MOG approaches, on the other hand,

appeared to be unable to recover the regular relation between allophonic pronunciations of

the Inuktitut vowels for two reasons. For simple MOG models that settled on three pho-

neme-like categories, it was unclear how information about the subparts of these categories

could be extracted from this model. For models that more closely approximated a phone-

level categorization of the space, it was seen that the fit with the target phone categories was

not close enough to support a second stage of phoneme acquisition based on measures of

complementary distribution.

It has long been noted that in both the production and perception of adult speech, lan-

guage-specific coarticulatory effects are ubiquitous, and the acoustic cues to each phoneme

segment’s identity may be distributed across multiple segments (see, e.g., Beddor, Harnsber-

ger, & Lindemann, 2002; Manuel, 1990; Nearey, 1990; Öhman, 1966; inter alia). A number
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of researchers have employed linear regression models to account for these language-

specific co-articulatory effects in production and perception (Cole, Linebaugh, Munson, &

McMurray, 2010; Nearey, 1990). This work has shown that regressing out predictable

effects of phonological context can improve classification (Nearey, 1990), as well as provid-

ing greater separation of acoustic clusters (Cole et al., 2010). The models we described here

extend this research by examining the impact of these techniques for the problem of lan-

guage acquisition. It was seen that the resulting mixture of linear models provided a superior

categorization of the Inuktitut vowel space, as well as a single-stage model of the acquisi-

tion of phoneme categories.

5.1. Two-stage versus single-stage phoneme categorization

We have argued above that there is a widespread, but often implicit, consensus that pho-

nological category learning is essentially a two-stage process: Phone learning is distinct

from phoneme learning, and both phones and phonemes constitute separable, discrete levels

of categorization. This view does not necessarily entail that infants precisely master all

phones before moving on to learning phonology and phoneme categories. It is entirely pos-

sible to simultaneously explore the full joint distribution on hypotheses about phonetic and

phonemic categorization. The important feature about two-stage models of phonology is

that the information made relevant to the two learning problems is different. In models with

this property, the first stage cannot make use of all the information available to the second

(in this case, information about allophonic environments). In Experiment 1, we provided

simulation evidence that this property can severely limit the ability of the learner to recover

both the correct phonetic and phonemic categorization of the acoustic space: Errors in one

stage are carried through to another and disrupt learning.

In Experiments 2 and 3, we provided simulation evidence of the benefits of treating the

problem of learning phonemes as a problem of learning phonetic rules. This view makes the

claim that the phonological system includes quasi-continuous phonetic processes in addition

to discrete phonological processes, an idea that is not without precedent. The possibility of

the coexistence of these two different types of phonological process throughout the stages

of phonological processing is alluded to as early as Chomsky and Halle (1968). In their the-

ory, although there is a clear qualitative distinction between the binary, classificatory fea-

tures used to store morphemes in the lexicon and the scaled numerical features used to

represent phonetic information, they write that ‘‘the phonological rules, as they apply to

these representations, will gradually convert these specifications to integers’’ (p. 65). How-

ever, it is generally the case that research in phonology has been concerned with rules that

manipulate binary features only, not scaled phonetic features (exceptions include Cohn,

1990; Dyck, 1995; Sledd, 1966). One result from the simulations in Experiments 2 and 3 is

that the choice of whether to treat a process as discrete or continuous can have a significant

impact on models of phonological acquisition. Phonetic rules are continuous rather than dis-

crete, and so they have the advantage that they lie in the same representational space as a

perceptual phonetic map. In the context of the models we presented, this allowed us to con-

struct a tight dependence between the learning of rules and the learning of categories. These
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models perform better than the standard MOG approach in finding phoneme categories,

while at the same time capturing the lawful relations between regions of the acoustic space.

There exist alternative interpretations of the results from Experiments 2 and 3. These

simulations suggest that, if the bias for small numbers of categories is sufficiently weak, a

learner fitting a mixture model might find phonetic categories only, regardless of whether

their model allows them to encode phonetic rules. Thus, one might conclude that phonetic-

level categories are the only discrete representations in the linguistic system, and that all lin-

guistic encoding is done in terms of phonetic categories. Views like this are sometimes cast

as a rejection of the existence of phonemes (Johnson, 1997; Port & Leary, 2005; Silverman,

2006), but they may also be understood as the claim that the lexical level of encoding (tradi-

tionally, the phonemic encoding) does not abstract out phonological processes (Kenstowicz

& Kisseberth, 1979). There are, however, compelling theoretical and empirical reasons for

rejecting this view. A traditional source of evidence for the view of abstract phonemes as

the relevant unit of lexical encoding is that a vast majority of languages actively employ

alternations of the sort considered here. As suggested above, the productive deployment of

allophonic alternations in novel contexts implies that speakers have internalized the knowl-

edge of the lawful relation between segments. If sounds are stored as a single, abstract cate-

gory that receives its phonetic value only in context, then these basic facts are easily

accounted for. In addition, there is experimental evidence from infant and adult speech per-

ception that suggests that phoneme-level distinctions, rather than phonetic-level distinctions,

are implicated in common measures of discrimination (Kazanina, Phillips, & Idsardi, 2006;

