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An enduring and richly elaborated dichotomy in cognitive neuroscience is that of reflective versus reflexive
decision making and choice. Other literatures refer to the two ends of what is likely to be a spectrum with
terms such as goal-directed versus habitual, model-based versus model-free or prospective versus retro-
spective. One of the most rigorous traditions of experimental work in the field started with studies in rodents
and graduated via human versions and enrichments of those experiments to a current state in which new par-
adigms are probing and challenging the very heart of the distinction. We review four generations of work in
this tradition and provide pointers to the forefront of the field’s fifth generation.
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Introduction
An important and pervasive idea in the psychology of decision

making and choice is that there is more than one class of

possible strategy for acting. A key division is between forms of

reflective control, which depend on the more or less explicit

consideration of possible prospective future courses of actions

and consequent outcomes, and forms of reflexive control a

term we use in the restricted sense to describe how retrospec-

tive experience with good and bad outcomes sculpts present

choice.

This apparent dichotomy is so intuitively obvious that it has

been realized in many, slightly different, and only partly compat-

ible, ways (Dickinson, 1985; Kahneman, 2011; Stanovich and

West, 2002). Here, we single out one particular strand that has

arguably been the most fecund in cognitive and theoretical

neuroscience, providing a set of behaviorally rigorous criteria

for separating out the two classes of control. In turn, this has

led to a set of important studies into the partly distinct neural

realizations of these classes and thence to an understanding of

their computational and statistical characteristics. The latter

provides a normative rationale for their coexistence as offering

efficient solutions to the demands of complex and changing en-

vironments and has also underpinned the design and interpreta-

tion of a collection of targeted empirical studies.

We review the evolution of this strand by considering five gen-

erations of studies. We use the term ‘‘generation’’ as a frame of

reference for our discussion and apply a liberal semantic license

in our use of the term, using it to describe a sequential evolution

of ideas, as opposed to an orderly sequence in epochs of time.

The zeroth generation represents some of the earliest intellectual

battles in psychology between advocates of cognitive maps and

stimulus-response theories (Thorndike, 1911; Tolman, 1948).

The fallout from this debate was a first generation of behaviorally

rigorous studies of goal-directed and habitual instrumental con-

trol, which in turn provided the foundation for investigation of

their neural realizations (Balleine and Dickinson, 1998; Balleine,

2005; Dickinson and Balleine, 2002; Killcross and Coutureau,

2003). In the second generation, these paradigms were carefully
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adapted for human neuroimaging studies, validating and ampli-

fying the results from rodents (Tanaka et al., 2008; Liljeholm

et al., 2011; Tricomi et al., 2009; Valentin et al., 2007). In the third

and fourth generations, an analysis of the two forms of control in

terms of model-based and model-free reinforcement learning

(Doya, 1999; Doya et al., 2002; Sutton and Barto, 1998; Daw

et al., 2005) was used to realize new tasks and to provide power-

ful methods for interpreting the ensuing results. The third

generation crystallized the differences in a computationally

transparent manner; the fourth generation made further changes

to provide insight into the ongoing cooperation and competition

between these systems (Fermin et al., 2010; Doll et al., 2009;

Gershman et al., 2012; Daw et al., 2011; Gläscher et al., 2010;

Otto et al., 2013; Simon and Daw, 2011; Wunderlich et al.,

2012a, 2012b). Finally, we highlight the immediate horizon of

questions that we surmise are now being, or perhaps are about

to be, addressed by a fifth generation of investigations. Note that

new work also continues in generations one to four, with the

youthful exuberance of the later ones complementing the sage

wisdom of the earlier.

In this Review, we primarily focus on human instrumental

behavior. There are excellent reviews of habitual and goal-

directed behavior that cover an extensive animal literature

(Balleine, 2005; Dickinson and Balleine, 1994; Dickinson and

Charnock, 1985). Consequently, these animal studies are only

sketched in so far as they provide an essential background to

our Review of the relevant human data. Many of the issues that

we lack space to discuss are treated by others (Rangel et al.,

2008; Botvinick, 2012; Berridge, 2001; Padoa-Schioppa and

Assad, 2006; Daw et al., 2006a; Dayan and Daw, 2008; Balleine

and O’Doherty, 2010; Yin and Knowlton, 2006; Maia, 2009; Niv,

2009; Doll et al., 2012).

Generation 0: Cognitive Maps
In a famous paper, the psychologist Edward Tolman considered

a typical learning experiment involving rats negotiating a maze

environment to reach a rewarded goal state (Tolman, 1948).

This was a time of substantial theoretical debate, and though
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all could agree on the basic facts that with increasing experi-

ence, animals made fewer and fewer errors in reaching the

goal state and took less and less time to do so, there were never-

theless starkly polarized views on the underlying cause.

Stimulus-response (S-R) theories, the bedrock of psychology

in the first half of the 20th century, insisted that instrumental

behavior reflected the emergence of an associative structure,

wherein representations of a stimulus context during learning

became, with increasing experience, more strongly connected

to a mechanism generating behavioral responses. A favored

analogy was that of a complicated telephone switchboard acting

so as to couple incoming sensory signals to outgoing effectors.

This seductive narrative reduced to the idea, as caricatured by

Tolman, that learning resulted in an animal coming to respond

more and more ‘‘helplessly’’ to a succession of external and in-

ternal stimuli that ‘‘call out the walkings, runnings, turnings, re-

tracing, smellings, rearings and the like which appear’’ (Tolman,

1948). Tolman argued strongly against what he considered the

fundamental poverty in this type of account. Rather, he aligned

himself with so-called ‘‘field theorists’’ (Tolman, 1948), who pro-

posed that animals learn such a maze task by forming ‘‘a field

map of the environment,’’ more commonly referred to these

days as a cognitive map (O’Keefe and Nadel, 1978), which

then provides the necessary guidance mechanism for the

observed learning.

This dispute led to the design of critical experiments, for

instance, examining the nature of learning that occurs in the

absence of the driving force of reinforcement. The classic

example here was the observation that an animal left to explore

a maze environment, without ever experiencing a reinforcing

reward contingency, can nevertheless be shown to be engaging

in what is known as latent learning (Blodgett, 1929; This-

tlethwaite, 1951). Latent learning is ‘‘unmasked’’ when the ani-

mal is subsequently tasked to navigate toward a rewarded

goal state in this same environment. Critically, pre-exposed

animals show facilitation in learning relative to naive animals,

suggesting that the preceding nonrewarded exposure epochs

foster the formation of a cognitive map that aids subsequent

attainment of the rewarded goal location (Tolman and Honzik,

1930). Latent learning about outcomes is also observed in proce-

dures such as the irrelevant incentive effect (Krieckhaus and

Wolf, 1968). Consider two groups of animals trained when

thirsty, but not salt deprived, to press a lever to get either water

or a sodium solution. Members of the latter group are found to

press more avidly than those of the former when subsequently

salt deprived, even if lever pressing is in extinction (when no

solution of either sort is provided). This shows that latent learning

occurred in relation to the salt characteristics of the solution,

even when it was irrelevant in the context of the then prevailing

motivational state.

