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A variety of studies have demonstrated that organizing stimuli into categories can affect the way the
stimuli are perceived. We explore the influence of categories on perception through one such phenom-
enon, the perceptual magnet effect, in which discriminability between vowels is reduced near prototyp-
ical vowel sounds. We present a Bayesian model to explain why this reduced discriminability might
occur: It arises as a consequence of optimally solving the statistical problem of perception in noise. In
the optimal solution to this problem, listeners’ perception is biased toward phonetic category means
because they use knowledge of these categories to guide their inferences about speakers’ target
productions. Simulations show that model predictions closely correspond to previously published human
data, and novel experimental results provide evidence for the predicted link between perceptual warping
and noise. The model unifies several previous accounts of the perceptual magnet effect and provides a
framework for exploring categorical effects in other domains.
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The influence of categories on perception is well known in
domains ranging from speech sounds to artificial categories of
objects. Liberman, Harris, Hoffman, and Griffith (1957) first de-
scribed categorical perception of speech sounds, noting that lis-
teners’ perception conforms to relatively sharp identification
boundaries between categories of stop consonants and that
whereas between-category discrimination of these sounds is nearly
perfect, within-category discrimination is little better than chance.
Similar patterns have been observed in the perception of colors
(Davidoff, Davies, & Roberson, 1999), facial expressions (Etcoff
& Magee, 1992), and familiar faces (Beale & Keil, 1995), as well

as the representation of objects belonging to artificial categories
that are learned over the course of an experiment (Goldstone,
1994; Goldstone, Lippa, & Shiffrin, 2001). All of these categorical
effects are characterized by better discrimination of between-
category contrasts than within-category contrasts, although the
magnitude of the effect varies between domains.

In this article, we develop a computational model of the influ-
ence of categories on perception through a detailed investigation of
one such phenomenon, the perceptual magnet effect (Kuhl, 1991),
which has been described primarily in vowels. The perceptual
magnet effect involves reduced discriminability of speech sounds
near phonetic category prototypes. For several reasons, speech
sounds, particularly vowels, provide an excellent starting point for
assessing a model of the influence of categories on perception.
Vowels are naturally occurring, highly familiar stimuli that all
listeners have categorized. As discussed later, a precise two-
dimensional psychophysical map of vowel space can be provided,
and using well-established techniques, discrimination of pairs of
speech sounds can be systematically investigated under well-
defined conditions so that perceptual maps of vowel space can be
constructed. By comparing perceptual and psychophysical maps,
we can measure the extent and nature of perceptual warping and
assess such warping with respect to known categories. In addition,
the perceptual magnet effect shows several qualitative similarities
to categorical effects in perceptual domains outside of language, as
vowel perception is continuous rather than sharply categorical
(Fry, Abramson, Eimas, & Liberman, 1962) and the degree of
category influence can vary substantially across testing conditions
(Gerrits & Schouten, 2004). Finally, the perceptual magnet effect
has been the object of extensive empirical and computational
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research (e.g., Grieser & Kuhl, 1989; Guenther & Gjaja, 1996;
Iverson & Kuhl, 1995; Kuhl, 1991; Lacerda, 1995). This previous
research has produced a large body of data, which can be used to
provide a quantitative evaluation of our approach, as well as
several alternative explanations against which our account can be
compared.

We take a novel approach to modeling the perceptual magnet
effect, complementary to previous models that have explored how
the effect might be algorithmically and neurally implemented. In
the tradition of rational analysis proposed by Marr (1982) and J. R.
Anderson (1990), we consider the abstract computational problem
posed by speech perception and show that the perceptual magnet
effect emerges as part of the optimal solution to this problem.
Specifically, we assume that listeners are optimally solving the
problem of perceiving speech sounds in the presence of noise. In
this analysis, the listener’s goal is to ascertain category member-
ship but also to extract phonetic detail in order to reconstruct
coarticulatory and nonlinguistic information. This is a difficult
problem for listeners because they cannot hear the speaker’s target
production directly. Instead, they hear speech sounds that are
similar to the speaker’s target production but that have been altered
through articulatory, acoustic, and perceptual noise. We formalize
this problem using Bayesian statistics and show that the optimal
solution to this problem produces the perceptual magnet effect.

The resulting rational model formalizes ideas that have been
proposed in previous explanations of the perceptual magnet effect
but goes beyond these previous proposals to explain why the effect
should result from optimal behavior. It also serves as a basis for
further empirical research, making predictions about the types of
variability that should be seen in the perceptual magnet effect and
in other categorical effects more generally. Several of these pre-
dictions are in line with previous literature, and one additional
prediction is borne out in our own experimental data. Our model
parallels models that have been used to describe categorical effects
in other areas of cognition (Huttenlocher, Hedges, & Vevea, 2000;
Körding & Wolpert, 2004; Roberson, Damjanovic, & Pilling,
2007), suggesting that its principles are broadly applicable to these
areas as well.

The article is organized as follows. We begin with an overview
of categorical effects across several domains and then focus more
closely on evidence for the perceptual magnet effect and explana-
tions that have been proposed to account for this evidence. The
ensuing section gives an intuitive overview of our model, followed
by a more formal introduction to its mathematics. We present
simulations comparing the model to published empirical data and
generating novel empirical predictions. An experiment is presented
to test the predicted effects of speech signal noise. Finally, we
discuss this model in relation to previous models, revisit its as-
sumptions, and suggest directions for future research.

Categorical Effects

Categorical effects are widespread in cognition and perception
(Harnad, 1987), and these effects show qualitative similarities
across domains. This section provides an overview of basic find-
ings and key issues concerning categorical effects in the perception
of speech sounds, colors, faces, and artificial laboratory stimuli.

Speech Sounds

The classic demonstration of categorical perception comes from
a study by Liberman et al. (1957), who measured subjects’ per-
ception of a synthetic speech sound continuum that ranged from /b/
to /d/ to /g/, spanning three phonetic categories. Results showed
sharp transitions between the three categories in an identification
task and corresponding peaks in discrimination at category bound-
aries, indicating that subjects were discriminating stimuli primarily
on the basis of their category membership. The authors compared
the data to a model in which listeners extracted only category
information, and no acoustic information, when perceiving a
speech sound. Subject performance exceeded that of the model
consistently but only by a small percentage: Discrimination was
little better than could be obtained through identification alone.
Liberman and colleagues later replicated these results using the
voicing dimension in stop consonant perception, with both word-
initial and word-medial cues causing discrimination peaks at the
identification boundaries (Liberman, Harris, Kinney, & Lane,
1961; Liberman, Harris, Eimas, Lisker, & Bastian, 1961). Other
classes of consonants such as fricatives (Fujisaki & Kawashima,
1969), liquids (Miyawaki et al., 1975), and nasals (J. L. Miller &
Eimas, 1977) show evidence of categorical perception as well. In
all of these studies, listeners show some discrimination of within-
category contrasts, and this within-category discrimination is es-
pecially evident when more sensitive measures, such as reaction
times, are used (e.g., Pisoni & Tash, 1974). Nevertheless, within-
category discrimination is consistently poorer than between-
category discrimination across a wide variety of consonant con-
trasts.

A good deal of research has investigated the degree to which
categorical perception of consonants results from innate biases
or arises through category learning. Evidence supports a role for
both factors. Studies with young infants show that discrimina-
tion peaks are present in the first few months of life (Eimas,
Siqueland, Jusczyk, & Vigorito, 1971; Eimas, 1974, 1975),
suggesting a role for innate biases. These early patterns may be
tied to general patterns of auditory sensitivity, as nonhuman
animals show discrimination peaks at category boundaries
along the dimensions of voicing (Kuhl, 1981; Kuhl & Padden,
1982) and place (Kuhl & Padden, 1983; Morse & Snowdon,
1975), and humans show similar boundaries in some nonspeech
stimuli (J. D. Miller, Wier, Pastore, Kelly, & Dooling, 1976;
Pisoni, 1977). Studies have also shown cross-linguistic differ-
ences in perception, which indicate that perceptual patterns are
influenced by phonetic category learning (Abramson & Lisker,
1970; Miyawaki et al., 1975). The interaction between these
two factors remains a subject of current investigation (e.g.,
Holt, Lotto, & Diehl, 2004).

The role of phonetic categories in vowel perception is more
controversial: vowel perception is continuous rather than strictly
categorical, without obvious discrimination peaks near category
boundaries (Fry et al., 1962). However, there has been some
evidence for category boundary effects (Beddor & Strange, 1982)
as well as reduced discriminability of vowels specifically near the
centers of phonetic categories (Kuhl, 1991), and we return to this
debate in more detail in the next section.
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Colors

Researchers have argued that color categories are organized
around universal focal colors (Berlin & Kay, 1969; Rosch Heider,
1972; Rosch Heider & Oliver, 1972), and these universal tenden-
cies have been supported through more recent statistical modeling
results (Kay & Regier, 2007; Regier, Kay, & Khetarpal, 2007).
However, color terms show substantial cross-linguistic variation
(Berlin & Kay, 1969), and this has led researchers to question
whether color categories influence color perception. Experiments
have revealed discrimination peaks corresponding to language-
specific category boundaries for speakers of English, Russian,
Berinmo, and Himba, and perceivers whose native language does
not contain a corresponding category boundary have failed to show
these discrimination peaks (Davidoff et al., 1999; Roberson, Dav-
idoff, Davies, & Shapiro, 2005; Roberson, Davies, & Davidoff,
2000; Winawer et al., 2007). These results indicate that color
categories do influence performance in color discrimination tasks.

More recent research in this domain has asked whether these
categorical effects are purely perceptual or whether they are me-
diated by the active use of linguistic codes in perceptual tasks.
Roberson and Davidoff (2000) demonstrated that linguistic inter-
ference tasks can eliminate categorical effects in color perception
(see also Kay & Kempton, 1984). Investigations have shown
activation of the same neural areas in naming tasks as in discrim-
ination tasks (Tan et al., 2008) as well as left-lateralization of
categorical color perception in adults (Gilbert, Regier, Kay, &
Ivry, 2006). These results suggest a direct role for linguistic codes
in discrimination performance, indicating that categorical effects
in color perception are mediated largely by language. Neverthe-
less, categorical effects may play a large role in everyday color
perception. Linguistic codes appear to be used in a wide variety of
perceptual tasks, including those that do not require memory
encoding (Witthoft et al., 2003), and verbal interference tasks fail
to completely wipe out verbal coding when the type of interference
is unpredictable (Pilling, Wiggett, Özgen, & Davies, 2003).

Faces

Categorical effects in face perception were first shown for facial
expressions of emotion in stimuli constructed from line drawings
(Etcoff & Magee, 1992) and photograph-quality stimuli (Calder,
Young, Perrett, Etcoff, & Rowland, 1996; de Gelder, Teunisse, &
Benson, 1997; Young et al., 1997 ). Stimuli for these experiments
were drawn from morphed continua in which the endpoints were
prototypical facial expressions (e.g., happiness, fear, anger). With
few exceptions, results showed discrimination peaks at the same
locations as identification boundaries between these prototypical
expressions. Evidence for categorical effects has been found in
seven-month-old infants (Kotsoni, de Haan, & Johnson, 2001),
nine-year-old children (de Gelder et al., 1997), and older individ-
uals (Kiffel, Campanella, & Bruyer, 2005), indicating that cate-
gory structure is similar across different age ranges. However,
these categories can be affected by early experience as well. Pollak
and Kistler (2002) presented data from abused children showing
that their category boundaries in continua ranging from fearful to
angry and from sad to angry were shifted such that they interpreted
a large portion of these continua as angry; discrimination peaks
were shifted together with these identification boundaries.

In addition to categorical perception of facial expressions, dis-
crimination patterns show evidence of categorical perception of
facial identity, where each category corresponds to a different
identity. Beale and Keil (1995) found discrimination peaks along
morphed continua between faces of famous individuals, and these
results have been replicated with several different stimulus con-
tinua constructed from familiar faces (Angeli, Davidoff, & Valen-
tine, 2008; Campanella, Hanoteau, Seron, Joassin, & Bruyer,
2003; Rotshtein, Henson, Treves, Driver, & Dolan, 2005). The
categorical effects are stronger for familiar faces than for unfamil-
iar faces (Angeli et al., 2008; Beale & Keil, 1995), but categorical
effects have been demonstrated for continua involving previously
unfamiliar faces as well (Levin & Beale, 2000; Stevenage, 1998).
The strength of these effects for unfamiliar faces may derive from
a combination of learning during the course of the experiment
(Viviani, Binda, & Borsato, 2007), the use of labels during training
(Kikutani, Roberson, & Hanley, 2008), and the inherent distinc-
tiveness of endpoint stimuli in the continua (Angeli et al., 2008;
Campanella et al., 2003).

Learning Artificial Categories

Several studies have demonstrated categorical effects that derive
from categories learned in the laboratory, implying that the for-
mation of novel categories can affect perception in laboratory
settings. As proposed by Liberman et al. (1957), this learning
component might take two forms: Acquired distinctiveness in-
volves enhanced between-category discriminability, whereas ac-
quired equivalence involves reduced within-category discrim-
inability. Evidence for one or both of these processes has been
found through categorization training in color perception (Özgen
& Davies, 2002) and auditory perception of white noise (Guenther,
Husain, Cohen, & Shinn-Cunningham, 1999). These results extend
to stimuli that vary along multiple dimensions as well. Categoriz-
ing stimuli along two dimensions can lead to acquired distinctive-
ness (Goldstone, 1994), and similarity ratings for drawings that
differ along several dimensions have shown acquired equivalence
in response to categorization training (Livingston, Andrews, &
Harnad, 1998). Such effects may arise partly from task-specific
strategies but likely involve changes in underlying stimulus rep-
resentations as well (Goldstone et al., 2001).

Additionally, several studies have demonstrated that categories
for experimental stimuli are learned quickly over the course of an
experiment even without explicit training. Goldstone (1995) found
that implicit shape-based categories influenced subjects’ percep-
tion of hues and that these implicit categories changed depending
on the set of stimuli presented in the experiment. A similar
explanation has been proposed to account for subjects’ categorical
treatment of unfamiliar face continua (Levin & Beale, 2000),
where learned categories seem to correspond to continuum end-
points. Gureckis and Goldstone (2008) demonstrated that subjects
are sensitive to the presence of distinct clusters of stimuli, showing
increased discriminability between clusters even when those clus-
ters receive the same label. Furthermore, implicit categories have
been used to explain why subjects often bias their perception
toward the mean value of a set of stimuli in an experiment.
Huttenlocher et al. (2000) argued that subjects form an implicit
category that includes the range of stimuli they have seen over the
course of an experiment and that they use this implicit category to
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correct for memory uncertainty when asked to reproduce a stim-
ulus. Under their assumptions, the optimal way to correct for
memory uncertainty using this implicit category is to bias all
responses toward the mean value of the category, which in this
case is the mean value of the set of stimuli. The authors presented
a Bayesian analysis to account for bias in visual stimulus repro-
duction that is nearly identical to the one-category model derived
here in the context of speech perception, reflecting the similar
structure of the two problems and the generality of the approach.

Summary

The categorical effects in all of these domains are qualitatively
similar, with enhanced between-category discriminability and re-
duced within-category discriminability. Though there is some ev-
idence that innate biases contribute to these perceptual patterns, the
patterns can be influenced by learned categories as well, even by
implicit categories that arise from specific distributions of exem-
plars. Despite widespread interest in these phenomena, the reasons
and mechanisms behind the connection between categories and
perception remain unclear. In the remainder of this article, we
address this issue through a detailed exploration of the perceptual
magnet effect, which shares many qualitative features with the
categorical effects discussed above.