Peperkamp, Pettinato, & Dupoux, 2003; Whalen et al., 1997; White, Peperkamp, Kirk, &

Morgan, 2008). For example, Kazanina et al. (2006) used magnetoencephalography to show

that one neural signature of sound discrimination (the mismatch field, MMF) to a [t]–[d] dis-

tinction was only present for speakers for whom it was a phonemic distinction (Russian

speakers). In contrast, Korean speakers showed no such discrimination; in Korean, both [t]

and [d] occur as regular allophones of a single phoneme. White et al. (2008) obtained

related results by studying infants using the head-turn preference task. They showed that

infants trained on an artificial language were able to generalize across regular allophonic

variation to extract phonemes. At test, infants treated strings of sounds that contained the

same sequence of phonemes as one word, regardless of the sequence of phones. These

results are also important because the infants did not require meaning to detect the allophon-

ic alternation. These results are compatible with the model presented here, but run against

the predictions of models that rely on similarity in meaning to explain allophonic variation

(Silverman, 2006). Thus, there is convergent evidence from linguistics, speech perception,

and acquisition research that points to a level of sound categorization more abstract than

simple phonetic clusters.

An additional advantage to the single-stage approach to phonological acquisition is

that the acquired model provides all the knowledge necessary to deploy the acquired

phonological knowledge. This is not true of two-stage models of acquisition. For exam-

ple, algorithms that cluster phones into phonemes based on distributional facts (as in Pe-

perkamp et al., 2006) give the learner only limited insight into the processes that

generate those allophonic distributions. In order to use the phonological system for the
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purposes of production or perception, another stage of learning must be invoked to learn

the grammatical processes that are responsible for the observed patterns. In exploiting

the processes in the category acquisition stage, however, the single-stage approach

returns a much more deployable set of phonological knowledge: a set of phonemes and

the processes that relate them to their allophones. In the case of Inuktitut, the learner

converges on three phoneme categories plus a process that predictably shifts the target

pronunciation in front of uvular segments. Together with the phoneme categories, this

knowledge gives the language user all the knowledge necessary to produce an appropri-

ate vowel token given a phonological environment. In models strictly learning phone cat-

egorizations, the acquired model would not give learners any insight into the distribution

of the phones within the language.

5.2. Extending the single-stage model

The simulations presented in Experiments 2 and 3 provide initial evidence that a mixture

of linear models can correctly extract phonological processes and categories in the Inuktitut

data set provided. However, there remain a number of limitations to this model that future

work will address.

One important issue for the current model concerns the discovery of potential condition-

ing environments. Although much of the model operated in an unsupervised fashion, the

model did not need to determine which tokens were in a uvular context. Instead, the lear-

ner was assumed to have knowledge of which tokens occurred in the context of a uvular

segment, which was modeled as a categorical contrast collapsing across all uvular pho-

nemes. Furthermore, the model was not required to determine which contextual features

were relevant to phonological processes; only uvular environments were considered

because they are known to condition retraction in Inuktitut, but presumably this knowledge

is not available to the learner and needs to be discovered. This latter problem is easily

addressed: Mixtures of linear models are in principle capable of fitting as many contextual

effects as there are predictors, and so a more complete model could possibly incorporate

predictors for all possible conditioning environments. However, the question of how a cat-

egorical conditioning environment is identified in the first place is more difficult. One

response to this is that the learner is jointly attempting to categorize all segments in a

string, and segments become available as conditioning environments when the learner has

categorized them. This view suggests that Inuktitut learners would need to classify their

consonant phonemes before they fully arrive at an analysis of the vowel space. Existing

experimental evidence, however, suggests that language-specific vowel categories are

available slightly earlier than are language-specific consonant categories (Kuhl et al.,

1992; Werker & Tees, 1983, 1984). Alternatively, it may be the case that learners are able

to assign a categorical feature ‘‘parse’’ to the acoustic string, even if they do not have lan-

guage-specific consonant representations yet (Hale & Reiss, 2008; Stevens, 1986). If the

learner has access to some feature parse of the consonants before they have identified the

consonant categories in his or her language, then this information could potentially serve

as predictors or conditioning environments in a mixture of linear models. If this is correct,
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then learners should be able to acquire the vowel retraction rule in Inuktitut as soon as

they categorize the vowel space, possibly prior to identification of language-specific conso-

nant categories. In order to determine which approach is correct, further work exploring

the relationship between consonant categorization and cognition of phonological processes

is necessary.