At the time of the early studies, it was not easy to quantify how

complicated the latent learning tasks were that the animals were

being asked to perform. These experiments substantially preda-

ted the invention of dynamic programming (Bellman, 1957),

which helped formalize the whole domain. The resulting theory,

and particularly a computational variant called reinforcement

learning (Sutton and Barto, 1998), has underpinned much of

the impact of computational modeling in the later generations
of studies that has resulted in a considerable sharpening of

experimental design and analysis.

In terms of behavioral control, a cognitive map can be seen as

a representational template that enables an animal, through

mental search, to find the best possible action at a particular

state. Some indirect evidence about search came from what is

termed ‘‘vicarious trial and error’’ (VTE), a class of behavior

evident at choice points that is manifest as motor hesitations

and repetitive looking back and forth (Muenzinger, 1938). VTE

behaviors are not merely incidental, since animals that express

more VTE behaviors turn out to be better learners (Muenzinger,

1938; Tolman, 1938). Furthermore, a diminution in the frequency

of VTE over the course of learning was taken as evidence that

learning involved a shift away from reliance on a form of search

through a cognitive map toward more automatic forms of control

(Muenzinger, 1938; Tolman, 1938).

The idea of a cognitive map, evidently a revolutionary notion in

the early part of the last century, is now key to much theorizing in

cognitive neuroscience. Cognitive maps occupy a central role

in contemporary ideas related to active memory or prospection

(Schacter et al., 2007), where the hippocampus (O’Keefe and

Nadel, 1978) has been shown to play a critical role (O’Keefe

and Nadel, 1978). For instance, human subjects with hippocam-

pal lesions, when tasked to imagine possible future states, man-

ifest a profound impairment in self-projection or prospection

(Hassabis et al., 2007). Equally, in rats the expression of VTE

behaviors is abolished by hippocampal lesions (Hu and Amsel,

1995). Furthermore, one of the most famous findings about the

hippocampus in rats is the existence of place cells, which pro-

vide a population code for representing space (O’Keefe and

Nadel, 1978). These cells are known to be activated at choice

points in a way consistent with internal exploration of future pos-

sibilities, possibly coupled to VTEs (Johnson and Redish, 2007;

Pfeiffer and Foster, 2013; van der Meer and Redish, 2009).

Note, though, as we discuss below, structures other than the

hippocampus are also implicated; these include distinct prefron-

tal cortical regions and possibly the basolateral nucleus of the

amygdala and dorsomedial striatum (Balleine and Dickinson,

1998; Corbit and Balleine, 2003; Yin et al., 2005; Balleine, 2005).

Generation 1: Goal-Directed Actions and Habits
These early studies established an attractive dichotomy

between control based on a cognitive map and control based

on S-R associations. With the decrease in VTE behavior as a

function of experience, they even offered the prospect of a tran-

sition from map-based to S-R-based determination, consistent

with the long-standing observation that repetition endows a

high degree of motoric fluency to even the most complex action

sequences (James, 1890; Kimble and Perlmuter, 1970). How-

ever, short of using virtual reality, it is hard to achieve stimulus

control in navigational domains, and it remains possible that

spatial behavior may depend on special-purpose mechanisms

of geometrical cognition (Gallistel, 1990; Burgess, 2008; Cheng,

1986; O’Keefe and Nadel, 1978) or indeed Pavlovian approach,

for which the contingency between action and outcome is

moot (Mackintosh, 1983). Therefore, the first generation of

analytical studies operationalized the use of a cognitive map in

a nonspatial domain as goal-directed behavior, which it then
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contrasted with the notion of a habit (Dickinson and Balleine,

1994, 2002; Balleine and Dickinson, 1998; Graybiel, 2008;

Adams and Dickinson, 1981; Dickinson and Charnock, 1985).

Instrumental behavior is considered goal directed if it meets

two criteria. First, it should reflect knowledge of the relationship

between an action (or sequence of actions) and its conse-

quences. This is known as response-outcome or R-O control.

Second, the outcome should be motivationally relevant or desir-

able at the moment of choice. Crudely, subjects choose actions

because they think that those actions lead to outcomes that they

presently desire. By contrast, habitual instrumental behavior is

supposed to have been stamped in by past reinforcement

(Thorndike, 1911) and so is divorced from the current value of

an associated outcome. Thus, key characteristics of habitual

instrumental control include automaticity, computational effi-

ciency, and inflexibility, while characteristics of goal-directed

control include active deliberation, high computational cost,

and an adaptive flexibility to changing environmental contin-

gencies (Dayan, 2009).

Demonstrating that behavior is goal directed is usually

assayed in a test session using posttraining manipulations,

which either involve reinforcer devaluation or contingency degra-

dation. Consider a test session carried out in extinction, i.e.,

without ongoing reinforcement. In this case, there should be

less instrumental responding for an outcome that has been

devalued (for example, a food reinforcer that has just been

rendered unpalatable) than for an outcome that has not. Impor-

tantly, this is only true if knowledge of a reinforcer’s current value

(i.e., its desirability) exerts a controlling influence on perfor-

mance; in other words, if task performance is mediated by a

representation of the reinforcer (Adams and Dickinson, 1981).

Conversely, habitual behavior comprises instrumental respond-

ing that continues to be enacted even when the outcome is un-

desired. Various circumstances promote habitual responding,

notably extended training on interval schedules of reinforcement

involving single actions and single outcomes (Dickinson and

Charnock, 1985; Dickinson and Balleine, 2002; Dickinson

et al., 1983). The requirement for extensive experience is key

and this also implies that behavior is initially goal directed but

then becomes habitual over the course of experience. For

completeness, we also mention the contingency criterion

wherein goal-directed behavior also involves an encoding of

the causal relationship between actions and their conse-

quences. Consider a subject trained to press a lever to receive

an outcome. If the outcome subsequently becomes equally

available with and without a lever press, goal-directed control

leads to a decrease in pressing (Dickinson and Balleine, 1994;

Dickinson and Charnock, 1985).

The behavioral distinction between goal-directed and habitual

control has provided the foundation for a wealth of lesion, inac-

tivation, and pharmacological animal experiments investigating

their neural bases. Rodent studies repeatedly highlight a dorso-

medial striatum circuit that supports goal-directed behavior (Bal-

leine, 2005; Corbit and Balleine, 2005; Yin et al., 2005). Related

studies show that a circuit centered on dorsolateral striatum sup-

ports habit-based behavior (Yin et al., 2004, 2005; White, 1997;

Balleine, 2005; Balleine and Dickinson, 1998; Killcross and Cou-

tureau, 2003; Yin and Knowlton, 2006). Lesions to dorsolateral
314 Neuron 80, October 16, 2013 ª2013 The Authors
striatum result in a maintenance of goal-directed behavior even

with extended training, a pattern that contrasts with the effect

of lesions to dorsomedial striatum that result in an early emer-

gence of habitual behavior (Yin and Knowlton, 2006). There is

also explicit evidence for the transfer from dorsomedial to dorso-

lateral over the course of training (Belin et al., 2009; Graybiel,

2008; Yin et al., 2009; Thorn et al., 2010).