The Perceptual Magnet Effect

The phenomenon of categorical perception is robust in conso-
nants, but the role of phonetic categories in the perception of
vowels has been more controversial. Acoustically, vowels are
specified primarily by their first and second formants, F1 and F2.
Formants are bands of frequencies in which acoustic energy is
concentrated—peaks in the frequency spectrum—as a result of
resonances in the vocal tract. F1 is inversely correlated with tongue
height, whereas F2 is correlated with the proximity of the most
raised portion of the tongue to the front of the mouth. Thus, a front
high vowel such as /i/ (as in beet) spoken by a male talker typically
has center formant frequencies around 270 Hz (F1) and 2290 Hz
(F2), and a back low vowel such as /a/ (as in father) spoken by a
male typically has center formant frequencies around 730 Hz and
1090 Hz (Peterson & Barney, 1952). Tokens of vowels are dis-
tributed around these central values. A map of vowel space based
on data from Hillenbrand, Getty, Clark, and Wheeler (1995) is
shown in Figure 1. Though frequencies are typically reported in
Hertz, most research on the perceptual magnet effect has used the
mel scale to represent psychophysical distance (e.g., Kuhl, 1991).
The mel scale can be used to equate distances in psychophysical
space because difference limens, the smallest detectable pitch
differences, correspond to constant distances along this scale (S. S.
Stevens, Volkmann, & Newman, 1937).

Early work suggested that vowel discrimination was not af-
fected by native language categories (K. N. Stevens, Liberman,
Studdert-Kennedy, & Öhman, 1969). However, later findings have
revealed a relationship between phonetic categories and vowel
perception. Although within-category discrimination for vowels is
better than for consonants, clear peaks in discrimination functions
have been found at vowel category boundaries, especially in tasks
that place a high memory load on subjects or that interfere with
auditory memory (Beddor & Strange, 1982; Pisoni, 1975; Repp &

Crowder, 1990; Repp, Healy, & Crowder, 1979). In addition,
between-category differences yield larger neural responses as mea-
sured by event-related potentials (Näätänen et al., 1997; Winkler et
al., 1999). Viewing phonetic discrimination in spatial terms, Kuhl
and colleagues have found evidence of shrunken perceptual space
specifically near category prototypes, a phenomenon they have
called the perceptual magnet effect (Grieser & Kuhl, 1989; Iverson
& Kuhl, 1995; Kuhl, 1991; Kuhl, Williams, Lacerda, Stevens, &
Lindblom, 1992).

Empirical Evidence

The first evidence for the perceptual magnet effect came from
experiments with English-learning 6-month-old infants (Grieser &
Kuhl, 1989). Using the conditioned head-turn procedure to assess
within-category generalization of speech sounds, Grieser and Kuhl
found that a prototypical /i/ vowel based on mean formant values
in Peterson and Barney’s production data was more likely to be
generalized to sounds surrounding it than was a nonprototypical /i/
vowel. In addition, they found that infants’ rate of generalization
correlated with adult goodness ratings of the stimuli, so stimuli that
were judged as the best exemplars of the /i/ category were gener-
alized most often to neighboring stimuli. Kuhl (1991) showed that
adults, like infants, can discriminate stimuli near a nonprototype of
the /i/ category better than stimuli near the prototype. Kuhl et al.
(1992) tested English- and Swedish-learning infants on discrimi-
nation near prototypical English /i/ (high, front, unrounded) and
Swedish /y/ (high, front, rounded) sounds, again using the condi-
tioned headturn procedure; they found that whereas English infants
generalized the /i/ sounds more than the /y/ sounds, Swedish-
learning infants showed the reverse pattern. On the basis of this
evidence, Kuhl et al. described the perceptual magnet effect as a
language-specific shrinking of perceptual space near native lan-
guage phonetic category prototypes, with prototypes acting as
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Figure 1. Map of vowel space from Hillenbrand et al.’s (1995) produc-
tion experiment. Ellipses delimit regions corresponding to approximately
90% of tokens from each vowel category. Adapted from “Acoustic Char-
acteristics of American English Vowels” by J. Hillenbrand, L. A. Getty,
M. J. Clark, & K. Wheeler, 1995, Journal of the Acoustical Society of
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perceptual magnets to exert a pull on neighboring speech sounds
(see also Kuhl, 1993). They concluded that these language-specific
prototypes are in place as young as 6 months.

Iverson and Kuhl (1995) used signal detection theory and mul-
tidimensional scaling to produce a detailed perceptual map of
acoustic space near the prototypical and nonprototypical /i/ vowels
used in previous experiments. They tested adults’ discrimination of
13 stimuli along a single vector in F1–F2 space, ranging from F1

of 197 Hz and F2 of 2489 Hz (classified as /i/) to F1 of 429 Hz and
F2 of 1925 Hz (classified as /e/, as in bait). In both analyses, the
authors found shrinkage of perceptual space near the ends of the
continuum, especially near the /i/ end. They found a peak in
discrimination near the center of the continuum between Stimulus
6 and Stimulus 9. This supported previous analyses, suggesting
that perceptual space was shrunk near category centers and ex-
panded near category edges. The effect has since been replicated in
the English /i/ category (Sussman & Lauckner-Morano, 1995), and
evidence for poor discrimination near category prototypes has
been found for the German /i/ category (Diesch, Iverson, Ketter-
mann, & Siebert, 1999). In addition, the effect has been found in
the /r/ and /l/ categories in English but not Japanese speakers
(Iverson & Kuhl, 1996; Iverson et al., 2003), lending support to the
idea of language-specific phonetic category prototypes.

Several studies have found large individual differences between
subjects in stimulus goodness ratings and category identification,
suggesting that it may be difficult to find vowel tokens that are
prototypical across listeners and thus raising methodological ques-
tions about experiments that examine the perceptual magnet effect
(Frieda, Walley, Flege, & Sloane, 1999; Lively & Pisoni, 1997).
However, data collected by Aaltonen, Eerola, Hellström, Uusi-
paikka, and Lang (1997) on the /i/–/y/ contrast in Finnish adults
showed that discrimination performance was less variable than
identification performance, and on the basis of these results, the
authors argued that discrimination operates at a lower level than
overt identification tasks. A more serious challenge has come from
studies that question the robustness of the perceptual magnet
effect. Lively and Pisoni (1997) found no evidence of a perceptual
magnet effect in the English /i/ category, suggesting that listeners’
discrimination patterns are sensitive to methodological details or
dialect differences, although the authors could not identify the
specific factors responsible for these differences. The effect has
also been difficult to isolate in vowels other than /i/: Sussman and
Gekas (1997) failed to find an effect in the English /I/ (as in bit)
category, and Thyer, Hickson, and Dodd (2000) found the effect in
the /i/ category but found the reverse effect in the /ɔ/ (as in bought)
category and failed to find any effect in other vowels. Whereas
there has been evidence linking changes in vowel perception to
differences in interstimulus interval (Pisoni, 1973) and task de-
mands (Gerrits & Schouten, 2004), much of the variability found
in vowel perception has not been accounted for.

In summary, vowel perception has been shown to be continuous
rather than categorical: Listeners can discriminate two vowels that
receive the same category label. However, studies have suggested
that even in vowels, perceptual space is shrunk near phonetic
category centers and expanded near category edges. In addition,
studies have shown substantial variability in the perceptual magnet
effect. This variability seems to depend on the phonetic category
being tested and also on methodological details. On the basis of the
predictions of our rational model, we argue that some of this

variability is attributable to differences in category variance be-
tween different phonetic categories and to differences in the
amount of noise through which stimuli are heard.

Previous Models

Grieser and Kuhl (1989) originally described the perceptual
magnet effect in terms of category prototypes, arguing that pho-
netic category prototypes exert a pull on nearby speech sounds and
thus create an inverse correlation between goodness ratings and
discriminability. Although this inverse correlation has been exam-
ined more closely and has been used to argue that categorical
perception and the perceptual magnet effect are separate phenom-
ena (Iverson & Kuhl, 2000), most computational models of the
perceptual magnet effect have assumed that it is a categorical
effect, parallel to categorical perception.

Lacerda (1995) began by assuming that the warping of percep-
tual space emerges as a side effect of a classification problem: The
goal of listeners is to classify speech sounds into phonetic catego-
ries. His model assumes that perception has been trained with
labeled exemplars or that labels have been learned using other
information in the speech signal. In perceiving a new speech
sound, listeners retrieve only the information from the speech
signal that is helpful in determining the sound’s category, or label,
and they categorize and discriminate speech sounds on the basis of
this information. Listeners can perceive a contrast only if the two
sounds differ in category membership. Implementing this idea in
neural models, Damper and Harnad (2000) showed that when
trained on two endpoint stimuli, neural networks will treat a voice
onset time continuum categorically. One limitation of the model
proposed by Lacerda (1995) is that it does not include a mecha-
nism by which listeners can perceive within-category contrasts. As
demonstrated by Lotto et al. (1998), this assumption cannot cap-
ture the data on the perceptual magnet effect because within-
category discriminability is higher than this account would predict.

Other neural network models have argued that the perceptual
magnet effect results not from category labels but instead from
specific patterns in the distribution of speech sounds. Guenther and
Gjaja (1996) suggested that neural firing preferences in a neural
map reflect Gaussian distributions of speech sounds in the input
and that because more central sounds have stronger neural repre-
sentations than do more peripheral sounds, the population vector
representing a speech sound that is halfway between the center and
the periphery of its phonetic category will appear closer to the
center of the category than to its periphery. This model implements
the idea that the perceptual magnet effect is a direct result of
uneven distributions of speech sounds in the input. Similarly,
Vallabha and McClelland (2007) have shown that Hebbian learn-
ing can produce attractors at the locations of Gaussian input
categories and that the resulting neural representation fits human
data accurately. The idea that distributions of speech sounds in the
input can influence perception is supported by experimental evi-
dence showing that adults and infants show better discrimination
of a contrast embedded in a bimodal distribution of speech sounds
than of the same contrast embedded in a unimodal distribution
(Maye & Gerken, 2000; Maye, Werker, & Gerken, 2002).

These previous models have provided process-level accounts of
how the perceptual magnet effect might be implemented algorith-
mically and neurally, but they leave several questions unanswered.
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The prototype model does not give independent justification for
the assumption that prototypes should exert a pull on neighboring
speech sounds; several models cannot account for better than
chance within-category discriminability of vowels. Other models
give explanations of how the effect might occur but do not address
the question of why it should occur. Our rational model fills these
gaps by providing a mathematical formalization of the perceptual
magnet effect at Marr’s (1982) computational level, considering
the goals of the computation and the logic by which these goals
can be achieved. It gives independent justification for the optimal-
ity of a perceptual bias toward category centers and simultaneously
predicts a baseline level of within-category discrimination. Fur-
thermore, our model goes beyond these previous models to make
novel predictions about the types of variability that should be seen
in the perceptual magnet effect.

Theoretical Overview of the Model

Our model of the perceptual magnet effect focuses on the idea
that we can analyze speech perception as a kind of optimal statis-
tical inference. The goal of listeners, in perceiving a speech sound,
is to recover the phonetic detail of a speaker’s target production.
They infer this target production using the information that is
available to them from the speech signal and their prior knowledge
of phonetic categories. Here we give an intuitive overview of our
model in the context of speech perception, followed by a more
general mathematical account in the next section.

Phonetic categories are defined in the model as distributions of
speech sounds. When speakers produce a speech sound, they
choose a phonetic category and then articulate a speech sound
from that category. They can use their specific choice of speech
sounds within the phonetic category to convey coarticulatory in-
formation, affect, and other relevant information. Because there
are several factors that speakers might intend to convey, and given
that each factor can cause small fluctuations in acoustics, we
assume that the combination of these factors approximates a
Gaussian, or normal, distribution. Phonetic categories in the model
are thus Gaussian distributions of target speech sounds. Categories
may differ in the location of their means, or prototypes, and in the
amount of variability they allow. In addition, categories may differ
in frequency so that some phonetic categories are used more
frequently in a language than others. The use of Gaussian phonetic
categories in this model does not reflect a belief that speech sounds
actually fall into parametric distributions. Rather, the mathematics
of the model are easiest to derive in the case of Gaussian catego-
ries. As discussed later, the general effects that are predicted in the
case of Gaussian categories are similar to those predicted for other
types of unimodal distributions.

In the speech sound heard by listeners, the information about the
target production is masked by various types of articulatory, acous-
tic, and perceptual noise. The combination of these noise factors is
approximated through Gaussian noise, so that the speech sound
heard is normally distributed around the speaker’s target produc-
tion.

Formulated in this way, speech perception becomes a statistical
inference problem. When listeners perceive a speech sound, they
can assume it was generated by selecting a target production from
a phonetic category and then generating a noisy speech sound on
the basis of the target production. Listeners hear the speech sound

and know the structure and location of phonetic categories in their
native language. Given this information, they need to infer the
speaker’s target production. They infer phonetic detail in addition
to category information in order to recover the gradient coarticu-
latory and nonlinguistic information that the speaker intended.

With no prior information about phonetic categories, listeners’
perception should be unbiased, given that under Gaussian noise,
speech sounds are equally likely to be shifted in either direction. In
this case, listeners’ safest strategy is to guess that the speech sound
they heard was the same as the target production. However,
experienced listeners know that they are more likely to hear speech
sounds near the centers of phonetic categories than speech sounds
farther from category centers. The optimal way to use this knowl-
edge of phonetic categories to compensate for a noisy speech
signal is to bias perception toward the center of a category, toward
the most likely target productions.

In a hypothetical language with a single phonetic category,
where listeners are certain that all sounds belong to that category,
this perceptual bias toward the category mean causes all of per-
ceptual space to shrink toward the center of the category. The
resulting perceptual pattern is shown in Figure 2a. If there is no
uncertainty about category membership, perception of distant
speech sounds is more biased than perception of proximal speech
sounds so that all of perceptual space is shrunk to the same degree.

In order to optimally infer a speaker’s target production in the
context of multiple phonetic categories, listeners must determine
which categories are likely to have generated a speech sound. They
can then predict the speaker’s target production on the basis of the
structure of these categories. If they are certain of a speech sound’s
category membership, their perception of the speech sound should
be biased toward the mean of that category, as was the case in a

Actual Stimulus

Perceived Stimulus

(a)

Actual Stimulus

Perceived Stimulus

(b)

Figure 2. Predicted relationship between acoustic and perceptual space in
the case of (a) one category and (b) two categories.
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language with one phonetic category. This shrinks perceptual
space in areas of unambiguous categorization. If listeners are
uncertain about category membership, they should take into ac-
count all of the categories that could have generated the speech
sound they heard, but they should weight the influence of each
category by the probability that the speech sound came from that
category. This ensures that under assumptions of equal frequency
and variance, nearby categories are weighted more heavily than
those farther away. Perception of speech sounds precisely on the
border between two categories is pulled simultaneously toward
both category means, each canceling out the other’s effect. Per-
ception of speech sounds that are near the border between catego-
ries is biased toward the most likely category, but the competing
category dampens the bias. The resulting pattern for the two-
category case is shown in Figure 2b.