The model presented here may also have implications for adult speech perception. If a

mixture of linear models is taken as a model of perception, then the predictions differ from

those of models that collapse over all subphonemic distinctions. For example, if each pho-

neme is modeled by a single Gaussian distribution, then speakers should behave as if they

have unimodal perceptual ‘‘map’’ of an inherently bimodal acoustic surface. On the other

hand, models that maintain that each phonetic category is distinct predict that there should

be no influence of phoneme identity on cross-allophone perception. That is, in Inuktitut [i]

and [e] should be distinguished as easily as [e] and [a]. The mixture of linear models pre-

sented here makes the prediction that perceivers should, under ideal circumstances, behave

as if the Inuktitut vowel phonemes are a complex, bimodal distribution having two ‘‘good’’

exemplar centers (perhaps as measured by the perceptual magnet effect; Iverson & Kuhl,

1996; Kuhl, 1991; Kuhl et al., 1992), but that there should also be an effect of phoneme

identity. Without any categorical distinction between [i] and [e], discrimination should be

more difficult than for contrasts that differ in categorical identity. Further experimental work

is needed to evaluate these predictions.

Finally, the single-stage model presented here could provide a novel way of approach-

ing the problem posed by incomplete neutralization. Phonological rules that collapse dis-

tinctions among phonemes are called neutralizing rules; one well-known example is

German word-final devoicing of obstruents, which occasionally creates near-homophonous

pairs such as weck (‘‘wake,’’ imperative) and Weg (‘‘path’’), both ending in a voiceless

sound usually transcribed as [k]. The underlying voicing of the obstruent in these words is

evident in other morpho-phonological contexts: The plural form Wege ‘‘paths’’ is pro-

nounced with a voiced velar obstruent [g]. It has been known for some time, however, that

this neutralization is not always complete: The final consonant of Weg-type words remains

phonetically different than weck-type words in both production and perception (Port &

Crawford, 1989; Port & O’Dell, 1986; Slowiaczek & Dinnsen, 1985), although the effect

can be subtle and has at times been controversial (Baumann, 1995; Fourakis & Iverson,

1984). A standard phonological account of word-final devoicing models the process as a

categorical change in a voicing feature on the relevant obstruent, which fails to explain the

existence of incomplete neutralization. Thus, as suggested by Port and O’Dell, the change

appears to be subsymbolic. Under a mixture of linear models account, the incompleteness

effect receives a natural explanation: Because the devoicing rule in this model is a shift in

the location, but not the scale, of the obstruent’s phonetic distribution, the distributions of

derived and underlying voiceless obstruents will not overlap completely. The divergence

in these distributions may be responsible for better than chance performance at discrimi-

nating true from derived word-final voiceless consonants (Port & Crawford, 1989). When

specified with a model of actual German speech, a mixture of linear models approach to

this process would make firm predictions about which tokens of devoiced consonants
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German speakers should be able to perceive as derived. It remains to be seen if this is an

accurate model of the phenomenon of incomplete neutralization, and future work will

address this issue.

6. Conclusion

In describing a model of phonological category acquisition, the desired end state is a

set of phoneme categories: Sound categories used in lexical storage that may include sev-

eral distinct allophones. Work in phonological category acquisition has tended to focus

either on the problem of finding phones in acoustic space or on the problem of finding

systematic relationships between phone categories. In this article, we suggested an alter-

native model that directly acquires phoneme categories by jointly learning acoustic distri-

butions and the relationships that hold between them. Using data from the Inuktitut

vowel space, we showed that this model provides a better fit to the data and has the

advantage of arriving at the desired phonemic categorization of the Inuktitut vowel space

in a single step. This provides initial support for a single-stage model of phoneme acqui-

sition and further demonstrates the usefulness of the mixture model as a model of cate-

gory acquisition in human language.

Notes

1. Relative frequencies of each phone in an extract from the Inuktitut Hansard corpus

(version 2.0; Martin et al., 2003), with orthographic vowel–‘‘q’’ and vowel–‘‘r’’

sequences taken to be tokens of retracted vowels, were [i], 0.31; [e], 0.05; [u], 0.24;

[o], 0.04; [a], 0.29; [A], 0.07. In contrast, the relative frequencies in the phonetic cor-

pus were [i], 0.31; [e], 0.08; [u], 0.18; [o], 0.17; [a], 0.15; [A], 0.12. For the low-fre-

quency phones, therefore, we were able to draw on a relatively robust sample to

construct our training sets.

2. A matrix normal distribution is a generalization of the multivariate normal distribution

(in which each of the elements of a vector are normally distributed) to a matrix in

which the columns of the matrix are normally distributed with some column covari-

ance matrix, and the rows are normally distributed with some row covariance matrix.

In the current context, the row covariance matrix can be seen as a parameter control-

ling the dispersion of the category locations (first row) throughout the space and the

similarity of the phonetic rules (second row) to a common mean (but the two are not

necessarily independent); note that this parameter was learned. For sampling purposes,

the matrix normal distribution has the useful property that the vectorization of a nor-

mally distributed matrix follows a multivariate normal distribution with covariance

equal to the Kronecker product of the two covariance matrices. See Dawid (1981) for

details.
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