Behavioral dissociations that mirror precisely those seen

following striatal lesions are also seen with lesions to distinct

sectors of prefrontal cortex, a testament to the close functional

affinity of these regions. Frontal prelimbic lesions abolish sensi-

tivity to both outcome devaluation manipulations as well as to

degradation of instrumental contingency (Balleine and Dickin-

son, 1998; Corbit and Balleine, 2003). Pretraining, but not

posttraining, lesions disrupt acquisition, but not expression, of

goal-directed behavior (Ostlund and Balleine, 2005). Likewise,

a reversible inactivation targeting infralimbic medial prefrontal

cortex impacts on the expression of habitual behavior (Coutur-

eau and Killcross, 2003). Furthermore, selective lesions to pre-

limbic medial prefrontal cortex induce lack of sensitivity to goal

value following either limited or extended training, whereas

selective lesions to infralimbic regions result in an opposite

deficit, namely retained sensitivity to goal value after both limited

and extended training (Killcross and Coutureau, 2003).

The fact that prelimbic prefrontal cortex and dorsomedial

striatum both support goal-directed action is in line with the

anatomical connectivity between these regions (Groenewegen

et al., 1990; McGeorge and Faull, 1989). The connection

between infralimbic cotex and dorsolateral striatum is rather

less clear and in the rat, caudal, but not rostral, infralimbic cortex

projects to ventral parts of medial caudate putamen (Vertes,

2004), but there is no known projection to dorsolateral striatum.

Thus, one possible locus for interaction is through indirect con-

nections via the ventral striatum, the amygdala, the substantia

nigra, or by way of projections to other cortical areas and thence

to dorsolateral striatum (Hurley et al., 1991). It is known that the

activity of ensembles of neurons in dorsolateral striatum and the

infralimbic cortex reflect the creation and stabilization of habits,

with interesting differences between the regions in the evolution

of these patterns (Smith and Graybiel, 2013). However, it needs

to be acknowledged that there is, as yet, no consensus as to

what constitutes the homologous area in primates to rat infralim-

bic cortex.

This double dissociation makes a strong case that prelimbic

regions are crucial for goal-directed performance, while infralim-

bic lesions prevent the emergence of habitual responding that

overrides an initial dominance in goal-directed responding. How-

ever, it is likely that in the intact animal, there is a dynamic inter-

dependency between goal-directed and habitual systems and

that control is likely to emerge simultaneously and competitively

(Wassum et al., 2009). If habit and goal-directed processes

indeed act concurrently, then this invites questions regarding

what precisely are the factors that influence the integration and

competition between the two systems.We return to these issues

below. It is also worth noting here that although goal-directed or

response-outcome learning has a strong declarative flavor, it is

conceptually distinct from a hippocampal-dependent stimulus-

stimulus form of learning.
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There are some alluring parallels with this account of the evo-

lution from goal-directed to habitual responding. One is the

transfer of control of a simple spatial behavior (turning in a

‘‘plus’’ maze) from a hippocampal-dependent, allocentric, refer-

ence frame to a striatum-dependent, egocentric one (Packard

and McGaugh, 1996). Similar double dissociations arise from

reversible lesions in these two regions at different time points,

for example early or late, during learning. The other parallel is

with the transfer over the course of experience from allocentric

to egocentric reference frames of a sequence of manual

button presses (Hikosaka et al., 1999), although this was

proposed to depend on two separate cortical regions that

both interact with the basal ganglia. Recent lesion studies

have examined more sophisticated representational issues, for

instance, comparing the sort of stimulus-response associations

that underpin habits to a hierarchical association scheme in

which the presence of a certain stimulus implies that a response

leads to a particular outcome (Bradfield and Balleine, 2013).

Control apparently based on the latter representation is com-

promised by lesions to posterior dorsomedial striatum, whereas

in complex circumstances, lesions to dorsolateral striatal actu-

ally enhanced learning, suggesting that a form of competition

might be at work.

Generation 2: Actions and Habits in the Human Brain
The rich backdrop of animal experiments has inspired a collec-

tion of studies that address the architecture of human instru-

mental control, often employing straightforward adaptations of

successful animal paradigms as well as seeking and exploiting

homologies (Balleine and O’Doherty, 2010; Haber and Knutson,

2010). Many of these have involved the use of fMRI in order to

investigate the neural representation of the value of stimuli and

actions to see whether or not they are affected by devaluation.

We consider two studies of particular interest in this context

that respectively target goal-directed and habitual choice (Valen-

tin et al., 2007; Tricomi et al., 2009). Valentin and colleagues

trained human subjects on a task in which two different instru-

mental actions resulted in two distinct food reward outcomes

(Valentin et al., 2007). One of the outcomes was then devalued

(by feeding subjects that food to satiety, i.e., until they would

consume no more of it). As expected from the moderate amount

of initial training, behavior was goal directed, with actions leading

to the devalued outcome being selectively depressed in extinc-

tion. Of note was the observation that the BOLD signal in a

ventral sector of orbitofrontal cortex decreased for a devalued

compared to a nondevalued action, leading the authors to

conclude that this region plays a role in goal-directed choice.

Indeed, there has been much work in humans, nonhuman pri-

mates, and rodents suggesting that this region plays a key role

in representing the sort of values that underpin goal-directed

control (Daw et al., 2006b; Gottfried and Dolan, 2004; Hampton

et al., 2006; Padoa-Schioppa and Assad, 2006; Schoenbaum

and Roesch, 2005; Thorpe et al., 1983). vmPFC is likely to

have a complex role in value representation and there is strong

evidence linking this region to both stimulus value and outcome

value, and even recent evidence linking it to action value

(FitzGerald et al., 2012). We note also that human lesion data

has led to the suggestion that orbital prefrontal cortex imple-
ments encoding of stimulus value with dorsal cingulate cortex

implementing encoding of action value (Camille et al., 2011).

Tricomi and colleagues set out to investigate the emergence of

habitual behavior (Tricomi et al., 2009). Subjects were trained on

action-outcome reward contingencies that mirrored a free-

operant paradigm in the animal literature, where one group of

subjects had extensive training, and another had little training.

After outcome devaluation, performance showed that the mini-

mally trained group retained outcome sensitivity, while the

extensively trained group did not, just as in the animal studies.

A within-group analysis of fMRI data from the extensively trained

subjects comparing later sessions (when behavior was habitual)

to earlier sessions (when it would likely have been goal directed)

highlighted increased cue-related activity in right posterior

putamen/globus pallidum, consistent with the rodent findings

showing involvement of the dorsolateral striatum in habitual

responding.

Generation 3: Model-Based and Model-free Analyses
Along with these experimental results, the conceptual precision

of goal-directed and habitual decision making invited the ascrip-

tion of computational accounts to both of them and to their

potential interactions. These models in turn led to the design

of novel experimental paradigms that cast new light on the

dichotomy.

The basis of the models is the normative account of instru-

mental control that comes from the field of reinforcement

learning (RL). This is based on dynamic programming (Bellman,

1957) and brings together ideas from artificial intelligence,

optimal control theory, operations research, and statistics to un-

derstand how systems of any sort can learn to choose actions

that maximize reward and minimize punishments (Sutton and

Barto, 1998).

Typical RL problems involve four key quantities: (1) states,

which can be thought of as contexts or stimuli; (2) actions that

are available at or given by these states; (3) transitions between

states that are occasioned (perhaps stochastically) by actions;

and (4) utilities, which quantify the immediate worth of states in

terms of reward or punishments. The utilities depend on the

motivations of the subject (water is more valuable given thirst).