The interaction between the categories produces a pattern of
perceptual warping that is qualitatively similar to descriptions of
the perceptual magnet effect and other categorical effects that have
been reported in the literature. Speech sounds near category cen-
ters are extremely close together in perceptual space, whereas
speech sounds near the edges of a category are much farther apart.
This perceptual pattern results from a combination of two factors,
both of which were proposed by Liberman et al. (1957) in refer-
ence to categorical perception. The first is acquired equivalence
within categories due to perceptual bias toward category means; the
second is acquired distinctiveness between categories due to the
presence of multiple categories. Consistent with these predictions,
infants acquiring language have shown both acquired distinctive-
ness for phonemically distinct sounds and acquired equivalence for
members of a single phonemic category over the course of the first
year of life (Kuhl et al., 2006).

Mathematical Presentation of the Model

This section formalizes the rational model within the framework
of Bayesian inference. The model is potentially applicable to any
perceptual problem in which a perceiver needs to recover a target
from a noisy stimulus, using knowledge that the target has been
sampled from a Gaussian category. We therefore present the
mathematics in general terms, referring to a generic stimulus S,
target T, category c, category variance !c

2, and noise variance !S
2.

In the specific case of speech perception, S corresponds to the
speech sound heard by the listener, T to the phonetic detail of a
speaker’s intended target production, and c to the language’s
phonetic categories; the category variance !c

2 represents meaning-
ful within-category variability, and the noise variance !S

2 repre-
sents articulatory, acoustic, and perceptual noise in the speech
signal.

The formalization is based on a generative model in which a
target T is produced by sampling from a Gaussian category c with
mean "c and variance !c

2. The target T is distributed as

T !c " N#"c, !c
2$. (1)

Perceivers cannot recover T directly, but instead perceive a noisy
stimulus S that is normally distributed around the target production
with noise variance !S

2 such that

S!T " N#T, !S
2$. (2)

Note that integrating over T yields

S!c " N#"c, !c
2 ! !S

2$, (3)

indicating that under these assumptions, the stimuli that perceivers
observe are normally distributed around a category mean "c, with
a variance that is a sum of the category variance and the noise
variance.

Given this generative model, perceivers can use Bayesian infer-
ence to reconstruct the target from the noisy stimulus. According
to Bayes’ rule, given a set of hypotheses H and observed data d,
the posterior probability of any given hypothesis h is

p#h!d$ "
p#d!h$p#h$#

h%H
p#d!h$p#h$

, (4)

indicating that it is proportional to both the likelihood p(d!h),
which is a measure of how well the hypothesis fits the data, and
the prior p(h), which gives the probability assigned to the
hypothesis before any data were observed. Here, the stimulus S
serves as data d; the hypotheses under consideration are all the
possible targets T; and the prior p(h), which gives the proba-
bility that any particular target will occur, is specified by
category structure. In laying out the solution to this statistical
problem, we begin with the case in which there is a single
category and then move to the more complex case of multiple
categories.

One Category

Perceivers are trying to infer the target T given stimulus S and
category c, so they must calculate p(T !S, c). They can use Bayes’
rule:

p#T !S, c$ & p#S!T$p#T !c$. (5)

The likelihood p(S!T), given by the noise process (Equation 2),
assigns highest probability to stimulus S, and the prior p(T !c),
given by category structure (Equation 1), assigns highest proba-
bility to the category mean. As described in Appendix A, the
right-hand side of this equation can be simplified to yield a
Gaussian distribution

p#T !S, c$ " N$!c
2S ! !S

2"c

!c
2 ! !S

2 ,
!c

2!S
2

!c
2 ! !S

2% (6)

whose mean falls between the stimulus S and the category
mean "c.

This posterior probability distribution can be summarized by its
mean (the expectation of T given S and c),

E'T !S, c( "
!c

2S ! !S
2"c

!c
2 ! !S

2 . (7)

The optimal guess at the target, then, is a weighted average of the
observed stimulus and the mean of the category that generated the
stimulus, where the weighting is determined by the ratio of cate-
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gory variance to noise variance.1 This equation formalizes the idea
of a perceptual magnet: The term "c pulls the perception of stimuli
toward the category center, effectively shrinking perceptual space
around the category.

Multiple Categories

The one-category case, while appropriate to explain perfor-
mance on some perceptual tasks (e.g., Huttenlocher et al., 2000), is
inappropriate for describing natural language. In a language with
multiple phonetic categories, listeners must consider many possi-
ble source categories for a speech sound. We therefore extend the
model so that it applies to the case of multiple categories.

Upon observing a stimulus, perceivers can compute the proba-
bility that it came from any particular category using Bayes’ rule

p#c!S$ "
p#S!c$p#c$#
c

p#S!c$p#c$
, (8)

where p(S!c) is given by Equation 3 and p(c) reflects the prior
probability assigned to category c.

To compute the posterior on targets p(T !S), perceivers need to
marginalize, or sum, over categories,

p#T !S$ " #
c

p#T !S, c$p#c!S$. (9)

The first term on the right-hand side is given by Equation 6, and
the second term can be calculated from Bayes’ rule, as given by
Equation 8. The posterior has the form of a mixture of Gaussians,
where each Gaussian distribution represents the solution for a
single category. Restricting our analysis to the case of categories
with equal category variance !c

2, we find that the mean of this
posterior probability distribution is

E'T !S( " #
c

p#c!S$
!c

2S ! !S
2"c

!c
2 ! !S

2 , (10)

which can be rewritten as

E'T !S( "
!c

2

!c
2 ! !S

2 S !
!S

2

!c
2 ! !S

2#
c

p#c!S$"c . (11)

A full derivation of this expectation is given in Appendix A.
Equation 11 gives the optimal guess for recovering a target in the

case of multiple categories. This guess is a weighted average of the
stimulus S and the means "c of all the categories that might have
produced S. When perceivers are certain of a stimulus’s category, this
equation reduces to Equation 7, and perception of a stimulus S is
biased toward the mean of its category. However, when a stimulus is
on a border between two categories, the optimal guess at the target is
influenced by both category means, and each category weakens the
other’s effect (Figure 2b). Shrinkage of perceptual space is thus
strongest in areas of unambiguous categorization—the centers of
categories—and weakest at category boundaries.

This analysis demonstrates that warping of perceptual space that is
qualitatively consistent with the perceptual magnet effect emerges as
the result of optimal perception of noisy stimuli. In the next two
sections, we provide a quantitative investigation of the model’s pre-

dictions in the context of speech perception. The next section focuses
on comparing the predictions of the model with empirical data on the
perceptual magnet effect using phonetic category parameters that are
estimated from human data. In the subsequent section, we examine
the consequences of manipulating these parameters, relating the mod-
el’s behavior to further results from the literature.

Quantitative Evaluation

In this section, we test the model’s predictions quantitatively
against the multidimensional scaling results from Experiment 3 in
Iverson and Kuhl (1995). These data were selected as a modeling
target because they give a clean, precise spatial representation of
the warping associated with the perceptual magnet effect, mapping
13 /i/ and /e/ stimuli that are separated by equal psychoacoustic
distance onto their corresponding locations in perceptual space.
Because these multidimensional scaling data constitute the basis
for both this simulation and the experiment reported below, we
describe the experimental setup and results in some detail here.

Iverson and Kuhl’s (1995) multidimensional scaling experiment
was conducted with thirteen vowel stimuli along a single contin-
uum in F1–F2 space ranging from /i/ to /e/, whose exact formant
values are shown in Table 1. The stimuli were designed to be
equally spaced when measured along the mel scale, which equates
distances on the basis of difference limens (S. S. Stevens et al.,
1937). Subjects performed an AX discrimination task in which
they pressed and held a button to begin a trial, releasing the button
as quickly as possible if they believed the two stimuli to be
different or holding the button for the remainder of the trial (2000
ms) if they heard no difference between the two stimuli. Subjects
heard 156 “different” trials, consisting of all possible ordered pairs
of nonidentical stimuli, and 52 “same” trials, four of each of the 13
stimuli.

Iverson and Kuhl (1995) reported a total accuracy rate of 77% on
different trials and a false alarm rate of 31% on same trials, but they
did not further explore direct accuracy measures. Instead, they created
a full similarity matrix consisting of log reaction times of different
responses for each pair of stimuli. To avoid sparse data in the cells
where most participants incorrectly responded that two stimuli were
identical, the authors replaced all same responses with the trial length,
2,000 ms, effectively making them into different responses with long
reaction times. This similarity matrix was used for multidimensional
scaling, which finds a perceptual map that is most consistent with a
given similarity matrix. In this case, the authors constrained the
solution to be in one dimension and assumed a linear relation between
similarity values and distance in perceptual space. The interstimulus
distances obtained from this analysis are shown in Figure 3. The
perceptual map obtained through multidimensional scaling showed
that neighboring stimuli near the ends of the stimulus vector were
separated by less perceptual distance than neighboring stimuli near the
center of the vector. These results agreed qualitatively with data
obtained in Experiment 2 of the same article (Iverson & Kuhl, 1995),
which used d) as an unbiased estimate of perceptual distance. We
chose the multidimensional scaling data as our modeling target be-
cause they are more extensive than the d) data, encompassing the
entire range of stimuli.

1 The expectation is optimal if the penalty for misidentifying a stimulus
increases with squared distance from the target.
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We tested a two-category version of the rational model to
determine whether parameters could be found that would repro-
duce these empirical data. Equal variance was assumed for the two
categories, and parameters in the model were based as much as
possible on empirical measures in order to reduce the number of
free parameters. The simulation was constrained to a single di-
mension along the direction of the stimulus vector. The parameters
that needed to be specified were as follows:

" /i/: /i/ category mean

"/e/: /e/ category mean

!c
2: category variance

!S
2: uncertainty in the speech signal.

Subject goodness ratings from Iverson and Kuhl (1995) were
first used to specify the mean of the /i/ category, "/i/. These
goodness ratings indicated that the best exemplars of the /i/ cate-
gory were Stimuli 2 and 3, so the mean of the /i/ category was set
halfway between these two stimuli.2

The mean of the /e/ category, "/e/, and the sum of the variances,
!c

2 * !S
2, were calculated as described in Appendix B on the basis

of phoneme identification curves from Lotto et al. (1998). These
identification curves were produced through an experiment in
which subjects were played pairs of stimuli from the 13-stimulus
vector and asked to identify either the first or the second stimulus
in the pair as /i/ or /e/. The other stimulus in the pair was one of
two reference stimuli, either Stimulus 5 or Stimulus 9. Lotto et al.
obtained two distinct curves in these two conditions, showing that
the phoneme boundary shifted depending on the identity of the
reference stimulus. Because the task used for multidimensional
scaling involved presentation of all possible pairings of the 13
stimuli, the phoneme boundary in the model was assumed to be
halfway between the boundaries that appeared in these two refer-
ent conditions. In order to identify this boundary, we fit two
logistic curves to the prototype and nonprototype identification

curves. The two curves were constrained to have the same gain,
and the biases of the two curves were averaged to obtain a single
bias term. On the basis of Equation 34, these values indicated that
"/e/ should be placed just to the left of Stimulus 13; Equation 35
yielded a value of 10,316 for !c

2 * !S
2. The resulting discriminative

boundary is shown together with the data from Lotto et al. (1998)
in Figure 4.

The ratio between the category variance !c
2 and the speech signal

noise !S
2 was the only remaining free parameter, and we chose its

value so as to maximize the fit to Iverson and Kuhl’s (1995) multi-
dimensional scaling data. This direct comparison was made by cal-
culating the expectation E[T !S] for each of the 13 stimuli according to
Equation 11 and then determining the distance in mels between the
expected values of neighboring stimuli. These distances were com-
pared with the distances between stimuli in the multidimensional
scaling solution. Because multidimensional scaling gives relative, and
not absolute, distances between stimuli, we evaluated this comparison
on the basis of whether mel distances in the model were proportional
to distances found through multidimensional scaling. As shown in
Figure 3, the model yielded an extremely close fit to the empirical
data, yielding interstimulus distances that were proportional to those
found in multidimensional scaling (r + .97). This simulation used the
following parameters:

" /i/: F1 + 224 Hz, F2 + 2413 Hz

" /e/: F1 + 423 Hz, F2 + 1936 Hz

2 Note that this is more extreme than the mean value of the /i/ category
produced by male speakers in Peterson and Barney (1952), which would
instead correspond to Stimulus 5.
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Figure 3. Relative distances between neighboring stimuli in Iverson and
Kuhl’s (1995) multidimensional scaling (MDS) analysis and in the model.
Adapted from P. Iverson & P. K. Kuhl, “Mapping the Perceptual Magnet
Effect for Speech Using Signal Detection Theory and Multidimensional
Scaling, 1995, Journal of the Acoustical Society of America, 97, p. 559.
Copyright 1995 by the Acoustical Society of America. Reprinted with
permission.

Table 1
Formant Values for Stimuli Used in the Multidimensional
Scaling Experiment, Reported in Iverson and Kuhl (2000)

Stimulus no. F1 (Hz) F2 (Hz)

1 197 2489
2 215 2438
3 233 2388
4 251 2339
5 270 2290
6 289 2242
7 308 2195
8 327 2148
9 347 2102

10 367 2057
11 387 2012
12 408 1968
13 429 1925

Note. F1 and F2 represent the first and second formants, respectively.
Reprinted from P. Iverson & P. K. Kuhl, “Perceptual Magnet and Phoneme
Boundary Effects in Speech Perception: Do They Arise From a Common
Mechanism?” 2000, Perception & Psychophysics, 62, p. 879.
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!c
2: 5,873 (!c + 77 mels)

!S
2: 4,443 (!S + 67 mels)

The fit obtained between the simulation and the empirical
data is extremely close; however, the model parameters derived
in this simulation are meant to serve only as a first approxima-
tion of the actual parameters in vowel perception. Because of
the variability that has been found in subjects’ goodness ratings
of speech stimuli, it is likely that these parameters are some-
what off from their actual values, and it is also possible that the
parameters vary between subjects. Instead, the simulation is a
concrete demonstration that the model can reproduce empirical
data on the perceptual magnet effect quantitatively as well as
qualitatively using a reasonable set of parameters, supporting
the viability of this rational account.

Effects of Frequency, Variability, and Noise

The previous section has shown a direct quantitative corre-
spondence between model predictions and empirical data. In
this section we explore the behavior of the rational model under
various parameter combinations, using the parameters derived
in the previous section as a baseline for comparison. These
simulations serve a dual purpose: They establish the robustness
of the qualitative behavior of the model under a range of
parameters, and they make predictions about the types of vari-
ability that should occur when category frequency, category

variance, and speech signal noise are varied. We first introduce
several quantitative measures that can be used to visualize the
extent of perceptual warping and subsequently use these mea-
sures to illustrate the effects of parameter manipulations.

Characterizing Perceptual Warping

Our statistical analysis establishes a simple function mapping
a stimulus, S, to a percept of the intended target, given by
E[T !S]. This is a linear mapping in the one-category case
(Equation 7), but it becomes nonlinear in the case of multiple
categories (Equation 11). Figure 5 illustrates the form of this
mapping in the cases of one category and two categories with
equal variance. Note that this function is not an identification
function: The vertical axis represents the exact location of a
stimulus in a continuous perceptual space, E[T !S], not the
probability with which that stimulus receives a particular label.
Slopes that are more horizontal indicate that stimuli are closer
in perceptual space than in acoustic space. In the two-category
case, stimuli that are equally spaced in acoustic space are
nevertheless clumped near category centers in perceptual space,
as shown by the two nearly horizontal portions of the curve near
the category means. In order to analyze this behavior more
closely, we examine the relationship among three measures:
identification, the posterior probability of category member-
ship; displacement, the difference between the actual and per-
ceived stimulus; and warping, the degree of shrinkage or ex-
pansion of perceptual space.