The subject has to find a good policy—i.e., a good choice of

action at each state—that optimizes the long-run worth of all

the utilities that will be collected. All the tasks discussed above

can bemapped onto this framework in a straightforwardmanner.

Two ends of a spectrum of RL methods are model-based and

model-free control (where the term model refers to a mental as

opposed to a computational model); it is these that have been

associated with goal-directed and habitual control, respectively

(Daw et al., 2005; Doya et al., 2002). As we noted, goal-directed

control is based on working out, and then evaluating, the out-

comes associated with a long-run sequence of actions. Model-

based control conceives of this in terms of sophisticated,

computationally demanding, prospective planning, in which a

decision tree of possible future states and actions is built using

a learned internal model of the environment. The current state

is the root, and the policy with the highest value is determined

by searching the tree either forward from the root to the leaves

(the terminal points) or backward from the leaves to the root,
Neuron 80, October 16, 2013 ª2013 The Authors 315



Figure 1. Schematic of the Tolman Detour Task
Model-based and model-free decision making in a cartoon of a maze invented
by Tolman and Honzik (1930). Left column: the maze has three paths (long,
medium, and short), but a boulder can block just the short path (middle; after
the subject has found the boulder and comes back to the start) or both short
and medium (bottom). Middle column: the model-based system uses a model
(thought bubble) of the maze to plan; after discovering the boulder, it knows
whether the medium path is open (middle; cyan is best) or blocked (bottom;
red is best). Right column: themodel-free system learns path lengths based on
extensive experience; if no path is blocked, this leads to the optimal choice
(top; green is best); when it discovers the boulder by going along the short,
green, path, it only knows that this path is blocked and thus tries the medium
path (cyan) whether it is viable (middle) or not (bottom) (figure design by Alyssa
Dayan).
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accumulating utilities along the way to quantify the long-run

worth. This search process can be thought of as an expression

of a form of mental simulation (Chersi and Pezzulo, 2012;

Doya, 1999; Hassabis et al., 2007; Johnson and Redish, 2007;

Pfeiffer and Foster, 2013; Schacter et al., 2012). Critically, the

idea that prospective outcomes are explicitly represented allows

these states to be valued (putatively via the orbitofrontal or

ventromedial prefrontal cortex) (Valentin et al., 2007; Fellows,

2011; O’Doherty, 2011) according to their current worth and so

choices can be immediately sensitive to devaluation. Equally,

given information that the transitions have changed, as in contin-

gency degradation, the decision tree and the associated optimal

choices will adapt straightaway. The tree is just like a cognitive

map, one that enables the flexible consideration of the future

consequence of actions (Thistlethwaite, 1951). It is easy to

appreciate that building and evaluating a tree imposes process-

ing and working memory demands that rapidly become unrealis-

tic with increasing depth. Consequently, a model-based agent is

confronted with overwhelming computational constraints that in

psychological terms reflect the known capacity limitations within

attention and working memory.

By contrast, model-free control involves a particular sort of

prediction error, the best known example of which is the tempo-

ral difference (TD) prediction error (Sutton, 1988). Predictions at

one step are supposed to be of the long-run sequence of actions

or states starting at that step, and so the ideal prediction error

would measure the difference between the amount of utility

that is actually delivered over that long run and the amount

that is predicted. However, waiting to experience all those utili-

ties in the long run is usually impossible. The TD prediction error
316 Neuron 80, October 16, 2013 ª2013 The Authors
obviates this requirement via the trick of using the prediction at

the next step to substitute for the remaining utilities that are ex-

pected to arrive and it is this aspect that leads it to sometimes be

seen as forward looking. In total, this prediction error is based on

the utilities that are actually observed during learning and trains

predictions of the long-run worth of states, criticizing the choices

of actions at those states accordingly. Further, the predictions

are sometimes described as being cached, because they store

experience. Much evidence points to phasic activity of dopa-

mine neurons as reporting an appetitive prediction error (Schultz

et al., 1997; Montague et al., 1996).

Model-free control is computationally efficient, since it re-

places computation (i.e., the burdensome simulation of future

states) with memory (i.e., stored discounted values of expected

future reward); however, the forward-looking nature of the pre-

diction error makes it statistically inefficient (Daw et al., 2005).

Further, the cached values depend on past utilities and so are

divorced from the outcomes that they predict. Thus, model-

free control is fundamentally retrospective, and new cached

values, as might arise with a change in the utility of an outcome

in an environment, can only be acquired through direct experi-

ence. Thus, in extinction, model-free control, like habitual con-

trol, has no immediate sensitivity to devaluation (Figure 1).

Initial human imaging studies that used RL methods to

examine the representation of values and prediction errors

largely focused on model-free prediction and control, without

worrying about model-based effects (Berns et al., 2001;

O’Doherty, 2004; O’Doherty et al., 2003; Haruno et al., 2004).

These showed that the BOLD signal in regions of dorsal and

ventral striatum correlated with amodel-free temporal difference

prediction error, the exact type of signal thought to be at the

heart of reinforcement learning. A huge wealth of subsequent

studies have confirmed and elaborated this picture.

More recently, a plethora of paradigms has provided as sharp

a contrast between model-free and model-based for human

studies as animal paradigms have between goal-directed and

habitual control. One set of examples (Daw et al., 2011; Gläscher

et al., 2010) is based on a sequential two-choice Markov deci-

sion task, in which the action at the first state is associated

with one likely and one unlikely transition. Model-free control

simply prefers to repeat actions that lead to reward, irrespective

of the likelihood of that first transition. By contrast, model-based

control, because it builds the decision tree, can correctly ascribe

those rewards following a rare transition to an alternative (nonse-

lected) action—which, despite not predicting reward on the

current trial, will be more likely to lead to reward on future trials.

This key difference makes it possible to discern the influence of

each controller on behavior and also to determinewhether neural

signals are correlated with predictions and prediction errors spe-

cific to each controller.

Motivated by Tolman and Honzik (Tolman and Honzik, 1930),

Gläscher and colleagues employed a variant of this task to

examine latent learning (Gläscher et al., 2010). Subjects were

extensively taught the first-state transitions and were then told

the utilities at the second state. Appropriate initial behavior in

the task once the utilities were revealed could only arise from

model-based control. However, the authors observed that the

initial supremacy of model-based controller declined rather
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precipitately over time, even in the absence of information that

would contradict this controller (Gläscher et al., 2010). This

decline was suggested as an analog of fast acquisition of

habitual behavior. During the interregnum, behavior was best

fit by a hybrid model in which both systems exerted some con-

trol. fMRI data highlighted a conventional model-free temporal

difference reward prediction error in ventral striatum, whereas

a different sort of state prediction error, associated with the

acquisition of the model, was seen in posterior inferior parietal

and lateral prefrontal cortices.

Daw and colleagues devised a different variant of the task to

encourage a stable balance between model-based and model-

free control (Daw et al., 2011). The logic of the task was that

model-based and model-free strategies for RL predict different

patterns by which reward obtained in the second stage should

impact first-stage choices on subsequent trials. Consider a trial

in which a first-stage choice, uncharacteristically, led to a sec-

ond stage state with which it is not usually associated, and the

choice then made at the second stage turned out to be re-

warded. Model-free reinforcement predicts that this experience

will increase the probability of repeating the successful first-

stage choice. By contrast, if a subject chooses using an internal

model of the transition structure, then this predicts that they

would exhibit a decreased tendency to choose that same option.

The best account of the behavioral data in this task was provided

by a hybrid model in which model-based and model-free predic-

tions were integrated during learning (unless subjects had to

accomplish a cognitively demanding dual-task, in which case

model-free control becomes rampant (Otto et al., 2013). How-

ever, across subjects, there was a wide spread in the degree

of dependence on each system. Unexpectedly, ventral striatal

fMRI signal, a region that normally correlates with model-free

temporal difference prediction errors, was found to covary also

with a temporal difference prediction error calculated on the

basis of model-based predictions. The extent of this covariation

for an individual subject was correlated with the extent to which

that subject’s behavior was model based. One reason for a sur-

prise at the presence of this signal is that the model-based sys-

tem is not thought to use these prediction errors for its own

calculations (rather, it uses the state prediction error, where a

state prediction error is a measure of the surprise in a new state

given a current estimate of state-action-state transition probabil-

ities (Gläscher et al., 2010). One suggested possibility here is that

the model-based system is training the model-free system.

Along with these human studies, there is now an accumulating

wealth of reports of the sort of neural response profile that would

be predicted if indeed an animal is evaluating amenu of internally

represented actions and their consequences at critical decision

points. This is particularly true in spatial tasks (Johnson and Re-

dish, 2007; Pfeiffer and Foster, 2013; van der Meer and Redish,

2009) and is a potential neural associate of the VTE behavior we

mentioned above. In particular, at decision points such as a

branch point in a maze, hippocampal place cell responses can

be observed to sweep forward from the actual location of the

subject. They do so in a manner consistent with the idea that

the subject is engaged in some form of deliberation regarding

its future potential states and theworth thereof (Johnson andRe-

dish, 2007; Pfeiffer and Foster, 2013; van der Meer and Redish,
2009), for instance, being correlated with the subject’s ultimate

choices. In a similar vein, a recent mouse study has reported

that units in ventral hippocampus, a region which is strongly con-

nected to those supporting reward processing, mediates a form

of goal-oriented search (Ruediger et al., 2012).

The forward sweeps relevant to immediate choices are

assumed to start at the subject’s current location. However,

when an animal is not running in its environment, or indeed

when it is sleeping, it is also possible to observe a variety of for-

ward and backward sweeps (Dragoi and Buzsáki, 2006; Foster

andWilson, 2006, 2007; Lee andWilson, 2002; Louie andWilson,

2001) related to more or less recent experience in the world. It

has been suggested that these are reflections of a model-based

system training a model-free system, something that had been

suggested in RL in the form of a technique called DYNA (Sutton,

1991). Backward sweeps (called reverse replay) seem particu-

larly relevant for understanding the mechanisms supporting

certain aspects of value learning, providing the means for the

back propagation of value signals to the earliest predictor of their

likely future occurrence, without needing a forward-looking pre-

diction error (Foster and Wilson, 2006). One computational

formulation that addresses this question is DYNA-Q (Sutton,

1990), which allows an agent to exploit previously recorded

experience to update values and policies, an idea that has now

been exploited in modeling studies (Johnson and Redish,

2005). One could argue that a decision-making counterpart of

consolidation (which is a normal view of hippocampal replay;

McClelland et al., 1995) is exactly a model-free instantiation of

a policy.

Generation 4: Elaborations on Model-Based and
Model-free Control
With these prior generations as the foundation, a current set of

studies is focusing on unearthing more about the interaction

between model-based and model-free control (Doll et al.,

2012) and indeed more about model-based control itself, given

its manifest computational complexities. This is given added

urgency by recent evidence that even the simplest type of instru-

mental learning task has model-based and model-free compo-

nents (Collins and Frank, 2012).

First, there has been anatomical and pharmacological insight

into the balance of influence between the two systems. For

example, the strength of white matter connections between pre-

motor cortex and posterior putamen is reported to predict

vulnerability to ‘‘slips of action’’ (where non-goal-relevant, previ-

ously trained, actions are automatically elicited by environmental

cues), a vulnerability also predicted by gray matter density in the

putamen (de Wit et al., 2012b). Such slips have been considered

as intrusions of habits. This contrasts with tract strength be-

tween caudate and ventromedial prefrontal cortex that predicted

a disposition to express more flexible goal-directed action,

evident in an ability to selectively respond to still rewarding out-

comes (de Wit et al., 2012b).

Most work on the pharmacology of the different forms of con-

trol has centered on the neuromodulator dopamine. However,

complexities are to be expected since dopamine is likely to

play a role in both systems (Cools, 2011). First, as noted, the

phasic firing of dopamine neurons has been suggested as
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reporting the temporal difference prediction error for reward

(Montague et al., 1996; Schultz et al., 1997) that underpins

model-free evaluation and control via its influence over activity

and plasticity (Reynolds et al., 2001; Frank, 2005). Second,

dopamine projects to the entire striatum, including regions

such as dorsomedial striatum (or caudate), which have been

implicated in model-based control, and dorsolateral striatum

(or putamen), implicated in model-free control (Balleine, 2005).

Indeed, lesions to nigrostriatal dopamine impair habit (stim-

ulus-response) learning (Faure et al., 2005). Substantial work in

conditions such as Parkinson’s disease, in which dopamine is

reduced, shows that manipulations favoring D1 and D2 dopa-

mine receptors result in effects that are most readily interpret-

able in amodel-free manner (Frank et al., 2004). Third, dopamine

exerts a significant influence over prefrontal cortical functions

such as working memory (Williams and Goldman-Rakic, 1995),

in amanner that depends on initial levels or efficacy of this neuro-

modulator (Cools and D’Esposito, 2011). These functions are

particularly critical for the operation of model-based control.

For instance, in a rat experiment in which a posttraining manip-

ulation of value was coupled to a dopamine infusion into ventro-

medial PFC (vmPFC) (Hitchcott et al., 2007), a bidirectional effect

was evident whereby the dopamine infusion decreased re-

sponding to a devalued outcome and enhanced responding

to nondevalued outcomes, suggesting an influence on model-

based valuation.

At a mechanistic level, dopamine is likely to affect model-

based control via its impact on maintenance processes associ-

ated with the prefrontal cortex. For example, disrupting

prefrontal function using TMS renders behavior more habitual

(Smittenaar et al., 2013), while boosting dopaminergic function

enhances psychological and electrophysiological signatures of

suchmaintenance processes (Moran et al., 2011). This is consis-

tent with the effects of dopamine on working memory in

macaques (Williams and Goldman-Rakic, 1995) and also with

the fact that manipulations of dopamine in prefrontal regions

directly affect model-based control (Hitchcott et al., 2007). How-

ever, the extensive dopamine innervation of regions of the stria-

tum devoted to goal-directed control suggests the possibility

that control over working memory might not be its sole mode

of influence (Frank et al., 2001).