The identification function p(c!S) gives the probability of a
stimulus having been generated by a particular category, as calcu-
lated in Equation 8. This function is then used to compute the
posterior on targets, summing over categories. In the case of two
categories with equal variance, the identification function takes the
form of a logistic function. Specifically, the posterior probability
of category membership can be written as
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Figure 5. Model predictions for location of stimuli in perceptual space
relative to acoustic space. Dashed lines indicate patterns corresponding to
a single category; solid lines indicate patterns corresponding to two cate-
gories of equal variance. Cat. + Category.
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intermediate identification curve in the model (solid line). Adapted from
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p#c1!S$ "
1

1 ! e,gS*b , (12)

where the gain and bias of the logistic are given by

g "
"1 # "2

!c
2 ! !S

2

and

b "
"1

2 # "2
2

2#!c
2 ! !S

2$
.

An identification function of this form is illustrated in Figure 6a.
In areas of certain categorization, the identification function is at
either 1 or 0; a value of 0.5 indicates maximum uncertainty about
category membership.

Displacement involves a comparison between the location of a
stimulus in perceptual space E[T !S] and its location in acoustic
space S. It corresponds to the amount of bias in perceiving a
stimulus. We can calculate this quantity as

E'T !S( # S "
!c

2

!c
2 ! !S

2S !
!S

2

!c
2 ! !S

2 #
c

p#c!S$"c # S

"
!S

2

!c
2 ! !S

2 $#c
p#c!S$"c # S% . (13)

In the one-category case, this means that the amount of
displacement is proportional to the distance between the stim-
ulus S and the mean "c of the category. As stimuli get farther
away from the category mean, they are pulled proportionately
farther toward the center of the category. The dashed lines in
Figure 6b show two cases of this. In the case of multiple
categories, the amount of displacement is proportional to the
distance between S and a weighted average of the means "c of
more than one category. This is shown in the solid line, where
ambiguous stimuli are displaced less than would be predicted in
the one-category case because of the competing influence of a
second category mean.

Finally, perceptual warping can be characterized by the distance
between two neighboring points in perceptual space that are sep-
arated by a fixed step -S in acoustic space. This quantity is
reflected in the distance between neighboring points on the bottom
layer of each diagram in Figure 2. By the standard definition of the
derivative as a limit, as -S approaches zero this measure of
perceptual warping corresponds to the derivative of E[T !S] with
respect to S. This derivative is

dE'T !S(

dS
"

!c
2

!c
2 ! !S

2 !
!S

2

!c
2 ! !S

2#
c

"c

dp(c!S)
dS

, (14)

where the last term is the derivative of the logistic function
given in Equation 12. This equation demonstrates that distance
between two neighboring points in perceptual space is a linear
function of the rate of change of p(c!S), which measures cate-
gory membership of stimulus S. Probabilities of category as-
signments are changing most rapidly near category boundaries,
resulting in greater perceptual distances between neighboring
stimuli near the edges of categories. This is shown in Figure 6c,

and the form of the derivative is described in more detail in
Appendix C.

In summary, the identification function (Equation 12) shows
a sharp decrease at the location of the category boundary, going
from a value near one (assignment to Category 1) to a value
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Figure 6. Model predictions for (a) identification, (b) displacement, and
(c) warping. Dashed lines indicate patterns corresponding to a single
category; solid lines indicate patterns corresponding to two categories of
equal variance.
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near zero (assignment to Category 2). Perceptual bias, or dis-
placement (Equation 13), is a linear function of distance from
the mean in the one-category case but is more complex in the
two-category case; it is positive when stimuli are displaced in a
positive direction and negative when stimuli are displaced in a
negative direction. Finally, warping of perceptual space (Equa-
tion 14), which has a value greater than one in areas where
perceptual space is expanded and a value less than one in areas
where perceptual space is shrunk, shows that all of perceptual
space is shrunk in the one-category case but that there is an area
of expanded perceptual space between categories in the two-
category case. Qualitatively, we note that displacement is al-
ways in the direction of the most probable category mean and
that the highest perceptual distance between stimuli occurs near
category boundaries. This is compatible with the idea that
categories function like perceptual magnets and also with the
observation that perceptual space is shrunk most in the centers
of phonetic categories. In the remainder of this section, we use
these measures to explore the model’s behavior under various
parameter manipulations that simulate changes in phonetic cat-
egory frequency, within-category variability, and speech signal
noise.

Frequency

Manipulating the frequency of phonetic categories corresponds
in our model to manipulating their prior probability. This manip-
ulation causes a shift in the discriminative boundary between two
categories, as described in Appendix B. In Figure 7a, the boundary
is shifted toward the category with lower prior probability so that
a larger region of acoustic space between the two categories is
classified as belonging to the category with higher prior probabil-
ity. Figure 7b shows that when the prior probability of Category 1
is increased, most stimuli between the two categories are shifted in
the negative direction toward the mean of that category. This
occurs because more sounds are classified as being part of Cate-
gory 1. Decreasing the prior probability of Category 1 yields a
similar shift in the opposite direction. Figure 7c shows that the
location of the expansion of perceptual space follows the shift in
the category boundary.

This shift qualitatively resembles the boundary shift that has
been documented on the basis of lexical context (Ganong, 1980).
In contexts where one phoneme would form a lexical item and the
other would not, phoneme boundaries are shifted toward the pho-
neme that makes the nonword, so that more of the sounds between
categories are classified as the phoneme that would yield a word.
Similar effects have also been found for lexical frequency (Con-
nine, Titone, & Wang, 1993) and phonotactic probability (Massaro
& Cohen, 1983; Pitt & McQueen, 1998). To model such a shift
using the rational model, information about a specific lexical or
phonological context needs to be encoded in the prior p(c). The
prior distribution would thus reflect the information about the
frequency of occurrence of a phonetic category in a specific
context. The rational model then predicts that the boundary shift

can be modeled by a bias term of magnitude log
p(c2)
p(c1)

and that the

peak in discrimination should shift together with the category
boundary.

Variability

The category variance parameter indicates the amount of mean-
ingful variability that is allowed within a phonetic category. One
correlate of this might be the amount of coarticulation that a
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Figure 7. Effects of prior probability manipulation on (a) identification,
(b) displacement, and (c) warping. The prior probability of category 1,
p(c1), was either increased or decreased while all other model parameters
were held constant.
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category allows: Categories that undergo strong coarticulatory
effects have high variance, whereas categories that are resistant to
coarticulation have lower variance.3 In the model, categories with
high variability should differ from categories with low variability
in two ways. First, the discriminative boundary between the cat-
egories should be either shallow, in the case of high variability, or
sharp, in the case of low variability (Figure 8a). This means that
listeners should be nearly deterministic in inferring which category
produced a sound in the case of low variability, whereas they
should be more willing to consider both categories if the categories
have high variability. This pattern has been demonstrated empir-
ically by Clayards, Tanenhaus, Aslin, and Jacobs (2008), who
showed that the steepness of subjects’ identification functions
along a /p/–/b/ continuum depends on the amount of category
variability in the experimental stimuli.

In addition to this change in boundary shape, the rational model
predicts that the amount of variability should affect the weight
given to the category means relative to the stimulus S when
perceiving acoustic detail. Less variability within a category im-
plies a stronger constraint on the sounds that the listener expects to
hear, and this gives more weight to the category means. This
should cause more extreme shrinkage of perceptual space in cat-
egories with low variance.

These two factors should combine to yield extremely categorical
perception in categories with low variability and perception that is
less categorical in categories with high variability. Figure 8b
shows that displacement has a higher magnitude than baseline for
stimuli both within and between categories when category vari-
ance is decreased. Displacement is reduced with higher category
variance. Figure 8c shows the increased expansion of perceptual
space between categories and the increased shrinkage within cat-
egories that result from low category variance. In contrast, cate-
gories with high variance yield more veridical perception.

Differences in category variance might explain why it is easier
to find perceptual magnet effects in some phonetic categories than
in others. According to vowel production data from Hillenbrand et
al. (1995), reproduced here in Figure 1, the /i/ category has low
variance along the dimension tested by Iverson and Kuhl (1995).
The difficulty in reproducing the effect in other vowel categories
might be partly attributable to the fact that listeners have weaker
prior expectations about which vowel sounds speakers might pro-
duce within these categories.

This parameter manipulation can also be used to explore the
limits on category variance: The rational model places an implicit
upper limit on category variance if one is to observe enhanced
discrimination between categories. This limit occurs when catego-
ries are separated by less than two standard deviations, that is,
when the standard deviation increases to half the distance to the
neighboring category. When the category variance reaches this
point, the distribution of speech sounds in the two categories
becomes unimodal, and the acquired distinctiveness between cat-
egories disappears. Instead of causing enhanced discrimination at
the category boundary, noise now causes all speech sounds to be
pulled inward toward the space between the two category means,
as illustrated in Figure 9. Shrinkage of perceptual space may be
slightly less between categories than within categories, but all of
perceptual space is pulled toward the center of the distribution.
This perceptual pattern resembles the pattern that would be pre-
dicted if these speech sounds all derived from a single category,

3 Coarticulatory effects are context dependent rather than being an
inherent property of specific phonetic categories. However, listeners
should be able to estimate the typical range of coarticulation that occurs
within specific contexts and thus obtain a context-specific estimate of
category variance.

Category 1 Mean Category 2 Mean

0

1

Category Identification

Stimulus Location

P
ro

ba
bi

lit
y 

of
 B

el
on

gi
ng

 to
 C

at
eg

or
y 

1

 

 
Original Variance
High Variance
Low Variance

(a)

Category 1 Mean Category 2 Mean

0

Stimulus Displacement

Stimulus Location

A
m

ou
nt

 o
f D

is
pl

ac
em

en
t

 

 

Original Variance
High Variance
Low Variance

(b)

Category 1 Mean Category 2 Mean

1

Warping of Perceptual Space

Stimulus Location

R
el

at
iv

e 
P

er
ce

pt
ua

l D
is

ta
nc

e

 

 

Original Variance
High Variance
Low Variance

(c)

Figure 8. Effects of category variance on (a) identification, (b) displace-
ment, and (c) warping. The category variance parameter !c

2 was either
increased or decreased while all other model parameters were held con-
stant.
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indicating that it is the distribution of speech sounds in the input,
rather than the explicit category structure, that produces perceptual
warping in the model.

Noise

Manipulating the speech signal noise also affects the optimal
solution in two different ways. More noise means that listeners
should be relying more on prior category information and less on
the speech sound they hear, yielding more extreme shrinkage of
perceptual space within categories. However, adding noise to the
speech signal also makes the boundary between categories less
sharp so that in high-noise environments, listeners are uncertain of
speech sounds’ category membership (Figure 10a). This combina-
tion of factors produces a complex effect: Whereas adding low
levels of noise makes perception more categorical, there comes a
point where noise is too high to determine which category pro-
duced a speech sound, blurring the boundary between categories.

With very low levels of speech signal noise, perception is only
slightly biased (Figure 10b), and there is a very low degree of
shrinkage and expansion of perceptual space (Figure 10c). This
occurs because the model relies primarily on the speech sound in
low-noise conditions, with only a small influence from category
information. As noise levels increase to those used in the simula-
tion in the previous section, the amount of perceptual bias and
warping both increase. With further increases in speech signal
noise, however, the shallow identification function begins to in-
terfere with the availability of category information. For unambig-
uous speech sounds, displacement and shrinkage are both in-
creased, as shown at the edges of the graphs in Figure 10.
However, this does not simultaneously expand perceptual space
between the categories. Instead, the high uncertainty about cate-
gory membership causes reduced expansion at points between
categories, dampening the difference between between-category
and within-category discriminability.

The complex interaction between perceptual warping and
speech signal noise suggests that there is some level of noise for
which one would measure between-category discriminability as
much higher than within-category discriminability. However, for
very low levels of noise and for very high levels of noise, this
difference would be much less noticeable. This suggests a possible
explanation for variability that has been found in perceptual warp-
ing even among studies that have examined the English /i/ cate-

gory (e.g., Lively & Pisoni, 1997). Extremely low levels of am-
bient noise should dampen the perceptual magnet effect, whereas
the effect should be more prominent at higher levels of ambient
noise.

A further prediction regarding speech signal noise concerns its
effect on boundary shifts. As discussed above, the rational model
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Figure 10. Effects of speech signal noise on (a) identification, (b) dis-
placement, and (c) warping. The speech signal noise parameter !S

2 was
either increased or decreased while all other model parameters were held
constant.

Actual Stimulus

Perceived Stimulus

Figure 9. Categories that overlap to form a single unimodal distribution
act perceptually like a single category: Speech sounds are pulled toward a
point between the two categories.
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predicts that when prior probabilities p(c) are different between
two categories, there should be a boundary shift caused by a bias

term of log
p(c2)
p(c1)

. This bias term produces the largest boundary

shift for small values of the gain parameter, which correspond to
a shallow category boundary (see Appendix B). High noise vari-
ance produces this type of shallow category boundary, giving the
bias term a large effect. This is illustrated in Figure 11, where for
constant changes in prior probability, larger boundary shifts occur
at higher noise levels. This prediction qualitatively resembles data
on lexically driven boundary shifts: Larger shifts occur when
stimuli are low-pass filtered (McQueen, 1991) or presented in
white noise (Burton & Blumstein, 1995).

Summary

Simulations in this section have shown that the qualitative
perceptual patterns predicted by the rational model are the same
under nearly all parameter combinations. The exceptions to this are
the case of no noise, in which perception should be veridical, and
the case of extremely high category variance or extremely high
noise, in which listeners cannot distinguish between the two cat-
egories and effectively treat them as a single, larger category. In
addition, these simulations have examined three types of variabil-
ity in perceptual patterns. Shifts in boundary location occur in the
model as a result of changes in the prior probability of a phonetic
category, and these shifts mirror lexical effects that have been
found empirically (Ganong, 1980). Differences in the degree of
categorical perception in the model depend on the amount of
meaningful variability in a category, and these predictions are
consistent with the observation that the /i/ category has low vari-
ance along the relevant dimension. Finally, the model predicts
effects of ambient noise on the degree of perceptual warping, a
methodological detail that might explain the variability of percep-
tual patterns under different experimental conditions.

Testing the Predicted Effects of Noise

Simulations in the previous section suggested that ambient noise
levels might be partially responsible for the contradictory evidence
that has been found in previous empirical studies of the perceptual
magnet effect. In this section, we present an experiment to test the
model’s predictions with respect to changes in speech signal noise.
The rational model makes two predictions about the effects of
noise. The first prediction is that noise should yield a shallower
category boundary, making it difficult at high noise levels to
determine which category produced a speech sound. This effect
should lower the discrimination peak between categories at very
high levels of noise and is predicted by any model in which noise
increases the variance of speech sounds from a phonetic category.
The second prediction is that listeners should weight acoustic and
category information differentially depending on the amount of
speech signal noise. As noise levels increase, they should rely
more on category information, and perception should become
more categorical. This effect is predicted by the rational model but
not by other models of the perceptual magnet effect, as discussed
in detail later in the article. Although this effect is overshadowed
by the shallow category boundary at very high noise levels, ex-
amining low and intermediate levels of noise allows us to test this
second prediction.