Finally, in a modern experiment into the irrelevant incentive

effect (Krieckhaus and Wolf, 1968), it was observed that sudden

revaluation in Pavlovian conditioning is associated with dramatic

upregulation of activity in dopaminergic nuclei as inferred from

elevated Fos activity (along with many other regions, including

the orbitofrontal cortex) (Robinson and Berridge, 2013). Specif-

ically, rats who had learned repulsion to an unpleasant salt stim-

ulus, when first reencountering this stimulus in a salt-deprived

state, showed immediate attraction to this same stimulus. If

one interprets revaluation in this context as depending on

some form of model-based prediction (albeit not necessarily

the same as instrumental model-based prediction; P.D. and

K. Berridge, unpublished data), then this places dopamine at

the heart also of the model-based system.

One indirect method to address the role played by dopamine

in instrumental control in humans exploits a dopamine depletion

technique, involving acute dietary phenylalanine and tyrosine
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depletion (APTD). de Wit et al. (2012a) used this manipulation

in subjects performing a reward learning paradigm, employing

outcome devaluation and measuring slips of action to assess

the degree of model-based versus model-free control. After

devaluation, depletion had no impact upon stimulus-response

learning or response-outcome learning. Instead, depletion tip-

ped the balance of control toward more habitual responding as

revealed in a greater frequency of slips of action. However,

depletion studies, whether experimental or disease based, are

likely to exert a much less detrimental effect on dopamine func-

tion than the 6-OHDA lesions conventionally used in animal

studies.

The frequency of slips of action does not offer a very precise

measurement of the relative influence of model-based and

model-free systems. In a double-blind, fully counterbalanced

(repeated-measures), design, Wunderlich et al. (2012b) adminis-

tered either L-DOPA (to boost the influence of dopamine) or pla-

cebo while subjects solved the two-stepMarkov decision task of

(Daw et al., 2011). By fitting the same class of model as in the

original study, the authors showed that subjects were more

model based in their behavior when under L-DOPA, favoring

the notion that the dominant influence of this type of dopami-

nergic manipulation is over prefrontal function rather than over

dorsolateral striatal habits (Wunderlich et al., 2012b).

Conversely, Parkinson’s disease involves the progressive

death of dopamine cells and so causes a decrease in dopamine

release. de Wit and colleagues tested Parkinson’s patients in an

instrumental conflict task in which response-outcome links

associated with a model-based system would putatively impair

performance in a critical set of (incongruent) trials, whereas

model-free, stimulus-response, associations would be helpful

(de Wit et al., 2011). They showed that subjects with the disease

could solve the task, arguing that habit formation may not have

been eliminated. They also showed that (goal-directed) perfor-

mance in a posttraining devaluation test covaried negatively

with disease severity, arguing that model-based influences

were impaired. These results are consistent with the findings

above, albeit harder to integrate with other notions about deficits

in model-free learning in Parkinson’s patients.

Various new tasks have also shed light on model-based and

model-free systems (Doll et al., 2012). For instance, Wunderlich

and colleagues exposed subjects to a task with elements explic-

itly designed to engage each system (Wunderlich et al., 2012a).

Here, in the element directed at model-free control, subjects

were overtrained to make choices within four sets of pairs of

options, based on experience of the probabilistic reward to

which the options led. In the element directed at model-based

control, they had to navigate a branching, three-step decision

tree to reach one of several possible terminal states, each asso-

ciated with an instructed probability of reward that changed on a

trial-by-trial basis. Critically, the choice at the middle step was

made by the computer playing a minimax strategy to ensure

that subjects engaged in a form of model-based dynamic pro-

gramming that involved estimating the values of distinct stages

in the decision tree. Finally, while being scanned, subjects

were faced with three different tasks: the full three-step decision

tree; a choice between two overtrained pairs; or a choice

between one overtrained pair and half a decision tree.
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In the full three-step decision tree, anterior caudate nucleus

BOLD covaried with optimal and alternative values, such that

during a root branch decision, caudate activity related to several

values relevant to the choice, including those present at consec-

utive choices deeper in the tree. However, during the third, deep-

est, choice, caudate activity was still associated with the values

of both current choice alternatives but no longer with the value of

the previously rejected root branch (Wunderlich et al., 2012a).

This is exactly the pattern expected in a forward tree search

during goal-directed (model-based) decision making, where

values related to distinct options are prospectively represented.

Notably, these model-based effects were not evident in another

basal ganglia structure, the putamen, which only encoded

model-free values for extensively trained options at the time of

choice. By contrast, when subjects were required to choose

between an overtrained pair and half the tree, a situation

requiring access to both model-based and model-free values,

the caudate represented the planned target value of the decision

tree, while activity in the putamen pertained solely to the value of

the overtrained pair.

This dissociation corresponds exactly to the response pat-

terns of a model-free controller that depends on cached values

(putamen) and a model-based controller that depends on values

calculated on the fly (caudate). Thus, when goal-directed and

habit-based options compete, the activity in caudate and puta-

men covaried with planned and cached values even under situ-

ations where the relevant actions were not chosen. The findings

fit snugly with an animal literature both in terms of anatomical

dissociations as well as findings that highlight both systems

act synergistically and in parallel (Wassum et al., 2009). In stark

contrast, activity in vmPFC encoded the winning outcome of

the choice process (chosen value), irrespective of whether this

choice was based on a model-based or model-free value.

Thus, vmPFC can access both model-based and model-free

values, consistent with parallel, and independent, operation of

model-based and model-free valuation systems.

Simon and Daw designed a different, spatial, task in order to

examine model-based inference (Simon and Daw, 2011). Here,

subjects navigated a maze consisting of a set of rooms con-

nected by one-way doors in order to get to goals; however, the

structure of the maze changed randomly at every step, with

the doors changing their allowed directions according to a small,

fixed, probability. The constant change in the structure of the

maze invited subjects to use model-based planning, and indeed

their behavior was better fit by a model-based rather than a

model-free method. Having pinned the behavior down, the

authors were then in a position to study the neural representa-

tions of value signals associated with the planning task as well

as other model-based quantities, such as the number of choices

at the current and the next step in the maze (Simon and Daw,

2011). Regions such as ventrolateral and ventromedial putamen,

whose BOLD signals are traditionally supposed to covary with

model-free values or prediction errors, turned out to covary

with key model-based value signal. By contrast, there was little

evidence that BOLD in the vmPFC was also related to value,

asmight have been expected, though parts of themedial tempo-

ral lobe also showed significant correlations with these and with

reward predictions. The authors suggested that the latter find-
ings might possibly reflect the spatial nature of the task,

compared with the more abstract Markov decision problems

that had previously implicated the vmPFC. Other regions

including the anterior insula, the precentral cortex, and the

medial cingulate covaried with facets of the transitions available

from a room, suggesting that they might be involved in realizing

the model of the world. Tasks such as this have a strong spatial

component, as opposed to the more abstract structure of many

planning tasks, and this attribute might account for the presence

of model-based signals seen in hippocampus and medial tem-

poral lobe. In fact, this has a bearing on a suggestion that there

is another form of controller, an ‘‘episodic controller,’’ that in-

volves these very structures (Lengyel and Dayan, 2008).

Other illuminating paradigms include a so-called grid-sailing

task (Fermin et al., 2010), which uses structurally different rules

(in the form of key mappings) in a motor-learning task. This task

has provided evidence that subjects use a model-based strat-

egy to generalize learning. There is also a suggestion that

explicit instructions and advice (whose immediate impact

must surely be more model-based than model-free) operate

by boosting the impact of model-free learning on trials on which

instructions are followed (Doll et al., 2009). Also, of note is a

recent implementation of an ingenious behavioral design,

involving a simple one- and two-step problem in which learning

and performance occurred in distinct phases (Gershman et al.,

2012). In the final phase of the task, model-based and model-

free controllers would make the same choices, albeit for

different reasons. In fact, the authors observed that subjects

acted in a manner consistent with a model-based system having

trained by a model-free one during an earlier phase of learning,

as in an online or offline form of the DYNA-Q algorithms

mentioned above (Sutton, 1991). In effect, these findings high-

light cooperation, as opposed to competition, between the

two systems.

Generation 5: The Future
There are many outstanding questions related to model-based

and model-free control, and these are now the focus of intense

investigation. In the remainder of this Review, we touch on

some of the main strands of this research and the plethora of

unresolved issues. These include how model-based control is

realized; how the competition between model-based and

model-free control is resolved when they disagree; the relation-

ship between the formulation of model-based control that we

have adopted and the many other related dichotomies; the rele-

vant interactions between instrumental conditioning, which has

so far been our central focus, and Pavlovian conditioning; and

finally some early work on psychopathological interactions.

Model-Based Realization

The first critical issue is how model-based calculations are real-

ized. Building and searching a deep tree imposes a huge burden

on cognitive control and working memory. However, there is

presently not muchwork that extends from hippocampal preplay

in spatial domains (Johnson and Redish, 2007; Pfeiffer and Fos-

ter, 2013) to planning inmultistep tasks (Wunderlich et al., 2012a;

Simon and Daw, 2011). Nevertheless, the latter studies delivered

neural evidence for tree-like calculations. Other related search

tasks have found behavioral evidence for these calculations
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and have started to look at heuristics for pruning the tree, a

necessity when it gets too wide or deep (Huys et al., 2012).

One general notion is to treat the problem of model-based

evaluation as an internal decision problem (Dayan, 2012) with

actions such as gating information into workingmemory (O’Reilly

and Frank, 2006) or expanding a state in the tree in terms of

the actions that are possible. These could depend sensitively

on the hierarchical architectures of cognitive control in lateral

and medial prefrontal regions and their striatal connections

(Frank and Badre, 2012; Koechlin and Hyafil, 2007; Koechlin

et al., 2003).

Adaptations of RL architectures such as DYNA-2 (Silver et al.,

2008) may allow model-free values to be integrated with model-

based values to circumvent the complexity of very deep trees

(Sutton and Barto, 1998; Pezzulo et al., 2013); they might also

provide a rationale for the observation that regions that are nor-

mally considered to report model-free temporal difference pre-

diction errors can be invaded by prediction errors evaluated on

the basis of model-based predictions (Daw et al., 2011). An alter-

native idea is to transform control-theoretic calculations of the

optimal policy into the sort of probabilistic inference problems

that are generally believed to be solved by sensory processing

regions of the cortex in order to interpret input (Solway and Bot-

vinick, 2012). The consilience is attractive; however, the calcula-

tional complexities largely remain (Pezzulo et al., 2013).

Competition between Model-Based and Model-free

Control

In variants of an architecture such as DYNA-2 (Silver et al., 2008),

there can be a seamless integration of model-based and model-

free values of actions as part of theway that the former are calcu-

lated. Alternatively, if the model-based systemmainly influences

the model-free system by regurgitating examples (Dragoi and

Buzsáki, 2006; Foster and Wilson, 2006, 2007) or selectively

boosting its learning rate (Biele et al., 2011; Doll et al., 2009,

2011), and in so doing trains short-term model-free values,

then the MF system could do its bidding and may not actually

need explicitly to seize control. Otherwise one has to invoke

some form of competitive combination of model-based and

model-free values. Daw et al.’s finding that different subjects

employ each system to a greater or lesser degree (Daw et al.,

2011) might be seen as being evidence for the latter idea.

Various suggestions have been made for how arbitration

should proceed, but this is an area where much more work is

necessary. One idea is that it should depend on the relative

uncertainties of the systems, trading the noise induced by the

calculational difficulties of model-based control off against the

noise induced by the sloth of learning of model-free control

(Daw et al., 2005). This provides a natural account of the emer-

gence of habitual behavior (Dickinson, 1985), as in the latter

noise decreases as knowledge accumulates. By this account,

it could be the continual uncertainty induced by the changing

mazes in Simon and Daw (2011) that led to the persistent domi-

nance of model-based control. Equally, the uncertainty associ-

ated with unforeseen circumstances might lead to the renewed

dominance of model-based control, even after model-free con-

trol had asserted itself (Isoda and Hikosaka, 2011).

A different idea suggested by Keramati et al. (2011) starts from

the observation that model-free values are fast to compute but
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potentially inaccurate, whereas model-based ones are slow to

compute but typically more accurate (Keramati et al., 2011).

They consider a regime in which the model-based values are

essentially perfect and then perform a cost/benefit analysis

to assess whether the value of this perfect information is suffi-

cient to make it worth acquiring expensively. The model-free

controller’s uncertainty about the relative values of the action

becomes a measure of the potential benefit; and the opportunity

cost of the time of calculation (quantified by the prevailing

average reward rate (Niv et al., 2007) is a measure of the cost.

A related suggestion involves integration of model-free and

model-based values rather than selection and a different method

of model-based calculation (Pezzulo et al., 2013).

Other Model-free and Model-Based Formulations

There is no unique form of model-free or model-based control

and evidence hints that there are intermediate points on the

spectrumbetween them. For instance, there are important differ-

ences between model-free control based on the predicted long-

run values of actions (as in Q-learning) (Watkins, 1989), or

SARSA (Rummery and Niranjan, 1994), and actor-critic control

(Barto et al., 1983). In the latter, for which there is some inter-

esting evidence (Li and Daw, 2011), action choice is based on

propensities that convey strictly less information than the long-

run values of those actions. There are even ideas that the

spiraling connections between the striatum and the dopamine

system (Joel and Weiner, 2000; Haber et al., 2000) could allow

different forms of controller to be represented in different regions

(Haruno and Kawato, 2006).

Intermediate points between model-based and model-free

control can arise from temporally sophisticated representations

of states that contain predictions about likely future states

(thus being partly model based) but that can be used in a

straightforward manner by the model-free controller, thereby

including some facets of model-based control. One example is

the successor representation (Dayan, 1993). Further, there are

suggestions that there are multiple model-based controllers,

i.e., a mixture model (Doya et al., 2002), in which the selection

between them can have model-based or potentially model-free

components.

Finally, there is a rich panoply of other formulations of the

dichotomies between model-free and model-based control

and of model-based control itself (Dayan, 2009; Kahneman,

2011; Stanovich and West, 2002). We have already seen some

variants, with the issue of instruction versus experience (as

in Wunderlich et al., 2012a) but there are many others too, in-

cluding declarative versus procedural, spatial/geometric versus

abstract, interpreted versus compiled, prior- versus data-bound

(Dayan, 2009), and even episodic versus semantic control (Len-

gyel and Dayan, 2008). Teasing these various aspects apart, and

understanding what properties and substrates they share, is crit-

ical. For example, iterations of reflective control as captured by

ideas such as model based, declarative, and goal directed are

almost certainly not fully commensurable.