Previous research into effects of uncertainty on speech perception
has focused on the role of memory uncertainty. Pisoni (1973) found
evidence that within-category discrimination, in comparison with
between-category discrimination, shows a larger decrease in accuracy
with longer interstimulus intervals. Pisoni interpreted these results as
evidence that within-category discrimination relies on acoustic (rather
than phonetic) memory and that acoustic memory traces decay with
longer interstimulus intervals. Iverson and Kuhl (1995) also investi-
gated the perceptual magnet effect at three different interstimulus
intervals; though they did not explicitly discuss changes in warping
related to interstimulus interval, within-category clusters appear to be
tighter in their 2,500-ms condition than in their 250-ms condition.
These results are consistent with the idea that memory uncertainty
increases with longer interstimulus intervals.

Several studies have also studied asymmetries in discrimination,
under the assumption that memory decay will have a greater effect on
the stimulus that is presented first. However, many of these studies
have produced contradictory results, making the effects of memory
uncertainty difficult to interpret (Polka & Bohn, 2003; Repp & Crow-
der, 1990). Furthermore, data from Pisoni (1973) indicate that longer
interstimulus intervals do not necessarily increase uncertainty: Dis-
crimination performance was worse with a 0-ms interstimulus interval
than with a 250-ms interstimulus interval.

Adding white noise is a more direct method of introducing
speech signal uncertainty, and its addition to speech stimuli has
consistently been shown to decrease subjects’ ability to identify
stimuli accurately. Subjects make more identification errors (G. A.
Miller & Nicely, 1955) and display a shallower identification
function (Formby, Childers, & Lalwani, 1996) with increased
noise, consistent with the rational model’s predictions. Although it
is known that subjects rely to some extent on both temporal and
spectral cues in noisy conditions (Xu & Zheng, 2007), it is not
known how reliance on these acoustic cues compares with reliance
on prior information about category structure. To test whether
reliance on category information is greater in higher noise condi-
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Figure 11. Effects of speech signal noise on the magnitude of a boundary
shift. Simulations at both noise levels used prior probability values for c1
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tions than in lower noise conditions, we replicated Experiment 3 of
Iverson and Kuhl (1995)—their multidimensional scaling experi-
ment—with and without the presence of background white noise.

The rational model predicts that perceptual space should be
distorted to different degrees in the noise and no-noise conditions.
At moderate levels of noise, we should observe more perceptual
warping than with no noise because of higher reliance on category
information. At very high noise levels, however, if subjects are
unable to make reliable category assignments, warping should
decrease; as noted, this decrease is predicted by any model in
which subjects are using category membership to guide their
judgments. Thus, whereas the model is compatible with changes in
both directions for different noise levels, our aim is to find levels
of noise for which warping is higher with increased speech signal
noise. Moreover, manipulating the noise parameter in the rational
model should account for behavioral differences due to changing
noise levels.

Method

Subjects. Forty adult participants were recruited from the
Brown University community. All were native English speakers
with no known hearing impairments. Participants were compen-
sated at a rate of $8 per hour. Data from two additional participants
were excluded, one because of equipment failure and one because
of failure to understand the task instructions.

Apparatus. Stimuli were presented through noise cancellation
headphones, Bose Aviation Headset model AHX-02, from a com-
puter at comfortable listening levels. Subjects’ responses were
entered and recorded using the computer that presented the stimuli.
The presentation of the stimuli was controlled through Bliss soft-
ware (Mertus, 2004), developed at Brown University for use in
speech perception research.

Stimuli. Thirteen /i/ and /e/ stimuli, modeled after the stimuli in
Iverson and Kuhl (1995), were created with the KlattWorks software
(McMurray, 2009). Stimuli varied along a single F1–F2 vector that
ranged from an F1 of 197 Hz and an F2 of 2489 Hz to an F1 of 429
Hz and an F2 of 1925 Hz. The stimuli were spaced at equal intervals
of 30 mels; exact formant values are shown in Table 1. For all stimuli,
F3 was set at 3010 Hz, F4 at 3300 Hz, and F5 at 3850 Hz. The
bandwidths for the five formants were 53, 77, 111, 175, and 281 Hz.
Each stimulus was 435 ms long. Pitch rose from 112 to 130 Hz over
the first 100 ms and dropped to 92 Hz over the remainder of the
stimulus. Stimuli were normalized in Praat (Boersma, 2001) to have
a mean intensity of 70 dB.

For stimuli in the noise condition, we created 435 ms of white
noise using Praat by sampling randomly from a uniform [,0.5,
0.5] distribution at a sampling rate of 11025 Hz. The mean inten-
sity of this waveform was then scaled to 70 dB. The white noise
was added to each of the 13 stimuli, creating a set of stimuli with
a zero signal-to-noise ratio.

Procedure. Subjects were assigned to either the no-noise or
the noise condition. After reading and signing a consent form,
they completed ten practice trials designed to familiarize them
with the task and stimuli and subsequently completed a single
block of 208 trials. This block included 52 “same” trials, four
trials for each of 13 stimuli, and 156 “different” trials in which
all possible ordered pairs of nonidentical stimuli were presented
once each. In each trial, participants heard two stimuli sequen-

tially with a 250-ms interstimulus interval. They were in-
structed to respond as quickly as possible, pressing one button
if the two stimuli were identical and another button if they
could hear a difference between the two stimuli. Responses and
reaction times were recorded.

This procedure was nearly identical to that used by Iverson and
Kuhl (1995), though the response method differed slightly in order
to provide reaction times for same responses in addition to differ-
ent responses. We also eliminated the response deadline of 2000
ms and instead recorded subjects’ full reaction times for each
contrast, up to 10,000 ms.

Results and Discussion

Of the 8,320 responses, 14 were excluded from the analysis
because subjects either responded before hearing the second stim-
ulus or failed to respond altogether within the 10–s response
period. Table 2 shows the percentage of the remaining trials on
which subjects responded same for each contrast. As expected, the
percentage of same responses was extremely high for one-step
discriminations and got successively lower as the psychoacoustic
distance between stimuli increased. This correlation was signifi-
cant in a by-item analysis for both the no-noise (r + ,0.85, p .
.01) and the noise (r + ,0.87, p . .01) condition.4

Figure 12a shows these confusion data schematically, where
darker squares indicate a higher percentage of same responses.
This schematic representation highlights three differences be-
tween the conditions. First, the overall percentage of same
responses was higher in the noise condition than in the no-noise
condition, as evidenced by the higher number of dark squares.
Second, the percentage of same responses declined more slowly
in the noise condition than in the no-noise condition with
increasing psychophysical distance, as reflected by a more
gradual change from dark squares to light squares in the noise
condition. Third, the difference between within-category and
between-category contrasts was greater in the noise condition
than in the no-noise condition. Whereas the no-noise condition
showed fairly constant performance along any given diagonal,
with only a small dip in the percentage of same responses
toward the center of the stimulus continuum, the noise condi-
tion showed a much larger difference along the diagonal, with
a strong decrease in same responses near the between-category
contrasts at the center of the stimulus continuum. This third
difference suggests that there is a larger degree of within-
category shrinkage and between-category expansion of percep-
tual space in the noise condition, consistent with the predictions
of the rational model.

Same–different model. We used the rational model to sim-
ulate these confusion data, assuming that participants perceive
speech sounds by sampling a target production from the poste-
rior distribution on target productions, p(T !S). We extended the
model to account directly for same– different responses by
assuming that participants respond same if the sampled target
productions for the two speech sounds are within a threshold
distance % of each other; otherwise they respond different. The
parameter % thus played a similar role to the response criterion

4 All statistical significance tests reported in this article are two-tailed.

767INFLUENCE OF CATEGORIES ON PERCEPTION



of the observer in signal detection theory (Green & Swets,
1966), determining the magnitude of a difference that will yield
a positive response. Under this model, the number of same
responses to a given contrast is predicted to follow a binomial
distribution B(n, p) where n is the number of trials in which a given
contrast was presented and p is the probability that the two sampled
target productions for that contrast are within a distance % of each
other, p(!TA , TB! $ %!SA, SB). This probability can be computed
as described in Appendix D.

The simulation used the same category means "/i/ and "/e/ and
category variance !c

2 as the simulation of the Iverson and Kuhl
(1995) data. The noise variance was a free parameter that could
vary between conditions to capture differences in perceptual warp-
ing; in addition, the decision threshold % was a free parameter that
could vary between the two conditions, allowing the model to
capture the overall greater number of same responses in the noise
condition. These free parameters were chosen to maximize the
likelihood of the same–different data. The best fitting model used
parameters of % + 76 mels and !S

2 + 878 (!S + 30 mels) for the
no-noise condition and % + 111 mels and !S

2 + 2129 (!S + 46
mels) for the noise condition. Using these parameters, we found
that the percentage of same responses predicted by the model for
each contrast was highly correlated with that found empirically
(r + .98 for the no-noise condition; r + .97 for the noise condi-
tion), and these correlations remained high even after controlling
for acoustic distance (r + .94 and r + .87 for the no-noise and
noise conditions, respectively). Model performance is shown sche-
matically in Figure 12b.

The key prediction for this experiment was that the noise vari-
ance parameter !S

2 could account for differences in performance
between the no-noise and noise conditions. However, in the above
simulation, % was an additional free parameter that could vary
between conditions. To demonstrate quantitatively that the noise
parameter accounted for differences above and beyond those ac-
counted for simply by varying the decision threshold, we used a
generalized likelihood ratio test (e.g., Rice, 1995) to compare the
full model described above with a restricted model (Figure 12c) in
which the noise parameter was constant across conditions. Like the
full model, the restricted model used category means and the
category variance from the previous simulations, and the decision
threshold was a free parameter that could vary between the two
conditions.5 The models differed only in their assumptions about
the noise parameter. These two models thus constitute a nested
hierarchy, and we can determine whether the additional noise
parameter makes a statistically significant difference by examining
the difference between the log likelihoods of the models, computed
using the maximum likelihood estimates of the parameters. Under
the null hypothesis that the data were generated from the restricted
model, twice this difference has a /2(1) distribution. The log

5 Constraining % to be the same between the two conditions significantly
decreases the likelihood of the data; however, even under the assumption
of a constant threshold, allowing the speech signal noise parameter to vary
between conditions makes a statistically significant difference.

Table 2
Percentage of Trials on Which Subjects Responded “Same” for Each Pair of Stimuli in the No-Noise and Noise Conditions

Stimulus no. 1 2 3 4 5 6 7 8 9 10 11 12 13

No-noise condition

1 98.8 82.5 82.5 40.0 22.5 7.5 5.0 5.0 0.0 0.0 2.5 0.0 2.5
2 97.5 95.0 70.0 52.5 10.0 5.0 0.0 2.5 2.5 0.0 0.0 0.0
3 91.3 97.5 75.0 32.5 12.5 5.0 2.5 0.0 2.5 2.5 0.0
4 97.5 87.5 40.0 12.5 5.0 2.5 0.0 2.5 0.0 0.0
5 97.5 77.5 27.5 12.5 5.0 2.5 0.0 0.0 0.0
6 92.5 75.0 30.0 15.0 2.5 2.5 2.6 0.0
7 91.3 75.0 42.5 17.5 5.0 5.0 0.0
8 95.0 80.0 50.0 32.5 7.5 5.0
9 93.8 87.5 67.5 27.5 22.5

10 92.5 87.5 76.9 37.5
11 97.5 87.5 65.0
12 96.3 97.5
13 100.0

Noise condition

1 95.0 95.0 87.5 80.0 82.5 57.5 25.0 7.0 5.0 0.0 0.0 5.0 2.5
2 96.3 97.5 97.5 87.5 80.0 42.5 15.0 5.0 5.0 0.0 2.5 2.5
3 95.0 97.5 90.0 80.0 42.5 30.0 7.5 0.0 2.5 2.5 0.0
4 92.5 95.0 90.0 55.0 20.0 10.0 7.5 2.5 2.5 7.5
5 95.0 90.0 67.5 27.5 5.0 12.5 2.5 15.0 10.0
6 96.3 87.5 50.0 25.0 7.5 2.5 10.0 2.5
7 91.3 75.0 42.5 20.0 12.5 12.5 10.0
8 87.5 72.5 52.5 40.0 20.0 10.0
9 90.0 92.5 72.5 47.5 37.5

10 93.8 95.0 85.0 52.5
11 95.0 100.0 85.0
12 95.0 97.5
13 95.0
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likelihood of the data was ,676 under the restricted model6 and
,568 under the full model. The full model therefore accounted for
these data significantly better than did the restricted model,
/2(1) + 216, p . .001; allowing the noise parameter to change
between the noise and no-noise conditions resulted in a statistically
significant improvement in fit.

This comparison indicates that the rational model accounts for
additional differences between conditions beyond the overall in-
crease in same responses. As noted earlier, there are two such
differences apparent in the data. First, the decrease in same re-
sponses with psychophysical distance is more gradual in the noise
condition than in the no-noise condition. In the rational model, this
occurs because listeners in the noise condition assume that the
speech sound might have come from a wider range of target
productions, leading to higher variability in the posterior distribu-
tion (Equation 25). Higher posterior variance leads to a shallower
decline in same responses. Second, the responses are more cate-
gorical in the noise condition than in the no-noise condition, as
evidenced by response patterns along each diagonal. This occurs in
the rational model because of increased weighting of category
information in higher noise conditions (Equation 7).

Although both of these aspects of the data are compatible with
the rational model, a straightforward alternative explanation is
available for the first. In modeling these data we have made the
assumption that the stimulus heard by experimental participants is
identical to the stimulus played. This assumption allows the use of
known stimulus values S when computing listeners’ optimal per-
cepts. However, in reality there is likely to be some variability in
the stimuli heard by listeners, and this variability should be higher
in the noise condition than in the no-noise condition. The shallow
decrease in same responses in the noise condition might then be a
simple result of higher stimulus variability. Taking into account
experimental noise might improve the performance of the re-
stricted model by providing a mechanism to account for this
shallower decrease in same responses in the noise condition.

To investigate this possibility, we simulated experimental noise
in the restricted model by drawing values of S, the speech sound
heard by listeners, from a Gaussian distribution centered around
each stimulus value. The probability of a same response for a given
contrast was approximated by drawing 100 samples of each speech
sound in the pair and computing the probability of a same response
for each pair of samples. These probabilities were then averaged to
obtain the expected probability of a same response for each con-
trast, and a binomial model was used to compute the likelihood of
the data. The experimental noise variance was a free parameter that
varied between the two conditions, under the assumption that
listeners in the two conditions heard the stimuli through different
amounts of noise. A third noise parameter that governed listeners’
inferences was held constant between the two conditions, as in the
restricted model, implementing an assumption that listeners weight
category information equally in the two conditions. This model
yielded a log likelihood of ,618, significantly higher than the
restricted model described above, /2(2) + 116, p . .001 but lower
than the full model despite having one more free parameter.7 The
remaining difference in likelihood between this model and the full
model reflects listeners’ increased reliance on category informa-
tion in higher noise conditions, as captured by our rational model.

Multidimensional scaling. The two noise parameters used in
the simulation of our confusion data were both lower than the
noise variance estimated on the basis of the Iverson and Kuhl
(1995) data. However, the ambient noise level in Iverson and
Kuhl’s experiment should have been comparable to that of our
no-noise condition and was almost certainly lower than the zero
signal-to-noise ratio in our noise condition. This discrepancy may
reflect a difference in analysis methods. Whereas Iverson and Kuhl
used multidimensional scaling to analyze their results, we based

6 The maximum likelihood parameters for the restricted model were
% + 85 mels and % + 103 mels for the no-noise and noise conditions,
respectively, and !S

2 + 1447 (!S + 38 mels).
7 This model cannot be compared with the full model in a generalized

likelihood ratio test because the two models are not nested. To make a
nested variant of the full model, we augmented it with the same two free
parameters for experimental noise. This augmented full model had a log
likelihood of ,568. It therefore accounted for the data significantly better
than did the augmented restricted model, /2(1) + 100, p . .001, though it
did not yield any improvement over the original full model. This again
indicates that allowing the inference-related noise parameter to differ
between the two conditions results in a statistically significant improve-
ment in fit.

No Noise Noise

(c)

Subject Confusion Data

Full Model

Restricted Model

(b)

(a)

Figure 12. Confusion matrices showing the percentage of same responses
to each contrast in (a) subject data, (b) the full model in which the noise
parameter varied between conditions, and (c) the restricted model in which
the noise parameter was constrained to be the same between conditions.
The left-hand plots show the no-noise condition, and the right-hand plots
show the noise condition. Darker cells indicate a higher percentage of same
responses.
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our analysis directly on subject confusion data. To draw a closer
comparison to the results from Iverson and Kuhl and to further
help visualize the difference between the noise and no-noise con-
ditions, we used multidimensional scaling to create perceptual
maps from the behavioral data.

Our multidimensional scaling analysis incorporated information
from both reaction times and same–different responses. Reaction
time data were normalized across subjects by first taking the log
transform to ensure normal distributions and then converting these
to z-scores for each subject. Psychoacoustic distance had a signif-
icant positive correlation with these normalized reaction times for
same responses (r + .45, p . .01, for the no-noise condition; r +
.27, p . .02, for the noise condition),8 reflecting the predicted
result that subjects who responded same were slower when the
stimuli were separated by a greater psychoacoustic distance. Con-
versely, the data showed a significant negative correlation between
psychoacoustic distance and normalized reaction times on differ-
ent responses (r + ,.69, p . .01, for the no-noise condition; r +
,.56, p . .01, for the noise condition), indicating that subjects
were faster to respond different when the stimuli were farther apart
in psychoacoustic space. Both same and different reaction times
were therefore included as measures of perceptual distance in our
multidimensional scaling analysis.

The intuition behind our multidimensional scaling analysis,
which is supported by the correlations presented above, is that
reaction times and same–different responses are consistent with a
subject’s perceptual map of the stimuli. Different responses with
short reaction times indicate that stimuli are far apart in this
perceptual map; different responses with long reaction times indi-
cate that stimuli are closer together; same responses with long
reaction times indicate that stimuli are even closer, and same
responses with short reaction times indicate that stimuli are ex-
tremely close together in the perceptual map. Nonmetric multidi-
mensional scaling (Shepard, 1980) is an optimization method that
aims to minimize violations of distance rankings in a perceptual
map. It assumes a monotonic relation between reaction times and
perceptual distance but does not assume any parametric form for
this relation.9

We constructed a similarity matrix for each condition that
mirrored these intuitions. This was implemented computationally
by subtracting z-scores for same responses from a z-score of six,10

effectively transforming same responses into different responses
with extremely long reaction times, such that shorter reaction times
on a same response mapped onto longer reaction times on a
different response. This is similar to the procedure used by Iverson
and Kuhl, who substituted a reaction time of 2000 ms (the trial
length in their experiment) for any same response. The median
score across subjects for each contrast was then entered into the
similarity matrix, and scores were normalized to fall between zero
and one.

Nonmetric multidimensional scaling solutions based on these
similarity matrices are shown in Figure 13. The plots are modeled
after Figure 5: The horizontal axis shows acoustic space, and the
vertical axis shows perceptual space. A linear function would
indicate a linear mapping between acoustic and perceptual space,
whereas nonlinearities suggest that perceptual space is warped
relative to acoustic space. Areas that are more nearly horizontal
indicate greater shrinkage of perceptual space. These multidimen-
sional scaling solutions suggest that there is a difference in sub-

jects’ perceptual maps between the two conditions. Consistent with
results from Iverson and Kuhl, there is some evidence of percep-
tual warping in the no-noise condition, but here interstimulus
distances are relatively constant. As predicted by our model,
perceptual space is more warped in the noise condition than in the
no-noise condition. Unambiguous stimuli near category centers are
very close together in perceptual space, whereas stimuli near the
category boundary are much farther apart. The precise stimulus
locations in these multidimensional scaling solutions are not com-
patible with the parameters used for the simulation of raw confu-
sion data, suggesting that multidimensional scaling yields an im-
perfect perceptual map of the stimuli. It is possible that Iverson and
Kuhl’s (1995) multidimensional scaling analysis produced a par-
allel exaggeration of the degree of warping, yielding the discrep-
ancy in noise parameters discussed above. However, the multidi-
mensional scaling solution illustrates the same qualitative
difference between the conditions as is seen in the raw confusion
data: Subjects in the noise condition relied more on category
information than subjects in the no-noise condition.

As predicted for moderate noise levels, we observed increased
perceptual warping with increased speech signal noise. These
results provide evidence that listeners are sensitive to the level of
speech signal noise and that their perception reflects these differ-
ing noise levels in a way that is compatible with the optimal
behavior predicted by the rational model. This effect of noise is not
directly predicted by previous models, though it may be compat-
ible with some of them, as discussed in the next section.

Comparison With Previous Models

Our rational model has taken a new approach to explaining the
perceptual magnet effect, framing it as the optimal solution to the
inference problem of perceiving speech sounds in the presence of
noise. However, the solution derived in this analysis shares ele-
ments with several previous computational models, which have
implicitly incorporated mechanisms that implement reliance on
prior information and optimal inference of category membership.
These parallels allow the various approaches to be seen as com-
plementary descriptions of the same system that we describe here,
articulated at different levels of analysis (Marr, 1982). Previous
models provide process-level accounts showing how a system like
the one we propose might be implemented, whereas the rational
model uses analysis of the computational-level problem to explain
why the mechanisms proposed by previous models should work.

Exemplar Model

A direct mathematical connection occurs with Lacerda’s (1995)
model, in which listeners’ discrimination abilities are the side

8 These correlations are relatively low on account of sparse data in cells
where most participants responded different. The correlations increase to
r + .72 and r + .52 (both ps . .01) for the no-noise and noise conditions,
respectively, when the analysis is limited to zero-, one-, two-, and three-
step contrasts.

9 This differs from Iverson and Kuhl’s (1995) assumption of a linear
relationship between log reaction times and perceptual distance.

10 The exact value did not affect the analysis, as long as the value was
high enough that z-scores for different responses and z-scores for same
responses did not overlap substantially.
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effect of an exemplar-based categorization problem. Lacerda’s
model rests on the assumption that phonetic categories have ap-
proximate Gaussian distributions and that listeners store labeled
exemplars from these categories. Perception requires listeners to
determine the category membership of a new speech sound. Lac-
erda defines a speech sound’s similarity to a category as the
proportion of stored exemplars within some distance % from the
speech sound that belong to the category. Listeners’ discrimination
of two speech sounds then depends on the difference between the
two speech sounds’ similarity values.

In a system with two categories A and B, the similarity of a
speech sound x to Category A (sA) is defined in the exemplar
model as

sA#x$ "
NeighbA#x, %$

NeighbA#x, %$ ! NeighbB#x, %$
, (15)

where NeighbA(x, %) indicates the number of neighbors within
range % of speech sound x. The discrimination function depends on
the difference in similarity between neighboring speech sounds; as
the distance between neighboring speech sounds approaches zero,
this corresponds to the derivative of the similarity function. The
discrimination function is therefore defined as

discr#x$ "

&dsA#x$

dx
& ! &dsB#x$

dx
&

k
, (16)

where k is an arbitrary constant. This indicates that the discrim-
inability at a point in perceptual space depends on the rate of
change of category membership.

The mathematics underlying this exemplar model have a
direct connection to our rational model. The first point of
connection is that the similarity function in the exemplar model
approximates the posterior probability of category membership
in the rational model. This can be seen by noting that the exem-
plars are generated from a Gaussian distribution so that listeners
who have heard NA exemplars from Category A have heard ap-
proximately 0x,%

x*% p(S!A)NAdS exemplars from Category A within
a range % from speech sound x. As epsilon approaches zero, the
number of neighbors is proportional to p(x!A)NA. The similarity
metric then becomes

sA#x$ "
p#x!A$NA

p#x!A$NA ! p#x!B$NB
, (17)

which is equivalent to Bayes’ rule as long as the number of stored
exemplars in each category, NA and NB, is proportional to the prior
probabilities of the categories, p(A) and p(B). This calculation
yields the posterior probability p(A!x), indicating that the similarity
metric used in the exemplar model approximates the posterior
probability of category membership.

Furthermore, the discrimination function defined in the exem-
plar model is a component of the measure of warping defined in
the rational model. This can be shown by substituting p(A!x) and its
analogue p(B!x) into the discrimination function, yielding

discr#x$ "

&dp#A!x$

dx
& ! &dp#B!x$

dx
&

k
. (18)

Recall that Equation 14, which defined perceptual warping in the
rational model, included the term

#
c

"c

dp(c!S)
dS

.

There is a direct correspondence between the derivative terms in
the two equations: Both indicate that the discriminability at a
particular point in perceptual space is a linear function of the rate
of change in the identification function. The constant k in the
exemplar model corresponds in our model to a number that is
based on the speech signal noise, category variance, and distance
between the two category means, as discussed in Appendix C.
Unlike in the exemplar model, discriminability in the rational
model includes an additional component that is not based on
category membership: Listeners can discriminate speech sounds
that differ acoustically to the extent that they rely on acoustic
information from the speech sounds.

This analysis shows that the rational model incorporates the idea
from Lacerda’s exemplar model that discrimination peaks occur
near category boundaries as a result of the distributions of exem-
plars in phonetic categories. Our model goes beyond the exemplar
model to account for better than chance within-category discrim-
inability and to provide independent justification for why discrim-
ination should be best near those speech sounds where category
uncertainty is highest. This maximum discriminability occurs be-
cause of the attractors that form at each phonetic category through
optimal compensation for speech signal noise. The attractors pull
equally on speech sounds that are on the boundary between pho-
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Figure 13. Perceptual maps for the (a) no-noise and (b) noise conditions obtained through multidimensional scaling
(MDS). Data from (c) Iverson and Kuhl’s (1995) multidimensional scaling experiment are shown for comparison.
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netic categories, but as soon as a speech sound is to one side or the
other of the boundary, perception is influenced more by the mean
of the more probable category.

Despite their similarities, the two models differ in the goal they
assign to the listener. Whereas Lacerda argues that listeners per-
ceive only similarity to phonetic categories, shown here to be a
measure of category membership, the rational model is based on
the assumption that listeners are trying to extract acoustic detail
from the speech signal. Because of this theoretical difference, the
two models yield differing predictions on the role of speech signal
noise in speech perception: Lacerda’s model does not predict the
experimental result that reliance on category information should
increase as a result of increased speech signal noise.

Neural Network Models

Additional links can be drawn between our rational model and
several neural network models that have been proposed to account
for categorical effects in speech perception. Guenther and Gjaja
(1996) focused specifically on the perceptual magnet effect, pro-
posing that Gaussian distributions of speech sounds can create a
bias in neural firing preferences that favors category centers. In
their model, most neurons preferentially respond to speech sounds
near category centers, whereas few neurons favor speech sounds
near category edges. This is a direct result of their unsupervised
learning mechanism, which causes the distribution of neural firing
preferences to mirror the distribution of speech sounds in the input.
With such a distribution in place, a population vector computed
over the entire population of neurons will include disproportion-
ately many responses from neurons that detect sounds near cate-
gory centers, biasing perception toward prototypical speech
sounds.

While learning is not addressed in our model, the perceptual
mechanism used in the neural model has a direct link to the model
proposed here. Shi, Feldman, and Griffiths (2008) demonstrated
that one can perform approximate Bayesian inference using an
exemplar model by storing samples from the prior distribution,
weighting each sample by its likelihood, and averaging over the
values of these weighted samples. The neural model proposed by
Guenther and Gjaja can be interpreted as implementing this type of
approximate inference. In their model, the neural firing prefer-
ences come to mirror the distribution of speech sounds in the input
so that the firing preference of each neuron represents a possible
target production sampled from the prior distribution. The activa-
tion of each neuron in the model then depends on the similarity of
its firing preference to the speech sound heard. Specifically, the
similarity is given by the dot product of the two unit vectors
representing formant values, which has its maximum when the two
formant values are equal. Though this differs from the Gaussian
likelihood function we propose, it implements the idea that for-
mant values most similar to the speech sound are given the highest
weight. Finally, the percept of a sound is given by the population
vector, which is a weighted average of neural firing preferences in
which the weight assigned to each neuron is equal to its activation.
Perception through the neural map therefore implements approx-
imate Bayesian inference: The prior is given by neural firing
preferences, and the likelihood function is given by the activation
rule. Although this neural implementation itself makes no predic-
tions about the dependence of perceptual warping on speech signal

noise, our analysis indicates that the dependence can be imple-
mented in this framework through a mechanism that changes the
neural activation rule, parallel to changing the likelihood function,
based on noise levels.

Vallabha and McClelland (2007) presented a neural model of
the /r/ and /l/ categories in which learning is also based on
Gaussian distributions of speech sounds. This model has three
layers of representation: an acoustic layer determined entirely by
the input, a middle layer that represents perceptual space, and a
final layer that represents category information. The category
layer contains bidirectional connections with the perceptual
layer such that the perception of a speech sound can help
determine its category, but the category identification then
exerts a bias on perception, moving the perceptual representation
closer to the mean of a phonetic category. This is similar to the
account of categorical perception provided by the TRACE model
(McClelland & Elman, 1986). The model shares several theoretical
components with the rational model, as it allows both category
information and acoustic information to influence perception.
However, we know of no explicit mathematical connections be-
tween the two models, and the authors did not address the neural
model’s dependence on noise.

Several models of categorical perception are presented and
reviewed by Damper and Harnad (2000). These models have in
common that they are trained, in a supervised or unsupervised
manner, on endpoint stimuli comprising voiced and voiceless
tokens and tested on a voice onset time continuum between these
endpoints. Results indicate that two types of neural networks, a
perceptron and a brain-state-in-a-box model (following J. A.
Anderson, Silverstein, Ritz, & Jones, 1977) can reproduce the
sharp category boundary between voiced and voiceless stops. In
the perceptron, this categorization behavior likely results from the
sigmoid activation function of the output unit, which resembles the
logistic categorization function given in Equation 12. The brain-
state-in-a-box model does not include this logistic categorization
function but does include a mechanism mapping each input to its
nearest attractor, creating a sharp change in behavior near the
category boundary. These models therefore capture the idea that
the discrimination function is dependent on categorization, but
they fail to capture the within-category discriminability that has
been shown for vowels. Because they only model categorization
behavior, these models also fail to predict increased reliance on
category information under noisy conditions.

These neural network models all implement some of the ideas
contained in the rational model: either the idea that prior proba-
bility favors speech sounds near the center of a category or the idea
that discrimination is best near category boundaries. Models that
implement the idea of bias toward category centers could theoret-
ically be extended to account for increased bias under noisy
conditions. However, the rational model goes further than this to
explain why the dependence on noise should occur at all.