Pavlovian Conditioning

So far, we have concentrated on instrumental control, i.e.,

the choice of actions based on their past or current contin-

gencies. Another, even more influential source of control is

Pavlovian, in which predictions of future valenced outcomes
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lead automatically to a choice of action (such as approach for

appetitive outcomes and inhibition or withdrawal for aversive

ones) irrespective of the benefit of that action (Dayan et al.,

2006; Williams and Williams, 1969). One way to conceive of

these Pavlovian systems is in terms of an evolutionarily specified

prior, serving to facilitate performance by alleviating the compu-

tational costs that come with instrumental conditioning’s

increased flexibility in being able to learn to emit arbitrary

actions.

There is good evidence for Pavlovian predictions of actual out-

comes, which what we argue underpins instrumental model-

based control, and this seems to account for behavioral

phenomena such as specific forms of Pavlovian instrumental

transfer (PIT) (Ostlund and Maidment, 2012; Kruse et al., 1983).

However, there are two key additional aspects to Pavlovian con-

ditioning. First is the idea that Pavlovian control might influence

instrumental model-based calculations. For instance, we noted

above that building and evaluating the tree might be considered

in terms of a set of internal actions (Dayan, 2012). Those actions

might also be susceptible to Pavlovian biases. One example is

the possibility that pruning of the decision tree, which we argued

is likely to be of great importance in the face of its size, might be

subject to Pavlovian manipulation. It could, for instance, happen

automatically in the face of potential punishments, even when

this pruning is suboptimal (Huys et al., 2012).

Second, Pavlovian conditioning differs from instrumental con-

ditioning conceptually in the choice of action (automatic versus

learned) rather than in the nature of the predictions, and so it is

possible that it also has access to both model-free and model-

based predictions. This is important for interpreting a range of

Pavlovian conditioning results, such as the difference between

identity unblocking, which is outcome specific (McDannald

et al., 2011) and so putatively model based, versus valence un-

blocking, which is outcome general and so model free.

As a final example, consider Pavlovian to instrumental transfer

(PIT), in which Pavlovian cues modify the vigor of instrumental

responding as, for example, when appetitive cues increase re-

sponding for reward. PIT comes in two flavors: specific and

general. Specific PIT depends on amatch between the particular

outcome that is expected as both the Pavlovian and instrumental

target and so appears to be model based. Conversely, general

PIT depends solely on the valence of the Pavlovian cue, as ex-

pected for a model-free prediction. This distinction has been

used to good effect in determining the substrates of model-

based and model-free predictions (Balleine, 2005), for instance,

differentiating the role of basolateral and central nuclei of the

amygdala and their connections to the core and shell of the

nucleus accumbens.

Many early fMRI studies into prediction errors usedmodel-free

accounts in Pavlovian paradigms and located prediction errors

in striatal BOLD (Berns et al., 2001; O’Doherty, 2004; O’Doherty

et al., 2003; Haruno et al., 2004). More recent investigations have

looked closely at the distinction between model-based and

model-free, detecting evidence for the former in areas such as

the amygdala (Prévost et al., 2013). However, it is not clear

that Pavlovian and instrumental model-based predictions are

the same (P.D. and K. Berridge, unpublished data). For instance,

instant Pavlovian revaluation associated with saline deprivation
happens normally in decorticate animals, evidently not depend-

ing on regions strongly affiliated with model-based control such

as the vmPFC (Wirsig and Grill, 1982). Further, there are dissoci-

ations between the effect of devaluation in instrumental re-

sponding versus PIT (Holland, 2004), and the irrelevant incentive

effect, which shows a form of model-based motivationally sensi-

tive evaluation, appears to depend on something akin to PIT

(Dickinson and Dawson, 1987a, 1987b) in a way that suggests

this Pavlovian/instrumental difference.

Psychopathology

How control is parsed between model-based and model-free

systems is likely to have psychopathological implications. There

is currently great interest in using the sorts of ideas and tasks that

we have discussed to provide a quantitative way of understand-

ing the nature and underpinnings of abnormal decisions,

choices, and evaluations. The suggestion that systems occupy

something closer to a spectrum than a dichotomy makes this a

potentially powerful way to parse deviance but also very

challenging.

One example is obsessive-compulsive disorder (OCD) (Gray-

biel, 2008), where insensitivity to outcome devaluation and slips

of action were used to test a hypothesis of dominance by a

habitual system (Gillan et al., 2011). Patients with OCD (albeit

potentially confounded by the effects of their neuromodulatory

therapies) showed no deficit in using rewarding feedback to

guide action but instead showed both lack of sensitivity to

outcome devaluation and increased frequency in slips of action.

A similar conclusion has been derived from observations of

the two-step task (Daw et al., 2011) in OCD patients, as they,

along with substance abusers and binge eaters, showed a

lower dependence on model-based control (V. Voon, personal

communication). Furthermore, evidence for abnormalities in

components of a goal-directed system in OCD, particularly the

caudate nucleus, aligns with a suggestion that key manifesta-

tions of this condition reflect on overdominance of a habitual sys-

tem (Maia et al., 2008).

A second example is drug addiction (Belin et al., 2009). One

influential proposal is that a protracted exposure to addic-

tive drugs recruits dopamine-dependent striato-nigro-striatal

ascending spirals (Haber et al., 2000; Joel and Weiner, 2000)

from the nucleus accumbens to more dorsal regions of the stria-

tum (Everitt et al., 2008). This results in a shift in control from

action-outcome to stimulus-response mechanisms, a putative

dominant mode of control in drug seeking and drug relapse.

What this entails is that a key mechanism underlying the emer-

gence of compulsive drug seeking, as well as relapse into addic-

tive behaviors, is the subversion of control by a contextually

dominant habitual mode.

A final question here relates to the consequence of overdom-

inance of a model-based system. Speculatively, we suggest

that it might at least be involved in components of the phe-

nomenology seen in psychotic states, such as paranoia, delu-

sions, and hallucinations. The latter can be seen as arising

when the sort of processes that are associated with building

and evaluating a model become sufficiently detached from

external input from the world. We observed that boosting dopa-

mine boosts the impact and control of such model-based influ-

ences (Wunderlich et al., 2012b) and perhaps this is at least one
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pathophysiological step. It is worth noting that in the treatment

of Parkinson’s disease, boosting dopamine function often leads

to the emergence of psychotic phenomena (Yaryura-Tobias

et al., 1970).
Conclusion
We have provided an inevitably selective Review of the past,

present, and future of model-based and model-free control in

humans. The distinction is extremely long standing, has been

an important source of ideas and experiments, has offered

accounts of many brain regions critical to instrumental choice,

and indeed has been a spur to computational modeling. How-

ever, even though it is not yet evident how the computational

challenges of model-based control are addressed, it is

becoming clear that model-based and model-free predictions

and controls aremore richly intertwined than originally supposed

and thereby offer flexible and adaptive solutions to the manifest

problems of exploring and exploiting potentially dangerous but

lucrative environments.
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