Acoustic and Phonetic Memory

Finally, the idea that both acoustic information from the speech
sound and phonetic information from the category mean contribute
to a listener’s percept has been suggested previously by Pisoni
(1973) and others, who argued that the differences between vowel
and consonant perception stem from the fact that vowels rely more

772 FELDMAN, GRIFFITHS, AND MORGAN



on acoustic memory, whereas consonants rely more on phonetic
memory. Like the Bayesian model, this account of acoustic and
phonetic memory predicts that as the acoustic uncertainty in-
creases, listeners should rely increasingly on phonetic memory,
making perception more categorical. This idea has been tested in
empirical studies that interfered with acoustic memory to obtain
more categorical perception of vowels (Repp et al., 1979) or
encouraged use of acoustic memory to obtain less categorical
perception of consonants (Pisoni & Lazarus, 1974). In addition,
tasks that required less memory load were found to increase
especially the within-category discriminability of vowels (Pisoni,
1975).

This model is compatible with our Bayesian analysis, given
some assumptions about the interaction between acoustic and
phonetic memory and the degree to which each is used. The
perception of speech sounds in the Bayesian model is a weighted
average of the speech sound S and the means "c of a set of
phonetic categories. One possible mechanism for implementing
this approach would be to store the speech sound in acoustic
memory and activate the phonetic category mean in phonetic
memory. Under this assumption, the Bayesian model complements
the process-level memory model by predicting the extent to which
each mode of memory is used: For categories with high variability
and in lower noise conditions, listeners should rely more on
acoustic memory, whereas for categories with low variability and
in higher noise conditions, listeners should rely more on phonetic
memory.

It is worth noting that the closed-form solution given in Equa-
tion 11 holds only in the case of Gaussian phonetic categories and
Gaussian noise. Qualitatively similar effects are predicted for any
unimodal distribution of speech sounds, but these cases generally
do not yield a quantitative solution that takes the form of a
weighted average between acoustic and phonetic components.
However, the weighted average may provide a close approxima-
tion to optimal behavior even in these cases.

Summary

In this section, we have shown that direct links can be drawn
between the rational model and several process-level models that
have been proposed to account for the perceptual magnet effect
and categorical perception more generally. Any of these mecha-
nisms might be consistent with the computational-level account we
propose, and our analysis does not provide evidence for one particular
implementation over another. Instead, our model contributes by
providing a higher level explanation of the principles that underlie
the behavior of many of these models and by identifying phenom-
ena such as the importance of speech signal noise that have not
been predicted by previous accounts.

General Discussion

This article has described a Bayesian model of speech percep-
tion in which listeners infer the acoustic detail of a speaker’s target
production on the basis of the speech sound they hear and their
prior knowledge of phonetic categories. Uncertainty in the speech
signal causes listeners to infer a sound that is closer to the mean of
the phonetic category than the speech sound they actually heard.
Assuming that a language has multiple phonetic categories, listen-

ers use the probability with which different categories might have
generated a speech sound to guide their inference of the acoustic
detail. Simulations indicate that this model accurately predicts
interstimulus distances in the detailed perceptual map from Iverson
and Kuhl’s (1995) multidimensional scaling experiment as well as
discrimination data from a novel experiment investigating the
effect of noise on listeners’ use of category information. The
remainder of the article revisits the model’s assumptions and
qualitative predictions in the context of previous research on the
perceptual magnet effect, phonetic category acquisition, spoken
word recognition, and categorical effects in other domains.

The Perceptual Magnet Effect

The rational model predicts that three factors are key in deter-
mining the nature of perceptual warping: category frequency,
category variance, and speech signal noise. Nearly all values of
these parameters imply the same pattern of perception, though to
differing degrees. Speech sounds are pulled toward the means of
nearby categories, yielding reduced discriminability near the cen-
ters of phonetic categories and increased discriminability near
category edges. This is qualitatively in line with previous descrip-
tions of the perceptual magnet effect. However, research on the
perceptual magnet effect has found seemingly conflicting empiri-
cal data: Several studies have found better discrimination near
category boundaries than near the prototype, consistent with the
idea of a perceptual magnet effect (Diesch et al., 1999; Grieser &
Kuhl, 1989; Iverson & Kuhl, 1995, 1996; Iverson et al., 2003;
Kuhl, 1991), whereas other studies have found that the effect does
not extend to other vowel categories (Sussman & Gekas, 1997;
Thyer et al., 2000) or that methodological details affect the degree
to which categorical effects are observed (Lively & Pisoni, 1997;
Pisoni, 1975). The model’s predictions concerning differences in
category variance and noise conditions suggest some avenues by
which this debate might be resolved.

The predicted influence of category variance on perceptual
warping may provide a reason why some categories show a higher
degree of categorical perception than others. Data from Hillen-
brand et al. (1995) suggest that the /i/ category has lower variance
than other vowel categories in the direction tested by Iverson and
Kuhl (1995), and it may be because of these higher levels of
variability that the perceptual magnet effect has been difficult to
find in other categories. Clayards et al. (2008) have demonstrated
that adults are sensitive to the degree of within-category variability
in an identification task, and our model predicts that this sensitivity
carries over to discrimination tasks and makes perception less
categorical in categories with high variability.

A second factor that should affect perceptual warping is the
amount of speech signal noise, and the results of our experiment
demonstrate that the perceptual magnet effect in the English /i/ and
/e/ categories can be modulated by adding white noise. One im-
mediate implication of this is that details of stimulus presentation
are critical in speech perception experiments. Poor stimulus quality
might actually yield better categorical perception results, and sim-
ilar manipulations of memory uncertainty should also have this
effect. This idea is consistent with results that show more pro-
nounced discrimination peaks at category boundaries with longer
interstimulus intervals, where memory uncertainty should be high-
est (Pisoni, 1973). Further research is necessary to determine the
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extent to which these factors can explain the variability in empir-
ical results.

Another debate in the literature discusses the extent to which the
perceptual magnet effect is a between-category or within-category
phenomenon, and the rational model provides a way of reconciling
these two characterizations. The within-category account involves
speech sound prototypes that act as perceptual magnets, pulling the
perception of speech sounds toward them (Kuhl, 1991). The idea
of a perceptual magnet is formalized in Equation 7, where speech
sounds are perceived based on the mean of the category that
produced them. The between-category account ties the perception
of speech sounds to the task of inferring category membership
(Lacerda, 1995). In line with this, the Bayesian solution to the
problem of speech perception with multiple categories (Equation
11) is consistent with the idea that listeners calculate the proba-
bility of each phonetic category having generated a speech sound.
However, in contrast to Lacerda’s model, which assumes that
listeners are perceiving only category membership, the present
model predicts that listeners perceive speech sounds in terms of
speakers’ intended target productions, a continuous variable that
depends only partly on category membership. The rational model
therefore synthesizes these two previous proposals into a single
framework in which the perceptual magnet effect arises through
the interaction between shrinkage of perceptual space toward cat-
egory centers and enhanced discrimination between categories
through optimal inference of category membership.

Similar to probabilistic models in visual perception (e.g., Yuille
& Kersten, 2006), the use of the term inference here is not meant
to imply that listeners are performing explicit computations, and
the model does not attempt to distinguish between inference and
perception. Likewise, in determining which categories might have
generated a speech sound, listeners need not be making explicit
categorization judgments. This computation may involve nothing
more than implicit and automatic activation of the relevant pho-
netic categories, or even simple retrieval of stored exemplars (Shi
et al., 2008). The argument presented here is that the perceptual
magnet effect results from a process that approximates the math-
ematics of optimal inference and that this process is advantageous
to listeners because it allows them to perceive speech sounds
accurately.

Phonetic Category Acquisition

The rational model assumes that listeners have prior knowledge
of phonetic categories in their language. Although this is true of
adult listeners, it poses an acquisition problem because infants
need to learn which categories are present in their native language.
This acquisition problem has been studied in the context of several
computational models that use a mixture of Gaussians approach to
recover Gaussian categories from unlabeled input. In de Boer and
Kuhl’s (2003) model, the expectation maximization algorithm
(Dempster, Laird, & Rubin, 1977) was used to find an appropriate
set of three vowel categories from a batch of stored exemplars.
More recently, McMurray, Aslin, and Toscano (2009) used an
incremental algorithm to learn the category parameters for a voic-
ing contrast, and Vallabha, McClelland, Pons, Werker, and Amano
(2007) applied this incremental algorithm to vowel formant and
duration data from English and Japanese infant-directed speech.
Incremental algorithms lend psychological plausibility to this ac-

count, allowing infants to learn from each speech sound as it is
heard. The Gaussian categories learned by this type of algorithm
would provide the necessary prior information assumed in our
Bayesian model.

Learning explicit Gaussian categories yields a prior that is
consistent with this model, but it is also possible to relax the
assumptions of normality and of discrete categories so that the
perceptual magnet effect arises simply as a result of listeners’
estimating the distribution of speech sounds in their language.
Formal analyses of models of categorization have shown that
simply storing exemplars can provide an alternative method for
estimating the distribution associated with a category (Ashby &
Alfonso-Reese, 1995). If it is assumed that probabilities are as-
signed to stimuli in a way that is determined by their similarity to
previously observed exemplars, and that the distribution associated
with a category results from summing the probabilities produced
by each exemplar from that category, the result is a kernel density
estimator, a nonparametric method for estimating probability dis-
tributions (Silverman, 1986). Given sufficiently many exemplars,
the distribution estimated in this fashion will approximate the
distribution associated with the category. If the category distribu-
tion is Gaussian, the result will be approximately Gaussian. How-
ever, listeners do not need explicit knowledge of this larger struc-
ture. Rather, they can obtain the same perceptual effect by treating
each exemplar as its own category. In this scenario, listeners need
to take many small overlapping categories, or kernels, into account
using Equation 11. In our discussion of limits on category vari-
ance, we showed that if two Gaussian categories produce a col-
lective unimodal distribution, all of perceptual space is biased
inward toward a point between the categories. Here, kernels that
represent speech sounds from a Gaussian phonetic category will
combine to produce a unimodal Gaussian distribution. The math-
ematics of this case reduce to the mathematics of the case of a
single discrete category, with the weight on speech sound S equal
to the sum of the kernel width and the variance in the locations of
kernels.

This method of learning distributions based on individual
speech sounds removes the need for listeners to have knowledge of
explicit categories, reducing the severity of the learnability prob-
lem. It suggests that the perceptual magnet effect requires prior
knowledge of the distributions of speech sounds in the input but
does not require knowledge of the discrete categories that these
distributions represent. The mere presence of the perceptual mag-
net effect does not necessarily imply knowledge of discrete pho-
netic categories. Furthermore, this analysis can be used to relax the
assumptions of Gaussian phonetic categories. Any unimodal dis-
tribution in the locations of exemplars should produce a qualita-
tively similar effect to that obtained with Gaussians, since as soon
as the kernels representing exemplars are close enough together to
yield a combined unimodal distribution, perception will be biased
inward to a point between those exemplars.

Multiple Dimensions

In this article, we have examined a simplified problem in speech
perception, involving stimuli that lie along a single psychoacoustic
dimension. Real speech input contains multiple dimensions that
are relevant for categorizing and discriminating stimuli, and in
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future work it will be interesting to examine discrimination pat-
terns in categories that vary along multiple dimensions (e.g.,
Iverson et al., 2003) as well as patterns of trading relations in
phoneme identification (e.g., Repp, 1982). Both of these problems
require the use of more complex representations, such as multidi-
mensional Gaussians, to represent phonetic categories and noise
processes.

Preliminary simulations of the two-dimensional /r/–/l/ data from
Iverson and Kuhl (1996) using multidimensional Gaussians with
diagonal covariance matrices suggest that our rational model cap-
tures some aspects of these data but that the model would need to
be extended to fully capture human data in multiple dimensions.
These /r/–/l/ data show two basic effects. First, there is shrinkage
toward category means along the F3 dimension, the dimension that
separates the two categories. This shrinkage is weakest near the
boundary between the categories, as predicted by the rational
model. Second, the data show shrinkage in the F2 dimension, and
this F2 shrinkage is strongest at F3 values that are near the category
means. Although the rational model predicts shrinkage in the F2

dimension, it predicts the same amount of F2 shrinkage at any
value of F3.

This issue can potentially be addressed in two ways within the
framework of the rational model. First, one can relax the assump-
tion of Gaussian categories and Gaussian noise, an assumption that
we have adopted only for computational simplicity. The neural
map proposed by Guenther and Gjaja (1996) provides evidence
that relaxing the Gaussian assumption will allow the model to
capture human performance. As discussed above, Guenther and
Gjaja’s model implements an approximate form of optimal Bayes-
ian inference (Shi et al., 2008). The likelihood is given by their
activation function, which is non-Gaussian, and the prior distribu-
tion is given by neural firing preferences in their neural map,
which may be non-Gaussian as a result of their learning algorithm.
This neural model therefore implements an approximation of our
rational model that relaxes the Gaussian assumption. Their model
obtains a close fit to the two-dimensional /r/–/l/ data, suggesting
that, in principle, the rational model is capable of capturing this
pattern.

A second potential extension to the rational model would allow
sounds to be generated from nonspeech categories. Currently, all
sounds are assumed to belong to the /r/ and /l/ categories, but
incorporating a nonspeech category would allow sounds that are
different from native language categories to be classified as non-
speech. In the data from Iverson and Kuhl (1996), sounds that are
farthest from phonetic category centers are biased less than pre-
dicted by our current model. Consistent with this, a nonspeech
category with a uniform distribution over acoustic space would
weaken the perceptual bias for sounds that are very different from
native language categories. This would accord with suggestions
from the speech perception literature that sounds dissimilar to
native language phonetic categories remain perceptually unassimi-
lated (e.g., Best, McRoberts, & Sithole, 1988). It would also
parallel the suggestion by Huttenlocher et al. (2000) that partici-
pants performing a visual stimulus reproduction task are less likely
to treat extreme stimulus values as belonging to the category of
experimental stimuli, weakening the bias toward the edge of the
category.

Phoneme Identification and Spoken Word Recognition

Speech perception involves recognizing not only speech
sounds but also words, and our framework is potentially com-
patible with several models of spoken word recognition. Short-
list B (Norris & McQueen, 2008) uses a Bayesian framework to
characterize word recognition in fluent speech at a computa-
tional level, and a potential connection to this model comes
through the quantity p(c!S), which is used as a primitive in
Shortlist B to compute word and path probabilities for spoken
utterances. On an implementational level, our model is poten-
tially compatible with either interactive (McClelland & Elman,
1986) or feed-forward (Norris, McQueen, & Cutler, 2000)
architectures, which give different accounts as to how acoustic
and lexical information are combined during phoneme recog-
nition. Any computation that ultimately yields the posterior on
target productions p(T !S) is compatible with our model. Under
a feed-forward account, acoustic and lexical information would
combine at a decision level to generate the posterior distribu-
tion, whereas in an interactive account, an initial guess at the
distribution on target productions might be recursively updated
by lexical feedback until it settles on the correct posterior
distribution. The model is also potentially compatible with
either an episodic lexicon (e.g., Bybee, 2001) or a more abstract
lexicon (e.g., McClelland & Elman, 1986) that nevertheless
includes phonetic detail. As discussed above, groups of exem-
plars can produce perceptual patterns similar to those obtained
using abstract categories. The presence of a perceptual magnet
effect for isolated phonemes suggests that some prior informa-
tion is available at the level of the phoneme (see also McQueen,
Cutler, & Norris, 2006), but this might be achieved either
through abstraction or through analogy with stored lexical
items.

At the level of phoneme perception, the rational model is aimed
primarily at explaining discrimination performance, but the quan-
tity p(c!S) can potentially account for performance in explicit
phoneme identification tasks as well. Consistent with our model’s
predictions, Clayards et al. (2008) have demonstrated that listeners
are sensitive to the degree of category variance when performing
explicit categorization tasks. Nevertheless, we acknowledge the
possibility that the quantity p(c!S) used for identification tasks is
different from that used for discrimination tasks. Such divergence
might be due to incorporation of additional information (e.g.,
lexical information) into explicit categorization tasks or to loss of
information through imperfect approximations of the target pro-
duction T before explicit categorization occurs. These possibilities
remain open to further investigation.

Central to the rational model is the assumption that listeners
have knowledge of phonetic categories but are trying to infer
phonetic detail. This contrasts with previous models that have
assumed listeners recover only category information about pho-
nemes. Phonemes do distinguish words from one another; how-
ever, it is not clear that listeners abstract away from phonetic detail
when storing and recognizing words (Goldinger, 1996; Ju & Luce,
2006; McMurray, Tanenhaus, & Aslin, 2002). Evidence has shown
that listeners are sensitive to subphonemic detail at both neural and
behavioral levels (Andruski, Blumstein, & Burton, 1994; Blum-
stein, Myers, & Rissman, 2005; Joanisse, Robertson, & Newman,
2007; Pisoni & Tash, 1974). Phonetic detail provides coarticula-
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tory information that can help listeners identify upcoming words
and word boundaries, and data from priming studies have sug-
gested that listeners use this coarticulatory information online in
lexical recognition tasks (Gow, 2001). This implies that listeners
not only infer a speech sound’s category but also attend to the
phonetic detail within that category in order to gain information
about upcoming phonemes and words. Though one could contend
that listeners ultimately categorize speech sounds into discrete
phonemes, their more direct goal must be to extract all relevant
acoustic information from the speech signal. Because of its core
assumption that listeners recover the phonetic detail of speech
sounds they hear, the rational model is in accord with these
behavioral results showing the use of phonetic detail in spoken
word recognition.

Categorical Effects in Other Domains

The assumptions underlying the rational model are not spe-
cific to the structure of speech, and this makes the modeling
results potentially applicable beyond the specific case of vowel
perception. The extent to which this model can account for
phenomena such as categorical perception of consonants, col-
ors, or faces is an exciting question for future research. A
generalization of these results to consonant perception seems to
be the most straightforward, and results that are qualitatively
compatible with the rational model’s predictions have been
found in stop consonant perception as measured by identifica-
tion tasks (Burton & Blumstein, 1995; Clayards et al., 2008;
Ganong, 1980). To the extent that consonants can be modeled as
distributions of speech sounds along acoustic dimensions, the
same principles that apply to vowel perception should yield
insight into consonant perception. However, additional factors
may need to be taken into account when modeling perception of
consonants, especially stop consonants. Discrimination peaks
have been found near stop consonant boundaries in animals
(Kuhl & Padden, 1982, 1983) and very young infants (Eimas et
al., 1971), suggesting that patterns in stop consonant perception
are not solely the result of estimating distributions of speech
sounds in the input but also involve auditory discontinuities.
Auditory discontinuities are found in nonspeech stimuli as well
(J. D. Miller et al., 1976; Pisoni, 1977) and might result from
differential perceptual uncertainty depending on the stimulus
value (Pastore et al., 1977). Influences of auditory discontinui-
ties on category learning have been shown in adults (Holt et al.,
2004), and future research might investigate how these discon-
tinuities interact with learned categories in speech perception
and whether they continue to influence perception after pho-
netic categories are acquired.

The rational model suggests that cross-linguistic differences
in speech perception result from differences in the distributions
of speech sounds heard by listeners, where perception is biased
toward peaks in these distributions. A key issue in applying
these results to color and face perception therefore involves
examining the extent to which categories in these domains can
be characterized as clusters of exemplars. This seems plausible
for both facial expressions and facial identities; however, the
distribution of colors in the world is unlikely to depend on
linguistic experience. Categorical perception of color appears
instead to be mediated by linguistic codes, and effects of verbal

interference on categorical perception of facial expressions
parallel those in color perception (Roberson & Davidoff, 2000;
Tan et al., 2008). The model presented here does not incorpo-
rate the notion of linguistic codes, and it may need to be
extended to account for these results. Nevertheless, direct be-
havioral parallels have been drawn between color perception
and speech perception (e.g., Bornstein & Korda, 1984). In the
domain of face perception, stronger categorical effects in fa-
miliar faces than in unfamiliar faces (Beale & Keil, 1995) and
shifts in the discrimination peak based on shifted category
boundaries (Pollak & Kistler, 2002) are consistent with the
rational model’s predictions. Indeed, categorical perception of
facial expressions has been argued to be more in line with
prototype bias accounts than with labeling accounts (Roberson
et al., 2007). These qualitative similarities may indicate that
categories based on exemplar distributions and those based on
linguistic codes are processed in a similar manner, but further
investigation is required to determine the extent of these par-
allels.

Finally, evidence that our results are applicable beyond the
specific case of speech perception comes from nonlinguistic do-
mains in which versions of this model have previously been
proposed. Huttenlocher et al. (2000) used the same one-category
model to explain category bias in visual stimulus reproduction, and
this has been followed by demonstrations of similar effects with
other types of visual stimuli (Crawford, Huttenlocher, & Hedges,
2006; Huttenlocher, Hedges, Corrigan, & Crawford, 2004). Körd-
ing and Wolpert (2004) explained subjects’ behavior in motor
tasks using the same analysis. Similar ideas have also been used to
describe optimal visual cue integration (Landy, Maloney,
Johnston, & Young, 1995) and audiovisual integration (Battaglia,
Jacobs, & Aslin, 2003). Although this does not mean that the
mechanisms being used in these domains are equivalent, it at least
implies that several low-level systems use the same optimal strat-
egy when combining sources of information under uncertainty,
explaining why categories should influence perception in each of
these cases.
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Özgen, E., & Davies, I. R. L. (2002). Acquisition of categorical color
perception: A perceptual learning approach to the linguistic relativity
hypothesis. Journal of Experimental Psychology: General, 131, 477–
493.

Pastore, R. E., Ahroon, W. A., Baffuto, K. J., Friedman, C., Puleo, J. S., &
Fink, E. A. (1977). Common-factor model of categorical perception.
Journal of Experimental Psychology: Human Perception and Perfor-
mance, 3, 686–696.

Peterson, G. E., & Barney, H. L. (1952). Control methods used in a study
of the vowels. Journal of the Acoustical Society of America, 24, 175–
184.
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Appendix A

Computing Expected Target Productions

Given a generative model where p(T !c) + N("c, !c
2) and p(S!T) +

N(T, !S
2), we can use Bayes’ rule for the one-category case,

p(T !S, c) & p(S!T, c)p(T !c), to express the posterior on targets as

p#T !S, c$ &
1

'21!c
2 exp$# #T # "c$

2

2!c
2 %

%
1

'21!S
2 exp$# #S # T $2

2!S
2 % . (19)

The normalizing constants can be eliminated while still retaining
proportionality, so this expression becomes

p#T !S, c$ & exp$# #T # "c$
2

2!c
2 #

#S # T $2

2!S
2 % . (20)

Expanding the terms in the exponent and eliminating those terms
that do not depend on T, we obtain

p#T !S, c$ & exp$# T 2

2!c
2 !

2T"c

2!c
2 !

2ST
2!S

2 #
T 2

2!S
2% . (21)

The expression in the exponent can be simplified into one term
that depends on T 2 and a second term that depends on T, so that

p#T !S, c$ & exp$# !c
2 ! !S

2

2#!c
2!S

2$
T 2 !

2#!c
2S ! !S

2"c$

2#!c
2!S

2$
T% . (22)

We make the form more similar to a Gaussian distribution,

p#T !S, c$ & exp(# T 2 # 2
!c

2S ! !S
2"c

!c
2 ! !S

2 T

2
!c

2!S
2

!c
2 ! !S

2
) . (23)

and multiply by the constant

exp(,
#!c

2S ! !S
2"c$

2

#!c
2 ! !S

2$2

2
!c

2!S
2

!c
2 ! !S

2
)

to complete the square, preserving proportionality because this
new term does not depend on T. The expression

p#T !S, c$ & exp(# $T #
!c

2S ! !S
2"c

!c
2 ! !S

2 % 2

2
!c

2!S
2

!c
2 ! !S

2
) (24)

now has the form of a Gaussian distribution with mean

!c
2S ! !S

2"c

!c
2 ! !S

2

and variance

!c
2!S

2

!c
2 ! !S

2.

The posterior distribution in the one-category case is therefore

p#T !S, c$ " N$!c
2S ! !S

2"c

!c
2 ! !S

2 ,
!c

2!S
2

!c
2 ! !S

2% (25)

and the expected value of T is the mean of this Gaussian distribu-
tion,

E'T !S, c( "
!c

2S ! !S
2"c

!c
2 ! !S

2 . (26)

To compute the expectation E[T !S] in the case of multiple categories,
we use the formula E[T !S] + 0Tp(T !S)dT, where p(T!S) is computed by
marginalizing over categories, p(T !S) + *c p(T !S, c)p(c!S). The expres-
sion for the expectation becomes

E'T !S( " +T#
c

p#T !S, c$p#c!S)dT. (27)

Bringing T inside the sum and then exchanging the sum and the
integral yields
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E'T !S( " #
c
+Tp#T !S, c$p#c!S$dT. (28)

Because p(c!S) does not depend on T, this is equal to

E'T !S( " #
c

p#c!S$+Tp#T!S, c$dT, (29)

where 0Tp(T !S, c)dT denotes E[T !S, c], the expectation in the
one-category case (Equation 26). The expectation in the case of
multiple categories is therefore

E'T !S( " #
c

p#c!S$
!c

2S ! !S
2"c

!c
2 ! !S

2 , (30)

which is the same as the expression given in Equation 10.

Appendix B

Calculating Category Parameters From Identification Curves

Given a logistic identification curve for the percentage of par-
ticipants that identified each stimulus as belonging to Category 1
in a two-category forced-choice identification task, one can derive
the category means and common variance by noting that the curve
is an empirical measure of p(c1!S), which in a two-category forced-
choice task is defined according to Bayes’ rule (Equation 4) as

p#c1!S$ "
p#S!c1$p#c1$

p#S!c1$p#c1$ ! p#S!c2$p#c2$
. (31)

Each part of the fraction can be divided by the quantity in the
numerator. Two inverse functions are applied to the last term, the
exponential power and the natural logarithm, yielding

p#c1!S$ "
1

1 ! elog
p#S!c2$ p#c2$

p#S!c1$ p#c1$

. (32)

Assuming that the two categories c1 and c2 have equal prior
probability, and using the distribution for p(S!c) given in Equation
3, we can simplify Equation 32 to a logistic equation of the form

p#c1!S$ "
1

1 ! e,gS*b, (33)

where

g "
"1 # "2

!c
2 ! !S

2 and b "
"1

2 # "2
2

2#!c
2 ! !S

2$
.

Thus, given values for g, b, and "1, one can calculate the value of
"2 and the sum !c

2 * !S
2 as follows:

"2 "
2b
g

# "1 and (34)

!c
2 ! !S

2 "
"1 # "2

g
. (35)

Without the assumption of equal prior probability, the bias term
instead becomes

b "
"1

2 # "2
2

2#!c
2 ! !S

2$
! log

p#c2$

p#c1$
,

which produces a shift of the logistic toward the mean of the less
probable category. Because the category boundary occurs where
p(c1!S) + 1/2 or S + b/g, this bias term produces a shift of
magnitude

log
p#c2$

p#c1$

g
,

where g is the gain of the logistic. The extra bias term therefore
creates a larger shift in boundary locations for small values of the gain
parameter, which can arise through high category variance !c

2, high
noise variance !S

2, or small separation between category means "1 , "2.

(Appendixes continue)
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Appendix C

Measure of Warping

Perceptual warping, which is a measure of the degree of shrink-
age or expansion of perceptual space, corresponds mathematically
to the derivative of the expected target E[T !S] with respect to S.
We begin with the expectation from Equation 11

E'T !S( "
!c

2

!c
2 ! !S

2S !
!S

2

!c
2 ! !S

2#
c

"c p#c!S$ (36)

and compute its derivative, using the chain rule to compute the
derivative of the second term,

dE'T !S(

dS
"

!c
2

!c
2 ! !S

2 !
!S

2

!c
2 ! !S

2#
c

"c

dp#c!S$

dS
. (37)

This is the expression given in Equation 14. However, this deriv-
ative includes a term that corresponds to the derivative of the
identification function. In the two-category case, the identification
function has the form of a logistic function

p#c1!S$ "
1

1 ! e,gS * b

whose derivative is given by

dp#c1!S$

dS
" gp#c1!S$'1 # p#c1!S$(, (38)

where

g "
"1 # "2

!c
2 ! !S

2 .

Because p(c2!S) + 1 , p(c1!S) in the two-category case, the
derivative of the logistic for p(c2!S) is identical to Equation 38
except that the gain has the opposite sign. Substituting this into
Equation 37 and expanding the sum yields

dE'T !S(

dS
"

!c
2

!c
2 ! !S

2 !
!S

2

!c
2 ! !S

2 2"1gp#c1!S$'1 # p#c1!S$(

# "2gp#c1!S$'1 # p#c1!S$(3, (39)

which can be simplified to

dE'T !S(

dS
"

!c
2

!c
2 ! !S

2 !
!S

2

!c
2 ! !S

2 g#"1 # "2$2p#c1!S$'1 # p#c1!S$(3

(40)

or, substituting in the expression for the gain of the logistic,

dE'T !S(

dS
"

!c
2

!c
2 ! !S

2 !
!S

2#"1 # "2$
2

#!c
2 ! !S

2$2 2p#c1!S$'1 # p#c1!S$(3.

(41)

Appendix D

Same–Different Task

Given two stimuli SA and SB, the posterior probability that the
targets TA and TB are within range % of each other is p(!TA , TB!
$ %!SA, SB), which is equivalent to p(,% $ TA , TB $ %!SA, SB).
This probability can be computed analytically by marginalizing
over category assignments for the two stimuli,

#
cA

#
cB

p##% $ TA # TB $ %!cA, cB, SA, SB$p#cA!SA$p#cB!SB$ (42)

under the assumption that the two stimuli are generated independently
(cA and SA are independent of cB and SB). To compute the first term,
note that the distributions p(TA!cA, SA) and p(TB!cB, SB) are both
Gaussians as given by Equation 6. Their difference therefore follows
a Gaussian distribution, with its mean equal to the difference between
the two means and its variance equal to the sum of the two variances,

TA # TB!cA, cB, SA, SB "

N$!c
2#SA # SB$ ! !S

2#"A # "B$

!c
2 ! !S

2 ,
2!c

2!S
2

!c
2 ! !S

2% . (43)

Given this density, the probability of falling within a range be-
tween ,% and % can be expressed in terms of the standard cumu-
lative normal distribution 4,

p##% $ TA # TB $ %!cA, cB, SA, SB$ " 4$% # "d

!d
%

# 4$#% # "d

!d
% , (44)

where

"d "
!c

2#SA # SB$ ! !S
2#"A # "B$

!c
2 ! !S

2

and

!d " ' 2!c
2!S

2

!c
2 * !S

2.

The second and third terms in Equation 42 can then be computed
independently for stimuli SA and SB from Equation 12.
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